1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Duke LC, Cone AS, Sun L, Dittmer DP, Meckes DG, Tomko RJ. Tetraspanin CD9 alters cellular trafficking and endocytosis of tetraspanin CD63, affecting CD63 packaging into small extracellular vesicles. J Biol Chem 2025; 301:108255. [PMID: 39909378 PMCID: PMC11919600 DOI: 10.1016/j.jbc.2025.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Small extracellular vesicles (sEVs) are particles secreted from cells that play vital roles both in normal physiology and in human disease. sEVs are highly enriched in tetraspanin proteins, such as CD9 and CD63, and contain tetraspanin-enriched membrane microdomains involved in loading of sEVs with macromolecule cargoes and in sEV biogenesis. However, the precise roles of individual tetraspanins in sEV biogenesis and cargo loading remain poorly understood. Here, we report that CD9 negatively regulated CD63 trafficking to tetraspanin-enriched microdomains and its subsequent packaging into sEVs, whereas CD63 had no discernable effect on CD9 localization or packaging. Using super resolution microscopy of individual vesicles, we showed that CD9 governs the fraction of sEVs that are loaded with CD63. Interestingly, CD9-dependent suppression of CD63 packaging was rescued by pharmacological blockade of endocytosis. Together, our data support a model where CD9 contributes to the regulation and secretion of CD63 in an endocytosis-dependent manner to reprogram the contents of sEVs and tetraspanin-enriched microdomains.
Collapse
Affiliation(s)
- Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| | - Allaura S Cone
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Lim B, Kim SC, Kim HJ, Kim JH, Seo YJ, Lim C, Park Y, Sheet S, Kim D, Lim DH, Park K, Lee KT, Kim WI, Kim JM. Single-cell transcriptomics of bronchoalveolar lavage during PRRSV infection with different virulence. Nat Commun 2025; 16:1112. [PMID: 39875369 PMCID: PMC11775223 DOI: 10.1038/s41467-024-54676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the global swine industry due to its high genetic diversity and different virulence levels, which complicate disease management and vaccine development. This study evaluated longitudinal changes in the immune cell composition of bronchoalveolar lavage fluid and the clinical outcomes across PRRSV strains with varying virulence, using techniques including single-cell transcriptomics. In highly virulent infection, faster viral replication results in an earlier peak lung-damage time point, marked by significant interstitial pneumonia, a significant decrease in macrophages, and an influx of lymphocytes. Viral tracking reveals less than 5% of macrophages are directly infected, and further analysis indicates bystander cell death, likely regulated by exosomal microRNAs as a significant factor. In contrast, the peak intermediate infection shows a delayed lung-damage time point with fewer cell population modifications. Furthermore, anti-inflammatory M2-like macrophages (SPP1-CXCL14high) are identified and their counts increase during the peak lung-damage time point, likely contributing to local defense and lung recovery, which is not observed in high virulent infection. These findings provide a comprehensive description of the immune cellular landscape and differential PRRSV virulence mechanisms, which will help build new hypotheses to understand PRRSV pathogenesis and other respiratory infections.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hwan-Ju Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jae-Hwan Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Young-Jun Seo
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chiwoong Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yejee Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
4
|
Bhatt DK, Boerma A, Bustos SO, Otake AH, Murillo Carrasco AG, Reis PP, Chammas R, Daemen T, Andrade LNDS. Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles. Sci Rep 2025; 15:803. [PMID: 39755711 PMCID: PMC11700145 DOI: 10.1038/s41598-024-82331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown. Here we show that upon oncolytic virotherapy with Semliki Forest virus-based replicon particles (rSFV), metastatic melanoma cells release EVs with a distinct biochemical profile and do not lead to suppression of immune cells. Specifically, we demonstrate that viral infection causes a differential loading of regulatory microRNAs (miRNAs) in EVs in addition to changes in their physical features. EVs derived from cancer cells potentially suppress splenocyte proliferation and induce regulatory macrophages. In contrast, EVs obtained from rSFV-infected cells did not exhibit such effects. Our results thus show that rSFV infection induces changes in the immunomodulatory properties of melanoma EVs, which may contribute to enhancing the therapeutic efficacy of virotherapy. Finally, our results show that the use of an oncolytic virus capable of a single-round of infection allows the analysis of EVs secreted from infected cells while preventing interference from extracellular virus particles.
Collapse
Affiliation(s)
- Darshak K Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil
| | - Annemarie Boerma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Andréia Hanada Otake
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Patrícia Pintor Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu, 18618-687, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil.
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Thankamani K, Shubham D, Kandpal G, Isaac AM, Kavitha MS, Raj VS. Middle East respiratory syndrome coronavirus (MERS-CoV) internalization does not rely on DPP4 cytoplasmic tail signaling. NPJ VIRUSES 2024; 2:67. [PMID: 40295839 PMCID: PMC11721135 DOI: 10.1038/s44298-024-00080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 04/30/2025]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects respiratory epithelial cells in humans and camels by binding to dipeptidyl peptidase 4 (DPP4) as its entry receptor. DPP4 is a multifunctional type II membrane protein with a long ectodomain and a short six-amino-acid (aa) cytoplasmic tail. MERS-CoV is known to bind to the ectodomain of DPP4 to gain entry into the host cell. However, the role of the cytoplasmic tail in the entry process remains unclear. Here, we show that mutating or deleting individual aa residues or the entire cytoplasmic tail of DPP4 (ΔcytDPP4) does not completely prevent DPP4 from being inserted into the membrane or from allowing the binding of the MERS-CoV spike protein and pseudovirus infection. Although two mutants, ΔcytDPP4, and a single aa deleted DPP4 (ΔK6DPP4) displayed less surface presentation than wtDPP4, the spike protein could still bind and localize on different DPP4 mutants. The reduced surface expression of ΔK6DPP4 might be due to the extended transmembrane domain, which is altered by the hydrophobic tryptophan (W) residue adjacent to the deleted K6. Furthermore, HEK293T cells transiently expressing DPP4 mutants were permeable to MERS-CoV pseudovirus infection. Not only transiently expressing cells but also cells stably expressing the ΔcytDPP4 mutant were susceptible to MERS-CoV pseudoviral infection, indicating that the DPP4 cytoplasmic tail is not required for MERS-CoV entry. Overall, these data suggest that, although MERS-CoV binds to DPP4, other host factors may need to interact with DPP4 or the spike protein to trigger internalization.
Collapse
Affiliation(s)
- Karthika Thankamani
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Divakar Shubham
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Gayatri Kandpal
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Ann Mary Isaac
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Modenkattil Sethumadhavan Kavitha
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - V Stalin Raj
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
de Miguel-Perez D, Arroyo-Hernandez M, La Salvia S, Gunasekaran M, Pickering EM, Avila S, Gebru E, Becerril-Vargas E, Monraz-Perez S, Saharia K, Grazioli A, McCurdy MT, Frieman M, Miorin L, Russo A, Cardona AF, García-Sastre A, Kaushal S, Hirsch FR, Atanackovic D, Sahoo S, Arrieta O, Rolfo C. Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19. J Extracell Vesicles 2024; 13:e70001. [PMID: 39558820 PMCID: PMC11574309 DOI: 10.1002/jev2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.
Collapse
Affiliation(s)
- Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Sabrina La Salvia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Muthukumar Gunasekaran
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward M Pickering
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stephanie Avila
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Etse Gebru
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | | | | - Kapil Saharia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison Grazioli
- Department of Medicine, Program in Trauma, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrés F Cardona
- Institute for Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sunjay Kaushal
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djordje Atanackovic
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerologia (INCan), Mexico City, Mexico
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
Affiliation(s)
- Jeffrey C. Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tugba Atabey
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Angela I. Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gillian Dekkers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi AN, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. Cell Rep 2024; 43:114530. [PMID: 39058596 DOI: 10.1016/j.celrep.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Kyung Hee University, Seoul, South Korea
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Catanzaro NJ, Wu Z, Fan C, Schäfer A, Yount BL, Bjorkman PJ, Baric R, Letko M. ACE2 from Pipistrellus abramus bats is a receptor for HKU5 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584892. [PMID: 38559009 PMCID: PMC10980018 DOI: 10.1101/2024.03.13.584892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.
Collapse
Affiliation(s)
- Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Ralph Baric
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99163
| |
Collapse
|
10
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
11
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
12
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi A, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.586409. [PMID: 38617298 PMCID: PMC11014493 DOI: 10.1101/2024.03.31.586409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Most vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts, however, are limited by a poor understanding of antibody responses elicited by infection along with their durability, fine specificity and contribution of distinct S antigenic sites to neutralization. To address this knowledge gap, we analyzed S-directed binding and neutralizing antibody titers in plasma collected from individuals infected with MERS-CoV in 2017-2019 (prior to the COVID-19 pandemic). We observed that binding and neutralizing antibodies peak 1 to 6 weeks after symptom onset/hospitalization, persist for at least 6 months, and broadly neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the RBD, account for most plasma neutralizing activity. Antigenic site mapping revealed that polyclonal plasma antibodies frequently target RBD epitopes, particularly a site exposed irrespective of the S trimer conformation, whereas targeting of S2 subunit epitopes is rare, similar to SARS-CoV-2. Our data reveal in unprecedented details the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Kyung Hee University, Seoul, South Korea
| | - Abeer Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Zhang XZ, Wang J, Tian WJ, You JL, Chi XJ, Wang XJ. Phospho-eIF4E stimulation regulates coronavirus entry by selective expression of cell membrane-residential factors. J Virol 2024; 98:e0194823. [PMID: 38299843 PMCID: PMC10878034 DOI: 10.1128/jvi.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ling You
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
15
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
16
|
Leinung N, Mentrup T, Patel M, Gallagher T, Schröder B. Dynamic association of the intramembrane proteases SPPL2a/b and their substrates with tetraspanin-enriched microdomains. iScience 2023; 26:107819. [PMID: 37736044 PMCID: PMC10509304 DOI: 10.1016/j.isci.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Mehul Patel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Datta S, Chen DY, Tavares AH, Reyes-Robles T, Ryu KA, Khan N, Bechtel TJ, Bertoch JM, White CH, Hazuda DJ, Vora KA, Hett EC, Fadeyi OO, Oslund RC, Emili A, Saeed M. High-resolution photocatalytic mapping of SARS-CoV-2 spike interactions on the cell surface. Cell Chem Biol 2023; 30:1313-1322.e7. [PMID: 37499664 DOI: 10.1016/j.chembiol.2023.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.
Collapse
Affiliation(s)
- Suprama Datta
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA; Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Alexander H Tavares
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Tamara Reyes-Robles
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Keun Ah Ryu
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Nazimuddin Khan
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Tyler J Bechtel
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Jayde M Bertoch
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Cory H White
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Daria J Hazuda
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA; Department of Infectious Diseases and Vaccines Research, Merck & Co., Inc, West Point, PA 19486, USA
| | - Kalpit A Vora
- Department of Infectious Diseases and Vaccines Research, Merck & Co., Inc, West Point, PA 19486, USA
| | - Erik C Hett
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | | | - Rob C Oslund
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA.
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Center for Network Systems Biology, Boston University, Boston, MA 02118, USA.
| | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
18
|
Roy AN, Gupta AM, Banerjee D, Chakrabarti J, Raghavendra PB. Unraveling DPP4 Receptor Interactions with SARS-CoV-2 Variants and MERS-CoV: Insights into Pulmonary Disorders via Immunoinformatics and Molecular Dynamics. Viruses 2023; 15:2056. [PMID: 37896834 PMCID: PMC10612102 DOI: 10.3390/v15102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Human coronaviruses like MERS CoV are known to utilize dipeptidyl peptidase 4 (DPP4), apart from angiotensin-converting enzyme 2(ACE2) as a potential co-receptor for viral cell entry. DPP4, the ubiquitous membrane-bound aminopeptidase, is closely associated with elevation of disease severity in comorbidities. In SARS-CoV-2, there is inadequate evidence for combination of spike protein variants with DPP4, and underlying adversity in COVID-19. To elucidate this mechanistic basis, we have investigated interaction of spike protein variants with DPP4 through molecular docking and simulation studies. The possible binding interactions between the receptor binding domain (RBD) of different spike variants of SARS-CoV-2 and DPP4 have been compared with interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Comparative binding affinity confers that Delta-CoV-2: DPP4 shows close proximity with MERS-CoV:DPP4, as depicted from accessible surface area, radius of gyration and number of hydrogen bonding in the interface. Mutations in the delta variant, L452R and T478K directly participate in DPP4 interaction, enhancing DPP4 binding. E484K in alpha and gamma variants of spike protein is also found to interact with DPP4. Hence, DPP4 interaction with spike protein becomes more suitable due to mutation, especially due to L452R, T478K and E484K. Furthermore, perturbation in the nearby residues Y495, Q474 and Y489 is evident due to L452R, T478K and E484K, respectively. Virulent strains of spike protein are more susceptible to DPP4 interaction and are prone to be victimized in patients due to comorbidities. Our results will aid the rational optimization of DPP4 as a potential therapeutic target to manage COVID-19 disease severity.
Collapse
Affiliation(s)
- Arpan Narayan Roy
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| | - Aayatti Mallick Gupta
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India; (A.M.G.); (J.C.)
| | - Deboshmita Banerjee
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| | - Jaydeb Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India; (A.M.G.); (J.C.)
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pongali B. Raghavendra
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| |
Collapse
|
19
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
20
|
Dehler CE, Boudinot P, Collet B, Martin SM. Phylogeny and expression of tetraspanin CD9 paralogues in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104735. [PMID: 37187444 DOI: 10.1016/j.dci.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
CD9 is a member of the tetraspanin family, which is characterised by a unique domain structure and conserved motifs. In mammals, CD9 is found in tetraspanin-enriched microdomains (TEMs) on the surface of virtually every cell type. CD9 has a wide variety of roles, including functions within the immune system. Here we show the first in-depth analysis of the cd9 gene family in salmonids, showing that this gene has expanded to six paralogues in three groups (cd9a, cd9b, cd9c) through whole genome duplication events. We suggest that through genome duplications, cd9 has undergone subfunctionalisation in the paralogues and that cd9c1 and cd9c2 in particular are involved in antiviral responses in salmonid fish. We show that these paralogues are significantly upregulated in parallel to classic interferon-stimulated genes (ISGs) active in the antiviral response. Expression analysis of cd9 may therefore become an interesting target to assess teleost responses to viruses.
Collapse
Affiliation(s)
- Carola E Dehler
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - SamuelA M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
21
|
El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem 2023; 124:656-673. [PMID: 37126363 DOI: 10.1002/jcb.30415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Pandit R, Ipinmoroti AO, Crenshaw BJ, Li T, Matthews QL. Canine Coronavirus Infection Modulates the Biogenesis and Composition of Cell-Derived Extracellular Vesicles. Biomedicines 2023; 11:976. [PMID: 36979955 PMCID: PMC10046050 DOI: 10.3390/biomedicines11030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Coronavirus (CoV) has persistently become a global health concern causing various diseases in a wide variety of hosts, including humans, birds, and companion animals. However, the virus-mediated responses in animal hosts have not been studied extensively due to pathogenesis complexity and disease developments. Extracellular vesicles (EVs) are widely explored in viral infections for their intercellular communication, nanocarrier, and immunomodulatory properties. We proposed that coronavirus hijacks the host exosomal pathway and modulates the EV biogenesis, composition, and protein trafficking in the host. In the present study, Crandell-Rees feline kidney (CRFK) cells were infected with canine coronavirus (CCoV) in an exosome-free medium at the multiplicity of infection (MOI) of 400 infectious units (IFU) at various time points. The cell viability was significantly decreased over time, as determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Post-infection EVs were isolated, and transmission electron microscopy (TEM) showed the presence of small EVs (sEVs) after infection. NanoSight particle tracking analysis (NTA) revealed that EV sizes averaged between 100 and 200 nm at both incubation times; however, the mean size of infection-derived EVs was significantly decreased at 48 h when compared to uninfected control EVs. Quantitative analysis of protein levels performed by dot blot scanning showed that the expression levels of ACE-2, annexin-V, flotillin-1, TLR-7, LAMP, TNF-α, caspase-1, caspase-8, and others were altered in EVs after infection. Our findings suggested that coronavirus infection impacts cell viability, modulates EV biogenesis, and alters cargo composition and protein trafficking in the host, which could impact viral progression and disease development. Future experiments with different animal CoVs will provide a detailed understanding of host EV biology in infection pathogenesis and progression. Hence, EVs could offer a diagnostic and therapeutic tool to study virus-mediated host responses that could be extended to study the interspecies jump of animal CoVs to cause infection in humans.
Collapse
Affiliation(s)
- Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
| | - Ting Li
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA; (R.P.); (A.O.I.); (B.J.C.)
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
23
|
Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Front Oncol 2023; 13:1140738. [PMID: 37007105 PMCID: PMC10063841 DOI: 10.3389/fonc.2023.1140738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Collapse
Affiliation(s)
- Róbert Ondruššek
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Pathology, EUC Laboratore CGB a.s., Ostrava, Czechia
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karolína Kryštofová
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Světlana Brychtová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Jan Bouchal,
| |
Collapse
|
24
|
Hysenaj L, Little S, Kulhanek K, Magnen M, Bahl K, Gbenedio OM, Prinz M, Rodriguez L, Andersen C, Rao AA, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Mick E, Khalid MM, Taha TY, Kumar R, Li JZ, Ding VW, Matsumoto S, Maishan M, Sreekumar B, Simoneau C, Nazarenko I, Tomlinson MG, Khan K, von Gottberg A, Sigal A, Looney MR, Fragiadakis GK, Jablons DM, Langelier CR, Matthay M, Krummel M, Erle DJ, Combes AJ, Sil A, Ott M, Kratz JR, Roose JP. SARS-CoV-2 infection of airway organoids reveals conserved use of Tetraspanin-8 by Ancestral, Delta, and Omicron variants. Stem Cell Reports 2023; 18:636-653. [PMID: 36827975 PMCID: PMC9948283 DOI: 10.1016/j.stemcr.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Samantha Little
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Melia Magnen
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kriti Bahl
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oghenekevwe M Gbenedio
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Morgan Prinz
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Lauren Rodriguez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Andersen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Shen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Leonard C Lupin-Jimenez
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Luke R Bonser
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nina K Serwas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renuka Kumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Z Li
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne W Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bharath Sreekumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Simoneau
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Khajida Khan
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Centre for the AIDS Program of Research, Durban, South Africa
| | - Mark R Looney
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Jablons
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael Matthay
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Krummel
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute COVID-19 Research Group, University of California, San Francisco, San Francisco, CA, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Suwatthanarak T, Ito K, Tanaka M, Sugiura K, Hoshino A, Miyamoto Y, Miyado K, Okochi M. A peptide binding to the tetraspanin CD9 reduces cancer metastasis. BIOMATERIALS ADVANCES 2023; 146:213283. [PMID: 36640525 DOI: 10.1016/j.bioadv.2023.213283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
As an organizer of multi-molecular membrane complexes, the tetraspanin CD9 has been implicated in a number of biological processes, including cancer metastasis, and is a candidate therapeutic target. Here, we evaluated the suppressive effects of an eight-mer CD9-binding peptide (CD9-BP) on cancer cell metastasis and its mechanisms of action. CD9-BP impaired CD9-related functions by adversely affecting the formation of tetraspanin webs-networks composed of CD9 and its partner proteins. The anti-cancer metastasis effect of CD9-BP was evidenced by the in vitro inhibition of cancer cell migration and invasion as well as exosome secretion and uptake, which are essential processes during metastasis. Finally, using a mouse model, we showed that CD9-BP reduced lung metastasis in vivo. These findings provide insight into the mechanism by which CD9-BP inhibits CD9-dependent functions and highlight its potential application as an alternative therapeutic nano-biomaterial for metastatic cancers.
Collapse
Affiliation(s)
- Thanawat Suwatthanarak
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok 10700, Thailand; Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok 10700, Thailand
| | - Kazuma Ito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Kei Sugiura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Ayuko Hoshino
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
26
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
27
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023; 24:ijms24021036. [PMID: 36674550 PMCID: PMC9861478 DOI: 10.3390/ijms24021036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.
Collapse
|
29
|
Malla R, Kamal MA. Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 - Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2. Curr Pharm Des 2022; 28:3649-3657. [PMID: 36173052 DOI: 10.2174/1381612828666220907105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, the Hubei region of China, has become a pandemic worldwide. It can transmit through droplets and enter via oral, nasal, and eye mucous membranes. It consists of single-stranded RNA (positive-sense), nonstructural proteins including enzymes and transcriptional proteins, and structural proteins such as Spike, Membrane, Envelope, and Nucleocapsid -proteins. SARS-CoV-2 mediates S-proteins entry and exit via binding to host cell surface proteins like tetraspanins. The transmembrane tetraspanins, CD151, CD9, and tetraspanin 8 (TSPAN8), facilitate the entry of novel coronaviruses by scaffolding host cell receptors and proteases. Also, CD151 was reported to increase airway hyperresponsiveness to calcium and nuclear viral export signaling. They may facilitate entry and exit by activating the serine proteases required to prime S-proteins in tetraspanin-enriched microdomains (TEMs). This article updates recent advances in structural proteins, their epitopes and putative receptors, and their regulation by proteases associated with TEMs. This review furnishes recent updates on the role of CD151 in the pathophysiology of SARS-CoV-2. We describe the role of CD151 in a possible mechanism of entry and exit in the airway, a major site for infection of SARS-CoV-2. We also updated current knowledge on the role of CD9 and TSPAN 8 in the entry and exit mechanism of coronaviruses. Finally, we discussed the importance of some small molecules which target CD151 as possible targeted therapeutics for COVID-19. In conclusion, this study could identify new targets and specific therapeutics to control emerging virus infections.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham NSW 2770, Australia
| |
Collapse
|
30
|
Alhetheel A, Albarrag A, Shakoor Z, Somily A, Barry M, Altalhi H, Bakhrebah M, Nassar M, Alfageeh M, Assiri A, Alfaraj S, Memish ZA. Differential expression of carcinoembryonic antigen-related cell adhesion molecule-5 (CEACAM5) and dipeptidyl peptidase-4 (DPP4) with detection of Middle East respiratory syndrome-coronavirus in peripheral blood. J Infect Public Health 2022; 15:1315-1320. [PMID: 36279687 PMCID: PMC9576204 DOI: 10.1016/j.jiph.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome-coronavirus (MERS-CoV) utilizes CD26 (dipeptidyl peptidase-4) and CD66e or CEACAM5 (carcinoembryonic antigen-related cell adhesion molecule 5) receptors for cell infection. Peripheral blood mononuclear cells (PBMCs) play a critical role in mounting adaptive immune response against the virus. This study was performed to assess the expression of CD26 and CD66e on PBMCs and their susceptibility to MERS-CoV infection. METHODS Surface expression of CD26 and CD66e receptors on PBMCs from MERS-CoV patients (n = 20) and healthy controls (n = 20) was assessed by flow cytometry and the soluble forms were determined by enzyme-linked immunosorbent assay (ELISA). MERS-CoV UpE and Orf1a genes in PBMCs were detected by using Altona diagnostics reverse transcription polymerase chain reaction (RT-PCR) kit. RESULTS Mean fluorescent intensity (MFI) of CD66e was significantly higher on CD4 + lymphocytes (462.4 ± 64.35 vs 325.1 ± 19.69; p < 0.05) and CD8 + lymphocytes (533.8 ± 55.32 vs 392.4 ± 37.73; p < 0.04) from patients with MERS-CoV infection compared to the normal controls. No difference in MFI for CD66e was observed on monocytes (381.8 ± 40.34 vs 266.8 ± 20.6; p = 0.3) between the patients and controls. Soluble form of CD66e among MERS-CoV patients was also higher than the normal controls (mean= 338.7 ± 58.75 vs 160.7 ± 29.49 ng/mL; p < 0.01). Surface expression of CD26 on PBMCs and its soluble form were no different between the groups. MERS-CoV was detected by RT-PCR in 16/20 (80%) patients from whole blood, among them 8 patients were tested in PBMCs, 4/8 (50%) patients were positive. CONCLUSION Increased expression levels of CD66e (CEACAM5) may contribute to increased susceptibility of PBMCs to MERS-CoV infection and disease progression.
Collapse
Affiliation(s)
- Abdulkarim Alhetheel
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Albarrag
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Shakoor
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Somily
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Barry
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Infectious Diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hifa Altalhi
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | - Majed Nassar
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Alfageeh
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Ayed Assiri
- Critical Care Unit, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Sarah Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Lindqvist R, Benz C, Sereikaite V, Maassen L, Laursen L, Jemth P, Strømgaard K, Ivarsson Y, Överby AK. A Syntenin Inhibitor Blocks Endosomal Entry of SARS-CoV-2 and a Panel of RNA Viruses. Viruses 2022; 14:v14102202. [PMID: 36298757 PMCID: PMC9610207 DOI: 10.3390/v14102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186 Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lars Maassen
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
| | - Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 75123 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 75123 Uppsala, Sweden
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ylva Ivarsson
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
- Correspondence: (Y.I.); (A.K.Ö.)
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186 Umeå, Sweden
- Correspondence: (Y.I.); (A.K.Ö.)
| |
Collapse
|
32
|
Berry F, Morin‐Dewaele M, Majidipur A, Jamet T, Bartier S, Ignjatovic E, Toniutti D, Gaspar Lopes J, Soyeux‐Porte P, Maillé P, Saldana C, Brillet R, Ahnou N, Softic L, Couturaud B, Huet É, Ahmed‐Belkacem A, Fourati S, Louis B, Coste A, Béquignon É, de la Taille A, Destouches D, Vacherot F, Pawlotsky J, Firlej V, Bruscella P. Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. J Extracell Vesicles 2022; 11:e12269. [PMID: 36271885 PMCID: PMC9587708 DOI: 10.1002/jev2.12269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.
Collapse
Affiliation(s)
- François Berry
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Margot Morin‐Dewaele
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Amene Majidipur
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Thibaud Jamet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Sophie Bartier
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Eva Ignjatovic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Donatella Toniutti
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Jeanne Gaspar Lopes
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Soyeux‐Porte
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Maillé
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of PathologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Carolina Saldana
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of OncologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Rozenn Brillet
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Nazim Ahnou
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Laurent Softic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Benoit Couturaud
- Institute of Chemistry and Materials (ICMPE)Univ Paris Est Creteil, CNRS UMR7182CréteilFrance
| | - Éric Huet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Abdelhakim Ahmed‐Belkacem
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Slim Fourati
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - André Coste
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Émilie Béquignon
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Alexandre de la Taille
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of UrologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Damien Destouches
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Francis Vacherot
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Jean‐Michel Pawlotsky
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Virginie Firlej
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Patrice Bruscella
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| |
Collapse
|
33
|
Mustajab T, Kwamboka MS, Choi DA, Kang DW, Kim J, Han KR, Han Y, Lee S, Song D, Chwae YJ. Update on Extracellular Vesicle-Based Vaccines and Therapeutics to Combat COVID-19. Int J Mol Sci 2022; 23:ijms231911247. [PMID: 36232549 PMCID: PMC9569487 DOI: 10.3390/ijms231911247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
The COVID-19 pandemic has had a deep impact on people worldwide since late 2019 when SARS-CoV-2 was first identified in Wuhan, China. In addition to its effect on public health, it has affected humans in various aspects of life, including social, economic, cultural, and political. It is also true that researchers have made vigorous efforts to overcome COVID-19 throughout the world, but they still have a long way to go. Accordingly, innumerable therapeutics and vaccine candidates have been studied for their efficacies and have been tried clinically in a very short span of time. For example, the versatility of extracellular vesicles, which are membrane-bound particles released from all types of cells, have recently been highlighted in terms of their effectiveness, biocompatibility, and safety in the fight against COVID-19. Thus, here, we tried to explain the use of extracellular vesicles as therapeutics and for the development of vaccines against COVID-19. Along with the mechanisms and a comprehensive background of their application in trapping the coronavirus or controlling the cytokine storm, we also discuss the obstacles to the clinical use of extracellular vesicles and how these could be resolved in the future.
Collapse
Affiliation(s)
- Tamanna Mustajab
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Moriasi Sheba Kwamboka
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Da Ae Choi
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dae Wook Kang
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Junho Kim
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Kyu Ri Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yujin Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Sorim Lee
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dajung Song
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yong-Joon Chwae
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-031-219-5073
| |
Collapse
|
34
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
35
|
Tertel T, Tomić S, Đokić J, Radojević D, Stevanović D, Ilić N, Giebel B, Kosanović M. Serum-derived extracellular vesicles: Novel biomarkers reflecting the disease severity of COVID-19 patients. J Extracell Vesicles 2022; 11:e12257. [PMID: 35979935 PMCID: PMC9451525 DOI: 10.1002/jev2.12257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.
Collapse
Affiliation(s)
- Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Dejan Stevanović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Zemun-Belgrade, Serbia
| |
Collapse
|
36
|
Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. ENVIRONMENTAL RESEARCH 2022; 210:112890. [PMID: 35202626 PMCID: PMC8861187 DOI: 10.1016/j.envres.2022.112890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Coronavirus Disease-19 (COVID-19) symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were present in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Co-expression network analysis adds further support to these findings, by detecting modules specifically correlated with severity involved in the abovementioned biological routes; this analysis also provides new candidate genes that might be tested as biomarkers in future studies. We also found tissue specific severity-related signatures mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Laboratorio de Inmunología. Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Galicia, Spain
| | - Carmen Rivero-Velasco
- Intensive Medicine Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Nuria Rodríguez-Núñez
- Pneumology Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Gema Barbeito-Castiñeiras
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Hugo Pérez-Freixo
- Preventive Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ruth Barral-Arca
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María José Currás-Tuala
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
37
|
Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson LA, Goffinet C, Simmons G, Baumgärtner W, Gerold G. The Tetraspanin CD81 Is a Host Factor for Chikungunya Virus Replication. mBio 2022; 13:e0073122. [PMID: 35612284 PMCID: PMC9239085 DOI: 10.1128/mbio.00731-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Timothée Laurent
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Christine Goffinet
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Simmons
- Vitalant Research Institute, University of California, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Hwang W, Shimizu M, Lee JW. Role of extracellular vesicles in severe pneumonia and sepsis. Expert Opin Biol Ther 2022; 22:747-762. [PMID: 35418256 PMCID: PMC9971738 DOI: 10.1080/14712598.2022.2066470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.
Collapse
Affiliation(s)
- Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s hospital, Catholic College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California.,Jae-Woo Lee, MD, Professor, University of California San Francisco, Department of Anesthesiology, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, Telephone: (415) 476-0452, Fax: (415) 514-2999,
| |
Collapse
|
39
|
Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94:110325. [PMID: 35367363 PMCID: PMC8968181 DOI: 10.1016/j.cellsig.2022.110325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.
Collapse
|
40
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
41
|
Cesar-Silva D, Pereira-Dutra FS, Moraes Giannini AL, Jacques G. de Almeida C. The Endolysosomal System: The Acid Test for SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23094576. [PMID: 35562967 PMCID: PMC9105036 DOI: 10.3390/ijms23094576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
This review aims to describe and discuss the different functions of the endolysosomal system, from homeostasis to its vital role during viral infections. We will initially describe endolysosomal system's main functions, presenting recent data on how its compartments are essential for host defense to explore later how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and other coronaviruses subvert these organelles for their benefit. It is clear that to succeed, pathogens' evolution favored the establishment of ways to avoid, escape, or manipulate lysosomal function. The unavoidable coexistence with such an unfriendly milieu imposed on viruses the establishment of a vast array of strategies to make the most out of the invaded cell's machinery to produce new viruses and maneuvers to escape the host's defense system.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (D.C.-S.); (F.S.P.-D.)
- Correspondence: or
| |
Collapse
|
42
|
The ACE2 Receptor for Coronavirus Entry Is Localized at Apical Cell—Cell Junctions of Epithelial Cells. Cells 2022; 11:cells11040627. [PMID: 35203278 PMCID: PMC8870730 DOI: 10.3390/cells11040627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Transmembrane proteins of adherens and tight junctions are known targets for viruses and bacterial toxins. The coronavirus receptor ACE2 has been localized at the apical surface of epithelial cells, but it is not clear whether ACE2 is localized at apical Cell—Cell junctions and whether it associates with junctional proteins. Here we explored the expression and localization of ACE2 and its association with transmembrane and tight junction proteins in epithelial tissues and cultured cells by data mining, immunoblotting, immunofluorescence microscopy, and co-immunoprecipitation experiments. ACE2 mRNA is abundant in epithelial tissues, where its expression correlates with the expression of the tight junction proteins cingulin and occludin. In cultured epithelial cells ACE2 mRNA is upregulated upon differentiation and ACE2 protein is widely expressed and co-immunoprecipitates with the transmembrane proteins ADAM17 and CD9. We show by immunofluorescence microscopy that ACE2 colocalizes with ADAM17 and CD9 and the tight junction protein cingulin at apical junctions of intestinal (Caco-2), mammary (Eph4) and kidney (mCCD) epithelial cells. These observations identify ACE2, ADAM17 and CD9 as new epithelial junctional transmembrane proteins and suggest that the cytokine-enhanced endocytic internalization of junction-associated protein complexes comprising ACE2 may promote coronavirus entry.
Collapse
|
43
|
Healy EF. How tetraspanin-mediated cell entry of SARS-CoV-2 can dysregulate the shedding of the ACE2 receptor by ADAM17. Biochem Biophys Res Commun 2022; 593:52-56. [PMID: 35063769 PMCID: PMC8759804 DOI: 10.1016/j.bbrc.2022.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022]
Abstract
COVID-19, the respiratory infection caused by the novel coronavirus SARS-CoV-2, presents a clinical picture consistent with the dysregulation of many of the pathways mediated by the metalloprotease ADAM17. ADAM17 is a sheddase that plays a key role in the modulation of ACE2, the receptor which also functions as the point of attachment leading to cell entry by the virus. This work investigates the possibility that ADAM17 dysregulation and attachment of the SARS-CoV-2 virion to the ACE2 receptor are linked events, with the latter causing the former. Tetraspanins, the transmembrane proteins that function as scaffolds for the construction of viral entry platforms, are mooted as key components in this connection.
Collapse
|
44
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022; 17:20-34. [PMID: 34630723 PMCID: PMC8487464 DOI: 10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The spread of SARS-CoV-2 as an emerging novel coronavirus disease (COVID-19) had progressed as a worldwide pandemic since the end of 2019. COVID-19 affects firstly lungs tissues which are known for their very slow regeneration. Afterwards, enormous cytokine stimulation occurs in the infected cells immediately after a lung infection which necessitates good management to save patients. Exosomes are extracellular vesicles of nanometric size released by reticulocytes on maturation and are known to mediate intercellular communications. The exosomal cargo serves as biomarkers in diagnosing various diseases; moreover, exosomes could be employed as nanocarriers in drug delivery systems. Exosomes look promising to combat the current pandemic since they contribute to the immune response against several viral pathogens. Many studies have proved the potential of using exosomes either as viral elements or host systems that acquire immune-stimulatory effects and could be used as a vaccine or drug delivery tool. It is essential to stop viral replication, prevent and reverse the massive storm of cytokine that worsens the infected patients' situations for the management of COVID-19. The main benefits of exosomes could be; no cells will be introduced, no chance of mutation, lack of immunogenicity and the damaged genetic material that could negatively affect the recipient is avoided. Additionally, it was found that exosomes are static with no ability for in vivo reproduction. The current review article discusses the possibilities of using exosomes for detecting novel coronavirus and summarizes state of the art concerning the clinical trials initiated for examining the use of COVID-19 specific T cells derived exosomes and mesenchymal stem cells derived exosomes in managing COVID-19.
Collapse
Affiliation(s)
- Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Cynthia Lizzie Lobo
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Ravi GS
- Formulation and Development, Viatris R&D Centre, Bengaluru 560105, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru 575018, India
| | - Sally A. El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| |
Collapse
|
45
|
Dubey A, Lobo CL, GS R, Shetty A, Hebbar S, El-Zahaby SA. Exosomes: Emerging implementation of nanotechnology for detecting and managing novel corona virus- SARS-CoV-2. Asian J Pharm Sci 2022. [DOI: https://doi.org/10.1016/j.ajps.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
New C, Lee ZY, Tan KS, Wong AHP, Wang DY, Tran T. Tetraspanins: Host Factors in Viral Infections. Int J Mol Sci 2021; 22:11609. [PMID: 34769038 PMCID: PMC8583825 DOI: 10.3390/ijms222111609] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.
Collapse
Affiliation(s)
- ChihSheng New
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kai Sen Tan
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Singapore
| | - Amanda Huee-Ping Wong
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - De Yun Wang
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
47
|
Nassar A, Ibrahim IM, Amin FG, Magdy M, Elgharib AM, Azzam EB, Nasser F, Yousry K, Shamkh IM, Mahdy SM, Elfiky AA. A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules 2021; 26:6455. [PMID: 34770863 PMCID: PMC8587140 DOI: 10.3390/molecules26216455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
A novel human coronavirus prompted considerable worry at the end of the year 2019. Now, it represents a significant global health and economic burden. The newly emerged coronavirus disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the primary reason for the COVID-19 global pandemic. According to recent global figures, COVID-19 has caused approximately 243.3 million illnesses and 4.9 million deaths. Several human cell receptors are involved in the virus identification of the host cells and entering them. Hence, understanding how the virus binds to host-cell receptors is crucial for developing antiviral treatments and vaccines. The current work aimed to determine the multiple host-cell receptors that bind with SARS-CoV-2 and other human coronaviruses for the purpose of cell entry. Extensive research is needed using neutralizing antibodies, natural chemicals, and therapeutic peptides to target those host-cell receptors in extremely susceptible individuals. More research is needed to map SARS-CoV-2 cell entry pathways in order to identify potential viral inhibitors.
Collapse
Affiliation(s)
- Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Fatma G. Amin
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
- Physics Department, Faculty of Science, Alexandria University, Alexandria 21519, Egypt
| | - Merna Magdy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Ahmed M. Elgharib
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Eman B. Azzam
- Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo 11511, Egypt;
| | - Filopateer Nasser
- Biochemistry Department, Faculty of Science, Cairo University, Giza 12511, Egypt;
| | - Kirllos Yousry
- Faculty of Medicine, Cairo University, Cairo 11511, Egypt;
| | | | - Samah M. Mahdy
- National Museum of Egyptian Civilization, Ain Elsira-Elfustat, Cairo 11511, Egypt;
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| |
Collapse
|
48
|
Abbad A, Anga L, Faouzi A, Iounes N, Nourlil J. Effect of identified non-synonymous mutations in DPP4 receptor binding residues among highly exposed human population in Morocco to MERS-CoV through computational approach. PLoS One 2021; 16:e0258750. [PMID: 34648601 PMCID: PMC8516309 DOI: 10.1371/journal.pone.0258750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) has been identified as the main receptor of MERS-CoV facilitating its cellular entry and enhancing its viral replication upon the emergence of this novel coronavirus. DPP4 receptor is highly conserved among many species, but the genetic variability among direct binding residues to MERS-CoV restrained its cellular tropism to humans, camels and bats. The occurrence of natural polymorphisms in human DPP4 binding residues is not well characterized. Therefore, we aimed to assess the presence of potential mutations in DPP4 receptor binding domain (RBD) among a population highly exposed to MERS-CoV in Morocco and predict their effect on DPP4 –MERS-CoV binding affinity through a computational approach. DPP4 synonymous and non-synonymous mutations were identified by sanger sequencing, and their effect were modelled by mutation prediction tools, docking and molecular dynamics (MD) simulation to evaluate structural changes in human DPP4 protein bound to MERS-CoV S1 RBD protein. We identified eight mutations, two synonymous mutations (A291 =, R317 =) and six non-synonymous mutations (N229I, K267E, K267N, T288P, L294V, I295L). Through docking and MD simulation techniques, the chimeric DPP4 –MERS-CoV S1 RBD protein complex models carrying one of the identified non-synonymous mutations sustained a stable binding affinity for the complex that might lead to a robust cellular attachment of MERS-CoV except for the DPP4 N229I mutation. The latter is notable for a loss of binding affinity of DPP4 with MERS-CoV S1 RBD that might affect negatively on cellular entry of the virus. It is important to confirm our molecular modelling prediction with in-vitro studies to acquire a broader overview of the effect of these identified mutations.
Collapse
Affiliation(s)
- Anass Abbad
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
- Laboratoire d’Ecologie et d’Environnement, Faculté des Sciences Ben M’sik, Université Hassan II – Casablanca, Casablanca, Morocco
- * E-mail: (AA); (JN)
| | - Latifa Anga
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
| | - Abdellah Faouzi
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
| | - Nadia Iounes
- Laboratoire d’Ecologie et d’Environnement, Faculté des Sciences Ben M’sik, Université Hassan II – Casablanca, Casablanca, Morocco
| | - Jalal Nourlil
- Medical Virology and BSL-3+ Laboratory, Institut Pasteur Morocco, Casablanca, Morocco
- * E-mail: (AA); (JN)
| |
Collapse
|
49
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
50
|
A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun 2021; 12:5498. [PMID: 34535662 PMCID: PMC8448725 DOI: 10.1038/s41467-021-25729-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses. Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Here the authors generate mutant clonal intestinal organoids for 19 host genes previously implicated in coronavirus biology and identify the cell surface protease TMPRSS2 as a potential therapeutic target.
Collapse
|