1
|
Kuchma SL, Geiger CJ, Webster SS, Fu Y, Montoya R, O'Toole GA. Genetic analysis of flagellar-mediated surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2025:e0052024. [PMID: 40470954 DOI: 10.1128/jb.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/02/2025] [Indexed: 06/11/2025] Open
Abstract
Surface sensing is a key aspect of the early stage of biofilm formation. For Pseudomonas aeruginosa PA14, the type IV pili (T4P), the T4P alignment complex, and PilY1 were shown to play a key role in c-di-GMP signaling upon surface contact. The role of the flagellar machinery in surface sensing is less well understood for P. aeruginosa. Here, we show, consistent with findings from other groups, that a mutation in the gene encoding the flagellar hook protein (ΔflgK) or flagellin (ΔfliC) results in a strain that overproduces the Pel exopolysaccharide (EPS) with a concomitant increase in c-di-GMP levels. We use a candidate gene approach and genetic screens, combined with phenotypic assays, to identify key roles for the MotAB and MotCD stators and the FliG protein, a component of the flagellar switch complex, in stimulating the surface-dependent, increased c-di-GMP level noted for these flagellar mutants. These findings are consistent with previous studies showing a role for the stators in surface sensing. We also show that mutations in the genes coding for the DGCs SadC and RoeA, as well as SadB, a protein involved in early surface colonization, abrogate the increased c-d-GMP-related phenotypes of the ΔflgK mutant. Together, these data indicate that bacteria monitor the status of flagellar synthesis and function during surface sensing as a mechanism to trigger the biofilm program. IMPORTANCE Understanding how the flagellum contributes to surface sensing for P. aeruginosa is key to elucidating the mechanisms of biofilm initiation by this important opportunistic pathogen. Here, we take advantage of the observation that mutations in the flagellar hook protein or flagellin enhance surface sensing. We exploit this phenotype to identify key players in this signaling pathway, a critical first step in understanding the mechanistic basis of flagellar-mediated surface sensing. Our findings establish a framework for the future study of flagellar-based surface sensing.
Collapse
Affiliation(s)
- Sherry L Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - C J Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Shanice S Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Yu Fu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert Montoya
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Nahar S, Mahamud AGMSU, Cho AJ, Ashrafudoulla M, Yu J, Park SH, Ha SD. Flavourzyme Suppresses Pseudomonas aeruginosa Biofilms by Targeting Motility, Quorum Sensing, and Virulence Genes. Curr Microbiol 2025; 82:240. [PMID: 40210784 DOI: 10.1007/s00284-025-04200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
The biofilm-mediated persistence of Pseudomonas aeruginosa in the food and biomedical sectors is currently a global concern. In light of this challenge, this study investigated a preventive approach against P. aeruginosa biofilm formation using Flavourzyme, a food-grade peptidase, considering its antibiofilm potential. The results revealed that a co-culture comprising 300 µL/mL (1 × minimum inhibitory concentration [MIC]) of Flavourzyme could kill P. aeruginosa. On the MBEC™ biofilm-forming device, 0.125 × MIC of Flavourzyme inhibited > 4.5 log CFU/peg of biofilm. Cell motilities and the biosynthesis of quorum sensing (QS) molecules such as N-acyl-homoserine lactones (AHLs), including C4-HSL, decreased significantly at 0.06 × MIC of Flavourzyme and became undetectable at 0.125 × MIC. Interestingly, while 0.03 × MIC of Flavourzyme elicited diverse expressions of QS and virulence-regulating genes, ≥ 0.06 × MIC of Flavourzyme remarkably suppressed the relative genomic expressions. This study proposes Flavourzyme as a potent antibiofilm agent against P. aeruginosa biofilms, recommending specific concentrations for effective use in food preservation.
Collapse
Affiliation(s)
- Shamsun Nahar
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Ah Jin Cho
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jisu Yu
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 07594, Republic of Korea
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
3
|
Xu W, Liu Z, Wang J, Jin K, Yue L, Yu L, Niu L, Dou Q, Liu J, Zhang Y, Zhu X, Wu Y. Extending visual range of bacteria with upconversion nanoparticles and constructing NIR-responsive bio-microrobots. J Colloid Interface Sci 2025; 682:608-618. [PMID: 39642547 DOI: 10.1016/j.jcis.2024.11.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The motility of bacteria is crucial for navigating competitive environments and is closely linked to physiological activities essential for their survival, such as biofilm development. Precise regulation of bacterial motility enhances our understanding of these complex processes. While optogenetic tools have been used to control and investigate bacterial motility, the excitation light in most existing systems are limited to the visible light spectrum. Here, we introduce a new type of bio-microrobot comprising genetically engineered E. coli cells and orthogonally emissive upconversion nanoparticles that can respond to both 980 nm and 808 nm NIR light. This system allows toggling of bacterial states between tumbling and swimming via simply alternating the NIR light between different wavelengths. It is believed that the use of NIR light with deeper tissue penetration suggests potential applications for these bio-microrobots in areas like targeted drug delivery.
Collapse
Affiliation(s)
- Wei Xu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Zhen Liu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jing Wang
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Kai Jin
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Lulu Yue
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Lin Yu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Medicine, Shanghai University, Shanghai, China
| | - Luqi Niu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Qingqing Dou
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jinliang Liu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, China
| | - Xiaohui Zhu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Yihan Wu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Pulido-Sánchez M, Leal-Morales A, López-Sánchez A, Cava F, Govantes F. Spatial, temporal and numerical regulation of polar flagella assembly in Pseudomonas putida. Microbiol Res 2025; 292:128033. [PMID: 39709681 DOI: 10.1016/j.micres.2024.128033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled. The polar landmark proteins FimV and FlhF are independently targeted to the nascent new pole during or shortly after cell division, but FimV stabilizes FlhF association with the cell poles. FlhF determines the polar position of the flagella by targeting early flagellar components to the cell pole and preventing their nucleation at non-polar sites. FlhF also promotes efficient flagellar assembly and indirectly stimulates Class III flagellar promoter activation by promoting secretion of the anti-FliA anti-σ factor FlgM. The MinD-like ATPase FleN partitions between the cell poles and the cytoplasm. Cytoplasmic FleN regulates flagellar number by preventing excessive accumulation of FlhF at the cell poles that may otherwise lead to hyperflagellation, likely by antagonizing FleQ-dependent transcriptional activation. FimV is essential to FleN polar location. FimV and FleN temporally regulate the onset of flagellar assembly by preventing premature polar targeting of FlhF and the ensuing premature targeting of additional flagellar components. Our results shed new light on the mechanisms that ensure the timely assembly of the appropriate number of flagella at the correct polar location in polarly flagellated bacteria.
Collapse
Affiliation(s)
- Marta Pulido-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| |
Collapse
|
5
|
Liu S, Feng X, Zhang H, Li P, Yang B, Gu Q. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Microbiol Res 2025; 292:127995. [PMID: 39657399 DOI: 10.1016/j.micres.2024.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces "signalomics", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
6
|
Salemi RI, Cruz AK, Hershey DM. A flagellar accessory protein links chemotaxis to surface sensing. J Bacteriol 2024; 206:e0040424. [PMID: 39422484 PMCID: PMC11580411 DOI: 10.1128/jb.00404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteria find suitable locations for colonization by sensing and responding to surfaces. Complex signaling repertoires control surface colonization, and surface contact sensing by the flagellum plays a central role in activating colonization programs. Caulobacter crescentus adheres to surfaces using a polysaccharide adhesin called the holdfast. In C. crescentus, disruption of the flagellum through interactions with a surface or mutation of flagellar genes increases holdfast production. Our group previously identified several C. crescentus genes involved in flagellar surface sensing. One of these, fssF, codes for a protein with homology to the flagellar C-ring protein FliN. We show here that a fluorescently tagged FssF protein localizes to the flagellated pole of the cell and requires all components of the flagellar C-ring for proper localization, supporting the model that FssF associates with the C-ring. Deleting fssF results in a severe motility defect, which we show is due to a disruption of chemotaxis. Epistasis experiments demonstrate that fssF promotes adhesion through a stator-dependent pathway when late-stage flagellar mutants are disrupted. Separately, we find that disruption of chemotaxis through deletion of fssF or other chemotaxis genes results in a hyperadhesion phenotype. Key genes in the surface sensing network (pleD, motB, and dgcB) contribute to both ∆flgH-dependent and ∆fssF-dependent hyperadhesion, but these genes affect adhesion differently in the two hyperadhesive backgrounds. Our results support a model in which the stator subunits of the flagella incorporate both mechanical and chemical signals to regulate adhesion.IMPORTANCEBacterial biofilms pose a threat in clinical and industrial settings. Surface sensing is one of the first steps in biofilm formation. Studying surface sensing can improve our understanding of biofilm formation and develop preventative strategies. In this study, we use the freshwater bacterium Caulobacter crescentus to study surface sensing and the regulation of surface attachment. We characterize a previously unstudied gene, fssF, and find that it localizes to the cell pole in the presence of three proteins that make up a component of the flagellum called the C-ring. Additionally, we find that fssF is required for chemotaxis behavior but dispensable for swimming motility. Lastly, our results indicate that deletion of fssF and other genes required for chemotaxis results in a hyperadhesive phenotype. These results support that surface sensing requires chemotaxis for a robust response to a surface.
Collapse
Affiliation(s)
- Rachel I. Salemi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ana K. Cruz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Zheng X, Gomez-Rivas EJ, Lamont SI, Daneshjoo K, Shieh A, Wozniak DJ, Parsek MR. The surface interface and swimming motility influence surface-sensing responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2411981121. [PMID: 39284057 PMCID: PMC11441478 DOI: 10.1073/pnas.2411981121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 10/02/2024] Open
Abstract
Bacterial biofilms have been implicated in several chronic infections. After initial attachment, a critical first step in biofilm formation is a cell inducing a surface-sensing response. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, two second messengers, cyclic diguanylate monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), are produced by different surface-sensing mechanisms. However, given the disparate cellular behaviors regulated by these second messengers, how newly attached cells coordinate these pathways remains unclear. Some of the uncertainty relates to studies using different strains, experimental systems, and usually focusing on a single second messenger. In this study, we developed a tricolor reporter system to simultaneously gauge c-di-GMP and cAMP levels in single cells. Using PAO1, we show that c-di-GMP and cAMP are selectively activated in two commonly used experimental systems to study surface sensing. By further examining the conditions that differentiate a c-di-GMP or cAMP response, we demonstrate that an agarose-air interface activates cAMP signaling through type IV pili and the Pil-Chp system. However, a liquid-agarose interface favors the activation of c-di-GMP signaling. This response is dependent on flagellar motility and correlated with higher swimming speed. Collectively, this work indicates that c-di-GMP and cAMP signaling responses are dependent on the surface context.
Collapse
Affiliation(s)
- Xuhui Zheng
- Department of Microbiology, University of Washington, Seattle, WA
| | | | - Sabrina I. Lamont
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH
| | | | - Angeli Shieh
- Department of Microbiology, University of Washington, Seattle, WA
| | - Daniel J. Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH
| | | |
Collapse
|
8
|
Grun CN, Jain R, Schniederberend M, Shoemaker CB, Nelson B, Kazmierczak BI. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nat Commun 2024; 15:7502. [PMID: 39209859 PMCID: PMC11362561 DOI: 10.1038/s41467-024-51912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P. aeruginosa cell surface but methods to identify these are limited. Here we combine phage display with high-throughput DNA sequencing to create a high throughput, multiplexed technology for surveying bacterial cell surfaces, Phage-seq. By applying phage display panning to hundreds of bacterial genotypes and analyzing the dynamics of the phage display selection process, we capture important biological information about cell surfaces. This approach also yields camelid single-domain antibodies that recognize key P. aeruginosa virulence factors on live cells. These antibodies have numerous potential applications in diagnostics and therapeutics. We propose that Phage-seq establishes a powerful paradigm for studying the bacterial cell surface by identifying and profiling many surface features in parallel.
Collapse
Affiliation(s)
- Casey N Grun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchi Jain
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Piton Therapeutics, Watertown, MA, USA
| | - Maren Schniederberend
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Orion Corporation, Turku, Finland
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Castilla-Sedano AJ, Zapana-García J, Valdivia-Del Águila E, Padilla-Huamantinco PG, Guerra DG. Quantification of early biofilm growth in microtiter plates through a novel image analysis software. J Microbiol Methods 2024; 223:106979. [PMID: 38944284 DOI: 10.1016/j.mimet.2024.106979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
Collapse
Affiliation(s)
- Anderson J Castilla-Sedano
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - José Zapana-García
- Biomedical Engineering Program PUCP-UPCH, Pontificia Universidad Católica del Perú, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Valdivia-Del Águila
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Pierre G Padilla-Huamantinco
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru.
| |
Collapse
|
10
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Salemi RI, Cruz AK, Hershey DM. A flagellar accessory protein links chemotaxis to surface sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599946. [PMID: 38948737 PMCID: PMC11212940 DOI: 10.1101/2024.06.20.599946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bacteria find suitable locations for colonization by sensing and responding to surfaces. Complex signaling repertoires control surface colonization, and surface contact sensing by the flagellum plays a central role in activating colonization programs. Caulobacter crescentus adheres to surfaces using a polysaccharide adhesin called the holdfast. In C. crescentus, disruption of the flagellum through interactions with a surface or mutation of flagellar genes increases holdfast production. Our group previously identified several C. crescentus genes involved in flagellar surface sensing. One of these, called fssF, codes for a protein with homology to the flagellar C-ring protein FliN. We show here that a fluorescently tagged FssF protein localizes to the flagellated pole of the cell and requires all components of the flagellar C-ring for proper localization, supporting the model that FssF associates with the C-ring. Deleting fssF results in a severe motility defect that we show is due to a disruption of chemotaxis. Epistasis experiments demonstrate that fssF promotes adhesion through a stator-dependent pathway when late-stage flagellar mutants are disrupted. Separately, we find that disruption of chemotaxis through deletion of fssF or other chemotaxis genes results in a hyperadhesion phenotype. Key genes in the surface sensing network (pleD, motB, and dgcB) contribute to both ∆flgH-dependent and ∆fssF-dependent hyperadhesion, but these genes affect adhesion differently in the two hyperadhesive backgrounds. Our results support a model in which the stator subunits of the flagella incorporate both mechanical and chemical signals to regulate adhesion.
Collapse
Affiliation(s)
- Rachel I. Salemi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana K. Cruz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
de Anda J, Kuchma SL, Webster SS, Boromand A, Lewis KA, Lee CK, Contreras M, Medeiros Pereira VF, Schmidt W, Hogan DA, O’Hern CS, O’Toole GA, Wong GCL. How P. aeruginosa cells with diverse stator composition collectively swarm. mBio 2024; 15:e0332223. [PMID: 38426789 PMCID: PMC11005332 DOI: 10.1128/mbio.03322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the wild-type (WT) strain, with MotAB stators produced at an approximately 40-fold higher level than MotCD stators. However, utilization of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily utilized at low viscosities. Importantly, we find that cells with MotCD stators are ~10× more likely to have an active motor compared to cells uses the MotAB stators. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa, transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator utilization. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the "jamming transition" in active granular matter.IMPORTANCEIt is now known that there exist multifactorial influences on swarming motility for P. aeruginosa, but it is not clear precisely why stator selection in the flagellum motor is so important. We show differential production and utilization of the stators. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies: the fraction of flagellum-active cells in a population on average with MotCD is active ~10× more often than with MotAB. What emerges from this complex landscape of stator utilization and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility and how the stators potentially relate to surface sensing circuitry.
Collapse
Affiliation(s)
- Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Sherry L. Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Shanice S. Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arman Boromand
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut, USA
| | - Kimberley A. Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Calvin K. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Maria Contreras
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | | | - William Schmidt
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Corey S. O’Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
14
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024; 65:1894-1910. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
15
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|
16
|
Zhang W, Qian L, He B, Gong X, Zhang G. Mechanism Insights of Antibacterial Surfaces Coated with Dead Probiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17632-17643. [PMID: 38033279 DOI: 10.1021/acs.langmuir.3c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
To understand the antimicrobial effect of surfaces fabricated with dead probiotics, we prepared surfaces decorated with dead probiotics Lactobacillus rhamnosus GG (LGG) with varied inactivation methods and explored their inhibitory interactions with Pseudomonas aeruginosa (PAO1). By combining several techniques, i.e., digital holographic microscopy (DHM), atomic force microscopy (AFM), RNA sequencing, and metabolomic analysis, we studied the three-dimensional (3D) swimming behaviors, surface adhesion, biofilm formation, and adaptive responses of PAO1 near such surfaces. The results show that planktonic PAO1 decreases their flick and reverse motions by downregulating the chemotaxis pathway and accelerates with less accumulation near dead LGG surfaces by upregulating the flagellar assembly pathway and decreasing cyclic adenosine monophosphate. Distinct from live siblings, the surfaces decorated with dead LGG show a significant reduction in adhesion strength with PAO1 and inhibit biofilm formation with more downregulated genes in the Pseudomonas quinolone signal and biofilm formation pathway. We demonstrate that the antibacterial ability of such surfaces stems from the gradually released lysate from the dead LGG that is unfavorable to PAO1 in close proximity. The releasing rate and order depend on the cell membrane integrity, which closely relates to the inactivation methods.
Collapse
Affiliation(s)
- Weixiong Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lu Qian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bingen He
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
17
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
18
|
Geiger CJ, O’Toole GA. Evidence for the Type IV Pilus Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0017923. [PMID: 37382531 PMCID: PMC10367593 DOI: 10.1128/jb.00179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic AMP (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the type IV pilus retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations in PilT, and in particular those impacting the ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its PilT retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current T4P-dependent surface sensing models for P. aeruginosa. IMPORTANCE T4P are cellular appendages that allow P. aeruginosa to sense a surface, leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
19
|
Geiger CJ, O'Toole GA. Evidence for the Type IV Pili Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539127. [PMID: 37205505 PMCID: PMC10187167 DOI: 10.1101/2023.05.02.539127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic adenosine monophosphate (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional Type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the Type IV pili retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations affecting the structure of PilT and in particular ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current TFP-dependent surface sensing models for P. aeruginosa . Importance T4P are cellular appendages that allow P. aeruginosa to sense a surface leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C J Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - G A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| |
Collapse
|
20
|
de Anda J, Kuchma SL, Webster SS, Boromand A, Lewis KA, Lee CK, Contreras M, Pereira VFM, Hogan DA, O'Hern CS, O'Toole GA, Wong GCL. How individual P. aeruginosa cells with diverse stator distributions collectively form a heterogeneous macroscopic swarming population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536285. [PMID: 37090636 PMCID: PMC10120709 DOI: 10.1101/2023.04.10.536285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the WT strain, with MotAB stators produced ∼40-fold more than MotCD stators. However, recruitment of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily recruited at low viscosities. Importantly, we find that cells with MotCD stators are ∼10x more likely to have an active motor compared to cells without, so wild-type, WT, populations are intrinsically heterogeneous and not reducible to MotAB-dominant or MotCD-dominant behavior. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa , transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator recruitment. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the 'jamming transition' in active granular matter. Importance After extensive study, it is now known that there exist multifactorial influences on swarming motility in P. aeruginosa , but it is not clear precisely why stator selection in the flagellum motor is so important or how this process is collectively initiated or arrested. Here, we show that for P. aeruginosa PA14, MotAB stators are produced ∼40-fold more than MotCD stators, but recruitment of MotCD over MotAB stators requires higher liquid viscosities. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies, the fraction of flagellum-active cells in a population on average, with MotCD active ∼10x more often than MotAB. What emerges from this complex landscape of stator recruitment and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility, and how they potentially relate to surface sensing circuitry.
Collapse
|
21
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
22
|
Flagellar motility mediates biofilm formation in Aeromonas dhakensis. Microb Pathog 2023; 177:106059. [PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p < 0.0001), swarming (p < 0.0001) and biofilm formation using crystal violet assay (p < 0.05). Real-time impedance-based analysis revealed WT187 biofilm was formed between 6 to 21 h, consisting of early (6-10 h), middle (11-18 h), and late (19-21 h) stages. The highest cell index of 0.0746 was recorded at 22-23 h and biofilms began to disperse starting from 24 h. Mutants Δmaf1, ΔlafB, ΔlafK and ΔlafS exhibited reduced cell index values at 6-48 h when compared to WT187 which indicates less biofilm formation. Two complemented strains cmaf1 and clafB exhibited full restoration to wild-type level in swimming, swarming, and biofilm formation using crystal violet assay, hence suggesting that both maf1 and lafB genes are involved in biofilm formation through flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
Collapse
|
23
|
He Y, Wu L, Liao P, Shen L, Yang H. Phenotypic and genotypic characterization of multi-drug resistance Pseudomonas aeruginosa isolated from urinary tract infections of non-catheterized and catheterized Chinese patients: A descriptive study over 3 years. Medicine (Baltimore) 2022; 101:e31373. [PMID: 36451381 PMCID: PMC9704882 DOI: 10.1097/md.0000000000031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Urinary tract infections (UTI) are commonest infections, especially in catheterized patients. It is responsible of mortality and morbidity among hospitalized patients. The objectives of the study were to demonstrate the virulence factors and their genes of multi-drug resistance Pseudomonas aeruginosa causing UTI. A total of 366 non-catheterized and 171 catheterized patients' (in whom the catheter was in > 48 hours duration) urine samples (one sample/patient) from both sexes were collected and processed. >105 colony forming unit was considered as Pseudomonas aeruginosa culture-positive. Antimicrobial susceptibility testing was done by the Kirby Bauer disc diffusion method (The Clinical and laboratory standards institute guidelines 2019). The virulence factors were detected by in vitro assay method and polymerase chain reaction was done to detect the resistance genes present in Pseudomonas aeruginosa. Biofilm production was detected by the microtiter plate method. Out of 537 urine samples a total of 280 (52%) were females and 257 (48%) were male patients. Out of 366 non-catheterized urine samples 42 (23.6%) grew Pseudomonas aeruginosa and out of 171 catheterized urine 23 (25.84%) grew Pseudomonas aeruginosa. All were multi-drug resistance strains. A total of 10 (23.80%), 42 (100%), 8 (19.05%), 24 (57.14%), and 36 (85.71%) produced the Metallo-β-lactamases, AmpC-β-lactamase, carbapenemase, strong biofilm, and twitching motility positive, respectively in non-catheterized urine samples. A total of 11, 34, 9, 28, and 37 were oxacillinases-23, multidrug efflux protein resistance, New Delhi metallo-ß-lactamase-1, Verona Integron-encoded MBL, and Pseudomonas specific enzyme gene detected in non-catheterized urine samples. A total of 8 (34.8%), 6 (26.01%), 4 (17.39%), 15 (65.2%), and 18 (78.26%) were produced Metallo-β-lactamases, carbapenemase, AmpC-β-lactamase, strong biofilm, and twitching motility positive, respectively in catheterized urine samples. A total of 6, 18, 4, 16, and 15 were oxacillinases 23, multidrug efflux protein resistance, New Delhi metallo-ß-lactamase-1, Verona Integron-encoded MBL, and Pseudomonas specific enzyme, respectively genes detected in catheterized urine samples. Biofilm formation and twitching motility showed correlation among culture-positive Pseudomonas aeruginosa strains from catheterized patients (Correlation coefficients = 6.2, 95% confidence interval: 5.4-7.2). A better hospital infection control practice and detailed investigation of the microevolution of Pseudomonas aeruginosa in UTI are needed.
Collapse
Affiliation(s)
- Yanhong He
- Department of Clinical Laboratory, Anting Hospital, Anting Town, Jiading District, Shanghai, China
| | - Lamei Wu
- Department of Clinical Laboratory, Anting Hospital, Anting Town, Jiading District, Shanghai, China
| | - Pingming Liao
- Department of Clinical Laboratory, Anting Hospital, Anting Town, Jiading District, Shanghai, China
| | - Lili Shen
- Department of Clinical Laboratory, Anting Hospital, Anting Town, Jiading District, Shanghai, China
| | - Huijian Yang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, China
- * Correspondence: Huijian Yang, Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, China (e-mail: )
| |
Collapse
|
24
|
Santore MM. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv Colloid Interface Sci 2022; 304:102665. [PMID: 35468355 DOI: 10.1016/j.cis.2022.102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Biofilms initiate when bacteria encounter and are retained on surfaces. The surface orchestrates biofilm growth through direct physico-chemical and mechanical interactions with different structures on bacterial cells and, in turn, through its influence on cell-cell interactions. Individual cells respond directly to a surface through mechanical or chemical means, initiating "surface sensing" pathways that regulate gene expression, for instance producing extra cellular matrix or altering phenotypes. The surface can also physically direct the evolving colony morphology as cells divide and grow. In either case, the physico-chemistry of the surface influences cells and cell communities through mechanisms that involve additional factors. For instance the numbers of cells arriving on a surface from solution relative to the generation of new cells by division depends on adhesion and transport kinetics, affecting early colony density and composition. Separately, the forces experienced by adhering cells depend on hydrodynamics, gravity, and the relative stiffnesses and viscoelasticity of the cells and substrate materials, affecting mechanosensing pathways. Physical chemistry and surface functionality, along with interfacial mechanics also influence cell-surface friction and control colony morphology, in particular 2D and 3D shape. This review focuses on the current understanding of the mechanisms in which physico-chemical interactions, deriving from surface functionality, impact individual cells and cell community behavior through their coupling with other interfacial processes.
Collapse
|
25
|
Ramírez M, Debut A. Control of vibriosis in shrimp through the management of the microbiota and the immune system. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shrimp aquaculture is constantly threatened by recurrent outbreaks of diseases caused by pathogenic bacteria of the genus Vibrio. Acute hepatopancreatic necrosis disease (AHPND) is one of the most aggressive vibriosis reported to date in the shrimp industry. AHPND provokes massive mortalities, causing economic losses with strong social impacts. Control of vibriosis requires the application of multifactorial strategies. This includes vibrio exclusion, shrimp microbiota, particularly in the digestive tract, and shrimp health management through immune stimulation. This paper reviews these two strategies for the prophylactic control of vibriosis. First, we describe the devastating effects of AHPND and the cellular and humoral effectors of the shrimp immune system to cope with this pathology. Secondly, the mechanisms of action of probiotics and their positive impacts are highlighted, including their immunostimulant effects and their role in the balance of the shrimp microbiota. Finally, we reviewed immunostimulants and prebiotics polysaccharides that together with probiotics act benefiting growth, feed efficiency and the microbiota of the digestive tract of farmed shrimp.
Collapse
Affiliation(s)
- Mery Ramírez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Avenida General Rumiñahui S/N y Ambato, P.O. Box 171-5-231B, Sangolquí, Ecuador
| |
Collapse
|
26
|
The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. Proc Natl Acad Sci U S A 2022; 119:e2117633119. [PMID: 35476526 PMCID: PMC9170161 DOI: 10.1073/pnas.2117633119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SignificanceBacteria must respond quickly to environmental changes to survive. One way bacteria can respond to environmental stress is by undergoing a lifestyle transition from individual, free-swimming cells to a surface-associated community called a biofilm characterized by aggregative growth. The opportunistic pathogen Pseudomonas aeruginosa uses the Wsp chemosensory system to sense an unknown surface-associated cue. Here we show that the Wsp system senses cell envelope stress, specifically conditions that promote unfolded or misregulated periplasmic and inner membrane proteins. This work provides direct evidence that cell envelope stress is an important feature of surface sensing in P. aeruginosa.
Collapse
|
27
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
28
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
29
|
Harris JC, Collins MS, Huang PH, Schramm CM, Nero T, Yan J, Murray TS. Bacterial Surface Detachment during Nebulization with Contaminated Reusable Home Nebulizers. Microbiol Spectr 2022; 10:e0253521. [PMID: 35107362 PMCID: PMC8809330 DOI: 10.1128/spectrum.02535-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 01/30/2023] Open
Abstract
Patients with chronic respiratory diseases use home nebulizers that are often contaminated with pathogenic microbes to deliver aerosolized medications. The conditions under which these microbes leave the surface as bioaerosols during nebulization are not well characterized. The objectives of this study were to (i) determine whether different pathogens detach and disperse from the nebulizer surface during aerosolization and (ii) measure the effects of relative humidity and drying times on bacterial surface detachment and aerosolization. Bacteria were cultured from bioaerosols after Pari LC Plus albuterol nebulization using two different sources, as follows: (i) previously used nebulizers donated by anonymous patients with cystic fibrosis (CF) and (ii) nebulizers inoculated with bacteria isolated from the lungs of CF patients. Fractionated bioaerosols were collected with a Next-Generation Impactor. For a subset of bacteria, surface adherence during rewetting was measured with fluorescence microscopy. Bacteria dispersed from the surface of used CF patient nebulizers during albuterol nebulization. Eighty percent (16/20) of clinical isolates inoculated on the nebulizer in the laboratory formed bioaerosols. Detachment from the plastic surface into the chamber solution predicted bioaerosol production. Increased relative humidity and decreased drying times after inoculation favored bacterial dispersion on aerosols during nebulized therapy. Pathogenic bacteria contaminating nebulizer surfaces detached from the surface as bioaerosols during nebulized therapies, especially under environmental conditions when contaminated nebulizers were dried or stored at high relative humidity. This finding emphasizes the need for appropriate nebulizer cleaning, disinfection, and complete drying during storage and informs environmental conditions that favor bacterial surface detachment during nebulization. IMPORTANCE Studies from around the world have demonstrated that many patients use contaminated nebulizers to deliver medication into their lungs. While it is known that using contaminated medications in a nebulizer can lead to a lung infection, whether bacteria on the surface of a contaminated nebulizer detach as bioaerosols capable of reaching the lung has not been studied. This work demonstrates that a subset of clinical bacteria enter solution from the surface during nebulization and are aerosolized. Environmental conditions of high relative humidity during storage favor dispersion from the surface. We also provide results of an in vitro assay conducted to monitor bacterial surface detachment during multiple cycles of rewetting that correlate with the results of nebulizer/bacterial surface interactions. These studies demonstrate for the first time that pathogenic bacteria on the nebulizer surface pose a risk of bacterial inhalation to patients who use contaminated nebulizers.
Collapse
Affiliation(s)
- Jamie C. Harris
- Connecticut Children’s Medical Center, Division of Pediatric Pulmonology, Hartford, Connecticut, USA
| | - Melanie S. Collins
- Connecticut Children’s Medical Center, Division of Pediatric Pulmonology, Hartford, Connecticut, USA
| | - Pamela H. Huang
- Yale School of Medicine, Department of Pediatrics, Infectious Diseases and Global Health, New Haven, Connecticut, USA
| | - Craig M. Schramm
- Connecticut Children’s Medical Center, Division of Pediatric Pulmonology, Hartford, Connecticut, USA
| | - Thomas Nero
- Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven, Connecticut, USA
| | - Jing Yan
- Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven, Connecticut, USA
| | - Thomas S. Murray
- Yale School of Medicine, Department of Pediatrics, Infectious Diseases and Global Health, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A 2022; 119:2116830119. [PMID: 35131853 PMCID: PMC8833168 DOI: 10.1073/pnas.2116830119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial cells organized on solid surfaces are the most ancient form of biological communities. Yet how single cells interact with surfaces and integrate a variety of signals to establish a sessile lifestyle is poorly understood. We developed and used sensitive biosensors to determine the kinetics of second messengers’ responses to surface attachment. This allowed us to examine cell-by-cell variability of the initial signaling events and establish that some of these events depend on flagellar motor function while others do not. Environmentally determined factors, like the energetic status of the cell, can modulate all signaling events. The complex interplay between the surface interaction inputs and external conditions can now be studied using our system. Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein–based c-di-GMP–sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds’ timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes’ timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.
Collapse
|
31
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
32
|
Preoperative fasting confers protection against intestinal ischaemia/reperfusion injury by modulating gut microbiota and their metabolites in a mouse model. Br J Anaesth 2021; 128:501-512. [PMID: 34930601 DOI: 10.1016/j.bja.2021.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Intestinal ischaemia/reperfusion (I/R) injury is a grave surgical event with high morbidity and mortality. Preoperative fasting might confer protection against intestinal I/R injury by altering the composition of gut microbiota and their respective metabolites. METHODS An intestinal I/R mouse model was established and subjected to preoperative fasting for 24 h or fed ad libitum. Intestinal I/R injury was assessed using histological examination and survival analysis. Faecal samples were collected for 16S rDNA sequencing and metabolomic analysis. Faecal transplantation of fasted and non-fasted mice and humans was conducted to evaluate the effects of gut microbiota on intestinal I/R. Murine small intestinal cells wecre subjected to oxygen and glucose deprivation/reoxygenation as an in vitro I/R model. RESULTS Preoperative fasting protected against intestinal I/R injury and improved survival in mice (P<0.001). In addition, 16S rDNA sequencing revealed that preoperative fasting increased the diversity and restructured the composition of the gut microbiota after intestinal I/R. Mice that received microbiota from fasted mice and humans showed less intestinal damage than those that received microbiota from fed subjects. Metabolomic analysis showed that the profiles of gut microbial metabolites differed between fasted and fed groups. Specifically, the concentration of petroselinic acid was significantly higher in the fasted group (P=0.009). Treatment of intestinal I/R mice with petroselinic acid alleviated intestinal injury in vivo and decreased cell apoptosis by mediating AMP-activated protein kinase-mammalian target of rapamycin-P70S6K signaling in vitro. CONCLUSIONS Preoperative fasting protected against intestinal I/R injury by modulating gut microbiota and petroselinic acid, suggesting a novel therapeutic strategy.
Collapse
|
33
|
Nassar O, Desouky SE, El-Sherbiny GM, Abu-Elghait M. Correlation between phenotypic virulence traits and antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Microb Pathog 2021; 162:105339. [PMID: 34861345 DOI: 10.1016/j.micpath.2021.105339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogen capable of infecting virtually all tissues and its one of the standout amongst the most hazardous microorganisms of high morbidity and mortality rates especially in debilitated patients with few successful antibiotic choices available. This pathogen regulating most virulence traits by that so-called quorum sensing (QS), a cell to cell communication system. the present study was intended to phenotypically evaluate the activity of specific virulence traits (including swarming and swimming motility, protease, pyocyanin, and biofilm production) in Pseudomonas aeruginosa clinical isolates and assess the statistical correlation between these traits and antibiotic resistance. One hundred and thirteen bacterial isolates were obtained from different clinical samples and identified as P. aeruginosa, among them, 73.4% have the ability to forming biofilm with different degrees; 59.2% were able to produce pyocyanin pigment while all isolates having the ability to make swarming and swimming motility and able to produce protease enzyme with different degrees. The isolates that produce the higher levels of the virulence traits were identified by both biochemical using Vitek2 automated system and genetically via 16s rRNA gene analysis. The statistical analysis results indicate that a positive significant correlation was found between biofilm formation and other studied virulence traits except for protease (r = 0.584: 0.324, P < 0.05) while a non-significant correlation was found between biofilm formation and protease activity (r = 0.105, P ˃ 0.05). Swimming and swarming motility have a positive significant correlation with other studied virulence traits (r = 0.613: 0.297, P < 0.05) except for protease. Pyocyanin pigment production have a positive significant correlation with other studied virulence traits (r = 0.33: 0.297, P < 0.05) except for protease. on the other hand, negative significant correlations were found between biofilm formation, swimming; and swarming motility, Pyocyanin pigment production, and the susceptibility of antibiotics (r = -0.512: -0.281, P < 0.05). Detection of such correlations in P. aeruginosa is useful for study the behavior of this pathogen and may be provide a new target for the treatment of MDR infections.
Collapse
Affiliation(s)
- Osama Nassar
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt
| | - Said E Desouky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt
| | - Gamal M El-Sherbiny
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt.
| |
Collapse
|
34
|
Dynamics of the Two Stator Systems in the Flagellar Motor of Pseudomonas aeruginosa Studied by a Bead Assay. Appl Environ Microbiol 2021; 87:e0167421. [PMID: 34524895 DOI: 10.1128/aem.01674-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a robust bead assay for studying flagellar motor behavior of Pseudomonas aeruginosa. Using this assay, we studied the dynamics of the two stator systems in the flagellar motor. We found that the two sets of stators function differently, with MotAB stators providing higher total torque and MotCD stators ensuring more stable motor speed. The motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to that of mutants with one set of stators. The bead assay we developed in this investigation can be further used to study P. aeruginosa chemotaxis at the level of a single cell using the motor behavior as the chemotaxis output. IMPORTANCE Cells of Pseudomonas aeruginosa possess a single polar flagellum, driven by a rotatory motor powered by two sets of torque-generating units (stators). We developed a robust bead assay for studying the behavior of the flagellar motor in P. aeruginosa, by attaching a microsphere to shortened flagellar filament and using it as an indicator of motor rotation. Using this assay, we revealed the dynamics of the two stator systems in the flagellar motor and found that the motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to that of mutants with one set of stators.
Collapse
|
35
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
36
|
Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Front Microbiol 2021; 12:686793. [PMID: 34305846 PMCID: PMC8295476 DOI: 10.3389/fmicb.2021.686793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilms are communities of cells enclosed in an extracellular polymeric matrix in which cells adhere to each other and to foreign surfaces. The development of a biofilm is a dynamic process that involves multiple steps, including cell-surface attachment, matrix production, and population expansion. Increasing evidence indicates that biofilm adhesion is one of the main factors contributing to biofilm-associated infections in clinics and biofouling in industrial settings. This review focuses on describing biofilm adhesion strategies among different bacteria, including Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus aureus. Techniques used to characterize biofilm adhesion are also reviewed. An understanding of biofilm adhesion strategies can guide the development of novel approaches to inhibit or manipulate biofilm adhesion and growth.
Collapse
Affiliation(s)
- Zhaowei Jiang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Thomas Nero
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Sampriti Mukherjee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, United States
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States.,Quantitative Biology Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
37
|
A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. mBio 2021; 12:e0083121. [PMID: 34154400 PMCID: PMC8262847 DOI: 10.1128/mbio.00831-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 3 secretion systems (T3SS) are complex nanomachines that span the cell envelope and play a central role in the biology of Gram-negative pathogens and symbionts. In Pseudomonas aeruginosa, T3SS expression is strongly associated with human disease severity and with mortality in murine acute pneumonia models. Uniform exposure of isogenic cells to T3SS-activating signal results in heterogeneous expression of this critical virulence trait. To understand the function of such diversity, we measured the production of the T3SS master regulator ExsA and the expression of T3SS genes using fluorescent reporters. We found that heterogeneous expression of ExsA in the absence of activating signal generates a "primed" subpopulation of cells that can rapidly induce T3SS gene expression in response to signal. T3SS expression is accompanied by a reproductive trade-off as measured by increased division time of T3SS-expressing cells. Although T3SS-primed cells are a minority of the population, they compose the majority of T3SS-expressing cells for several hours following activation. The primed state therefore allows P. aeruginosa to maximize reproductive fitness while maintaining the capacity to quickly express the T3SS. As T3SS effectors can serve as shared public goods for nonproducing cells, this division of labor benefits the population as a whole. IMPORTANCE The expression of specific virulence traits is strongly associated with Pseudomonas aeruginosa's success in establishing acute infections but is thought to carry a cost for bacteria. Producing multiprotein secretion systems or motility organelles is metabolically expensive and can target a cell for recognition by innate immune system receptors that recognize structural components of the type 3 secretion system (T3SS) or flagellum. These acute virulence factors are also negatively selected when P. aeruginosa establishes chronic infections in the lung. We demonstrate a regulatory mechanism by which only a minority subpopulation of genetically identical P. aeruginosa cells is "primed" to respond to signals that turn on T3SS expression. This phenotypic heterogeneity allows the population to maximize the benefit of rapid T3SS effector production while maintaining a rapidly growing and nonexpressing reservoir of cells that perpetuates this genotype within the population.
Collapse
|
38
|
Alonso VPP, de Oliveira Morais J, Kabuki DY. Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates. Int J Food Microbiol 2021; 354:109318. [PMID: 34246014 DOI: 10.1016/j.ijfoodmicro.2021.109318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022]
Abstract
The presence of mesophilic and thermophilic spore-forming bacteria in UHT milk, as well as biofilm formation in dairy plants, are concerning. The current study explored the spore-forming bacilli diversity in 100 samples of UHT milk (skimmed and whole). Through this work, a total of 239 isolates from UHT milk samples were obtained. B. cereus s.s. was isolated from 7 samples, B. sporothermodurans from 19 and, G. stearothermophilus from 25 samples. Genes encoding hemolysin (HBL), and non-hemolytic (NHE) enterotoxins were detected in B. cereus s.s. isolates. All isolates of B. cereus s.s. (12) B. sporothermodurans (38), and G. stearothermophilus (47) were selected to verify the ability of biofilm formation in microtiter plates. The results showed all isolates could form biofilms. The OD595 values of biofilm formation varied between 0.14 and 1.04 for B. cereus, 0.20 to 1.87 for B. sporothermodurans, and 0.49 to 2.77 for G. stearothermophilus. The data highlights that the dairy industry needs to reinforce control in the initial quality of the raw material and in CIP cleaning procedures; avoiding biofilm formation and consequently a persistent microbiota in processing plants, which can shelter pathogenic species such as B. cereus s.s.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | - Jéssica de Oliveira Morais
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
39
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proc Natl Acad Sci U S A 2021; 118:2105566118. [PMID: 34168081 DOI: 10.1073/pnas.2105566118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO-SadC interaction inhibits SadC's activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO-SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO-SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.
Collapse
|
41
|
Ozer E, Yaniv K, Chetrit E, Boyarski A, Meijler MM, Berkovich R, Kushmaro A, Alfonta L. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking. SCIENCE ADVANCES 2021; 7:eabg8581. [PMID: 34117070 PMCID: PMC8195488 DOI: 10.1126/sciadv.abg8581] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 05/28/2023]
Abstract
The opportunistic pathogen, Pseudomonas aeruginosa, a flagellated bacterium, is one of the top model organisms for biofilm studies. To elucidate the location of bacterial flagella throughout the biofilm life cycle, we developed a new flagella biotracking tool. Bacterial flagella were site-specifically labeled via genetic code expansion. This enabled us to track bacterial flagella during biofilm maturation. Live flagella imaging revealed the presence and synthesis of flagella throughout the biofilm life cycle. To study the possible role of flagella in a biofilm, we produced a flagella knockout strain and compared its biofilm to that of the wild-type strain. Results showed a one order of magnitude stronger biofilm structure in the wild type in comparison with the flagella knockout strain. This suggests a possible structural role for flagella in a biofilm, conceivably as a scaffold. Our findings suggest a new model for biofilm maturation dynamic which underscores the importance of direct evidence from within the biofilm.
Collapse
Affiliation(s)
- Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Einat Chetrit
- Department of Chemical Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Anastasya Boyarski
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Lital Alfonta
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel.
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
42
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
43
|
Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A. Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021; 22:ijms22073337. [PMID: 33805191 PMCID: PMC8036289 DOI: 10.3390/ijms22073337] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
44
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
45
|
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2020; 268:120595. [PMID: 33360301 DOI: 10.1016/j.biomaterials.2020.120595] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Microbes have remarkable capabilities to attach to the surface of implanted medical devices and form biofilms that adversely impact device function and increase the risk of multidrug-resistant infections. The physicochemical properties of biomaterials have long been known to play an important role in biofilm formation. More recently, a series of discoveries in the natural world have stimulated great interest in the use of 3D surface topography to engineer antifouling materials that resist bacterial colonization. There is also increasing evidence that some medical device surface topographies, such as those designed for tissue integration, may unintentionally promote microbial attachment. Despite a number of reviews on surface topography and biofilm control, there is a missing link between how bacteria sense and respond to 3D surface topographies and the rational design of antifouling materials. Motivated by this gap, we present a review of how bacteria interact with surface topographies, and what can be learned from current laboratory studies of microbial adhesion and biofilm formation on specific topographic features and medical devices. We also address specific biocompatibility considerations and discuss how to improve the assessment of the anti-biofilm performance of topographic surfaces. We conclude that 3D surface topography, whether intended or unintended, is an important consideration in the rational design of safe medical devices. Future research on next-generation smart antifouling materials could benefit from a greater focus on translation to real-world applications.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - K Scott Phillips
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, Silver Spring, MD, 20993, United States.
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - Mehdi Kazemzadeh-Narbat
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Office of Health Technology 6, Silver Spring, MD, 20993, United States; Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, 20001, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, United States; Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
46
|
Mordue J, O'Boyle N, Gadegaard N, Roe AJ. The force awakens: The dark side of mechanosensing in bacterial pathogens. Cell Signal 2020; 78:109867. [PMID: 33279672 DOI: 10.1016/j.cellsig.2020.109867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/01/2023]
Abstract
For many bacteria, the ability to sense physical stimuli such as contact with a surface or a potential host cell is vital for survival and proliferation. This ability, and subsequent attachment, confers a wide range of benefits to bacteria and many species have evolved to take advantage of this. Despite the impressive diversity of bacterial pathogens and their virulence factors, mechanosensory mechanisms are often conserved. These include sensing impedance of flagellar rotation and resistance to type IV pili retraction. There are additional mechanisms that rely on the use of specific membrane-bound adhesins to sense either surface proximity or shear forces. This review aims to examine these mechanosensors, and how they are used by pathogenic bacteria to sense physical features in their environment. We will explore how these sensors generate and transmit signals which can trigger modulation of virulence-associated gene expression in some of the most common bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Vibrio species.
Collapse
Affiliation(s)
- James Mordue
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
47
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
48
|
Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species. J Bacteriol 2020; 202:JB.00236-20. [PMID: 32482724 PMCID: PMC8404704 DOI: 10.1128/jb.00236-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Erika Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamic Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
49
|
Liu C, Sun D, Zhu J, Liu J, Liu W. The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review. Front Microbiol 2020; 11:802. [PMID: 32528421 PMCID: PMC7247823 DOI: 10.3389/fmicb.2020.00802] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Biofilms are communities of microorganisms that live in a self-produced extracellular matrix in order to survive in hostile environments. Second messengers, such as c-di-GMP and cAMP, participate in the regulation of biofilm formation. c-di-GMP is a major molecule that is involved in modulating the bacterial transition between a planktonic lifestyle and biofilm formation. Aside from regulating carbon catabolism repression in most bacteria, cAMP has also been found to mediate biofilm formation in many bacteria. Although the underlying mechanisms of biofilm formation mediated by cAMP-CRP have been well-investigated in several bacteria, the regulatory pathways of cAMP-CRP are still poorly understood compared to those of c-di-GMP. Moreover, some bacteria appear to form biofilm in response to changes in carbon source type or concentration. However, the relationship between the carbon metabolisms and biofilm formation remains unclear. This mini-review provides an overview of the cAMP-CRP-regulated pathways involved in biofilm formation in some bacteria. This information will benefit future investigations of the underlying mechanisms that connect between biofilm formation with nutrient metabolism, as well as the cross-regulation between multiple second messengers.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Di Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weijie Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
50
|
Mazzantini D, Fonnesu R, Celandroni F, Calvigioni M, Vecchione A, Mrusek D, Bange G, Ghelardi E. GTP-Dependent FlhF Homodimer Supports Secretion of a Hemolysin in Bacillus cereus. Front Microbiol 2020; 11:879. [PMID: 32435240 PMCID: PMC7218170 DOI: 10.3389/fmicb.2020.00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023] Open
Abstract
The multidomain (B-NG) protein FlhF, a flagellar biogenesis regulator in several bacteria, is the third paralog of the signal recognition particle (SRP)-GTPases Ffh and FtsY, which are known to drive protein-delivery to the plasma membrane. Previously, we showed that FlhF is required for Bacillus cereus pathogenicity in an insect model of infection, being essential for physiological peritrichous flagellation, for motility, and for the secretion of virulence proteins. Among these proteins, we found that the L2 component of hemolysin BL, one of the most powerful toxins B. cereus produces, was drastically reduced by the FlhF depletion. Herein, we demonstrate that B. cereus FlhF forms GTP-dependent homodimers in vivo since the replacement of residues critical for their GTP-dependent homodimerization alters this ability. The protein directly or indirectly controls flagellation by affecting flagellin-gene transcription and its overproduction leads to a hyperflagellated phenotype. On the other hand, FlhF does not affect the expression of the L2-encoding gene (hblC), but physically binds L2 when in its homodimeric form, recruiting the protein to the plasma membrane for secretion. We additionally show that FlhF overproduction increases L2 secretion and that the FlhF/L2 interaction requires the NG domain of FlhF. Our findings demonstrate the peculiar behavior of B. cereus FlhF, which is required for the correct flagellar pattern and acts as SRP-GTPase in the secretion of a bacterial toxin subunit.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Devid Mrusek
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps University, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps University, Marburg, Germany
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|