1
|
Lee Y, Klenow L, Coyle EM, Grubbs G, Golding H, Khurana S. Monoclonal antibodies targeting sites in respiratory syncytial virus attachment G protein provide protection against RSV-A and RSV-B in mice. Nat Commun 2024; 15:2900. [PMID: 38575575 PMCID: PMC10994933 DOI: 10.1038/s41467-024-47146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Currently, only Palivizumab and Nirsevimab that target the respiratory syncytical virus (RSV) fusion protein are licensed for pre-treatment of infants. Glycoprotein-targeting antibodies may also provide protection against RSV. In this study, we generate monoclonal antibodies from mice immunized with G proteins from RSV-A2 and RSV-B1 strains. These monoclonal antibodies recognize six unique antigenic classes (G0-G5). None of the anti-G monoclonal antibodies neutralize RSV-A2 or RSV-B1 in vitro. In mice challenged with either RSV-A2 line 19 F or RSV-B1, one day after treatment with anti-G monoclonal antibodies, all monoclonal antibodies reduce lung pathology and significantly reduce lung infectious viral titers by more than 2 logs on day 5 post-RSV challenge. RSV dissemination in the lungs was variable and correlated with lung pathology. We demonstrate new cross-protective anti-G monoclonal antibodies targeting multiple sites including conformation-dependent class G0 MAb 77D2, CCD-specific class G1 MAb 40D8, and carboxy terminus of CCD class G5 MAb 7H11, to support development of G-targeting monoclonal antibodies against RSV.
Collapse
Affiliation(s)
- Youri Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
2
|
Kawahara E, Shibata T, Hirai T, Yoshioka Y. Non-glycosylated G protein with CpG ODN provides robust protection against respiratory syncytial virus without inducing eosinophilia. Front Immunol 2023; 14:1282016. [PMID: 38169867 PMCID: PMC10758452 DOI: 10.3389/fimmu.2023.1282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) vaccines targeting the fusion glycoprotein (F protein) are highly effective clinically in preventing RSV challenges. The attachment glycoprotein (G protein) is a potentially effective vaccine antigen candidate, as it is important for cell adhesion during infection. However, vaccine-associated enhanced diseases in mice, such as eosinophilic lung inflammation following RSV challenge, are a concern with G protein vaccines. This study aimed to design an effective G protein vaccine with enhanced safety and efficacy by evaluating the efficacy and adverse reactions of vaccines composed of different recombinant G proteins and adjuvants in mice. Methods Mice were subcutaneously immunized with glycosylated G protein expressed in mammalian cells (mG), non-glycosylated G protein expressed in Escherichia coli (eG), or F protein with or without aluminum salts (alum), CpG oligodeoxynucleotide (CpG ODN), or AddaVax. After vaccination, the levels of G-specific antibody and T-cell responses were measured. The immunized mice were challenged with RSV and examined for the viral load in the lungs and nasal turbinates, lung-infiltrating cells, and lung pathology. Results mG with any adjuvant was ineffective at inducing G-specific antibodies and had difficulty achieving both protection against RSV challenge and eosinophilia suppression. In particular, mG+CpG ODN induced G-specific T helper 1 (Th1) cells but only a few G-specific antibodies and did not protect against RSV challenge. However, eG+CpG ODN induced high levels of G-specific antibodies and Th1 cells and protected against RSV challenge without inducing pulmonary inflammation. Moreover, the combination vaccine of eG+F+CpG ODN showed greater protection against upper respiratory tract RSV challenge than using each single antigen vaccine alone. Discussion These results indicate that the efficacy of recombinant G protein vaccines can be enhanced without inducing adverse reactions by using appropriate antigens and adjuvants, and their efficacy is further enhanced in the combination vaccine with F protein. These data provide valuable information for the clinical application of G protein vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Maina TW, Grego EA, Broderick S, Sacco RE, Narasimhan B, McGill JL. Immunization with a mucosal, post-fusion F/G protein-based polyanhydride nanovaccine protects neonatal calves against BRSV infection. Front Immunol 2023; 14:1186184. [PMID: 37359514 PMCID: PMC10289034 DOI: 10.3389/fimmu.2023.1186184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of death in young children and there are no FDA approved vaccines. Bovine RSV (BRSV) is antigenically similar to HRSV, and the neonatal calf model is useful for evaluation of HRSV vaccines. Here, we determined the efficacy of a polyanhydride-based nanovaccine encapsulating the BRSV post-fusion F and G glycoproteins and CpG, delivered prime-boost via heterologous (intranasal/subcutaneous) or homologous (intranasal/intranasal) immunization in the calf model. We compared the performance of the nanovaccine regimens to a modified-live BRSV vaccine, and to non-vaccinated calves. Calves receiving nanovaccine via either prime-boost regimen exhibited clinical and virological protection compared to non-vaccinated calves. The heterologous nanovaccine regimen induced both virus-specific cellular immunity and mucosal IgA, and induced similar clinical, virological and pathological protection as the commercial modified-live vaccine. Principal component analysis identified BRSV-specific humoral and cellular responses as important correlates of protection. The BRSV-F/G CpG nanovaccine is a promising candidate vaccine to reduce RSV disease burden in humans and animals.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Gong YM, Wei XF, Zheng YY, Li Y, Yu Q, Li PF, Zhu B. Combining Phage Display Technology with In Silico-Designed Epitope Vaccine to Elicit Robust Antibody Responses against Emerging Pathogen Tilapia Lake Virus. J Virol 2023; 97:e0005023. [PMID: 36975794 PMCID: PMC10134809 DOI: 10.1128/jvi.00050-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Jenkins VA, Hoet B, Hochrein H, De Moerlooze L. The Quest for a Respiratory Syncytial Virus Vaccine for Older Adults: Thinking beyond the F Protein. Vaccines (Basel) 2023; 11:382. [PMID: 36851260 PMCID: PMC9963583 DOI: 10.3390/vaccines11020382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of paediatric respiratory tract infection and causes a significant health burden in older adults. Natural immunity to RSV is incomplete, permitting recurrent symptomatic infection over an individual's lifespan. When combined with immunosenescence, this increases older adults' susceptibility to more severe disease symptoms. As RSV prophylaxis is currently limited to infants, older adults represent an important target population for RSV vaccine development. The relationship between RSV and our immune systems is complex, and these interactions require deeper understanding to tailor an effective vaccine candidate towards older adults. To date, vaccine candidates targeting RSV antigens, including pre-F, F, G (A), G (B), M2-1, and N, have shown efficacy against RSV infection in older adults in clinical trial settings. Although vaccine candidates have demonstrated robust neutralising IgG and cellular responses, it is important that research continues to investigate the RSV immune response in order to further understand how the choice of antigenic target site may impact vaccine effectiveness. In this article, we discuss the Phase 3 vaccine candidates being tested in older adults and review the hurdles that must be overcome to achieve effective protection against RSV.
Collapse
|
6
|
Chen J, Tan S, Avadhanula V, Moise L, Piedra PA, De Groot AS, Bahl J. Diversity and evolution of computationally predicted T cell epitopes against human respiratory syncytial virus. PLoS Comput Biol 2023; 19:e1010360. [PMID: 36626370 PMCID: PMC9870173 DOI: 10.1371/journal.pcbi.1010360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory infection. Despite more than 60 years of research, there is no licensed vaccine. While B cell response is a major focus for vaccine design, the T cell epitope profile of RSV is also important for vaccine development. Here, we computationally predicted putative T cell epitopes in the Fusion protein (F) and Glycoprotein (G) of RSV wild circulating strains by predicting Major Histocompatibility Complex (MHC) class I and class II binding affinity. We limited our inferences to conserved epitopes in both F and G proteins that have been experimentally validated. We applied multidimensional scaling (MDS) to construct T cell epitope landscapes to investigate the diversity and evolution of T cell profiles across different RSV strains. We find the RSV strains are clustered into three RSV-A groups and two RSV-B groups on this T epitope landscape. These clusters represent divergent RSV strains with potentially different immunogenic profiles. In addition, our results show a greater proportion of F protein T cell epitope content conservation among recent epidemic strains, whereas the G protein T cell epitope content was decreased. Importantly, our results suggest that RSV-A and RSV-B have different patterns of epitope drift and replacement and that RSV-B vaccines may need more frequent updates. Our study provides a novel framework to study RSV T cell epitope evolution. Understanding the patterns of T cell epitope conservation and change may be valuable for vaccine design and assessment.
Collapse
Affiliation(s)
- Jiani Chen
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
| | - Swan Tan
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leonard Moise
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- EpiVax Inc., Providence, Rhode Island, United States of America
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne S. De Groot
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- EpiVax Inc., Providence, Rhode Island, United States of America
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
7
|
Lee J, Lee Y, Klenow L, Coyle EM, Tang J, Ravichandran S, Golding H, Khurana S. Protective antigenic sites identified in respiratory syncytial virus fusion protein reveals importance of p27 domain. EMBO Mol Med 2022; 14:e13847. [PMID: 34750984 PMCID: PMC8749483 DOI: 10.15252/emmm.202013847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) vaccines primarily focused on surface fusion (F) protein are under development. Therefore, to identify RSV-F protective epitopes, we evaluated 14 antigenic sites recognized following primary human RSV infection. BALB/c mice were vaccinated with F peptides, F proteins, or RSV-A2, followed by rA2-Line19F challenge. F peptides generated binding antibodies with minimal in vitro neutralization titers. However, several F peptides (including Site II) reduced lung viral loads and lung pathology scores in animals, suggesting partial protection from RSV disease. Interestingly, animals vaccinated with peptides (aa 101-121 and 110-136) spanning the F-p27 sequence, which is only present in unprocessed F0 protein, showed control of viral loads with significantly reduced pathology compared with mock-vaccinated controls. Furthermore, we observed F-p27 expression on the surface of RSV-infected cells as well as lungs from RSV-infected mice. The anti-p27 antibodies demonstrated antibody-dependent cellular cytotoxicity (ADCC) of RSV-infected A549 cells. These findings suggest that p27-mediated immune response may play a role in control of RSV disease in vivo, and F-p27 should be considered for inclusion in an effective RSV vaccine.
Collapse
Affiliation(s)
- Jeehyun Lee
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Youri Lee
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Laura Klenow
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Elizabeth M Coyle
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Juanjie Tang
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Supriya Ravichandran
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Hana Golding
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| | - Surender Khurana
- Division of Viral ProductsCenter for Biologics Evaluation and Research (CBER)FDA, Silver SpringMDUSA
| |
Collapse
|
8
|
Lee CY, Wu TH, Fang YP, Chang JC, Wang HC, Lin SJ, Mai CH, Chang YC, Chou TY. Delayed respiratory syncytial virus outbreak in 2020 in Taiwan was correlated with two novel RSV-A genotype ON1 variants. Influenza Other Respir Viruses 2021; 16:511-520. [PMID: 34913593 PMCID: PMC8983888 DOI: 10.1111/irv.12951] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is a leading pathogen of acute respiratory tract disease among infants and young children. Compared with previous seasons, RSV outbreaks in Taiwan during the 2020–2021 season were delayed because of COVID‐19 mitigation measures. We conducted this study to determine the association of viral factors with clinical characteristics of preschool children with RSV infection. Methods We performed a molecular epidemiology analysis of RSV among inpatient preschool children in Taiwan. In 80 nasopharyngeal samples positive for RSV, we sequenced and analyzed viral genotypes according to patient data. Patients' clinical data were obtained from medical files, and their clinical profiles were compared with those of RSV cases recorded during the 2014–2017 seasons. Results Phylogenetic analysis revealed that among the RSV‐positive samples, all RSV strains identified during the 2020–2021 season belonged to the ON1 genotype. Most of the Taiwan ON1 strains were categorized into two well‐supported clusters with distinct G protein amino acid substitution patterns that had never been demonstrated previously. Furthermore, the proportion of cases among children aged >24 months increased (P < 0.001). Compared with patients infected during the 2014–2017 seasons, patients infected during the 2020–2021 season were hospitalized for shorter days from hospital admission to dereference (P = 0.004) and had a greater need for oxygen supplements (P = 0.021) and systemic steroid therapy (P = 0.026). Conclusion The delayed 2020–2021 RSV outbreak in Taiwan was caused by two novel RSV ON1.1 variants. How the change in RSV epidemiology affects future RSV outbreaks warrants exploration.
Collapse
Affiliation(s)
- Chun Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung Hua Wu
- Department of Pediatrics, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yu Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jih Chin Chang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hung Chun Wang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shou Ju Lin
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chen Hao Mai
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yu Chuan Chang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Teh Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Structural Characterization of Ectodomain G Protein of Respiratory Syncytial Virus and Its Interaction with Heparan Sulfate: Multi-Spectroscopic and In Silico Studies Elucidating Host-Pathogen Interactions. Molecules 2021; 26:molecules26237398. [PMID: 34885979 PMCID: PMC8658883 DOI: 10.3390/molecules26237398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host–pathogen interaction.
Collapse
|
10
|
Shang Z, Tan S, Ma D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci 2021; 17:4073-4091. [PMID: 34671221 PMCID: PMC8495404 DOI: 10.7150/ijbs.64762] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.
Collapse
Affiliation(s)
- Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China
| |
Collapse
|
11
|
Lin GL, Drysdale SB, Snape MD, O’Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Bonsall D, Ansari MA, Öner D, Aerssens J, Butler C, Bont L, Openshaw P, Martinón-Torres F, Nair H, Bowden R, RESCEU Investigators CampbellHarry13CunninghamSteve13BogaertDebby814BeutelsPhilippe15WildenbeestJoanne8ClutterbuckElizabeth1McGinleyJoseph1ThwaitesRyan10WisemanDexter10Gómez-CarballaAlberto12Rodriguez-TenreiroCarmen12Rivero-CalleIrene12Dacosta-UrbietaAna12HeikkinenTerho16MeijerAdam17FischerThea Kølsen18van den BergeMaarten19GiaquintoCarlo20AbramMichael21DormitzerPhilip22StoszekSonia23GallichanScott24RosenBrian25MoleroEva26MachinNuria26SpadettoMartina26, Golubchik T, Pollard AJ. Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus. Nat Commun 2021; 12:5125. [PMID: 34446722 PMCID: PMC8390747 DOI: 10.1038/s41467-021-25265-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in young children globally, but little is known about within-host RSV diversity. Here, we characterised within-host RSV populations using deep-sequencing data from 319 nasopharyngeal swabs collected during 2017-2020. RSV-B had lower consensus diversity than RSV-A at the population level, while exhibiting greater within-host diversity. Two RSV-B consensus sequences had an amino acid alteration (K68N) in the fusion (F) protein, which has been associated with reduced susceptibility to nirsevimab (MEDI8897), a novel RSV monoclonal antibody under development. In addition, several minor variants were identified in the antigenic sites of the F protein, one of which may confer resistance to palivizumab, the only licensed RSV monoclonal antibody. The differences in within-host virus populations emphasise the importance of monitoring for vaccine efficacy and may help to explain the different prevalences of monoclonal antibody-escape mutants between the two subgroups.
Collapse
Affiliation(s)
- Gu-Lung Lin
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon B. Drysdale
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK ,grid.4464.20000 0001 2161 2573Present Address: Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s, University of London, London, UK
| | - Matthew D. Snape
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O’Connor
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- grid.4991.50000 0004 1936 8948Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esther Mellado-Gomez
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mariateresa de Cesare
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M. Azim Ansari
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Deniz Öner
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher Butler
- grid.4991.50000 0004 1936 8948Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Louis Bont
- grid.7692.a0000000090126352Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands ,ReSViNET Foundation, Zeist, Netherlands
| | - Peter Openshaw
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute, Imperial College London, London, UK
| | - Federico Martinón-Torres
- grid.411048.80000 0000 8816 6945Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain ,grid.488911.d0000 0004 0408 4897Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harish Nair
- grid.4305.20000 0004 1936 7988Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Rory Bowden
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.1042.7Present Address: Division of Advanced Technology and Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | | | - Tanya Golubchik
- grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J. Pollard
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
12
|
Raghunandan R, Higgins D, Hosken N. RSV neutralization assays - Use in immune response assessment. Vaccine 2021; 39:4591-4597. [PMID: 34244007 DOI: 10.1016/j.vaccine.2021.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/26/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory illness among children and infants worldwide, yet no licensed vaccine exists to reduce the risk of disease. At least 16 RSV vaccine candidates are currently in clinical development and many are designed to induce robust virus neutralizing immune responses. RSV neutralizing antibody (nAb)-mediated interventions such as intravenous immunoglobulin (IVIG) and palivizumab provide passive protection against serious lower respiratory tract disease due to RSV, validating nAbs as a correlate of protection. To identify correlates of protection for vaccine candidates that have demonstrated their protective efficacy, an investigator can use assays designed to measure nAb responses. However, there is no standard method of measurement; individual laboratories have developed their own methods to measure the ability of nAbs to reduce the infectivity of a defined virus dose in a variety of cell lines, leading to establishment of the broad variety of RSV neutralization assay formats currently in use. Standardizing the RSV neutralization assay is an essential step toward better assessment of nAb responses to vaccine candidates. Use of a common reference standard by all makes comparing the immunogenicity of different vaccine candidates feasible. In the context of vaccine development, the WHO 1st International Standard for Antiserum to RSV (RSV IS) has been shown to be suitable for harmonizing results across laboratories and assay formats used to measure nAb titers to RSV/A and RSV/B in human sera. This review describes the broad variety of RSV virus neutralization assay formats currently in use and the importance of the RSV IS for harmonization of results across formats and across laboratories. It also outlines good practices for key assay components and data analysis to promote the quality and consistency of measuring RSV nAb titers in serum specimens.
Collapse
|
13
|
Anderson LJ, Jadhao SJ, Paden CR, Tong S. Functional Features of the Respiratory Syncytial Virus G Protein. Viruses 2021; 13:1214. [PMID: 34372490 PMCID: PMC8310105 DOI: 10.3390/v13071214] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| |
Collapse
|
14
|
Prabakaran P, Chowdhury PS. Landscape of Non-canonical Cysteines in Human V H Repertoire Revealed by Immunogenetic Analysis. Cell Rep 2021; 31:107831. [PMID: 32610132 PMCID: PMC7326410 DOI: 10.1016/j.celrep.2020.107831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Human antibody repertoire data captured through next-generation sequencing (NGS) has enabled deeper insights into B cell immunogenetics and paratope diversity. By analyzing large public NGS datasets, we map the landscape of non-canonical cysteines in human variable heavy-chain domains (VHs) at the repertoire level. We identify remarkable usage of non-canonical cysteines within the heavy-chain complementarity-determining region 3 (CDR-H3) and other CDRs and framework regions. Furthermore, our study reveals the diversity and location of non-canonical cysteines and their associated motifs in human VHs, which are reminiscent of and more complex than those found in other non-human species such as chicken, camel, llama, shark, and cow. These results explain how non-canonical cysteines strategically occur in the human antibodyome to expand its paratope space. This study will guide the design of human antibodies harboring disulfide-stabilized long CDR-H3s to access difficult-to-target epitopes and influence a paradigm shift in developability involving non-canonical cysteines. NGS-based non-canonical cysteine landscape in human VHs 1 to 8 non-canonical cysteines and up to 30% in long CDR-H3s An array of potential disulfide motifs adds paratope diversity Non-canonical cysteines in human VHs are reminiscent of lower animals
Collapse
|
15
|
Immunogenicity and inflammatory properties of respiratory syncytial virus attachment G protein in cotton rats. PLoS One 2021; 16:e0246770. [PMID: 33600439 PMCID: PMC7891763 DOI: 10.1371/journal.pone.0246770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and young children worldwide. The attachment (G) protein of RSV is synthesized by infected cells in both a membrane bound (mG) and secreted form (sG) and uses a CX3C motif for binding to its cellular receptor. Cell culture and mouse studies suggest that the G protein mimics the cytokine CX3CL1 by binding to CX3CR1 on immune cells, which is thought to cause increased pulmonary inflammation in vivo. However, because these studies have used RSV lacking its G protein gene or blockade of the G protein with a G protein specific monoclonal antibody, the observed reduction in inflammation may be due to reduced virus replication and spread, and not to a direct role for G protein as a viral chemokine. In order to more directly determine the influence of the soluble and the membrane-bound forms of G protein on the immune system independent of its attachment function for the virion, we expressed the G protein in cotton rat lungs using adeno-associated virus (AAV), a vector system which does not itself induce inflammation. We found no increase in pulmonary inflammation as determined by histology and bronchoalveolar lavage after inoculation of AAVs expressing the membrane bound G protein, the secreted G protein or the complete G protein gene which expresses both forms. The long-term low-level expression of AAV-G did, however, result in the induction of non-neutralizing antibodies, CD8 T cells and partial protection from challenge with RSV. Complete protection was accomplished through co-immunization with AAV-G and an AAV expressing cotton rat interferon α.
Collapse
|
16
|
Krivitskaya V, Komissarova K, Pisareva M, Sverlova M, Fadeev A, Petrova E, Timonina V, Sominina A, Danilenko D. Respiratory Syncytial Virus G Protein Sequence Variability among Isolates from St. Petersburg, Russia, during the 2013-2014 Epidemic Season. Viruses 2021; 13:119. [PMID: 33477301 PMCID: PMC7830914 DOI: 10.3390/v13010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.
Collapse
Affiliation(s)
- Vera Krivitskaya
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Kseniya Komissarova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Pisareva
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Maria Sverlova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Artem Fadeev
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Ekaterina Petrova
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Veronika Timonina
- Children’s City Hospital of St. Olga, 194017 Saint-Petersburg, Russia;
| | - Anna Sominina
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| | - Daria Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia; (V.K.); (M.P.); (M.S.); (A.F.); (E.P.); (A.S.); (D.D.)
| |
Collapse
|
17
|
Fuentes S, Hahn M, Chilcote K, Chemaly RF, Shah DP, Ye X, Avadhanula V, Piedra PA, Golding H, Khurana S. Antigenic Fingerprinting of Respiratory Syncytial Virus (RSV)-A-Infected Hematopoietic Cell Transplant Recipients Reveals Importance of Mucosal Anti-RSV G Antibodies in Control of RSV Infection in Humans. J Infect Dis 2020; 221:636-646. [PMID: 31745552 DOI: 10.1093/infdis/jiz608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection causes significant morbidity in hematopoietic cell transplant (HCT) recipients. However, antibody responses that correlate with recovery from RSV disease are not fully understood. METHODS In this study, antibody repertoire in paired serum and nasal wash samples from acutely RSV-A-infected HCT recipients who recovered early (<14 days of RSV shedding) were compared with late-recovered patients (≥14 days of shedding) using gene fragment phage display libraries and surface plasmon resonance. RESULTS Anti-F serum responses were similar between these 2 groups for antibody repertoires, neutralization titers, anti-F binding antibodies (prefusion and postfusion proteins), antibody avidity, and binding to specific antigenic sites. In contrast, nasal washes from early-recovered individuals demonstrated higher binding to F peptide containing p27. While the serum RSV G antibody repertoires in the 2 groups were similar, the strongest difference between early-recovered and late-recovered patients was observed in the titers of nasal wash antibodies, especially binding to the central conserved domain. Most importantly, a significantly higher antibody affinity to RSV G was observed in nasal washes from early-recovered individuals compared with late-recovered HCT recipients. CONCLUSIONS These findings highlight the importance of mucosal antibodies in resolution of RSV-A infection in the upper respiratory tract.
Collapse
Affiliation(s)
- Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Katarina Chilcote
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Roy F Chemaly
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy P Shah
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
18
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
19
|
Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther 2020; 20:1073-1082. [PMID: 32264720 DOI: 10.1080/14712598.2020.1753696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life. Despite RSV being a high priority for vaccine development, there is currently no safe and effective vaccine available. There are many challenges to developing an RSV vaccine and there are limited antiviral drugs or biologics available for the management of infection. In this article, we review the antiviral treatments, vaccination strategies along with alternative therapies for RSV. AREAS COVERED This review is a summary of the current antiviral and RSV vaccination approaches noting strategies and alternative therapies that may prevent or decrease the disease severity in RSV susceptible populations. EXPERT OPINION This review discusses anti-RSV strategies given that no safe and efficacious vaccines are available, and therapeutic treatments are limited. Various biologicals that target for RSV are considered for disease intervention, as it is likely that it may be necessary to develop separate vaccines or therapeutics for each at-risk population.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
20
|
Conformational Flexibility in Respiratory Syncytial Virus G Neutralizing Epitopes. J Virol 2020; 94:JVI.01879-19. [PMID: 31852779 DOI: 10.1128/jvi.01879-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in infants and the elderly. Currently, no vaccine or effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment to cells and contributes to pathogenesis by modulating host immunity through interactions with the human chemokine receptor CX3CR1. Antibodies targeting the RSV G central conserved domain are protective in both prophylactic and postinfection animal models. Here, we describe the crystal structure of the broadly neutralizing human monoclonal antibody 3G12 bound to the RSV G central conserved domain. Antibody 3G12 binds to a conformational epitope composed of highly conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G complexed with 3G12 adopts a distinct conformation not observed in previously described RSV G-antibody structures. Comparison to other structures reveals that the RSV G central conserved domain is flexible and can adopt multiple conformations in the regions flanking the cysteine noose. We also show that restriction of RSV G flexibility with a proline mutation abolishes binding to antibody 3G12 but not antibody 3D3, which recognizes a different conformation of RSV G. Our studies provide new insights for rational vaccine design, indicating the importance of preserving both the global structural integrity of antigens and local conformational flexibility at antigenic sites, which may elicit a more diverse antibody response and broader protection against infection and disease.IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in infants, young children, and the elderly, and currently, no licensed vaccine exists. In this study, we describe the crystal structure of the RSV surface glycoprotein G in complex with a broadly neutralizing human monoclonal antibody. The antibody binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it captures RSV G in a conformation not previously observed, revealing that this region is both structured and flexible. Importantly, our findings provide insight for the design of vaccines that elicit diverse antibodies, which may provide broad protection from infection and disease.
Collapse
|
21
|
Fuentes S, Ravichandran S, Coyle EM, Klenow L, Khurana S. Human Antibody Repertoire following Ebola Virus Infection and Vaccination. iScience 2020; 23:100920. [PMID: 32145646 PMCID: PMC7058406 DOI: 10.1016/j.isci.2020.100920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/14/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Limited knowledge exists on the quality of polyclonal antibody response generated following Ebola virus (EBOV) infection compared with vaccination. Polyclonal antibody repertoire in plasma following EBOV infection in survivors was compared with ChAd3-MVA prime-boost human vaccination. Higher antibody binding and affinity to GP was observed in survivors compared with vaccinated plasma that correlated with EBOV neutralization. Surprisingly, a predominant IgM response was generated after prime-boost vaccination, whereas survivors demonstrated IgG-dominant antibody response. EBOV infection induced more diverse antibody epitope repertoire compared with vaccination. A strong binding to antigenic sites in the fusion peptide and another in the highly conserved GP2-HR2 domain was preferentially recognized by EBOV survivors than vaccinated individuals that correlated strongly with EBOV neutralization titers. These findings will help development and evaluation of effective Ebola countermeasures including therapeutics and vaccines. EBOV infection induced a more diverse antibody repertoire than vaccination Ebola survivors demonstrated long-lasting, high-affinity, IgG antibody response Several novel antigenic sites recognized by post-EBOV infection sera
Collapse
Affiliation(s)
- Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|
22
|
Midulla F, Di Mattia G, Nenna R, Scagnolari C, Viscido A, Oliveto G, Petrarca L, Frassanito A, Arima S, Antonelli G, Pierangeli A. Novel Variants of Respiratory Syncytial Virus A ON1 Associated With Increased Clinical Severity of Bronchiolitis. J Infect Dis 2020; 222:102-110. [DOI: 10.1093/infdis/jiaa059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/06/2020] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
A study of respiratory syncytial virus-A (RSV A) genotype ON1 genetic variability and clinical severity in infants hospitalized with bronchiolitis over 6 epidemic seasons (2012–2013 to 2017–2018) was carried out.
Methods
From prospectively enrolled term infants hospitalized for bronchiolitis, samples positive for RSV A ON1 (N = 139) were sequenced in the second half of the G gene. Patients’ clinical data were obtained from medical files and each infant was assigned a clinical severity score. ANOVA comparison and adjusted multinomial logistic regression were used to evaluate clinical severity score and clinical parameters.
Results
The phylogenetic analysis of 54 strains showed 3 distinct clades; sequences in the last 2 seasons differed from previous seasons. The most divergent and numerous cluster of 2017–2018 strains was characterized by a novel pattern of amino acid changes, some in antigenic sites. Several amino acid changes altered predicted glycosylation sites, with acquisition of around 10 new O-glycosylation sites. Clinical severity of bronchiolitis increased in 2016–2017 and 2017–2018 and changed according to the epidemic seasons only.
Conclusions
Amino acid changes in the hypervariable part of G protein may have altered functions and/or changed its immunogenicity, leading to an impact on disease severity.
Collapse
Affiliation(s)
- Fabio Midulla
- Department of Pediatrics, Sapienza University, Rome, Italy
| | | | | | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular Medicine, Sapienza University,Rome, Italy
| | - Agnese Viscido
- Virology Laboratory, Department of Molecular Medicine, Sapienza University,Rome, Italy
| | - Giuseppe Oliveto
- Virology Laboratory, Department of Molecular Medicine, Sapienza University,Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics, Sapienza University, Rome, Italy
| | | | - Serena Arima
- Department of Methods and Models in Economics, the Territory and Finance, Sapienza University, Rome, Italy
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular Medicine, Sapienza University,Rome, Italy
| | - Alessandra Pierangeli
- Virology Laboratory, Department of Molecular Medicine, Sapienza University,Rome, Italy
| |
Collapse
|
23
|
Boyoglu-Barnum S, Chirkova T, Anderson LJ. Biology of Infection and Disease Pathogenesis to Guide RSV Vaccine Development. Front Immunol 2019; 10:1675. [PMID: 31402910 PMCID: PMC6677153 DOI: 10.3389/fimmu.2019.01675] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life and as such a high priority for vaccine development. However, after nearly 60 years of research no vaccine is yet available. The challenges to developing an RSV vaccine include the young age, 2-4 months of age, for the peak of disease, the enhanced RSV disease associated with the first RSV vaccine, formalin-inactivated RSV with an alum adjuvant (FI-RSV), and difficulty achieving protection as illustrated by repeat infections with disease that occur throughout life. Understanding the biology of infection and disease pathogenesis has and will continue to guide vaccine development. In this paper, we review the roles that RSV proteins play in the biology of infection and disease pathogenesis and the corresponding contribution to live attenuated and subunit RSV vaccines. Each of RSV's 11 proteins are in the design of one or more vaccines. The G protein's contribution to disease pathogenesis through altering host immune responses as well as its role in the biology of infection suggest it can make a unique contribution to an RSV vaccine, both live attenuated and subunit vaccines. One of G's potential unique contributions to a vaccine is the potential for anti-G immunity to have an anti-inflammatory effect independent of virus replication. Though an anti-viral effect is essential to an effective RSV vaccine, it is important to remember that the goal of a vaccine is to prevent disease. Thus, other effects of the infection, such as G's alteration of the host immune response may provide opportunities to induce responses that block this effect and improve an RSV vaccine. Keeping in mind the goal of a vaccine is to prevent disease and not virus replication may help identify new strategies for other vaccine challenges, such as improving influenza vaccines and developing HIV vaccines.
Collapse
Affiliation(s)
| | - Tatiana Chirkova
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
24
|
Development of Luciferase Immunoprecipitation Systems (LIPS) Assay to Detect IgG Antibodies against Human Respiratory Syncytial Virus G-Glycoprotein. Vaccines (Basel) 2019; 7:vaccines7010016. [PMID: 30717190 PMCID: PMC6466036 DOI: 10.3390/vaccines7010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in infants and the elderly. Although there is no licensed vaccine, RSV-F and -G glycoproteins are targets for vaccine development and therapeutics. We developed an assay that can detect anti-RSV-G IgG antibodies, either as a biomarker of natural exposure or immunization. RSV genes encoding native and mutated G (mG) proteins from subgroups A and B strains were cloned, expressed as luciferase-tagged proteins, and tested individually to detect anti-RSV-G specific IgG antibodies using a high-throughput luciferase immunoprecipitation system (LIPS-G). RSV monoclonal antibodies and polyclonal antisera specifically bound in the LIPS-GA and/or -GB assays; whereas anti-RSV-F and -N, and antisera against measles virus or human metapneumovirus did not bind. Anti-RSV-GA and -GB IgG responses detected in mice infected intranasally with RSV-A or -B strains were subtype specific. Subtype specific anti-RSV-GA or -GB IgG responses were also detected using paired serum samples from infants while human adolescent serum samples reacted in both LIPS-GA and -GB assays, reflecting a broader experience.
Collapse
|