1
|
P C. Understanding EBV infection and EBV-associated lymphomas in children. Virology 2025; 608:110544. [PMID: 40267593 DOI: 10.1016/j.virol.2025.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/13/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
The Epstein-Barr virus (EBV) infects over 90 % of the human population, often behaving as a harmless passenger in most hosts. However, since 1997, it has been classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) due to its causal association with several malignancies. Most studies on EBV primary infection and EBV-associated lymphomas have been performed in adults from developed countries. The complex interplay between age of acquisition and symptomatic versus asymptomatic infection is related to the subsequent risk of EBV-associated cancers or autoimmune diseases. This review discusses some characteristics of EBV infection and EBV-associated lymphomas in children from low- and middle-income regions, with a focus on the local immune response.
Collapse
Affiliation(s)
- Chabay P
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutierrez Children's Hospital, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Münz C. Epstein-Barr virus pathogenesis and emerging control strategies. Nat Rev Microbiol 2025:10.1038/s41579-025-01181-y. [PMID: 40281073 DOI: 10.1038/s41579-025-01181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Sixty years after its discovery as the first human tumour virus, Epstein-Barr virus (EBV)-specific therapies and vaccines have entered clinical trials. These might not only be applicable for EBV-associated malignancies, where the virus was originally discovered, but also to immunopathologies, including the autoimmune disease multiple sclerosis, which might be triggered in susceptible individuals by primary EBV infection. This Review discusses the surprisingly large spectrum of diseases that EBV seems to cause, as well as which of these might be treated by the therapeutic approaches that are currently being developed or are already clinically applied. New pharmacological inhibitors, antibody therapies, adoptive T cell therapies and active vaccinations are beginning to offer possibilities to target the various EBV infection programmes that are associated with different diseases. These novel developments might allow us to specifically target EBV rather than its host cells in virus-associated pathologies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Münz C. Recent advances in animal models of lymphomagenesis caused by human γ-herpesviruses. Curr Opin Virol 2025; 71:101461. [PMID: 40147119 DOI: 10.1016/j.coviro.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/20/2024] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
The two human γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) cause around 2-3% of all cancers in man. Their exclusive tropism for humans and associated lack of small animal models has impeded the dissection of individual viral gene contributions to tumor formation and of protection by distinct immune responses that are observed in virus carriers. Mice with reconstituted human immune systems (humanized mice) now offer the possibility to study these questions and to develop adoptive antibody and T cell transfers against EBV- and KSHV-associated pathologies. Based on such protective immune responses, vaccine candidates can then be developed to prophylactically and therapeutically induce immune control, similar to the one that avoids virus-associated pathologies in the vast majority of infected individuals.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
4
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Kirchmeier D, Deng Y, Rieble L, Böni M, Läderach F, Schuhmachers P, Valencia-Camargo AD, Murer A, Caduff N, Chatterjee B, Chijioke O, Zens K, Münz C. Epstein-Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 2024; 9:e173489. [PMID: 39264727 PMCID: PMC11530129 DOI: 10.1172/jci.insight.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
EBV contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers, it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as granzyme B, CD107a, and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection, although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily, systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.
Collapse
Affiliation(s)
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | | | | | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, and
| |
Collapse
|
6
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Müller-Durovic B, Jäger J, Engelmann C, Schuhmachers P, Altermatt S, Schlup Y, Duthaler U, Makowiec C, Unterstab G, Roffeis S, Xhafa E, Assmann N, Trulsson F, Steiner R, Edwards-Hicks J, West J, Turner L, Develioglu L, Ivanek R, Azzi T, Dehio P, Berger C, Kuzmin D, Saboz S, Mautner J, Löliger J, Geigges M, Palianina D, Khanna N, Dirnhofer S, Münz C, Bantug GR, Hess C. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 2024; 385:eadk4898. [PMID: 38781354 DOI: 10.1126/science.adk4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabine Altermatt
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Yannick Schlup
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Celia Makowiec
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gunhild Unterstab
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Sarah Roffeis
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Erta Xhafa
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Nadine Assmann
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Axolabs GmbH, Kulmbach, Germany
| | - Fredrik Trulsson
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Rebekah Steiner
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Joy Edwards-Hicks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leyla Develioglu
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robert Ivanek
- Bioinformatics Facility, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Philippe Dehio
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London, UK
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Saboz
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, Munich, Germany
| | - Jordan Löliger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marco Geigges
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Darya Palianina
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Naughton P, Enright F, Lucey B. Infectious mononucleosis: new concepts in clinical presentation, epidemiology, and host response. Curr Opin Infect Dis 2024; 37:157-163. [PMID: 38529804 DOI: 10.1097/qco.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Infectious mononucleosis (IM) is an infectious disease that presents clinically in only a small percentage of individuals despite almost universal infection with the causative agent. Here, we review the latest concepts in the clinical presentation, epidemiology, and host response of this disease. RECENT FINDINGS Several recently published papers/reviews describe IM as a condition caused by one of several etiologic agents including, cytomegalovirus (HHV-5), Roseola virus (HHV-6) and Toxoplasmosis amongst others; this review focuses on IM as solely caused by the human herpes virus 4 (HHV-4). Since the initial discovery of the virus in the 1960s and its subsequent discovery as the primary etiologic agent for IM it has been associated with several human cancers and autoimmune disorders. Recent published findings show a correlation between HHV-4 and the autoimmune disorder, multiple sclerosis (MS), suggesting earlier IM could possibly act as a causative factor. Considering the important links being made with IM to so many cancers and autoimmune disorders it is surprising that a standard investigative procedure has yet to be determined for this disease. A standard approach to the investigation of IM would ensure more cases are diagnosed, particularly atypical cases, this would benefit epidemiological studies, and more immediately help practitioners distinguish viral from bacterial throat infections, enabling them to treat accordingly. SUMMARY The understanding of the latest concepts in clinical presentation, epidemiology and host response to IM would benefit greatly from the introduction of a standard procedure for its investigation and diagnosis.
Collapse
Affiliation(s)
- Patrick Naughton
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
- Department of Haematology
| | - Frances Enright
- Department of Paediatrics, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
| |
Collapse
|
9
|
Münz C. Altered EBV specific immune control in multiple sclerosis. J Neuroimmunol 2024; 390:578343. [PMID: 38615370 DOI: 10.1016/j.jneuroim.2024.578343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
10
|
Mélique S, Vadel A, Rouquié N, Yang C, Bories C, Cotineau C, Saoudi A, Fazilleau N, Lesourne R. THEMIS promotes T cell development and maintenance by rising the signaling threshold of the inhibitory receptor BTLA. Proc Natl Acad Sci U S A 2024; 121:e2318773121. [PMID: 38713628 PMCID: PMC11098085 DOI: 10.1073/pnas.2318773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.
Collapse
Affiliation(s)
- Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Aurélie Vadel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cui Yang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Coline Cotineau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse31024, France
| |
Collapse
|
11
|
Peng Y, Yang H, Chen Q, Jin H, Xue YH, Du MQ, Liu S, Yao SY. An angel or a devil? Current view on the role of CD8 + T cells in the pathogenesis of myasthenia gravis. J Transl Med 2024; 22:183. [PMID: 38378668 PMCID: PMC10877804 DOI: 10.1186/s12967-024-04965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vβ gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China.
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| |
Collapse
|
12
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
13
|
Xu Y, Li W, Gan J, He X, Huang X. An analysis of sintilimab combined with ruxolitinib as compassionate therapy for 12 adults with EBV-associated hemophagocytic lymphohistiocytosis. Ann Hematol 2023; 102:3325-3333. [PMID: 37787838 DOI: 10.1007/s00277-023-05476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a severe hyperinflammatory illness that affects adults and is caused by an EBV infection. Without allogeneic hematopoietic stem cell transplantation (allo-HSCT), the overall survival of adult patients with EBV-HLH is unsatisfactory, necessitating the development of innovative therapeutic approaches. The clinical records of twelve EBV-HLH patients who received sintilimab therapy combined with ruxolitinib on a compassionate basis at the First Affiliated Hospital of Soochow University were retrospectively examined in this investigation. All the patients responded without fever, but three patients relapsed within a week. Among the nine patients achieving complete response (CR), 55.6% (5/9) maintained CR for >4.5 months, and 33.3% (3/9) relapsed following CR. Neither patients with no response (NR) nor relapsed patients were fit for allo-HSCT, and all died soon after discharge. Six patients had clinical CR with a median follow-up of 5 (4.4-14.7) months. There were no documented severe negative effects. Additional information on this innovative treatment for adult EBV-HLH is provided in our report.
Collapse
Affiliation(s)
- Ying Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China
| | - Wenting Li
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| | - Xuefeng He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| | - Xiaoping Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
14
|
Wang Y, Li Y, Wang C, Lio CWJ, Ma Q, Liu B. CEMIG: prediction of the cis-regulatory motif using the de Bruijn graph from ATAC-seq. Brief Bioinform 2023; 25:bbad505. [PMID: 38189539 PMCID: PMC10772951 DOI: 10.1093/bib/bbad505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Sequence motif discovery algorithms enhance the identification of novel deoxyribonucleic acid sequences with pivotal biological significance, especially transcription factor (TF)-binding motifs. The advent of assay for transposase-accessible chromatin using sequencing (ATAC-seq) has broadened the toolkit for motif characterization. Nonetheless, prevailing computational approaches have focused on delineating TF-binding footprints, with motif discovery receiving less attention. Herein, we present Cis rEgulatory Motif Influence using de Bruijn Graph (CEMIG), an algorithm leveraging de Bruijn and Hamming distance graph paradigms to predict and map motif sites. Assessment on 129 ATAC-seq datasets from the Cistrome Data Browser demonstrates CEMIG's exceptional performance, surpassing three established methodologies on four evaluative metrics. CEMIG accurately identifies both cell-type-specific and common TF motifs within GM12878 and K562 cell lines, demonstrating its comparative genomic capabilities in the identification of evolutionary conservation and cell-type specificity. In-depth transcriptional and functional genomic studies have validated the functional relevance of CEMIG-identified motifs across various cell types. CEMIG is available at https://github.com/OSU-BMBL/CEMIG, developed in C++ to ensure cross-platform compatibility with Linux, macOS and Windows operating systems.
Collapse
Affiliation(s)
- Yizhong Wang
- School of Mathematics, Shandong University, Jinan, 250100, China
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chan-Wang Jerry Lio
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, 250100, China
| |
Collapse
|
15
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Chen R, Lin Q, Zhu Y, Shen Y, Xu Q, Tang H, Cui N, Jiang L, Dai X, Chen W, Li X. Sintilimab treatment for chronic active Epstein-Barr virus infection and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children. Orphanet J Rare Dis 2023; 18:297. [PMID: 37736751 PMCID: PMC10514962 DOI: 10.1186/s13023-023-02861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus infection (CAEBV) and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) are rare but life-threatening progressive diseases triggered by EBV infection. Glucocorticoid/immunosuppressants treatment is temporarily effective; however, most patients relapse and/or progress. Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy; however, there are risks of transplantation-associated complications. Currently there is no standard treatment for CAEBV and EBV-HLH. Programmed death protein 1 (PD-1) inhibitors have achieved a high response in many EBV-related diseases. Sintilimab (a recombinant human IgG4 monoclonal antibody against PD-1) disrupts the interaction between PD-1 and its ligand, leading to T cell reinvigoration. METHODS A retrospective analysis was performed on three children with CAEBV or EBV-HLH in the Children's Hospital of Soochow University between 12 December 2020 and 28 November 2022. The efficacy of sintilimab was evaluated. RESULTS Three patients, including two males and one female, were analyzed. Among them, two children were diagnosed with CAEBV with intermittent fever for more than four years, and one child was diagnosed with EBV-HLH. After sintilimab treatment and a mean follow-up of 17.1 months (range 10.0-23.3 months), patients 1 and 3 achieved a complete clinical response and patient 2 achieved a partial clinical response. All three children showed a > 50% decrease in EBV-DNA load in both blood and plasma. EBV-DNA copies in sorted T, B, and NK cells were also markedly decreased after sintilimab treatment. CONCLUSION Our data supported the efficacy of PD-1 targeted therapy in certain patients with CAEBV and EBV-HLH, and suggested that sintilimab could provide a cure for these diseases, without HSCT. More prospective studies and longer follow-up are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Ruyue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Ningxun Cui
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Xiaomei Dai
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Weiqing Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
17
|
Collins DR, Hitschfel J, Urbach JM, Mylvaganam GH, Ly NL, Arshad U, Racenet ZJ, Yanez AG, Diefenbach TJ, Walker BD. Cytolytic CD8 + T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci Immunol 2023; 8:eade5872. [PMID: 37205767 DOI: 10.1126/sciimmunol.ade5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julia Hitschfel
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Umar Arshad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Adrienne G Yanez
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
19
|
Serafini B, Rosicarelli B, Veroni C, Aloisi F. Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein-Barr virus infected B cells. J Neuroimmunol 2023; 376:578036. [PMID: 36753806 DOI: 10.1016/j.jneuroim.2023.578036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Presence of EBV infected B cells and EBV-specific CD8 T cells in the multiple sclerosis (MS) brain suggests a role for virus-driven immunopathology in brain inflammation. Tissue-resident memory (Trm) T cells differentiating in MS lesions could provide local protection against EBV reactivation. Using immunohistochemical techniques to analyse canonical tissue residency markers in postmortem brains from control and MS cases, we report that CD103 and/or CD69 are mainly expressed in a subset of CD8+ T cells that intermingle with and contact EBV infected B cells in the infiltrated MS white matter and meninges, including B-cell follicles. Some Trm-like cells were found to express granzyme B and PD-1, mainly in white matter lesions. In the MS brain, Trm cells could fail to constrain EBV infection while contributing to sustain inflammation.
Collapse
Affiliation(s)
- Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
20
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
21
|
Xu X, Zheng G, Ren Y, He X, Peng B, Hu X, Liu W. A novel 2B4 receptor leads to worse pregnancy outcomes by facilitating TNF-α and IFN-γ production in dNK cells during Toxoplasma gondii infection. Parasit Vectors 2022; 15:337. [PMID: 36153598 PMCID: PMC9509566 DOI: 10.1186/s13071-022-05455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Infections are a major threat to human reproductive health because they can induce pregnancy failure, including recurrent abortion, stillbirth, and preterm birth. Toxoplasma gondii (T. gondii) infection can result in adverse pregnancy outcomes by affecting certain immune molecules and cytokines. However, the detailed mechanisms behind T. gondii-induced pregnancy failure are poorly understood.
Methods
Toxoplasma gondii-infected wild-type (WT) pregnant mice and 2B4 knockout (2B4−/−) pregnant mice were established for in vivo study. Human decidual natural killer (dNK) cells were cultured for in vitro study. Abnormal pregnancy outcomes were observed, and the expression of 2B4, functional molecules (CD69, CD107a, tumor necrosis factor alpha [TNF-α], interferon gamma [IFN-γ]), and signaling molecules (SHP-2, Fyn, p-ERK, p-P38) in dNK cells were detected by flow cytometry, Western blot, reverse transcriptase polymerase chain reaction (RT-PCR), and/or immunofluorescence. The direct interactions (2B4 interacts with SHP-2 and Fyn; SHP-2 interacts with p-P38 and 2B4; Fyn interacts with p-ERK and 2B4) were verified by co-immunoprecipitation (co-IP) in NK-92 cells.
Results
Here, results showed that 2B4 was significantly downregulated after T. gondii infection. Subsequently, infected 2B4−/− pregnant mice displayed worse pregnancy outcomes compared with infected WT pregnant mice. Also, increased TNF-α and IFN-γ expression and elevated dNK cell cytotoxicity were found in 2B4−/− pregnant mice during T. gondii infection. In contrast, reduced TNF-α and IFN-γ expression and decreased human dNK cell activity were found following 2B4 activation during T. gondii infection. Interestingly, results showed that 2B4 binds to adaptor SHP-2 or Fyn, which then triggers different signaling pathways to regulate TNF-α and IFN-γ expression in dNK cells during T. gondii infection. Further, SHP-2 binds 2B4 and p-P38 directly after 2B4 activation, which generates an inhibitory signal for TNF-α and IFN-γ in NK-92 cells. In addition, Fyn can bind to 2B4 and p-ERK after activation of 2B4, thereby inhibiting TNF-α and IFN-γ expression in NK-92 cells following T. gondii infection.
Conclusions
These data suggest that 2B4 may be a novel danger-signaling molecule that is implicated in pregnancy failure during T. gondii infection. Unraveling the mechanism by which 2B4 regulates dNK cell activity will provide novel insights to aid our understanding of T. gondii-induced adverse pregnancy outcomes.
Graphical Abstract
Collapse
|
22
|
Qian H, Dong D, Fan P, Feng Y, Peng Y, Yao X, Wang R. Expression of KLRG1 on subpopulations of lymphocytes in the peripheral blood of patients with locally advanced nasopharyngeal carcinoma and prognostic analysis. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hengjun Qian
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Danning Dong
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Peiwen Fan
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yaning Feng
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Ruozheng Wang
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi China
| |
Collapse
|
23
|
Sakamoto K, Baba T, Takatori H, Nagao K, Misawa J, Honda T. A case of methotrexate‐associated Epstein‐Barr virus‐positive mucocutaneous ulcer. SKIN HEALTH AND DISEASE 2022; 2:e108. [PMID: 35677919 PMCID: PMC9168019 DOI: 10.1002/ski2.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022]
Abstract
Epstein‐Barr virus‐positive mucocutaneous ulcer (EBVMCU) is a B‐cell proliferative disorder that has been designated as a provisional entity in the 2017 World Health Organization classification for lymphoid neoplasms. While EBVMCU may contain varying numbers of cells with Hodgkin and Reed‐Sternberg cells‐like morphology, the clinical course is benign and must be distinguished from lymphomas. Patients who develop EBVMCU are commonly immunocompromised, with methotrexate (MTX) as the leading cause. Most previously reported cases of EBVMCU describe mucosal ulcers with very little documentation on skin lesions and its course. Here, we report a case of MTX‐associated EBVMCU of the lower leg that underwent spontaneous regression after MTX withdrawal, during which negative conversion of local Epstein‐Barr virus activation was confirmed.
Collapse
Affiliation(s)
- Keiko Sakamoto
- Department of Dermatology Hamamatsu Medical Center Hamamatsu Shizuoka Japan
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
- Dermatology Branch National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health Bethesda Maryland USA
| | - Takeshi Baba
- Department of Pathology Hamamatsu Medical Center Hamamatsu Shizuoka Japan
| | - Hiroaki Takatori
- Department of Rheumatology Hamamatsu Medical Center Hamamatsu Shizuoka Japan
| | - Keisuke Nagao
- Dermatology Branch National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health Bethesda Maryland USA
| | - Junko Misawa
- Department of Dermatology Hamamatsu Medical Center Hamamatsu Shizuoka Japan
| | - Tetsuya Honda
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Shizuoka Japan
| |
Collapse
|
24
|
Khanam A, Tang LSY, Kottilil S. Programmed death 1 expressing CD8 + CXCR5 + follicular T cells constitute effector rather than exhaustive phenotype in patients with chronic hepatitis B. Hepatology 2022; 75:690-708. [PMID: 34689344 DOI: 10.1002/hep.32210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/29/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Classical CD8 T cells are implicated for protective and pathogenic roles in chronic hepatitis B (CHB) infection. Recently, a subset of CD8 T cells expressing C-X-C chemokine receptor type 5 (CXCR5) and exhibiting features of TFH cells has been identified during chronic viral infections. However, in CHB, knowledge of their roles is limited. APPROACH AND RESULTS We characterized circulating CD8+ CXCR5+/- cells and investigated their association with clinical and viral factors. We found that CHB infection did not influence the overall frequencies of CD8+ CXCR5+ cells whereas CD8+ CXCR5- cells were increased. However, among CHB, CD8+ CXCR5+ cells were higher in patients with low HBsAg and HBV-DNA levels, patients who were HBeAg negative and had high fibrosis scores, and these cells exhibited a significant association with HBsAg and HBV-DNA reduction. Contrarily, CD8+ CXCR5- cells were expanded and positively correlated with patients having high HBsAg, HBV-DNA, and alanine aminotransferase levels. CD8+ CXCR5+ cells express costimulatory molecules ICOS, OX40, CD40 ligand, inhibitory molecule programmed death 1, transcription factors B-cell lymphoma (BCL)-2, BCL-6, and signal transducer and activator of transcription 3, and are enriched in effector and central memory phenotype. Moreover, these cells are heterogeneous in nature given that they constitute different subsets of cytotoxic follicular T cells (TCF), including TCF1, TCF2, TCF17, and TCF22. Despite expressing high PD-1, CD8+ CXCR5+ cells are activated, proliferating, secreting more IFN-γ, IL-21, and IL-22, and have better cytolytic potential than CD8+ CXCR5- cells, which were inhibited after PD-1/PD-L1 blockade. CD8+ CXCR5+ cells are efficient in helping B cells in terms of plasmablasts and plasma cell generation. CONCLUSIONS In conclusion, CD8+ CXCR5+ cells are enriched in effector phenotypes, produce HBV-specific cytokines despite increased PD-1, and are associated with HBsAg and HBV-DNA reduction. These cells competently support B-cell function, required for viral clearance, which may serve as potential therapeutic targets for CHB.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lydia S Y Tang
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2021; 12:biom12010038. [PMID: 35053187 PMCID: PMC8774114 DOI: 10.3390/biom12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Epstein Barr virus (EBV) is one of the prominent human tumor viruses, and it is efficiently immune-controlled in most virus carriers. Cytotoxic lymphocytes strongly expand during symptomatic primary EBV infection and in preclinical in vivo models of this tumor virus infection. In these models and patients with primary immunodeficiencies, antibody blockade or deficiencies in certain molecular pathways lead to EBV-associated pathologies. In addition to T, NK, and NKT cell development, as well as their cytotoxic machinery, a set of co-stimulatory and co-inhibitory molecules was found to be required for EBV-specific immune control. The role of CD27/CD70, 4-1BB, SLAMs, NKG2D, CD16A/CD2, CTLA-4, and PD-1 will be discussed in this review. Some of these have just been recently identified as crucial for EBV-specific immune control, and for others, their important functions during protection were characterized in in vivo models of EBV infection and its immune control. These insights into the phenotype of cytotoxic lymphocytes that mediate the near-perfect immune control of EBV-associated malignancies might also guide immunotherapies against other tumors in the future.
Collapse
Affiliation(s)
- Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Zhang X, Schuhmachers P, Mourão A, Giansanti P, Murer A, Thumann S, Kuklik‐Roos C, Beer S, Hauck SM, Hammerschmidt W, Küppers R, Kuster B, Raab M, Strebhardt K, Sattler M, Münz C, Kempkes B. PLK1-dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV-infected mice. EMBO Rep 2021; 22:e53007. [PMID: 34605140 PMCID: PMC8647151 DOI: 10.15252/embr.202153007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.
Collapse
Affiliation(s)
- Xiang Zhang
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Patrick Schuhmachers
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Piero Giansanti
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Anita Murer
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Sybille Thumann
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Cornelia Kuklik‐Roos
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Sophie Beer
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core FacilityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research)University Hospital EssenEssenGermany
| | - Bernhard Kuster
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Monika Raab
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Michael Sattler
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Christian Münz
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Bettina Kempkes
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| |
Collapse
|
27
|
Wang Y, Luo Y, Tang G, Ouyang R, Zhang M, Jiang Y, Wang T, Zhang X, Yin B, Huang J, Wei W, Huang M, Wang F, Wu S, Hou H. HLA-DR Expression Level in CD8 + T Cells Correlates With the Severity of Children With Acute Infectious Mononucleosis. Front Immunol 2021; 12:753290. [PMID: 34804038 PMCID: PMC8596082 DOI: 10.3389/fimmu.2021.753290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study aimed to assess the host immune signatures associated with EBV infection and its clinical value in indicating the severity of children with acute infectious mononucleosis (IM). Methods Twenty-eight pediatric patients with IM aged 3–8 years were enrolled. The immune phenotypes and cytokine secretion capability of T cells were detected. Results The percentages and absolute numbers of CD3+ and CD8+ T cells were significantly increased in IM patients compared with HCs. The percentages of Naïve CD4+ and CD8+ T cells were decreased but with increased percentages of memory CD4+ and CD8+ T subsets. Our results showed the upregulation of active marker HLA-DR, TCR-αβ, and inhibitory receptors PD-1, TIGIT in CD8+ T cells from IM patients, which suggested that effective cytotoxic T cells were highly against EBV infection. However, EBV exposure impaired the cytokine (IFN-γ, IL-2, and TNF-α) secretion capability of CD4+ and CD8+ T cells after stimulation with PMA/ionomycin in vitro. Multivariate analysis revealed that the percentage of HLA-DR+ CD8+ T cells was an independent prognostic marker for IM. The percentage of HLA-DR+ CD8+ T cells was significantly correlated with high viral load and abnormal liver function results. Conclusion Robust expansion and upregulation of HLA-DR in CD8+ T cells, accompanied with impaired cytokine secretion, were typical characteristics of children with acute IM. The percentage of HLA-DR+ CD8+ T cells might be used as a prominent marker not only for the early diagnosis but also for indicating the severity of IM.
Collapse
Affiliation(s)
- Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renren Ouyang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minxia Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhuan Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Botao Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Lin J, Chen X, Wu H, Chen X, Hu X, Xu J. Peripheral blood lymphocyte counts in patients with infectious mononucleosis or chronic active Epstein-Barr virus infection and prognostic risk factors of chronic active Epstein-Barr virus infection. Am J Transl Res 2021; 13:12797-12806. [PMID: 34956494 PMCID: PMC8661241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the peripheral blood lymphocyte counts and analyze the prognostic risk factors for the death in patients with chronic active Epstein-Barr virus (CAEBV) infection. METHODS Clinical data of 64 patients infected with CAEBV (CAEBV group) and 64 patients with infectious mononucleosis (IM group) in our hospital were retrospectively analyzed. Meanwhile, 64 healthy individuals came for physical examination were enrolled in the control group. The three groups were compared for white blood cell count, lymphocyte count, and levels of peripheral blood NK cells, B cells, CD3+, CD4+, CD8+, CD4+CD28+, CD8+CD28+, CD4+CD25+, DR+CD8+, CD38+CD8+, CD4+ and CD8+ naive T cells and subsets of memory T cells. Patients infected with CAEBV were further divided into a survival subgroup and a death subgroup according to the survival outcome. The data were processed using univariate analysis and multivariate logistic regression analysis. RESULTS Compared with the control group, the IM group had higher levels of white blood cell count, lymphocyte count, CD3+, CD4+, CD8+, CD4+CD25+, DR+CD8+, CD38+CD8+, effector-memory CD4+CD62L-CD45RO+ and effector-memory CD8+CD62L-CD45RO+, but lower levels of NK cells, B cells, CD4+CD28+, CD8+CD28+, naive CD4+CD62L+CD45RA+ and naive CD8+CD62L+CD45RA+ (all P<0.05). Compared with the control group, the CAEBV group had lower levels of white blood cell count, lymphocyte count, CD3+, CD4+, CD8+, NK cells, B cells, CD4+CD28+, CD8+CD28+, naive CD4+CD62L+CD45RA+ and naive CD8+CD62L+CD45RA+, but higher levels of CD4+CD25+, DR+CD8+, CD38+CD8+, effector-memory CD4+CD62L-CD45RO+ and effector-memory CD8+CD62L-CD45RO+ (all P<0.05). Univariate analysis and multivariate logistic regression analysis showed that EBV DNA>105 copies/mL, platelet count <50×1012/L, albumin <30 g/L and serum ferritin >5000 μg/L were independent risk factors for the death of patients with CAEBV. CONCLUSION Patients infected with CAEBV showed imbalance of lymphocyte subsets and immune dysfunction. EBV DNA>105 copies/mL, platelet count <50×1012/L, albumin <30 g/L and serum ferritin >5000 μg/L are risk factors of death in patients with CAEBV.
Collapse
Affiliation(s)
- Jiancheng Lin
- Department of Clinical Laboratory, Children’s Hospital of Xiamen (Children’s Hospital of Fudan University at Xiamen)Xiamen 361006, Fujian Province, China
| | - Xiaokang Chen
- Department of Clinical Laboratory, Children’s Hospital of Xiamen (Children’s Hospital of Fudan University at Xiamen)Xiamen 361006, Fujian Province, China
| | - Haiming Wu
- Department of Clinical Laboratory, Children’s Hospital of Xiamen (Children’s Hospital of Fudan University at Xiamen)Xiamen 361006, Fujian Province, China
| | - Xiaoyun Chen
- Department of Clinical Laboratory, Children’s Hospital of Xiamen (Children’s Hospital of Fudan University at Xiamen)Xiamen 361006, Fujian Province, China
| | - Xiaomei Hu
- Department of Clinical Laboratory, Children’s Hospital of Xiamen (Children’s Hospital of Fudan University at Xiamen)Xiamen 361006, Fujian Province, China
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan UniversityShanghai 201102, China
| |
Collapse
|
29
|
Xu L, Guo X, Guan H. Serious consequences of Epstein-Barr virus infection: Hemophagocytic lymphohistocytosis. Int J Lab Hematol 2021; 44:74-81. [PMID: 34709704 DOI: 10.1111/ijlh.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Human is the host of the Epstein-Barr virus (EBV) especially in childhood and adolescence. Most of them are asymptomatic infection and self-limiting. However, for those patients who suffer from immune dysfunction, EBV infection will be life-threatening. Epstein-Barr virus-associated hemophagocytic lymphohistocytosis (EBV-HLH) is one of the severe effects. The diagnosis and differential diagnosis of EBV-HLH and other EBV infectious diseases are mentioned in this paper. The molecular biology mechanism and complications of EBV-HLH are equally briefly presented. It also provides a practical method for the genetic diagnosis of such diseases and the differential diagnosis with other human immunodeficiency diseases for medical scientists in routine clinical practice.
Collapse
Affiliation(s)
- Lingyue Xu
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| | - Xiaofang Guo
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| |
Collapse
|
30
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
31
|
Sidorov S, Fux L, Steiner K, Bounlom S, Traxel S, Azzi T, Berisha A, Berger C, Bernasconi M, Niggli FK, Perner Y, Pather S, Kempf W, Nadal D, Bürgler S. CD4 + T cells are found within endemic Burkitt lymphoma and modulate Burkitt lymphoma precursor cell viability and expression of pathogenically relevant Epstein-Barr virus genes. Cancer Immunol Immunother 2021; 71:1371-1392. [PMID: 34668039 PMCID: PMC9123076 DOI: 10.1007/s00262-021-03057-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is an aggressive B cell cancer characterized by an IgH/c-myc translocation and the harboring of Epstein-Barr virus (EBV). Evidence accumulates that CD4 + T cells might contribute to eBL pathogenesis. Here, we investigate the presence of CD4 + T cells in primary eBL tissue and their potential dichotomous impact on an EBV-infected pre-eBL cell model using ex vivo material and in vitro co-cultures. In addition, we establish a novel method to study the effect of IgH/c-myc translocation in primary B cells by employing a CRISPR/Cas9 knock-in approach to introduce and tag de novo translocation. We unprecedently document that CD4 + T cells are present in primary eBL tumor tissue. Furthermore, we demonstrate that CD4 + T cells on the one hand suppress eBL development by killing pre-eBL cells lacking IgH/c-myc translocation in vitro and on the other hand indirectly promote eBL development by inducing crucial EBV Latency III to Latency I switching in pre-eBL cells. Finally, we show that while the mere presence of an IgH/c-myc translocation does not suffice to escape CD4 + T-cell-mediated killing in vitro, the CD4 + T-cell-mediated suppression of EBV's Latency III program in vivo may allow cells harboring an IgH/c-myc translocation and additional mutations to evade immune control and proliferate by means of deregulated c-myc activity, resulting in neoplasia. Thus, our study highlights the dichotomous effects of CD4 + T cells and the mechanisms involved in eBL pathogenesis, suggests mechanisms of their impact on eBL progression, and provides a novel in vitro model for further investigation of IgH/c-myc translocation.
Collapse
Affiliation(s)
- Semjon Sidorov
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| | - Lara Fux
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Katja Steiner
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Samyo Bounlom
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Arbeneshe Berisha
- Kempf Und Pfaltz, Histological Diagnostics, Zürich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Felix K Niggli
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Yvonne Perner
- Division of Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sugeshnee Pather
- Division of Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Werner Kempf
- Kempf Und Pfaltz, Histological Diagnostics, Zürich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Milighetti M, Shawe-Taylor J, Chain B. Predicting T Cell Receptor Antigen Specificity From Structural Features Derived From Homology Models of Receptor-Peptide-Major Histocompatibility Complexes. Front Physiol 2021; 12:730908. [PMID: 34566692 PMCID: PMC8456106 DOI: 10.3389/fphys.2021.730908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The physical interaction between the T cell receptor (TCR) and its cognate antigen causes T cells to activate and participate in the immune response. Understanding this physical interaction is important in predicting TCR binding to a target epitope, as well as potential cross-reactivity. Here, we propose a way of collecting informative features of the binding interface from homology models of T cell receptor-peptide-major histocompatibility complex (TCR-pMHC) complexes. The information collected from these structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in multiple independent datasets. The classifier is limited by the number of crystal structures available for the homology modelling and by the size of the training set. However, the classifier shows comparable performance to sequence-based classifiers requiring much larger training sets.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
33
|
Elzein SM, Zimmerer JM, Han JL, Ringwald BA, Bumgardner GL. CXCR5 +CD8 + T cells: A Review of their Antibody Regulatory Functions and Clinical Correlations. THE JOURNAL OF IMMUNOLOGY 2021; 206:2775-2783. [PMID: 34602651 DOI: 10.4049/jimmunol.2100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD8+ T cells have conventionally been studied in relationship to pathogen or tumor clearance. Recent reports have identified novel functions of CXCR5+CD8+ T cells that can home to lymphoid follicles, a key site of antibody production. In this review we provide an in-depth analysis of conflicting reports regarding the impact of CXCR5+CD8+ T cells on antibody production and examine the data supporting a role for antibody-enhancement (B cell "helper") and antibody-downregulation (antibody-suppressor) by CXCR5+CD8+ T cell subsets. CXCR5+CD8+ T cell molecular phenotypes are associated with CD8-mediated effector functions including distinct subsets that regulate antibody responses. Co-inhibitory molecule PD-1, among others, distinguish CXCR5+CD8+ T cell subsets. We also provide the first in-depth review of human CXCR5+CD8+ T cells in the context of clinical outcomes and discuss the potential utility of monitoring the quantity of peripheral blood or tissue infiltrating CXCR5+CD8+ T cells as a prognostic tool in multiple disease states.
Collapse
Affiliation(s)
- Steven M Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Bryce A Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Ginny L Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
34
|
Optimal Maturation of the SIV-Specific CD8 + T Cell Response after Primary Infection Is Associated with Natural Control of SIV: ANRS SIC Study. Cell Rep 2021; 32:108174. [PMID: 32966788 DOI: 10.1016/j.celrep.2020.108174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Highly efficient CD8+ T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8+ T cell responses. Our results show that SIV-specific CD8+ T cells emerge during primary infection in all animals. The ability of CD8+ T cells to suppress SIV is suboptimal in the acute phase but increases progressively in controller macaques before the establishment of sustained low-level viremia. Controller macaques develop optimal memory-like SIV-specific CD8+ T cells early after infection. In contrast, a persistently skewed differentiation phenotype characterizes memory SIV-specific CD8+ T cells in non-controller macaques. Accordingly, the phenotype of SIV-specific CD8+ T cells defined early after infection appears to favor the development of protective immunity in controllers, whereas SIV-specific CD8+ T cells in non-controllers fail to gain antiviral potency, feasibly as a consequence of early defects imprinted in the memory pool.
Collapse
|
35
|
Naughton P, Healy M, Enright F, Lucey B. Infectious Mononucleosis: diagnosis and clinical interpretation. Br J Biomed Sci 2021; 78:107-116. [PMID: 33721513 DOI: 10.1080/09674845.2021.1903683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EBV is the sole causative agent of the acute illness in humans described either as infectious mononucleosis (IM), or glandular fever. IM, when not clinically silent, can present in patients with at least two of the classic triad of symptoms of fever, pharyngitis, and lymphadenopathy. Challenges for the clinician arise when atypical cases present. Early, accurate and informed laboratory test results are vital for diagnosis, appropriate treatment, and management. A key challenge for the practitioner, particularly in cases where the illness can present atypically, is distinguishing bacterial tonsillitis infections from early acute IM. The ability to draw on timely, clear, and insightful laboratory results to distinguish viral from bacterial infection is vital. Correct and prompt diagnosis of IM can help prevent the unnecessary administration of antibiotics and mitigate the need for other expensive exploratory tests in cases of IM that present with splenomegaly, lymphadenopathy, or suspect haematological conditions. Good communication between the requesting clinician and those carrying out the investigative process, and between the different laboratory departments involved, is good practice and would ultimately benefit the patient. This communication will comprehensively review the aetiology, clinical presentation, and laboratory findings in IM with a view to promoting further research and so derive a standard diagnostic algorithm of the condition.
Collapse
Affiliation(s)
- P Naughton
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.,Department of Haematology, Mercy University Hospital, Cork, Ireland
| | - M Healy
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| | - F Enright
- Department of Paediatrics, Mercy University Hospital, Cork, Ireland
| | - B Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| |
Collapse
|
36
|
Banchereau R, Chitre AS, Scherl A, Wu TD, Patil NS, de Almeida P, Kadel Iii EE, Madireddi S, Au-Yeung A, Takahashi C, Chen YJ, Modrusan Z, McBride J, Nersesian R, El-Gabry EA, Robida MD, Hung JC, Kowanetz M, Zou W, McCleland M, Caplazi P, Eshgi ST, Koeppen H, Hegde PS, Mellman I, Mathews WR, Powles T, Mariathasan S, Grogan J, O'Gorman WE. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. J Immunother Cancer 2021; 9:jitc-2020-002231. [PMID: 33827905 PMCID: PMC8032254 DOI: 10.1136/jitc-2020-002231] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD8+ tissue-resident memory T (TRM) cells, marked by CD103 (ITGAE) expression, are thought to actively suppress cancer progression, leading to the hypothesis that their presence in tumors may predict response to immunotherapy. METHODS Here, we test this by combining high-dimensional single-cell modalities with bulk tumor transcriptomics from 1868 patients enrolled in lung and bladder cancer clinical trials of atezolizumab (anti-programmed cell death ligand 1 (PD-L1)). RESULTS ITGAE was identified as the most significantly upregulated gene in inflamed tumors. Tumor CD103+ CD8+ TRM cells exhibited a complex phenotype defined by the expression of checkpoint regulators, cytotoxic proteins, and increased clonal expansion. CONCLUSIONS Our analyses indeed demonstrate that the presence of CD103+ CD8+ TRM cells, quantified by tracking intratumoral CD103 expression, can predict treatment outcome, suggesting that patients who respond to PD-1/PD-L1 blockade are those who exhibit an ongoing antitumor T-cell response.
Collapse
Affiliation(s)
- Romain Banchereau
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Avantika S Chitre
- Department of Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - Alexis Scherl
- Department of Research Pathology, Genentech Inc, South San Francisco, California, USA
| | - Thomas D Wu
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, USA
| | - Namrata S Patil
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Patricia de Almeida
- Department of Cancer Immunology, Genentech Inc, South San Francisco, California, USA.,Adaptive Biotechnologies Corp South San Francisco, South San Francisco, California, USA
| | - Edward E Kadel Iii
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Shravan Madireddi
- Department of Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - Amelia Au-Yeung
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Chikara Takahashi
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Ying-Jiun Chen
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech Inc, South San Francisco, California, USA.,Analytical Biosciences Limited, South San Francisco, California, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics, and Next Generation Sequencing, Genentech Inc, South San Francisco, California, USA
| | - Jacqueline McBride
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Rhea Nersesian
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | | | | | - Jeffrey C Hung
- Department of Research Pathology, Genentech Inc, South San Francisco, California, USA
| | - Marcin Kowanetz
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA.,Bolt Biotherapeutics, Redwood City, California, USA
| | - Wei Zou
- Department of Biostatistics Oncology, Genentech Inc, South San Francisco, California, USA
| | - Mark McCleland
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc, South San Francisco, California, USA
| | - Shadi Toghi Eshgi
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Hartmut Koeppen
- Department of Research Pathology, Genentech Inc, South San Francisco, California, USA
| | | | - Ira Mellman
- Department of Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - W Rodney Mathews
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Thomas Powles
- Barts Cancer Center, Queen Mary University, London, UK
| | - Sanjeev Mariathasan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, California, USA
| | - Jane Grogan
- Department of Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - William E O'Gorman
- Department of OMNI Biomarker Development, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
37
|
CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 2021; 137:3225-3236. [PMID: 33827115 DOI: 10.1182/blood.2020009482] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.
Collapse
|
38
|
Schuhmachers P, Münz C. Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Front Immunol 2021; 12:640918. [PMID: 33833760 PMCID: PMC8021763 DOI: 10.3389/fimmu.2021.640918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more than 95% of the human adult population persistently infected. EBV infects only humans and threatens these with its potent growth transforming ability that readily allows for immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however, our immune system has learned to control this most transforming human tumor virus in most EBV carriers, and it requires modification of EBV associated lymphomagenesis and its immune control by either co-infections, such as malaria, Kaposi sarcoma associated herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions for EBV positive tumors to emerge. Some of these can be modelled in humanized mice that, therefore, provide a valuable platform to test curative immunotherapies and prophylactic vaccines against these EBV associated pathologies.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
39
|
Sundström C, Hollander P. Patients with autoimmune diseases have an altered activity of the PD-1 pathway and proportions of Epstein-Barr virus infected cells in benign lymphadenopathies. Immunobiology 2021; 226:152069. [PMID: 33581582 DOI: 10.1016/j.imbio.2021.152069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Patients with autoimmune diseases (AD) have an increased risk to develop benign lymphadenopathies compared to patients without AD. The aim with this study was to determine the role of the PD-1 pathway and the number of cells harboring Epstein-Barr virus (EBV) in benign lymphadenopathies in patients with AD (cases) compared to patients without AD (controls). Pathology registries were screened to identify patients with biopsies diagnosed as benign lymphadenopathy and medical journals were reviewed for information on AD. Immunohistochemical stainings (PD-1 and PD-L1) and EBER in situ hybridization for EBV were applied on lymph node biopsies in patients with AD (n = 22) and patients without AD (n = 57). The case group was compared with the control group with Wilcoxon-signed rank, chi-square and Fischeŕs exact test. There was a statistically significantly higher proportion of PD-1+ cells and a tendency for a lower prevalence of PD-L1+ and EBV+ cells in cases compared to controls. Apparently, patients with AD have an altered immune response as revealed in benign lymphadenopathies compared to patients without AD. If this association might be a piece of the puzzle for the increased risk of development of lymphomas in patients with AD remains to be determined.
Collapse
Affiliation(s)
- Christer Sundström
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Hollander
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Schøller AS, Nazerai L, Christensen JP, Thomsen AR. Functionally Competent, PD-1 + CD8 + Trm Cells Populate the Brain Following Local Antigen Encounter. Front Immunol 2021; 11:595707. [PMID: 33603737 PMCID: PMC7884456 DOI: 10.3389/fimmu.2020.595707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of programmed cell death-1 receptor (PD-1) has traditionally been linked to T-cell exhaustion, as signaling via PD-1 dampens the functionality of T-cells upon repetitive antigen exposures during chronic infections. However, resent findings pointing to the involvement of PD-1 both in T-cell survival and in restraining immunopathology, challenge the concept of PD-1 solely as marker for T-cell exhaustion. Tissue resident memory T cells (Trms) hold unique effector qualities, but within a delicate organ like the CNS, these protective abilities could potentially be harmful. In contrast to their counterparts in many other tissues, brain derived CD8+ Trms have been found to uniformly and chronically express PD-1. In this study we utilized a recently established model system for generating CNS Trms in order to improve our understanding regarding the role of PD-1 expression by Trms inside the CNS. By intracerebral (i.c.) inoculation with a non-replicating adeno-viral vector, we induced a PD-1hi CD8+ T cell memory population within the CNS. We found that PD-1 expression lowered the severity of clinical disease associated with the i.c. inoculation. Furthermore, high levels of PD-L1 expression were found on the infiltrating monocytes and macrophages as well as on the resident microglia, oligodendrocytes and astrocytes during the acute phase of the response. Additionally, we showed that the intensity of PD-1 expression correlates with local antigen encounter and found that PD-1 expression was associated with decreased CD8+ T cell memory formation in the CNS despite an increased number of infiltrating CD8+ T cells. Most importantly, our experiments revealed that despite expression of PD-1 and several additional markers linked to T-cell exhaustion, Tim-3, Lag-3 and CD39, the cells did not show signs of limited effector capacity. Collectively, these results endorse the increasing amount of evidence pointing to an immune-modifying role for PD-1 expression within the CNS, a mechanism we found to correlate with local antigen exposure.
Collapse
Affiliation(s)
| | | | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Volk V, Theobald SJ, Danisch S, Khailaie S, Kalbarczyk M, Schneider A, Bialek-Waldmann J, Krönke N, Deng Y, Eiz-Vesper B, Dragon AC, von Kaisenberg C, Lienenklaus S, Bleich A, Keck J, Meyer-Hermann M, Klawonn F, Hammerschmidt W, Delecluse HJ, Münz C, Feuerhake F, Stripecke R. PD-1 Blockade Aggravates Epstein-Barr Virus + Post-Transplant Lymphoproliferative Disorder in Humanized Mice Resulting in Central Nervous System Involvement and CD4 + T Cell Dysregulations. Front Oncol 2021; 10:614876. [PMID: 33511078 PMCID: PMC7837057 DOI: 10.3389/fonc.2020.614876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-transplant lymphoproliferative disorder (PTLD) is one of the most common malignancies after solid organ or allogeneic stem cell transplantation. Most PTLD cases are B cell neoplasias carrying Epstein-Barr virus (EBV). A therapeutic approach is reduction of immunosuppression to allow T cells to develop and combat EBV. If this is not effective, approaches include immunotherapies such as monoclonal antibodies targeting CD20 and adoptive T cells. Immune checkpoint inhibition (ICI) to treat EBV+ PTLD was not established clinically due to the risks of organ rejection and graft-versus-host disease. Previously, blockade of the programmed death receptor (PD)-1 by a monoclonal antibody (mAb) during ex vivo infection of mononuclear cells with the EBV/M81+ strain showed lower xenografted lymphoma development in mice. Subsequently, fully humanized mice infected with the EBV/B95-8 strain and treated in vivo with a PD-1 blocking mAb showed aggravation of PTLD and lymphoma development. Here, we evaluated vis-a-vis in fully humanized mice after EBV/B95-8 or EBV/M81 infections the effects of a clinically used PD-1 blocker. Fifteen to 17 weeks after human CD34+ stem cell transplantation, Nod.Rag.Gamma mice were infected with two types of EBV laboratory strains expressing firefly luciferase. Dynamic optical imaging analyses showed systemic EBV infections and this triggered vigorous human CD8+ T cell expansion. Pembrolizumab administered from 2 to 5 weeks post-infections significantly aggravated EBV systemic spread and, for the M81 model, significantly increased the mortality of mice. ICI promoted Ki67+CD30+CD20+EBER+PD-L1+ PTLD with central nervous system (CNS) involvement, mirroring EBV+ CNS PTLD in humans. PD-1 blockade was associated with lower frequencies of circulating T cells in blood and with a profound collapse of CD4+ T cells in lymphatic tissues. Mice treated with pembrolizumab showed an escalation of exhausted T cells expressing TIM-3, and LAG-3 in tissues, higher levels of several human cytokines in plasma and high densities of FoxP3+ regulatory CD4+ and CD8+ T cells in the tumor microenvironment. We conclude that PD-1 blockade during acute EBV infections driving strong CD8+ T cell priming decompensates T cell development towards immunosuppression. Given the variety of preclinical models available, our models conferred a cautionary note indicating that PD-1 blockade aggravated the progression of EBV+ PTLD.
Collapse
Affiliation(s)
- Valery Volk
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Simon Danisch
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maja Kalbarczyk
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Bialek-Waldmann
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nicole Krönke
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Anna Christina Dragon
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - James Keck
- The Jackson Laboratory, Sacramento, CA, United States
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Friedrich Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover, Germany.,Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH - Research Center for Translational Regenerative Medicine, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany
| |
Collapse
|
42
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
43
|
Nivolumab treatment of relapsed/refractory Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adults. Blood 2020; 135:826-833. [PMID: 31914172 DOI: 10.1182/blood.2019003886] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a life-threatening hyperinflammatory syndrome triggered by EBV infection. It often becomes relapsed or refractory (r/r), given that etoposide-based regimens cannot effectively clear the virus. r/r EBV-HLH is invariably lethal in adults without allogeneic hematopoietic stem cell transplantation. Here, we performed a retrospective analysis of 7 r/r EBV-HLH patients who were treated with nivolumab on a compassionate-use basis at West China Hospital. All 7 patients tolerated the treatment and 6 responded to it. Five of them achieved and remained in clinical complete remission with a median follow-up of 16 months (range, 11.4-18.9 months). Importantly, both plasma and cellular EBV-DNAs were completely eradicated in 4 patients. Single-cell RNA-sequencing analysis showed that HLH syndrome was associated with hyperactive monocytes/macrophages and ineffective CD8 T cells with a defective activation program. Nivolumab treatment expanded programmed death protein-1-positive T cells and restored the expression of HLH-associated degranulation and costimulatory genes in CD8 T cells. Our data suggest that nivolumab, as a monotherapy, provides a potential cure for r/r EBV-HLH, most likely by restoring a defective anti-EBV response.
Collapse
|
44
|
Lange PT, Damania B. Modeling oncogenic herpesvirus infections in humanized mice. Curr Opin Virol 2020; 44:90-96. [PMID: 32784124 PMCID: PMC7755680 DOI: 10.1016/j.coviro.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
The creation of humanized mice generally involves the reconstitution of immunodeficient mice with human immune constituents. Different methodologies have been employed, and significant progress has been made towards the development of robustly humanized mouse models. Some of the techniques used include the injection of mature human immune cells, the injection of human hematopoietic stem cells (HSCs) capable of reconstituting radiation-depleted murine bone marrow, and the implantation of human fetal liver and thymus fragments under the kidney capsule to create a thymic organoid that can support thympoiesis. This review will serve as a brief introduction to the three most commonly utilized humanized mouse models for the study of gammaherpesvirus-driven pathogenesis, and highlight some of the critical discoveries these models have enabled.
Collapse
Affiliation(s)
- Philip T Lange
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
45
|
Immune Checkpoints in Viral Infections. Viruses 2020; 12:v12091051. [PMID: 32967229 PMCID: PMC7551039 DOI: 10.3390/v12091051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.
Collapse
|
46
|
Münz C. Probing Reconstituted Human Immune Systems in Mice With Oncogenic γ-Herpesvirus Infections. Front Immunol 2020; 11:581419. [PMID: 33013936 PMCID: PMC7509489 DOI: 10.3389/fimmu.2020.581419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Mice with reconstituted human immune systems can mount cell-mediated immune responses against the human tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV). Primarily cytotoxic lymphocytes protect the vast majority of persistently infected carriers of these tumor viruses from the respective malignancies for life. Thus, EBV and KSHV infection can teach us how this potent immune control is induced, what phenotype and functions characterize the protective lymphocyte compartments and if similar immune responses could be induced by vaccination. This review will summarize similarities and differences between EBV and KSHV associated pathologies and their immune control in patients and mice with reconstituted human immune systems. Furthermore, it will high-light which aspects of the near perfect immune control can be modeled in the latter preclinical animal models and discuss their relevance for cancer immunology in general.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| |
Collapse
|
47
|
Abstract
Antiretroviral therapies efficiently block HIV-1 replication but need to be maintained for life. Moreover, chronic inflammation is a hallmark of HIV-1 infection that persists despite treatment. There is, therefore, an urgent need to better understand the mechanisms driving HIV-1 pathogenesis and to identify new targets for therapeutic intervention. In the past few years, the decisive role of cellular metabolism in the fate and activity of immune cells has been uncovered, as well as its impact on the outcome of infectious diseases. Emerging evidence suggests that immunometabolism has a key role in HIV-1 pathogenesis. The metabolic pathways of CD4+ T cells and macrophages determine their susceptibility to infection, the persistence of infected cells and the establishment of latency. Immunometabolism also shapes immune responses against HIV-1, and cell metabolic products are key drivers of inflammation during infection. In this Review, we summarize current knowledge of the links between HIV-1 infection and immunometabolism, and we discuss the potential opportunities and challenges for therapeutic interventions.
Collapse
|
48
|
Cytotoxicity in Epstein Barr virus specific immune control. Curr Opin Virol 2020; 46:1-8. [PMID: 32771660 DOI: 10.1016/j.coviro.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Epstein Barr virus (EBV) is the most common human tumor virus, persistently infecting more than 95% of the human adult population and readily transforming human B cell in culture. Fortunately, only a small minority of EBV carriers develops virus associated malignancies. The majority controls persistent EBV infection with cytotoxic lymphocytes, mainly NK, γδ and CD8+ T cells and the characteristics of the required immune responses get more and more defined by primary immunodeficiencies that affect molecules of these cytotoxic lymphocytes and their investigation in mice with reconstituted human immune system components (humanized mice) that are susceptible to EBV infection and associated lymphomagenesis. The gained information should be able to guide us to develop immunotherapies against EBV and tumors in general.
Collapse
|
49
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Stripecke R, Münz C, Schuringa JJ, Bissig K, Soper B, Meeham T, Yao L, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb‐Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med 2020; 12:e8662. [PMID: 32578942 PMCID: PMC7338801 DOI: 10.15252/emmm.201708662] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF)Hannover RegionGermany
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Jan Jacob Schuringa
- Department of HematologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | | | | | | | - Michael Brehm
- University of Massachusetts Medical SchoolWorcesterMAUSA
| | | | - Anja Kathrin Wege
- Department of Gynecology and ObstetricsUniversity Cancer Center RegensburgRegensburgGermany
| | | | | | | | - Scott Kitchen
- University of California, Los AngelesLos AngelesCAUSA
| | | | | | | | - Amar Deep Sharma
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Livio Trusolino
- Department of OncologyUniversity of Torino Medical SchoolTurinItaly
- Candiolo Cancer Institute FPO IRCCSCandioloItaly
| | | | | |
Collapse
|