1
|
Peterson C, Miller J, Ryckman BJ, Ganusov VV. Apparent cooperativity between human CMV virions introduces errors in conventional methods of calculating multiplicity of infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.23.650360. [PMID: 40313926 PMCID: PMC12045349 DOI: 10.1101/2025.04.23.650360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Whether infection of cells by individual virions occurs randomly or if there is some form(s) of competition or cooperativity between individual virions remains largely unknown for most virus-cell associations. Here we studied cooperativity/competition for three different strains of human cytomegalovirus ( HCMV ) on two different cell types (fibroblasts and epithelial cells). By titrating viral inocula concentrations in small steps over several orders of magnitude, and by using flow cytometry to precisely measure frequency of infected cells, we found that for most virus-cell associations, the frequency of cell infection increases faster than linear with an increasing inoculum concentration, indicating cooperativity between individual infecting virions. Mathematical modeling suggests that this apparent cooperativity cannot be explained by heterogeneity in either the infectivity of the individual virions or the resistance of individual cells to infection, or by simple aggregation/clumping of viral particles. Stochastic simulations of two additional alternative models that allow for i) reduction in cell resistance to infection when exposed to multiple virions, or ii) compensation in infectivity of poorly infectious virions when coinfecting cells with more infectious virions, resulted in apparent viral cooperativity. Analysis of other published datasets suggests presence of apparent viral cooperativity for HIV and vaccinia virus, infecting CRFK or HeLa cells, respectively, but not for tobacco mosaic virus forming plaques on plant leaves. We thus 1) propose a methodology to rigorously evaluate apparent cooperativity of viruses infecting target cells, and 2) demonstrate that knowing the degree of virus cooperativity for any given virus-cell combination is important for an accurate quantification of multiplicity of infection ( MOI ). Graphical abstract Infections per cell (IU/cell) and specific infectivity (Genomes/IU) of human cytomegalovirus depend on the infecting dose.
Collapse
|
2
|
Hazzard B, Sá JM, Bogale HN, Pascini TV, Ellis AC, Amin S, Armistead JS, Adams JH, Wellems TE, Serre D. Single-cell analyses of polyclonal Plasmodium vivax infections and their consequences on parasite transmission. Nat Commun 2024; 15:7625. [PMID: 39223117 PMCID: PMC11369214 DOI: 10.1038/s41467-024-51949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 80,024 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.
Collapse
Affiliation(s)
- Brittany Hazzard
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela C Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shuchi Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Armistead
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
4
|
Hazzard B, Sá JM, Bogale HN, Pascini TV, Ellis AC, Amin S, Armistead JS, Adams JH, Wellems TE, Serre D. Single-cell analyses of polyclonal Plasmodium vivax infections and their consequences on parasite transmission. RESEARCH SQUARE 2024:rs.3.rs-3888175. [PMID: 38410426 PMCID: PMC10896380 DOI: 10.21203/rs.3.rs-3888175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 117,350 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.
Collapse
Affiliation(s)
- Brittany Hazzard
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tales V. Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela C. Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuchi Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer S. Armistead
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H. Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Lead contact
| |
Collapse
|
5
|
Kanatani S, Stiffler D, Bousema T, Yenokyan G, Sinnis P. Revisiting the Plasmodium sporozoite inoculum and elucidating the efficiency with which malaria parasites progress through the mosquito. Nat Commun 2024; 15:748. [PMID: 38272943 PMCID: PMC10811227 DOI: 10.1038/s41467-024-44962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Malaria is initiated when infected anopheline mosquitoes inoculate sporozoites as they probe for blood. It is thought that all infected mosquitoes are equivalent in terms of their infectious potential, with parasite burden having no role in transmission success. In this study, using mosquitoes harboring the entire range of salivary gland sporozoite loads observed in the field, we demonstrate a strong and highly significant correlation between mosquito parasite burden and inoculum size. We then link the inoculum data to oocyst counts, the most commonly-used metric to assess mosquito infection in the field, and determine the efficiency with which oocyst sporozoites enter mosquito salivary glands. Taken together our data support the conclusion that mosquitoes with higher parasite burdens are more likely to initiate infection and contribute to onward transmission. Overall these data may account for some of the unexplained heterogeneity in transmission and enable more precise benchmarks for transmission-blocking interventions.
Collapse
Affiliation(s)
- Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Deborah Stiffler
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Teun Bousema
- Department of Medical Microbiology & Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayane Yenokyan
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Bera S, Amino R, Cockburn IA, Ganusov VV. Heterogeneity in killing efficacy of individual effector CD8 + T cells against Plasmodium liver stages. Proc Biol Sci 2023; 290:20232280. [PMID: 38018100 PMCID: PMC10685130 DOI: 10.1098/rspb.2023.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Vaccination strategies in mice inducing high numbers of memory CD8+ T cells specific to a single epitope are able to provide sterilizing protection against infection with Plasmodium sporozoites. We have recently found that Plasmodium-specific CD8+ T cells cluster around sporozoite-infected hepatocytes but whether such clusters are important in elimination of the parasite remains incompletely understood. Here, we used our previously generated data in which we employed intravital microscopy to longitudinally image 32 green fluorescent protein (GFP)-expressing Plasmodium yoelii parasites in livers of mice that had received activated Plasmodium-specific CD8+ T cells after sporozoite infection. We found significant heterogeneity in the dynamics of the normalized GFP signal from the parasites (termed 'vitality index' or VI) that was weakly correlated with the number of T cells near the parasite. We also found that a simple model assuming mass-action, additive killing by T cells well describes the VI dynamics for most parasites and predicts a highly variable killing efficacy by individual T cells. Given our estimated median per capita kill rate of k = 0.031/h we predict that a single T cell is typically incapable of killing a parasite within the 48 h lifespan of the liver stage in mice. Stochastic simulations of T cell clustering and killing of the liver stage also suggested that: (i) three or more T cells per infected hepatocyte are required to ensure sterilizing protection; (ii) both variability in killing efficacy of individual T cells and resistance to killing by individual parasites may contribute to the observed variability in VI decline, and (iii) the stable VI of some clustered parasites cannot be explained by measurement noise. Taken together, our analysis for the first time provides estimates of efficiency at which individual CD8+ T cells eliminate intracellular parasitic infection in vivo.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, 75015 Paris, France
| | - Ian A. Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78258, USA
| |
Collapse
|
7
|
Oke CE, Reece SE, Schneider P. Testing a non-destructive assay to track Plasmodium sporozoites in mosquitoes over time. Parasit Vectors 2023; 16:401. [PMID: 37925480 PMCID: PMC10625196 DOI: 10.1186/s13071-023-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. METHODS We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. RESULTS The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. CONCLUSIONS We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schneider
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Bailey AJ, Ukegbu CV, Giorgalli M, Besson TRB, Christophides GK, Vlachou D. Intracellular Plasmodium aquaporin 2 is important for sporozoite production in the mosquito vector and malaria transmission. Proc Natl Acad Sci U S A 2023; 120:e2304339120. [PMID: 37883438 PMCID: PMC10622946 DOI: 10.1073/pnas.2304339120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.
Collapse
Affiliation(s)
- Alexander J. Bailey
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Ledien J, Cucunubá ZM, Parra-Henao G, Rodríguez-Monguí E, Dobson AP, Adamo SB, Castellanos LG, Basáñez MG, Nouvellet P. From serological surveys to disease burden: a modelling pipeline for Chagas disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220278. [PMID: 37598701 PMCID: PMC10440172 DOI: 10.1098/rstb.2022.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
In 2012, the World Health Organization (WHO) set the elimination of Chagas disease intradomiciliary vectorial transmission as a goal by 2020. After a decade, some progress has been made, but the new 2021-2030 WHO roadmap has set even more ambitious targets. Innovative and robust modelling methods are required to monitor progress towards these goals. We present a modelling pipeline using local seroprevalence data to obtain national disease burden estimates by disease stage. Firstly, local seroprevalence information is used to estimate spatio-temporal trends in the Force-of-Infection (FoI). FoI estimates are then used to predict such trends across larger and fine-scale geographical areas. Finally, predicted FoI values are used to estimate disease burden based on a disease progression model. Using Colombia as a case study, we estimated that the number of infected people would reach 506 000 (95% credible interval (CrI) = 395 000-648 000) in 2020 with a 1.0% (95%CrI = 0.8-1.3%) prevalence in the general population and 2400 (95%CrI = 1900-3400) deaths (approx. 0.5% of those infected). The interplay between a decrease in infection exposure (FoI and relative proportion of acute cases) was overcompensated by a large increase in population size and gradual population ageing, leading to an increase in the absolute number of Chagas disease cases over time. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Julia Ledien
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Zulma M. Cucunubá
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, 470002, Santa Marta, Colombia
- National Institute of Health, 111321 Bogotá, Colombia
| | - Eliana Rodríguez-Monguí
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
- Independent consultant to the Neglected, Tropical and Vector Borne Diseases Program, Pan American Health Organization (PAHO), Colombia
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susana B. Adamo
- Center for International Earth Science Information Network (CIESIN), Columbia Climate School, Columbia University, New York, NY 10025, USA
| | - Luis Gerardo Castellanos
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization (PAHO), Washington, DC 20037, USA
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, Sánchez C. HM, Lee HF, Marshall JM, Dimopoulos G, James AA. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc Natl Acad Sci U S A 2023; 120:e2221118120. [PMID: 37428915 PMCID: PMC10629562 DOI: 10.1073/pnas.2221118120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.
Collapse
Affiliation(s)
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Rodrigo M. Corder
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Hsu-Feng Lee
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA92697-3900
| |
Collapse
|
11
|
Wichers-Misterek JS, Binder AM, Mesén-Ramírez P, Dorner LP, Safavi S, Fuchs G, Lenz TL, Bachmann A, Wilson D, Frischknecht F, Gilberger TW. A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. mBio 2023; 14:e0331822. [PMID: 36625655 PMCID: PMC9973338 DOI: 10.1128/mbio.03318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Annika M. Binder
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Paolo Mesén-Ramírez
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Lilian Patrick Dorner
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Soraya Safavi
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Tobias L. Lenz
- Biology Department, University of Hamburg, Hamburg, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Adipokinetic hormone signaling in the malaria vector Anopheles gambiae facilitates Plasmodium falciparum sporogony. Commun Biol 2023; 6:171. [PMID: 36782045 PMCID: PMC9924834 DOI: 10.1038/s42003-023-04518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
An obligatory step in the complex life cycle of the malaria parasite is sporogony, which occurs during the oocyst stage in adult female Anopheles mosquitoes. Sporogony is metabolically demanding, and successful oocyst maturation is dependent on host lipids. In insects, lipid energy reserves are mobilized by adipokinetic hormones (AKHs). We hypothesized that Plasmodium falciparum infection activates Anopheles gambiae AKH signaling and lipid mobilization. We profiled the expression patterns of AKH pathway genes and AgAkh1 peptide levels in An. gambiae during starvation, after blood feeding, and following infection and observed a significant time-dependent up-regulation of AKH pathway genes and peptide levels during infection. Depletion of AgAkh1 and AgAkhR by RNAi reduced salivary gland sporozoite production, while synthetic AgAkh1 peptide supplementation rescued sporozoite numbers. Inoculation of uninfected female mosquitoes with supernatant from P. falciparum-infected midguts activated AKH signaling. Clearly, identifying the parasite molecules mediating AKH signaling in P. falciparum sporogony is paramount.
Collapse
|
13
|
Amazonian Anopheles with low numbers of oocysts transmit Plasmodium vivax sporozoites during a blood meal. Sci Rep 2022; 12:19442. [PMID: 36376491 PMCID: PMC9663451 DOI: 10.1038/s41598-022-24058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Anopheles darlingi is the main malarial vector in the Brazilian Amazon region. An. nuneztovari s.l., An. triannulatus s.l., An. evansae, and An. benarrochi s.l. do not have a defined role as malarial vectors, although they have been found to be naturally infected with Plasmodium vivax, and some develop oocysts. In this study, we evaluated the importance of low numbers of oocysts in sporozoite salivary gland invasion and transmission. Field-collected mosquitoes were experimentally infected with P. vivax. The infection rates and oocyst and sporozoite infection intensities were evaluated and compared with those of An. aquasalis. We found the highest number of oocysts in An. darlingi (mean = 39.47) and the lowest in An. nuneztovari s.l. (mean = 2). The highest number of sporozoites was observed in An. darlingi (mean = 610) and lowest in An. benarrochi s.l. (mean = 30). Plasmodium vivax DNA was detected in the saliva of all mosquito species after a blood meal. Regardless of the number of oocysts, all species transmitted sporozoites during blood meals. Considering the abundance of these mosquitoes and transmission of sporozoites, it is logical to assume that An. nuneztovari s.l. and An. triannulatus s.l. are involved in the transmission of P. vivax.
Collapse
|
14
|
Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, Lance C, Ripp J, Grech J, Meissner M, Funaya C, Amino R, Frischknecht F. Plasmodium
sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Rep 2022; 23:e54719. [PMID: 35403820 PMCID: PMC9253755 DOI: 10.15252/embr.202254719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
During transmission of malaria‐causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane‐associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin‐GFP localizes at the cytoplasmic periphery and concavin(−) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(−) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(−) sporozoites are transmitted. Strikingly, motile concavin(−) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- Infectious Diseases Imaging Platform Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Pauline Formaglio
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Julianne Mendi Muthinja
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Sebastian Weber
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Danny Baltissen
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Christopher Lance
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Janessa Grech
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Markus Meissner
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Rogerio Amino
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
15
|
Ripp J, Smyrnakou X, Neuhoff M, Hentzschel F, Frischknecht F. Phosphorylation of myosin A regulates gliding motility and is essential for
Plasmodium
transmission. EMBO Rep 2022; 23:e54857. [PMID: 35506479 PMCID: PMC9253774 DOI: 10.15252/embr.202254857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.
Collapse
Affiliation(s)
- Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Xanthoula Smyrnakou
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Marie‐Therese Neuhoff
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Franziska Hentzschel
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
16
|
Silveira ELVD, Rai U, Bonezi V, Zárate-Bladés CR, Claser C. CCR6 expression reduces mouse survival upon malarial challenge with Plasmodium berghei NK65 strain. Mem Inst Oswaldo Cruz 2022; 117:e210287. [PMID: 35730803 PMCID: PMC9208320 DOI: 10.1590/0074-02760210287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND It has been demonstrated that proteins expressed by liver-stage Plasmodium parasites can inhibit the translocation of transcription factors to the nucleus of different cells. This process would hinder the expression of immune genes, such as the CCL20 chemokine. OBJECTIVE Since CCR6 is the only cognate receptor for CCL20, we investigated the importance of this chemokine-receptor axis against rodent malaria. METHODS CCR6-deficient (KO) and wild-type (WT) C57BL/6 mice were challenged with Plasmodium berghei (Pb) NK65 sporozoites or infected red blood cells (iRBCs). Liver parasitic cDNA, parasitemia and serum cytokine concentrations were respectively evaluated through reverse transcription-polymerase chain reaction (RT-PCR), staining thin-blood smears with Giemsa solution, and enzyme-linked immunosorbent assay (ELISA). FINDINGS Although the sporozoite challenges yielded similar liver parasitic cDNA and parasitemia, KO mice presented a prolonged survival than WT mice. After iRBC challenges, KO mice kept displaying higher survival rates as well as a decreased IL-12 p70 concentration in the serum than WT mice. CONCLUSION Our data suggest that malaria triggered by PbNK65 liver- or blood-stage forms elicit a pro-inflammatory environment that culminates with a decreased survival of infected C57BL/6 mice.
Collapse
Affiliation(s)
- Eduardo Lani Volpe da Silveira
- New York University School of Medicine, Department of Pathology, Michael Heidelberg Division of Immunology, New York, NY, United States of America
| | - Urvashi Rai
- New York University School of Medicine, Department of Pathology, Michael Heidelberg Division of Immunology, New York, NY, United States of America
| | - Vivian Bonezi
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Imunologia de Células B, São Paulo, SP, Brasil
| | - Carlos Rodrigo Zárate-Bladés
- Universidade Federal de Santa Catarina, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Imunorregulação, Florianópolis, SC, Brasil
| | - Carla Claser
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| |
Collapse
|
17
|
Ramjith J, Alkema M, Bradley J, Dicko A, Drakeley C, Stone W, Bousema T. Quantifying Reductions in Plasmodium falciparum Infectivity to Mosquitos: A Sample Size Calculator to Inform Clinical Trials on Transmission-Reducing Interventions. Front Immunol 2022; 13:899615. [PMID: 35720362 PMCID: PMC9205189 DOI: 10.3389/fimmu.2022.899615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria transmission depends on the presence of mature Plasmodium transmission stages (gametocytes) that may render blood-feeding Anopheles mosquitos infectious. Transmission-blocking antimalarial drugs and vaccines can prevent transmission by reducing gametocyte densities or infectivity to mosquitos. Mosquito infection outcomes are thereby informative biological endpoints of clinical trials with transmission blocking interventions. Nevertheless, trials are often primarily designed to determine intervention safety; transmission blocking efficacy is difficult to incorporate in sample size considerations due to variation in infection outcomes and considerable inter-study variation. Here, we use clinical trial data from studies in malaria naive and naturally exposed study participants to present an online sample size calculator tool. This sample size calculator allows studies to be powered to detect reductions in the proportion of infected mosquitos or infection burden (oocyst density) in mosquitos. The utility of this online tool is illustrated using trial data with transmission blocking malaria drugs.
Collapse
Affiliation(s)
- Jordache Ramjith
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manon Alkema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will Stone
- Medical Research Council (MRC) International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Radboud Institute for Molecular Life Sciences, Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Pascini TV, Jeong YJ, Huang W, Pala ZR, Sá JM, Wells MB, Kizito C, Sweeney B, Alves E Silva TL, Andrew DJ, Jacobs-Lorena M, Vega-Rodríguez J. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat Commun 2022; 13:2949. [PMID: 35618711 PMCID: PMC9135733 DOI: 10.1038/s41467-022-30606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.
Collapse
Affiliation(s)
- Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Zarna R Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Thiago L Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA.
| |
Collapse
|
19
|
Feng Y, Peng Y, Song X, Wen H, An Y, Tang H, Wang J. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat Microbiol 2022; 7:707-715. [PMID: 35437328 DOI: 10.1038/s41564-022-01099-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
The mosquito microbiota can influence host physiology and vector competence, but a detailed understanding of these processes is lacking. Here we found that the gut microbiota of Anopheles stephensi, a competent malaria vector, is involved in tryptophan metabolism and is responsible for the catabolism of the peritrophic matrix impairing tryptophan metabolites. Antibiotic elimination of the microbiota led to the accumulation of tryptophan and its metabolites-kynurenine, 3-hydroxykynurenine (3-HK) and xanthurenic acid. Of these metabolites, 3-HK impaired the structure of the peritrophic matrix and promoted Plasmodium berghei infection. Among the major gut microbiota members in A. stephensi, Pseudomonas alcaligenes catabolized 3-HK as revealed by whole-genome sequencing and LC-MS metabolic analysis. The genome of P. alcaligenes encodes kynureninase (KynU) that is responsible for the conversion of 3-HK to 3-hydroxyanthranilic acid. Mutation of KynU resulted in a P. alcaligenes strain that was unable to metabolize 3-HK and unable to protect the peritrophic matrix. Colonization of A. stephensi with KynU-mutated P. alcaligenes failed to protect mosquitoes against parasite infection as compared with mosquitoes colonized with wild-type P. alcaligenes. In summary, this study identifies an unexpected function of mosquito gut microbiota in controlling mosquito tryptophan metabolism, with important implications for vector competence.
Collapse
Affiliation(s)
- Yuebiao Feng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yeqing Peng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Xiumei Song
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Han Wen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
20
|
Rajakaruna H, O'Connor JH, Cockburn IA, Ganusov VV. Liver Environment-Imposed Constraints Diversify Movement Strategies of Liver-Localized CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1292-1304. [PMID: 35131868 PMCID: PMC9250760 DOI: 10.4049/jimmunol.2100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.
Collapse
Affiliation(s)
| | - James H O'Connor
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
- Australian National University Medical School, Acton, Australian Capital Territory, Australia
| | - Ian A Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN;
| |
Collapse
|
21
|
Zenkov VS, O’Connor JH, Cockburn IA, Ganusov VV. A New Method Based on the von Mises-Fisher Distribution Shows that a Minority of Liver-Localized CD8 T Cells Display Hard-To-Detect Attraction to Plasmodium-Infected Hepatocytes. FRONTIERS IN BIOINFORMATICS 2022; 1:770448. [PMID: 36303744 PMCID: PMC9580869 DOI: 10.3389/fbinf.2021.770448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a disease caused by Plasmodium parasites, resulting in over 200 million infections and 400,000 deaths every year. A critical step of malaria infection is when sporozoites, injected by mosquitoes, travel to the liver and form liver stages. Malaria vaccine candidates which induce large numbers of malaria-specific CD8 T cells in mice are able to eliminate all liver stages, preventing fulminant malaria. However, how CD8 T cells find all parasites in 48 h of the liver stage lifespan is not well understood. Using intravital microscopy of murine livers, we generated unique data on T cell search for malaria liver stages within a few hours after infection. To detect attraction of T cells to an infection site, we used the von Mises-Fisher distribution in 3D, similar to the 2D von Mises distribution previously used in ecology. Our results suggest that the vast majority (70-95%) of malaria-specific and non-specific liver-localized CD8 T cells did not display attraction towards the infection site, suggesting that the search for malaria liver stages occurs randomly. However, a small fraction (15-20%) displayed weak but detectable attraction towards parasites which already had been surrounded by several T cells. We found that speeds and turning angles correlated with attraction, suggesting that understanding mechanisms that determine the speed of T cell movement in the liver may improve the efficacy of future T cell-based vaccines. Stochastic simulations suggest that a small movement bias towards the parasite dramatically reduces the number of CD8 T cells needed to eliminate all malaria liver stages, but to detect such attraction by individual cells requires data from long imaging experiments which are not currently feasible. Importantly, as far as we know this is the first demonstration of how activated/memory CD8 T cells might search for the pathogen in nonlymphoid tissues a few hours after infection. We have also established a framework for how attraction of individual T cells towards a location in 3D can be rigorously evaluated.
Collapse
Affiliation(s)
- Viktor S. Zenkov
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, United States,*Correspondence: Viktor S. Zenkov, ; Vitaly V. Ganusov,
| | - James H. O’Connor
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia,The Australian National University Medical School, Australian National University, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States,Department of Mathematics, University of Tennessee, Knoxville, TN, United States,*Correspondence: Viktor S. Zenkov, ; Vitaly V. Ganusov,
| |
Collapse
|
22
|
Simões ML, Dong Y, Mlambo G, Dimopoulos G. C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites. PLoS Biol 2022; 20:e3001515. [PMID: 35025886 PMCID: PMC8791531 DOI: 10.1371/journal.pbio.3001515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/26/2022] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Anopheles gambiae melanization-based refractoriness to the human malaria parasite Plasmodium falciparum has rarely been observed in either laboratory or natural conditions, in contrast to the rodent model malaria parasite Plasmodium berghei that can become completely melanized by a TEP1 complement-like system-dependent mechanism. Multiple studies have shown that the rodent parasite evades this defense by recruiting the C-type lectins CTL4 and CTLMA2, while permissiveness to the human malaria parasite was not affected by partial depletion of these factors by RNAi silencing. Using CRISPR/Cas9-based CTL4 knockout, we show that A. gambiae can mount melanization-based refractoriness to the human malaria parasite, which is independent of the TEP1 complement-like system and the major anti-Plasmodium immune pathway Imd. Our study indicates a hierarchical specificity in the control of Plasmodium melanization and proves CTL4 as an essential host factor for P. falciparum transmission and one of the most potent mosquito-encoded malaria transmission-blocking targets. One way to block the spread of malaria is to modify the mosquito vectors so that they are unable to transmit the parasite. This study shows that the Anopheles mosquito can be engineered to block the human malaria parasite by melanizing it while in the mosquito’s midgut.
Collapse
Affiliation(s)
- Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cook AD, Roberts AJ, Atherton J, Tewari R, Topf M, Moores CA. Cryo-EM structure of a microtubule-bound parasite kinesin motor and implications for its mechanism and inhibition. J Biol Chem 2021; 297:101063. [PMID: 34375637 PMCID: PMC8526983 DOI: 10.1016/j.jbc.2021.101063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Plasmodium parasites cause malaria and are responsible annually for hundreds of thousands of deaths. Kinesins are a superfamily of microtubule-dependent ATPases that play important roles in the parasite replicative machinery, which is a potential target for antiparasite drugs. Kinesin-5, a molecular motor that cross-links microtubules, is an established antimitotic target in other disease contexts, but its mechanism in Plasmodium falciparum is unclear. Here, we characterized P. falciparum kinesin-5 (PfK5) using cryo-EM to determine the motor's nucleotide-dependent microtubule-bound structure and introduced 3D classification of individual motors into our microtubule image processing pipeline to maximize our structural insights. Despite sequence divergence in PfK5, the motor exhibits classical kinesin mechanochemistry, including ATP-induced subdomain rearrangement and cover neck bundle formation, consistent with its plus-ended directed motility. We also observed that an insertion in loop5 of the PfK5 motor domain creates a different environment in the well-characterized human kinesin-5 drug-binding site. Our data reveal the possibility for selective inhibition of PfK5 and can be used to inform future exploration of Plasmodium kinesins as antiparasite targets.
Collapse
Affiliation(s)
- Alexander D Cook
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom.
| |
Collapse
|
24
|
Beyer K, Kracht S, Kehrer J, Singer M, Klug D, Frischknecht F. Limited Plasmodium sporozoite gliding motility in the absence of TRAP family adhesins. Malar J 2021; 20:430. [PMID: 34717635 PMCID: PMC8557484 DOI: 10.1186/s12936-021-03960-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Background Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. Methods Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive–negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. Results The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. Conclusions The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03960-3.
Collapse
Affiliation(s)
- Konrad Beyer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Simon Kracht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,German Center for Infection Research, Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Straße 48, Planegg, 82152, Munich, Germany
| | - Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, 67000, Strasbourg, France
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,German Center for Infection Research, Partner Site Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
26
|
Guissou E, Waite JL, Jones M, Bell AS, Suh E, Yameogo KB, Djègbè N, Da DF, Hien DFDS, Yerbanga RS, Ouedraogo AG, Dabiré KR, Cohuet A, Thomas MB, Lefèvre T. A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors. Sci Rep 2021; 11:9344. [PMID: 33927245 PMCID: PMC8085177 DOI: 10.1038/s41598-021-88659-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France.
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.
- Université Nazi Boni, Bobo Dioulasso, Burkina Faso.
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- Green Mountain Antibodies, Inc. 1 Mill St. Suites 1-7, Burlington, VT, 05401, USA
| | - Matthew Jones
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew S Bell
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Nicaise Djègbè
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- York Environmental Sustainability Institute and Department of Biology, University of York, York, UK
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
27
|
Plasmodium oocysts respond with dormancy to crowding and nutritional stress. Sci Rep 2021; 11:3090. [PMID: 33542254 PMCID: PMC7862253 DOI: 10.1038/s41598-021-81574-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria parasites develop as oocysts in the mosquito for several days before they are able to infect a human host. During this time, mosquitoes take bloodmeals to replenish their nutrient and energy reserves needed for flight and reproduction. We hypothesized that these bloodmeals are critical for oocyst growth and that experimental infection protocols, typically involving a single bloodmeal at the time of infection, cause nutritional stress to the developing oocysts. Therefore, enumerating oocysts disregarding their growth and differentiation state may lead to erroneous conclusions about the efficacy of transmission blocking interventions. Here, we examine this hypothesis in Anopheles coluzzii mosquitoes infected with the human and rodent parasites Plasmodium falciparum and Plasmodium berghei, respectively. We show that oocyst growth and maturation rates decrease at late developmental stages as infection intensities increase; an effect exacerbated at very high infection intensities but fully restored with post infection bloodmeals. High infection intensities and starvation conditions reduce RNA Polymerase III activity in oocysts unless supplemental bloodmeals are provided. Our results suggest that oocysts respond to crowding and nutritional stress with a dormancy-like strategy, which urges the development of alternative methods to assess the efficacy of transmission blocking interventions.
Collapse
|
28
|
Villa M, Buysse M, Berthomieu A, Rivero A. The transmission-blocking effects of antimalarial drugs revisited: fitness costs and sporontocidal effects of artesunate and sulfadoxine-pyrimethamine. Int J Parasitol 2021; 51:279-289. [PMID: 33508331 DOI: 10.1016/j.ijpara.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Assays used to evaluate the transmission-blocking activity of antimalarial drugs are largely focused on their potential to inhibit or reduce the infectivity of gametocytes, the blood stages of the parasite that are responsible for the onward transmission to the mosquito vector. For this purpose, the drug is administered concomitantly with gametocyte-infected blood, and the results are evaluated as the percentage of reduction in the number of oocysts in the mosquito midgut. We report the results of a series of experiments that explore the transmission-blocking potential of two key antimalarial drugs, artesunate and sulfadoxine-pyrimethamine, when administered to mosquitoes already infected from a previous blood meal. For this purpose, uninfected mosquitoes and mosquitoes carrying a 6 day old Plasmodium relictum infection (early oocyst stages) were allowed to feed either on a drug-treated or an untreated host in a fully factorial experiment. This protocol allowed us to bypass the gametocyte stages and establish whether the drugs have a sporontocidal effect, i.e. whether they are able to arrest the ongoing development of oocysts and sporozoites, as would be the case when a mosquito takes a post-infection treated blood meal. In a separate experiment, we also explored whether a drug-treated blood meal impacted key life history traits of the mosquito relevant for transmission, and if this depended on their infection status. Our results showed that feeding on an artesunate- or sulfadoxine-pyrimethamine-treated hosts has no epidemiologically relevant effects on the fitness of infected or uninfected mosquitoes. In contrast, when infected mosquitoes fed on an sulfadoxine-pyrimethamine-treated host, we observed both a significant increase in the number of oocysts in the midgut, and a drastic decrease in both sporozoite prevalence (-30%) and burden (-80%) compared with the untreated controls. We discuss the potential mechanisms underlying these seemingly contradictory results and contend that, provided the results are translatable to human malaria, the potential epidemiological and evolutionary consequences of the current preventive use of sulfadoxine-pyrimethamine in malaria-endemic countries could be substantial.
Collapse
Affiliation(s)
- M Villa
- MIVEGEC (CNRS - IRD - Université de Montpellier), France.
| | - M Buysse
- MIVEGEC (CNRS - IRD - Université de Montpellier), France
| | - A Berthomieu
- MIVEGEC (CNRS - IRD - Université de Montpellier), France; CREES (Centre d'Écologie et Évolution de la Santé, Montpellier), 911 avenue Agropolis, 34394 Montpellier, France
| | - A Rivero
- MIVEGEC (CNRS - IRD - Université de Montpellier), France; CREES (Centre d'Écologie et Évolution de la Santé, Montpellier), 911 avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
29
|
Shaw WR, Holmdahl IE, Itoe MA, Werling K, Marquette M, Paton DG, Singh N, Buckee CO, Childs LM, Catteruccia F. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathog 2020; 16:e1009131. [PMID: 33382824 PMCID: PMC7774842 DOI: 10.1371/journal.ppat.1009131] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022] Open
Abstract
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.
Collapse
Affiliation(s)
- W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inga E. Holmdahl
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kristine Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Meghan Marquette
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren M. Childs
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Zeeshan M, Brady D, Stanway RR, Moores CA, Holder AA, Tewari R. Plasmodium berghei Kinesin-5 Associates With the Spindle Apparatus During Cell Division and Is Important for Efficient Production of Infectious Sporozoites. Front Cell Infect Microbiol 2020; 10:583812. [PMID: 33154955 PMCID: PMC7591757 DOI: 10.3389/fcimb.2020.583812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
Kinesin-5 motors play essential roles in spindle apparatus assembly during cell division, by generating forces to establish and maintain the spindle bipolarity essential for proper chromosome segregation. Kinesin-5 is largely conserved structurally and functionally in model eukaryotes, but its role is unknown in the Plasmodium parasite, an evolutionarily divergent organism with several atypical features of both mitotic and meiotic cell division. We have investigated the function and subcellular location of kinesin-5 during cell division throughout the Plasmodium berghei life cycle. Deletion of kinesin-5 had little visible effect at any proliferative stage except sporozoite production in oocysts, resulting in a significant decrease in the number of motile sporozoites in mosquito salivary glands, which were able to infect a new vertebrate host. Live-cell imaging showed kinesin-5-GFP located on the spindle and at spindle poles during both atypical mitosis and meiosis. Fixed-cell immunofluorescence assays revealed kinesin-5 co-localized with α-tubulin and centrin-2 and a partial overlap with kinetochore marker NDC80 during early blood stage schizogony. Dual-color live-cell imaging showed that kinesin-5 is closely associated with NDC80 during male gametogony, but not with kinesin-8B, a marker of the basal body and axonemes of the forming flagella. Treatment of gametocytes with microtubule-specific inhibitors confirmed kinesin-5 association with nuclear spindles and not cytoplasmic axonemal microtubules. Altogether, our results demonstrate that kinesin-5 is associated with the spindle apparatus, expressed in proliferating parasite stages, and important for efficient production of infectious sporozoites.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Carolyn A. Moores
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Graumans W, Jacobs E, Bousema T, Sinnis P. When Is a Plasmodium-Infected Mosquito an Infectious Mosquito? Trends Parasitol 2020; 36:705-716. [PMID: 32620501 DOI: 10.1016/j.pt.2020.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Plasmodium parasites experience significant bottlenecks as they transit through the mosquito and are transmitted to their mammalian host. Oocyst prevalence on mosquito midguts and sporozoite prevalence in salivary glands are nevertheless commonly used to confirm successful malaria transmission, assuming that these are reliable indicators of the mosquito's capacity to give rise to secondary infections. Here we discuss recent insights in sporogonic development and transmission bottlenecks for Plasmodium. We highlight critical gaps in our knowledge and frame their importance in understanding the human and mosquito reservoirs of infection. A better understanding of the events that lead to successful inoculation of infectious sporozoites by mosquitoes is critical to designing effective interventions to shrink the malaria map.
Collapse
Affiliation(s)
- Wouter Graumans
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Ella Jacobs
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Teun Bousema
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|