1
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
2
|
Xiao R, Liu J, Shi L, Zhang T, Liu J, Qiu S, Ruiz M, Dupuis J, Zhu L, Wang L, Wang Z, Hu Q. Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with greatly improved enzymatic activity and safety. J Nanobiotechnology 2024; 22:492. [PMID: 39160624 PMCID: PMC11331617 DOI: 10.1186/s12951-024-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of medicine, Université de Montréal, Montréal, Québec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
3
|
Zheng M, Zhu W, Gao F, Zhuo Y, Zheng M, Wu G, Feng C. Novel inhalation therapy in pulmonary fibrosis: principles, applications and prospects. J Nanobiotechnology 2024; 22:136. [PMID: 38553716 PMCID: PMC10981316 DOI: 10.1186/s12951-024-02407-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Pulmonary fibrosis (PF) threatens millions of people worldwide with its irreversible progression. Although the underlying pathogenesis of PF is not fully understood, there is evidence to suggest that the disease can be blocked at various stages. Inhalation therapy has been applied for lung diseases such as asthma and chronic obstructive pulmonary disease, and its application for treating PF is currently under consideration. New techniques in inhalation therapy, such as the application of microparticles and nanoparticles, traditional Chinese medicine monomers, gene therapy, inhibitors, or agonists of signaling pathways, extracellular vesicle interventions, and other specific drugs, are effective in treating PF. However, the safety and effectiveness of these therapeutic techniques are influenced by the properties of inhaled particles, biological and pathological barriers, and the type of inhalation device used. This review provides a comprehensive overview of the pharmacological, pharmaceutical, technical, preclinical, and clinical experimental aspects of novel inhalation therapy for treating PF and focus on therapeutic methods that significantly improve existing technologies or expand the range of drugs that can be administered via inhalation. Although inhalation therapy for PF has some limitations, the advantages are significant, and further research and innovation about new inhalation techniques and drugs are encouraged.
Collapse
Affiliation(s)
- Meiling Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Peking University People's Hospital, Beijing, 100032, China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, 215500, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yu Zhuo
- Department of Medical Oncology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100010, China
| | - Mo Zheng
- Department of Medical Oncology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100010, China
| | - Guanghao Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Cuiling Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China.
- Peking University People's Hospital, Beijing, 100032, China.
| |
Collapse
|
4
|
De Vos R, Hicks A, Lomax M, Mackenzie H, Fox L, Brown TP, Chauhan AJ. A systematic review of methods of scoring inhaler technique. Respir Med 2023; 219:107430. [PMID: 37890639 DOI: 10.1016/j.rmed.2023.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Many inhaler devices are currently used in clinical practice to deliver medication, with each inhaler device offering different benefits to overcome technique issues. Inhaler technique remains poor, contributing to reduced airway drug deposition and consequently poor disease control. Scoring inhaler technique has been used within research as an outcome measure of inhaler technique assessment, and this systematic review collates and evaluates these scoring methods. The review protocol was prospectively registered in PROSPERO (CRD42020218869). A total of 172 articles were screened with 77 included, and the results presented using narrative synthesis due to the heterogeneity of the study design and data. The most frequently used scoring method awarded one point per step in the inhaler technique checklist and was included in 59/77 (77%) of articles; however limited and varied guidance was provided for score interpretation. Other inhaler technique scoring methods included grading the final inhaler technique score, expressing the total score as a percentage/ratio, deducting points from the final score when errors were made, and weighting steps within the checklist depending on how crucial the step was. Vast heterogeneity in the number of steps and content in the inhaler technique checklists was observed across all device types (range 5-19 steps). Only 4/77 (5%) of the inhaler technique measures had undertaken fundamental steps required in the scale development process for use in real world practice. This review demonstrates the demand for a tool that measures inhaler technique and highlights the current unmet need for one that has undergone validation.
Collapse
Affiliation(s)
- Ruth De Vos
- Portsmouth Technology Trials Unit, Portsmouth Hospitals University NHS Trust, UK; University of Portsmouth, School of Sport, Health and Exercise Science, UK; Department of Respiratory Medicine, Portsmouth Hospitals University NHS Trust, UK.
| | - Alexander Hicks
- Portsmouth Technology Trials Unit, Portsmouth Hospitals University NHS Trust, UK; University of Portsmouth, UK; Department of Respiratory Medicine, Portsmouth Hospitals University NHS Trust, UK
| | - Mitch Lomax
- University of Portsmouth, School of Sport, Health and Exercise Science, UK
| | | | - Lauren Fox
- Portsmouth Technology Trials Unit, Portsmouth Hospitals University NHS Trust, UK; University of Portsmouth, UK
| | - Thomas P Brown
- Portsmouth Technology Trials Unit, Portsmouth Hospitals University NHS Trust, UK; Department of Respiratory Medicine, Portsmouth Hospitals University NHS Trust, UK
| | - A J Chauhan
- Portsmouth Technology Trials Unit, Portsmouth Hospitals University NHS Trust, UK; Department of Respiratory Medicine, Portsmouth Hospitals University NHS Trust, UK; University of Portsmouth, Faculty of Science and Health, UK
| |
Collapse
|
5
|
McCarthy SD, Tilbury MA, Masterson CH, MacLoughlin R, González HE, Laffey JG, Wall JG, O'Toole D. Aerosol Delivery of a Novel Recombinant Modified Superoxide Dismutase Protein Reduces Oxidant Injury and Attenuates Escherichia coli Induced Lung Injury in Rats. J Aerosol Med Pulm Drug Deliv 2023; 36:246-256. [PMID: 37638822 DOI: 10.1089/jamp.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
Collapse
Affiliation(s)
- Sean D McCarthy
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - Maura A Tilbury
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Claire H Masterson
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Héctor E González
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - John G Laffey
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - J Gerard Wall
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Flint R, Laucirica DR, Chan HK, Chang BJ, Stick SM, Kicic A. Stability Considerations for Bacteriophages in Liquid Formulations Designed for Nebulization. Cells 2023; 12:2057. [PMID: 37626867 PMCID: PMC10453214 DOI: 10.3390/cells12162057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary bacterial infections present a significant health risk to those with chronic respiratory diseases (CRDs) including cystic fibrosis (CF) and chronic-obstructive pulmonary disease (COPD). With the emergence of antimicrobial resistance (AMR), novel therapeutics are desperately needed to combat the emergence of resistant superbugs. Phage therapy is one possible alternative or adjunct to current antibiotics with activity against antimicrobial-resistant pathogens. How phages are administered will depend on the site of infection. For respiratory infections, a number of factors must be considered to deliver active phages to sites deep within the lung. The inhalation of phages via nebulization is a promising method of delivery to distal lung sites; however, it has been shown to result in a loss of phage viability. Although preliminary studies have assessed the use of nebulization for phage therapy both in vitro and in vivo, the factors that determine phage stability during nebulized delivery have yet to be characterized. This review summarizes current findings on the formulation and stability of liquid phage formulations designed for nebulization, providing insights to maximize phage stability and bactericidal activity via this delivery method.
Collapse
Affiliation(s)
- Rohan Flint
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia;
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
| | - Daniel R. Laucirica
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW 2050, Australia;
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (D.R.L.); (S.M.S.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- School of Population Health, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
7
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
8
|
Gracioso Martins AM, Snider DB, Popowski KD, Schuchard KG, Tenorio M, Akunuri S, Wee J, Peters KJ, Jansson A, Shirwaiker R, Cheng K, Freytes DO, Cruse GP. Low-dose intrapulmonary drug delivery device for studies on next-generation therapeutics in mice. J Control Release 2023; 359:287-301. [PMID: 37301267 PMCID: PMC10527740 DOI: 10.1016/j.jconrel.2023.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Although nebulizers have been developed for delivery of small molecules in human patients, no tunable device has been purpose-built for targeted delivery of modern large molecule and temperature-sensitive therapeutics to mice. Mice are used most of all species in biomedical research and have the highest number of induced models for human-relevant diseases and transgene models. Regulatory approval of large molecule therapeutics, including antibody therapies and modified RNA highlight the need for quantifiable dose delivery in mice to model human delivery, proof-of-concept studies, efficacy, and dose-response. To this end, we developed and characterized a tunable nebulization system composed of an ultrasonic transducer equipped with a mesh nebulizer fitted with a silicone restrictor plate modification to control the nebulization rate. We have identified the elements of design that influence the most critical factors to targeted delivery to the deep lungs of BALB/c mice. By comparing an in silico model of the mouse lung with experimental data, we were able to optimize and confirm the targeted delivery of over 99% of the initial volume to the deep portions of the mouse lung. The resulting nebulizer system provides targeted lung delivery efficiency far exceeding conventional nebulizers preventing waste of expensive biologics and large molecules during proof-of-concept and pre-clinical experiments involving mice. (Word Count =207).
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Karl G Schuchard
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
| | - Matias Tenorio
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Sandip Akunuri
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Junghyun Wee
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kara J Peters
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Anton Jansson
- Analytical Instrumentation Facility, Monteith Research Center, North Carolina State University, Raleigh, NC, USA
| | - Rohan Shirwaiker
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA; Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Donald O Freytes
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Bao LK, Khoa ND, Chi LTK, Anh NT. Prevalence and Factors Affecting Appropriate Inhaler Use in Elderly Patients with Chronic Obstructive Pulmonary Disease: A Prospective Study. J Clin Med 2023; 12:4420. [PMID: 37445455 PMCID: PMC10342446 DOI: 10.3390/jcm12134420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) mainly affects individuals aged 60 and older. The proper use of inhalers is crucial for managing COPD. This study aimed to evaluate the prevalence and factors affecting the appropriate use of inhalers among elderly patients with COPD. METHODS We enrolled 91 elderly patients with COPD admitted to the Department of Respiratory, University Medical Center HCMC between October 2020 and May 2021. Patients who were capable of using the inhaler would have their inhaler usage recorded through video footage. Two respiratory experts carefully analyzed 133 video-recorded demonstrations for evaluation purposes. RESULTS 18.7% of the patients demonstrated the correct inhaler technique. Pressurized metered dose inhaler (pMDI) and Turbuhaler had the lowest documented correct usage rates (11.9% and 10.0%, respectively). Two critical steps, namely "holding breath for about five seconds or as long as comfortable" and "breathing out gently," were commonly performed incorrectly when using pMDI, Respimat, Breezhaler, or Turbuhaler. Multivariable logistic regression analysis showed that lower mMRC scores (AOR = 5.3, CI 1.1-25.5, p = 0.037) and receiving inhaler instruction within the past three months (AOR = 5.2, CI 1.3-20.1, p = 0.017) were associated with increased odds of using the inhaler correctly. CONCLUSIONS Our study found that less than 20% of elderly patients with COPD use inhalers correctly. Common errors include inadequate breath-holding and gentle exhalation. mMRC scores and recent inhaler instruction were predictors of proper use. These findings can aid clinicians in improving inhaler management for elderly patients with COPD.
Collapse
Affiliation(s)
- Le Khac Bao
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, Ward 11, District 5, Ho Chi Minh City 700000, Vietnam; (L.K.B.); (N.D.K.); (L.T.K.C.)
| | - Nguyen Dang Khoa
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, Ward 11, District 5, Ho Chi Minh City 700000, Vietnam; (L.K.B.); (N.D.K.); (L.T.K.C.)
| | - Le Thi Kim Chi
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, Ward 11, District 5, Ho Chi Minh City 700000, Vietnam; (L.K.B.); (N.D.K.); (L.T.K.C.)
| | - Nguyen Tuan Anh
- Department of Respiratory, University Medical Center Ho Chi Minh City, 215 Hong Bang, Ward 11, District 5, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Clarà PC, Jerez FR, Ramírez JB, González CM. Deposition and Clinical Impact of Inhaled Particles in the Lung. Arch Bronconeumol 2023:S0300-2896(23)00027-3. [PMID: 36872211 DOI: 10.1016/j.arbres.2023.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Particles suspended in the air we breathe are deposited in the airways as a function of the properties of the particle itself (shape, size and hydration), inspiratory air flow, airway anatomy, breathing environment, and mucociliary clearance. The scientific study of the deposition of inhaled particles in the airways has been conducted using traditional mathematical models and imaging techniques with particle markers. In recent years, the integration of statistical and computer methods, giving rise to a new discipline called digital microfluidics, has led to significant advances. In routine clinical practice, these studies are of great use for optimizing inhaler devices in line with particular characteristics of the drug to be inhaled and the pathology of the patient.
Collapse
Affiliation(s)
- Pere Casan Clarà
- Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain.
| | - Francisco Rodríguez Jerez
- Hospital Universitario Clínico San Cecilio, Servicio de Neumología, Parque Tecnológico de la Salud, Granada, Spain
| | - José Belda Ramírez
- Fundación Fisabio, Hospital Arnau de Vilanova (Valencia), Facultad de Medicina de la Universidad Católica de Valencia, Spain
| | - Cristina Martínez González
- Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| |
Collapse
|
11
|
Maracaja L, Khanna AK, Murphy SV, Maracaja DL, Lane MR, Khoury O, Tan J, Damuka N, Crawford FF, Bottoms JA, Miller MD, Kaczka DW, Jordam JE, Sai KKS. Positron Emission Tomography-Computed Tomography Imaging of Selective Lobar Delivery of Stem Cells in Ex Vivo Lung Model of Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2023; 36:20-26. [PMID: 36594924 PMCID: PMC9942179 DOI: 10.1089/jamp.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using ex vivo lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes. Methods: We used radiolabeled cells and positron emission tomography-computed tomography (PET-CT) imaging to demonstrate the feasibility of high-yield cell delivery to a specifically targeted lobe. This study proposes an alternative delivery method of live cells labeled with radioactive isotope into the lung parenchyma and tracks the cell delivery using PET-CT imaging. The technique combines selective lobar isolation and lobar infusion to carry large particles distal to the trachea, subtending bronchial segments and reaching alveoli in targeted regions. Results: The solution with cells and carrier achieved a complete and homogeneous lobar distribution. An increase in tissue density was shown on the computed tomography (CT) scan, and the PET-CT imaging demonstrated retention of the activity at central, peripheral lung parenchyma, and pleural surface. The increase in CT density and metabolic activity of the isotope was restricted to the desired lobe only without leak to other lobes. Conclusion: The selective lobe delivery is targeted and imaging-guided by bronchoscopy and CT to a specific diseased lobe during mechanical ventilation. The feasibility of high-yield cell delivery demonstrated in this study will lead to the development of potential novel therapies that contribute to lung health.
Collapse
Affiliation(s)
- Luiz Maracaja
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Address correspondence to: Luiz Maracaja, MD, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157-0001, USA
| | - Ashish K. Khanna
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Danielle L.V. Maracaja
- Department of Pathology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Magan R. Lane
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Oula Khoury
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Josh Tan
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Naresh Damuka
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Freda F. Crawford
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph A. Bottoms
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mack D. Miller
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Kaczka
- Department of Anesthesia, The University of Iowa Hospital and Clinics, The University of Iowa, Iowa City, Iowa, USA
| | - James Eric Jordam
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Han Y, Zhu Y, Youngblood HA, Almuntashiri S, Jones TW, Wang X, Liu Y, Somanath PR, Zhang D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J Control Release 2022; 352:556-569. [PMID: 36341934 DOI: 10.1016/j.jconrel.2022.10.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Small extracellular vesicles (sEVs) are a group of cell-secreted nanovesicles with a diameter up to 200 nm. A growing number of studies have indicated that sEVs can reflect the pathogenesis of human diseases and mediate intercellular communications. Recently, sEV research has drastically increased due to their drug delivery property. However, a comprehensive method of delivering exogenous small RNAs-loaded sEVs through nebulization has not been reported. The methodology is complicated by uncertainty regarding the integrity of sEVs after nebulization, the delivery efficiency of aerosolized sEVs, their deposition in the lungs/cells, etc. This study demonstrates that sEVs can be delivered to murine lungs through a vibrating mesh nebulizer (VMN). In vivo sEV tracking indicated that inhaled sEVs were distributed exclusively in the lung and localized primarily in lung macrophages and airway epithelial cells. Additionally, sEVs loaded with small RNAs were successfully delivered into the lungs. The administration of siMyd88-loaded sEVs through inhalation reduced lipopolysaccharide (LPS)-induced lung injury in mice, supporting an application of this nebulization methodology to deliver functional small RNAs. Collectively, our study proposes a novel method of sEVs-mediated small RNA delivery into the murine lung through nebulization and presents a potential sEV-based therapeutic strategy for human lung diseases.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Hannah A Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
13
|
Abstract
BACKGROUND Inhaled antibiotics are commonly used to treat persistent airway infection with Pseudomonas aeruginosa that contributes to lung damage in people with cystic fibrosis. Current guidelines recommend inhaled tobramycin for individuals with cystic fibrosis and persistent Pseudomonas aeruginosa infection who are aged six years or older. The aim is to reduce bacterial load in the lungs so as to reduce inflammation and deterioration of lung function. This is an update of a previously published review. OBJECTIVES To evaluate the effects of long-term inhaled antibiotic therapy in people with cystic fibrosis on clinical outcomes (lung function, frequency of exacerbations and nutrition), quality of life and adverse events (including drug-sensitivity reactions and survival). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials registries. Date of last search: 28 June 2022. SELECTION CRITERIA We selected trials where people with cystic fibrosis received inhaled anti-pseudomonal antibiotic treatment for at least three months, treatment allocation was randomised or quasi-randomised, and there was a control group (either placebo, no placebo or another inhaled antibiotic). DATA COLLECTION AND ANALYSIS Two authors independently selected trials, judged the risk of bias, extracted data from these trials and judged the certainty of the evidence using the GRADE system. MAIN RESULTS The searches identified 410 citations to 125 trials; 18 trials (3042 participants aged between five and 45 years) met the inclusion criteria. Limited data were available for meta-analyses due to the variability of trial design and reporting of results. A total of 11 trials (1130 participants) compared an inhaled antibiotic to placebo or usual treatment for a duration between three and 33 months. Five trials (1255 participants) compared different antibiotics, two trials (585 participants) compared different regimens of tobramycin and one trial (90 participants) compared intermittent tobramycin with continuous tobramycin alternating with aztreonam. One trial (18 participants) compared an antibiotic to placebo and also to a different antibiotic and so fell into both groups. The most commonly studied antibiotic was tobramycin which was studied in 12 trials. Inhaled antibiotics compared to placebo We found that inhaled antibiotics may improve lung function measured in a variety of ways (4 trials, 814 participants). Compared to placebo, inhaled antibiotics may also reduce the frequency of exacerbations (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.47 to 0.93; 3 trials, 946 participants; low-certainty evidence). Inhaled antibiotics may lead to fewer days off school or work (quality of life measure) (mean difference (MD) -5.30 days, 95% CI -8.59 to -2.01; 1 trial, 245 participants; low-certainty evidence). There were insufficient data for us to be able to report an effect on nutritional outcomes and there was no effect on survival. There was no effect on antibiotic resistance seen in the two trials that were included in meta-analyses. We are uncertain of the effect of the intervention on adverse events (very low-certainty evidence), but tinnitus and voice alteration were the only events occurring more often in the inhaled antibiotics group. The overall certainty of evidence was deemed to be low for most outcomes due to risk of bias within the trials and imprecision due to low event rates. Different antibiotics or regimens compared Of the eight trials comparing different inhaled antibiotics or different antibiotic regimens, there was only one trial for each unique comparison. We found no differences between groups for any outcomes except for the following. Aztreonam lysine for inhalation probably improved forced expiratory volume at one second (FEV1) % predicted compared to tobramycin (MD -3.40%, 95% CI -6.63 to -0.17; 1 trial, 273 participants; moderate-certainty evidence). However, the method of defining the endpoint was different to the remaining trials and the participants were exposed to tobramycin for a long period making interpretation of the results problematic. We found no differences in any measure of lung function in the remaining comparisons. Trials measured pulmonary exacerbations in different ways and showed no differences between groups except for aztreonam lysine probably leading to fewer people needing treatment with additional antibiotics than with tobramycin (RR 0.66, 95% CI 0.51 to 0.86; 1 trial, 273 participants; moderate-certainty evidence); and there were fewer hospitalisations due to respiratory exacerbations with levofloxacin compared to tobramycin (RR 0.62, 95% CI 0.40 to 0.98; 1 trial, 282 participants; high-certainty evidence). Important treatment-related adverse events were not very common across comparisons, but were reported less often in the tobramycin group compared to both aztreonam lysine and colistimethate. We found the certainty of evidence for these comparisons to be directly related to the risk of bias within the individual trials and varied from low to high. AUTHORS' CONCLUSIONS Long-term treatment with inhaled anti-pseudomonal antibiotics probably improves lung function and reduces exacerbation rates, but pooled estimates of the level of benefit were very limited. The best evidence available is for inhaled tobramycin. More evidence from trials measuring similar outcomes in the same way is needed to determine a better measure of benefit. Longer-term trials are needed to look at the effect of inhaled antibiotics on quality of life, survival and nutritional outcomes.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022; 10:6077-6115. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exogenously delivered mRNA-based drugs are emerging as a new class of therapeutics with the potential to treat several diseases. Over the last decade, advancements in the design of non-viral delivery tools have enabled mRNA to be evaluated for several therapeutic purposes including protein replacement therapies, gene editing, and vaccines. However, in vivo delivery of mRNA to targeted organs and cells remains a critical challenge. Evaluation of the biodistribution of mRNA vehicles is of utmost importance for the development of effective pharmaceutical candidates. In this review, we discuss the recent advances in the design of nanoparticles loaded with mRNA and extrapolate the key factors influencing their biodistribution following administration. Finally, we highlight the latest developments in the preclinical and clinical translation of mRNA therapeutics for protein supplementation therapy.
Collapse
Affiliation(s)
- Matthias Zadory
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Lopez
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Samuel Babity
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Simon-Pierre Gravel
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
15
|
Bralewska K, Rogula-Kozłowska W, Mucha D, Badyda AJ, Kostrzon M, Bralewski A, Biedugnis S. Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:826. [PMID: 35055648 PMCID: PMC8775433 DOI: 10.3390/ijerph19020826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/25/2023]
Abstract
This study aimed to evaluate the mass concentration of size-resolved (PM1, PM2.5, PM4, PM10, PM100) particulate matter (PM) in the Wieliczka Salt Mine located in southern Poland, compare them with the concentrations of the same PM fractions in the atmospheric air, and estimate the dose of dry salt aerosol inhaled by the mine visitors. Measurements were conducted for 2 h a day, simultaneously inside (tourist route, passage to the health resort, health resort) and outside the mine (duty-room), for three days in the summer of 2017 using DustTrak DRX devices (optical method). The highest average PM concentrations were recorded on the tourist route (54-81 µg/m3), while the lowest was in the passage to the health resort (49-62 µg/m3). At the same time, the mean outdoor PM concentrations were 14-20 µg/m3. Fine particles constituting the majority of PM mass (68-80%) in the mine originated from internal sources, while the presence of coarse particles was associated with tourist traffic. High PM deposition factors in the respiratory tract of children and adults estimated for particular mine chambers (0.58-0.70), the predominance of respirable particles in PM mass, and the high content of NaCl in PM composition indicate high health benefits for mine visitors.
Collapse
Affiliation(s)
- Karolina Bralewska
- Safety Engineering Institute, The Main School of Fire Service, Slowackiego Street, 52/54, 01-629 Warsaw, Poland; (W.R.-K.); (S.B.)
| | - Wioletta Rogula-Kozłowska
- Safety Engineering Institute, The Main School of Fire Service, Slowackiego Street, 52/54, 01-629 Warsaw, Poland; (W.R.-K.); (S.B.)
| | - Dominika Mucha
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Street, 20, 00-653 Warsaw, Poland; (D.M.); (A.J.B.)
| | - Artur Jerzy Badyda
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Street, 20, 00-653 Warsaw, Poland; (D.M.); (A.J.B.)
| | - Magdalena Kostrzon
- Wieliczka Salt Mine Health Resort, Park Kingi Street, 1, 32-020 Wieliczka, Poland;
| | - Adrian Bralewski
- Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, Slowackiego Street, 52/54, 01-629 Warsaw, Poland;
| | - Stanisław Biedugnis
- Safety Engineering Institute, The Main School of Fire Service, Slowackiego Street, 52/54, 01-629 Warsaw, Poland; (W.R.-K.); (S.B.)
| |
Collapse
|
16
|
Design and Characterization of Atorvastatin Dry Powder Formulation as a potential Lung Cancer Treatment. Saudi Pharm J 2022; 29:1449-1457. [PMID: 35002383 PMCID: PMC8720807 DOI: 10.1016/j.jsps.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer death. Many studies have shown the beneficial effects of Atorvastatin in decreasing the mortality risk and improving survival among patients with lung cancer. This research paper focuses on improving AVT cytotoxic activity and cellular uptake by developing mannitol microcarriers as a promising drug delivery system for lung cancer treatment and, studying the impact of improving inhalation deposition on the delivery and Dry Powder formulations efficiency. The AVT loaded mannitol (AM) microparticles (AVT-AM) formulation was prepared by spray drying and characterized for its physicochemical properties and aerodynamic deposition. The results revealed that the AVT-AM formulation has good flow properties and aerosol deposition with a particle size of 3418 nm ± 26.86. The formulation was also assessed in vitro for cytotoxicity effects (proliferation, apoptosis, and cell cycle progression) on A549 human lung adenocarcinoma. Compared with free AVT, the AVT-AM formulation has significantly higher cellular uptake and anti-cancer properties by disrupting cell cycle progression via either apoptosis or cell cycle arrest in the G2/M phase. This study shows that AVT loaded mannitol microcarriers may provide a potentially effective and sustained pulmonary drug delivery for lung cancer treatment.
Collapse
|
17
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
18
|
Capstick TG, Azeez NF, Deakin G, Goddard A, Goddard D, Clifton IJ. Ward based inhaler technique service reduces exacerbations of asthma and COPD. Respir Med 2021; 187:106583. [PMID: 34481305 DOI: 10.1016/j.rmed.2021.106583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The management of asthma and COPD is largely dependent on patients being able to use their inhaled medication correctly, but poor inhaler technique continues to be a recurring theme in studies and clinical practice. This is associated with poor disease control, increased risk of exacerbations and hospital admissions, and so there is a need to redesign services for patients to optimise their medicines use. METHODS A novel ward-based dedicated inhaler technique service was developed, and pharmacy support workers trained to provide this, focusing on optimising inhaler technique using a checklist and recommending protocol-guided inhaler device switches. Inpatients on adult respiratory wards with a diagnosis of exacerbation of asthma or COPD consented to receive this service, and the impact on exacerbations and hospital admissions were compared in the 6-months before and after the intervention. RESULTS 266 adults (74 asthma, 188 COPD, and four asthma-COPD overlap) received the inhaler technique service. Six-month exacerbation and hospital admission data were available for 184 subjects. Optimising inhaler technique achieved a significant reduction in the combined asthma and COPD annualised rate of moderate-to-severe exacerbations (Rate Ratio [RR] 0.75, p < 0.05) and annualised rate of hospital admissions (RR 0.57, p < 0.0005). Improvements were also observed in future length of stay (- 1.6 days) and the average cost of admission (-£748). CONCLUSIONS This novel inhaler technique service produced a significant reduction in the rate of moderate-to-severe exacerbations of asthma and COPD, and a reduction in the rate hospital admissions, length of stay and average cost of admission.
Collapse
Affiliation(s)
- Toby Gd Capstick
- Medicines Management and Pharmacy Services, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK.
| | - Nooria F Azeez
- Medicines Management and Pharmacy Services, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Gary Deakin
- Medicines Management and Pharmacy Services, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Ashleigh Goddard
- Medicines Management and Pharmacy Services, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Dawn Goddard
- Medicines Management and Pharmacy Services, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
| | - Ian J Clifton
- Leeds Teaching Hospitals NHS Trust, Department of Respiratory Medicine, Leeds, West Yorkshire, UK
| |
Collapse
|
19
|
Wang Z, Liu Z, Mei J, Xu S, Liu Y. The next generation therapy for lung cancer: taking medicine by inhalation. NANOTECHNOLOGY 2021; 32:392002. [PMID: 34167099 DOI: 10.1088/1361-6528/ac0e68] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The inhalation administration method which has been applied to treat respiratory diseases has the characteristics of painlessness high efficiency and non-invasiveness, and the drug can also be targeted at the organ level first to reduce the loss of drug during circulation. Therefore, delivering medicine by inhalation administration has brought a new turnaround for lung cancer treatment. Herein from the perspective of combining traditional drug delivery design strategies with new drug delivery methods how to improve lung targeting efficiency and treatment efficacy is discussed. We also discuss the comparative advantages of inhaled drug delivery and traditional administration in the treatment of lung cancer such as intravenous injection. And the researches are divided into different forms of inhalation administration studied in the treatment of lung cancer in recent years, such as single-component loaded and multi-component loaded systems and their advantages. Finally, the obstacles of the application of carrier materials for inhalation administration and the prospects for improvement of lung cancer treatment methods are presented.
Collapse
Affiliation(s)
- Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zifan Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- GBA National Institute for Nanotechnology Innovation, Guangdong 510700, People's Republic of China
| |
Collapse
|
20
|
Ding N, Zhang W, Wang Z, Bai C, He Q, Dong Y, Feng X, Zhang J, Gao S. Prevalence and Associated Factors of Suboptimal Daily Peak Inspiratory Flow and Technique Misuse of Dry Powder Inhalers in Outpatients with Stable Chronic Airway Diseases. Int J Chron Obstruct Pulmon Dis 2021; 16:1913-1924. [PMID: 34188467 PMCID: PMC8236256 DOI: 10.2147/copd.s311178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The present study aimed to investigate the prevalence and associated factors of suboptimal daily peak inspiratory flow (PIF) and technical misuse of three commonly used dry powder inhalers (DPIs) in outpatients with stable chronic airway diseases. Patients and Methods Included in this study were 85 outpatients with stable asthma, chronic obstructive pulmonary disease (COPD), or asthma-COPD Overlap (ACO) and had previously used any of Turbuhaler® (TUR), Diskus® (DIS), HandiHaler® (HAN) between December 2018 and September 2019. The patient’s daily PIF against the resistance of a specific DPI and operation technique was investigated by two pharmacists by using In-Check DIAL G16 and a checklist. Results Of the 85 patients, the proportion of patients with a suboptimal daily PIF and technical misuse was 38.8% and 65.9%, respectively. In logistic regression, we observed that the factors that increase the risk for suboptimal daily PIF were age (OR=1.06) and combination with respiratory diseases (OR = 6.59). The factor that decreases the risk for misuse was the higher education level (OR =0.63). Conclusion Even if patients have received training at the time of initial prescription, the standardization of the use of DPIs by patients in our center was still unoptimistic. Age and combined with respiratory diseases were associated with suboptimal PIF. Higher education level decreased the incidence of technique misuse.
Collapse
Affiliation(s)
- Nan Ding
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| | - Qian He
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, People's Republic of China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| | - Xiumin Feng
- Department of Respiratory and Critical Care Medicine, Changji Branch of First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Jingxi Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Changhai Hospital), Shanghai, People's Republic of China
| |
Collapse
|
21
|
Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm 2021; 163:198-211. [PMID: 33852968 DOI: 10.1016/j.ejpb.2021.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Oral inhalation is the preferred route for delivery of small molecules to the lungs, because high tissue levels can be achieved shortly after application. Biologics are mainly administered by intravenous injection but inhalation might be beneficial for the treatment of lung diseases (e.g. asthma). This review discusses biological and pharmaceutical challenges for delivery of biologics and describes promising candidates. Insufficient stability of the proteins during aerosolization and the biological environment of the lung are the main obstacles for pulmonary delivery of biologics. Novel nebulizers will improve delivery by inducing less shear stress and administration as dry powder appears suitable for delivery of biologics. Other promising strategies include pegylation and development of antibody fragments, while carrier-encapsulated systems currently play no major role in pulmonary delivery of biologics for lung disease. While development of various biologics has been halted or has shown little effects, AIR DNase, alpha1-proteinase inhibitor, recombinant neuraminidase, and heparin are currently being evaluated in phase III trials. Several biologics are being tested for the treatment of coronavirus disease (COVID)-19, and it is expected that these trials will lead to improvements in pulmonary delivery of biologics.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Austria
| |
Collapse
|
22
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
23
|
Harb HS, Saeed H, Madney YM, Abdelrahman MA, Osama H, Esquinas AM, Abdelrahim ME. Update efficacy of aerosol therapy with noninvasive ventilator approach (non-invasive ventilation and nasal high flow). J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Yao W, Dal Porto R, Gallagher DL, Dietrich AM. Human exposure to particles at the air-water interface: Influence of water quality on indoor air quality from use of ultrasonic humidifiers. ENVIRONMENT INTERNATIONAL 2020; 143:105902. [PMID: 32623220 DOI: 10.1016/j.envint.2020.105902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
Ultrasonic humidifiers provide indoor relief to symptoms caused by dry air and produce aerosols containing both water and minerals that are present in the water that fills the humidifier. This study investigated the spatial distributions, concentrations, and metal and mineral composition of aerosols emitted when an ultrasonic humidifier was filled with deionized water (DI), low mineral tap water (LL), high total dissolved solids (TDS)/high hardness water (HH), and high TDS/low hardness water (HL). Aerosol/particle sizes and counts were obtained at six horizontal distances in both the plume and near floor for each water quality. Results are that water quality significantly affects particle size distributions which become uniform after 0.9 m from the humidifier outlet, and are independent of vertical distance from the humidifier. The mean count median diameters were 64 nm for DI, 129 nm for LL, 234 nm for HH, and 260 nm for HL; the particle counts and total mineral solids concentrations were 2,194 #/cm3 (16 µg/m3) for DI, 21,070 #/cm3 (113 µg/m3) for LL, 38,353 #/cm3 (438 µg/m3) for HH, and 43,880 #/cm3 (521 µg/m3) for HL. The µg/m3 values for LL, HH, and HL exceeded PM2.5 ambient air standards. Model predictions are that the deposition mass in the human respiratory system from inhaling particles emitted from HH and HL water exceed 135 µg for a 1 to 3-month old child and 600 µg for an adult over an 8-hr period. Mineral water quality significantly affects the distribution and concentration of emitted and inhaled indoor air particles. Consumers may unknowingly be degrading their indoor air quality when using tap water of acceptable drinking water quality as humidifier fill water.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Rachael Dal Porto
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA; Department of Civil Engineering and Department of Chemistry, California State University, Sacramento, Sacramento, CA, USA
| | - Daniel L Gallagher
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Andrea M Dietrich
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Sahakijpijarn S, Moon C, Ma X, Su Y, Koleng JJ, Dolocan A, Williams RO. Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. Int J Pharm 2020; 586:119490. [PMID: 32603840 DOI: 10.1016/j.ijpharm.2020.119490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/09/2023]
Abstract
We investigated the feasibility of preparing high-potency tacrolimus dry powder for inhalation using thin film freezing (TFF). We found that using ultra-rapid freezing can increase drug loading up to 95% while maintaining good aerosol performance. Drug loading affected the specific surface area and moisture sorption of TFF formulations, but it did not affect the chemical stability, physical stability, and dissolution of tacrolimus. Tacrolimus remained amorphous after storage at 40 °C/75% RH, and 25 °C/60% RH for up to 6 months. Lactose functioned as a bulking agent, and it had little to no effect as a stabilizer for amorphous tacrolimus due to a lack of interaction between the drug and excipient. Additionally, the aerosol performance of TFF tacrolimus/lactose (95/5) did not significantly change after six months of storage at 25 °C/60% RH. For processing parameters, the solids content and the processing temperature did not affect the aerosol performance of tacrolimus. Furthermore, both low- and high-resistance RS01 showed optimal and consistent aerosol performance over the 1-4 kPa pressure drop range. In conclusion, TFF is a suitable technology for producing inhalable powder that contain high drug loading and have less flow rate dependence.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA; TFF Pharmaceuticals, Inc., Austin, TX, USA
| | - Xiangyu Ma
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Andrei Dolocan
- The University of Texas at Austin, Texas Materials Institute, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
26
|
Fernández-Tena A, Barrio-Perotti R, Blanco-Marigorta E, Pandal-Blanco A. In silico prototype of a human lung with a single airway to predict particle deposition. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3339. [PMID: 32237044 DOI: 10.1002/cnm.3339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Experimental analyses of the flow of drug particles inside the human lung usually require that the patient be exposed to radiation and also of expensive equipment that often lack of enough accuracy. Numerical calculations based on CFD (computational fluid dynamics) have been proven to be a valuable tool to analyze flows in diverse applications. METHODS The complexity of the human lung disallows running calculations on complete lung models due to the large number of cells that would be required. In this work, using a proprietary methodology, particle deposition in the lung is simulated by reducing its multiple branches to a single path. RESULTS The tested flow rates were 18, 30, and 75 L min-1 , which are equivalent to different respiratory rates varying from light activity to heavy exercise. Most of the particles are accumulated in the upper airways, mainly at the mouth and also at the confluence of the larynx and the trachea (epiglottis), while the remaining particles travel across the lung. The reported procedure allowed simulating the operation of the entire lung by means of a single individual path. CONCLUSIONS The obtained calculations are in good agreement with the experimental results found in the technical literature, thus showing that the model can provide a realistic description of the lung operation, while avoiding high computational costs. Moreover, the calculations suggest that particle sizes above 15 μm and inspiratory flows higher than 30 L min-1 must be avoided in order to allow drug particles to reach the lower airways.
Collapse
Affiliation(s)
- Ana Fernández-Tena
- Facultad de Enfermería, Universidad de Oviedo. Instituto Nacional de Silicosis and GRUBIPU-ISPA, Asturias, Spain
| | - Raúl Barrio-Perotti
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Asturias, Spain
| | | | - Adrián Pandal-Blanco
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Asturias, Spain
| |
Collapse
|
27
|
Gamal A, Saeed H, Sayed OM, Kharshoum RM, Salem HF. Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers. AAPS PharmSciTech 2020; 21:156. [PMID: 32449087 DOI: 10.1208/s12249-020-01705-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
Proniosomes are free-flowing systems with coating carriers, which developed as a method for improving the drug flow and pulmonary delivery. Extensive research on proniosomes was done to enhance the dry powder inhalers (DPI)'s inhalation performance. This research aimed at studying the impact of lactose-mannitol mixture additives on the proniosome's physicochemical properties as a method for improving the inhalation efficiency of DPI. Vismodegib has been employed as a compound model. Box-Behnken design has been employed to prepare different proniosomes formulae by incorporating various (A) span 60 concentrations, (B) lactose concentrations and (C) mannitol: total carrier mixture. The measured responses were vesicle size (R1), %release (R2), Carr's index (R3) and %recovery (R4). The results displayed that R1 and R4 were significantly antagonistic to C and significantly synergistic to both A and B while R2 and R3 were significantly synergistic to C and significantly antagonistic to both A and B. The optimal formula was selected for its aerodynamic behaviour, cytotoxic activity and bioavailability assessment. The optimal formula resulted in better Vismodegib lung deposition, cytotoxic activity and relative bioavailability. This novel formula could be a promising carrier for sustained delivery of drugs via the pulmonary route.
Collapse
|
28
|
Euler-Lagrange Prediction of Diesel-Exhaust Polydisperse Particle Transport and Deposition in Lung: Anatomy and Turbulence Effects. Sci Rep 2019; 9:12423. [PMID: 31455817 PMCID: PMC6711981 DOI: 10.1038/s41598-019-48753-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 11/08/2022] Open
Abstract
In clinical assessments, the correlation between atmospheric air pollution and respiratory damage is highly complicated. Epidemiological studies show that atmospheric air pollution is largely responsible for the global proliferation of pulmonary disease. This is particularly significant, since most Computational Fluid Dynamics (CFD) studies to date have used monodisperse particles, which may not accurately reflect realistic inhalation patterns, since atmospheric aerosols are mostly polydisperse. The aim of this study is to investigate the anatomy and turbulent effects on polydisperse particle transport and deposition (TD) in the upper airways. The Euler-Lagrange approach is used for polydisperse particle TD prediction in both laminar and turbulent conditions. Various anatomical models are adopted to investigate the polydisperse particle TD under different flow conditions. Rossin-Rammler diameter distribution is used for the distribution of the initial particle diameter. The numerical results illustrate that airflow rate distribution at the right lung of a realistic model is higher than a non-realistic model. The CFD study also shows that turbulence effects on deposition are higher for larger diameter particles than with particles of smaller diameter. A significant amount of polydisperse particles are also shown to be deposited at the tracheal wall for CT-based model, whereas particles are mostly deposited at the carinal angle for the non-realistic model. A comprehensive, polydisperse particle TD analysis would enhance understanding of the realistic deposition pattern and decrease unwanted therapeutic aerosol deposition at the extrathoracic airways.
Collapse
|
29
|
Hosseini S, Golshahi L. An in vitro evaluation of importance of airway anatomy in sub-regional nasal and paranasal drug delivery with nebulizers using three different anatomical nasal airway replicas of 2-, 5- and 50-Year old human subjects. Int J Pharm 2019; 563:426-436. [DOI: 10.1016/j.ijpharm.2019.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 11/30/2022]
|
30
|
Nakach M, Authelin JR, Corsini C, Gianola G. Jet milling industrialization of sticky active pharmaceutical ingredient using quality-by-design approach. Pharm Dev Technol 2019; 24:849-863. [PMID: 30998419 DOI: 10.1080/10837450.2019.1608449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Jet milling is frequently used in pharmaceutical industry to achieve different objectives. It can be used as enabling technology to overcome poor water solubility linked to hydrophobic active of pharmaceutical ingredient (API) by reducing the particle size and therefore increasing the dissolution rate. Alternatively, jet milling can be used either to enhance blending efficiency of API with excipient in case of formulation at low dosage strength or to achieve the required particle size for inhalation therapy. In this study, development of commercial manufacturing process of sticky API and its industrialization are described. The methodology used is based on quality-by-design approach to deliver safe, effective and robust manufacturing process. The study showed that the specific energy is a key factor that drives particle size during jet milling and the scale-up from lab to industrial scale. After understanding the process, a design space was built where different zones such as operating point, operating space (where the product is compliant to specification despite variability of process parameters), and the knowledge space were outlined. Finally, an industrial installation was proposed to deliver product with high productivity yield, compliant with safety regulation, and cleanable in place.
Collapse
|
31
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
32
|
Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes. Pharmaceutics 2019; 11:pharmaceutics11010019. [PMID: 30621300 PMCID: PMC6358822 DOI: 10.3390/pharmaceutics11010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022] Open
Abstract
The potential of non-invasive ventilation procedures and new minimally invasive techniques has resulted in the research of alternative approaches as the aerosolization for the treatment of respiratory distress syndrome (RDS). The aim of this work was to design two nebulizer prototypes and to evaluate them studying the particle size distribution of the inhaled droplets generated with distilled water and two perfluorocarbons (PFCs). Different experiments were performed with driving pressures of 1–3 bar for each compound. An Aerodynamic Particle Sizer was used to measure the aerodynamic diameter (Da), the mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD). The results showed that both prototypes produced heterodisperse aerosols with Da mean values in all cases below 5 µm. The initial experiments with distilled water showed MMAD values lower than 9 µm and up to 15 µm with prototype 1 and prototype 2, respectively. Regarding the PFCs, relatively uniform MMAD values close to 12 µm were achieved. The air delivery with outer lumens of prototype 1 presented more suitable mass distribution for the generation and delivery of a uniform aerosol than the two half-circular ring geometry proposed in the prototype 2.
Collapse
|
33
|
Errors in Aerosol Inhaler Use and Their Effects on Maternal and Fetal Outcomes among Pregnant Asthmatic Women (Subanalysis from QAKCOP Study). Can Respir J 2018; 2018:7649629. [PMID: 30662579 PMCID: PMC6312601 DOI: 10.1155/2018/7649629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
Data on inhaler technique and its effects on maternal and fetal outcomes during pregnancy are seldom reported. The primary objective of this study was to evaluate inhaler technique and identify errors in inhaler use among pregnant women with asthma. Secondary objectives were to identify factors associated with poor inhaler technique and study the association between inhaler technique and maternal and fetal outcomes. This was a cross-sectional, face-to-face, prospective study of 80 pregnant women with physician-diagnosed asthma. Seventy-three and 41 asthmatic pregnant women reported using pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs), respectively. Overall, wrong inhaler technique was observed in 47 (64.4%) subjects. Among pMDI users, correct inhaler use was observed in only 26/73 (35.6%) of the patients, with lack of coordination between inhalation and generation of the aerosol and failure to breathe out gently before using the inhaler, being the most common errors. Among DPI users, 21 (51.2%) demonstrated correct inhaler use, with failure to perform a breath-hold for 10 seconds after inhaling the powder and to exhale gently before using the inhaler being the most common errors. Significant associations between inhaler technique and patient's understanding of asthma medications and the kind of follow-up clinic (respiratory versus nonrespiratory clinic) were found. No significant associations between inhaler technique and various maternal and fetal outcomes or asthma control were found. In conclusion, improper inhalation technique is significantly prevalent in pregnant asthmatic women, particularly among those being followed in nonspecialized respiratory clinics. The lack of significant association between the inhaler technique and asthma control (and hence maternal and fetal outcomes) may simply reflect the high prevalence of uncontrolled asthma and significant contribution of other barriers to poor asthma control in the current patient's cohort. Multidisciplinary management of asthma during pregnancy with particular emphasis on patient's education is imperative.
Collapse
|
34
|
Wang H, Sebrié C, Judé S, Maurin A, Rétif S, Le Mée M, Julea F, Dubuisson RM, Willoquet G, Bouazizi K, Darrasse L, Guillot G, Maître X, de Rochefort L. Quantitative Gd-DOTA-based aerosol deposition mapping in the lungs of asthmatic rats using 3D UTE-MRI. NMR IN BIOMEDICINE 2018; 31:e4013. [PMID: 30307075 DOI: 10.1002/nbm.4013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Asthma is a chronic respiratory disease, commonly treated with inhaled therapy. Better understanding of the mechanisms of aerosol deposition is required to improve inhaled drug delivery. Three-dimensional ultrashort echo time (UTE) MRI acquisitions at 1.5 T were combined with spontaneous nose-only inhalation of aerosolized gadolinium (Gd) to map the aerosol deposition and to characterize signal enhancement in asthmatic rat lungs. The rats were sensitized to ovalbumin (OVA) to develop asthmatic models and challenged before imaging by nebulization of OVA to trigger asthmatic symptoms. The negative controls were not sensitized or challenged by nebulization of saline. The animal lungs were imaged before and after administration of Gd-based aerosol in freely breathing rats, by using a T1 -weighted 3D UTE sequence. A contrast-enhanced quantitative analysis was performed to assess regional concentration. OVA-sensitized rats had lower signal enhancement and lower deposited aerosol concentration. Their enhancement dynamics showed large inter-subject variability. The signal intensity was homogeneously enhanced for controls while OVA-sensitized rats showed heterogeneous enhancement. Contrast-enhanced 3D UTE was applied with aerosolized Gd to efficiently measure spatially resolved deposition in asthmatic lungs. The small administered dose (around 1 μmol/kg body weight) and the use of standard clinical MRI suggest a potential application for the exploration of asthma.
Collapse
Affiliation(s)
- Hongchen Wang
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrié
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Anne Maurin
- Centre de Recherches Biologiques CERB, Baugy, France
| | - Stéphanie Rétif
- Centre d'Imagerie du Petit Animal CIPA, PHENOMIN-TAAM UPS44, CNRS Orléans, France
| | - Marilyne Le Mée
- Centre d'Imagerie du Petit Animal CIPA, PHENOMIN-TAAM UPS44, CNRS Orléans, France
| | - Felicia Julea
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Rose-Marie Dubuisson
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Georges Willoquet
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Khaoula Bouazizi
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Luc Darrasse
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Geneviève Guillot
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Xavier Maître
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Ludovic de Rochefort
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
- Center for Magnetic Resonance in Biology and Medicine (UMR 7339), CRMBM, CNRS-Aix Marseille Université, Marseille, France
| |
Collapse
|
35
|
Grogono JC, Butler C, Izadi H, Moosavi SH. Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial. Respir Res 2018; 19:181. [PMID: 30236110 PMCID: PMC6148783 DOI: 10.1186/s12931-018-0886-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023] Open
Abstract
Background Inhaled furosemide offers a potentially novel treatment for dyspnoea, which may reflect modulation of pulmonary stretch receptor feedback to the brain. Specificity of relief is unclear because different neural pathways may account for different components of clinical dyspnoea. Our objective was to evaluate if inhaled furosemide relieves the air hunger component (uncomfortable urge to breathe) but not the sense of breathing work/effort of dyspnoea. Methods A randomised, double blind, placebo-controlled crossover trial in 16 healthy volunteers studied in a university research laboratory. Each participant received 3 mist inhalations (either 40 mg furosemide or 4 ml saline) separated by 30–60 min on 2 test days. Each participant was randomised to mist order ‘furosemide-saline-furosemide’ (n- = 8) or ‘saline-furosemide-saline’ (n = 8) on both days. One day involved hypercapnic air hunger tests (mean ± SD PCO2 = 50 ± 3.7 mmHg; constrained ventilation = 9 ± 1.5 L/min), the other involved work/effort tests with targeted ventilation (17 ± 3.1 L/min) and external resistive load (20cmH2O/L/s). Primary outcome was ratings of air hunger or work/effort every 15 s on a visual analogue scale. During saline inhalations, 1.5 mg furosemide was infused intravenously to match the expected systemic absorption from the lungs when furosemide is inhaled. Corresponding infusions of saline during furosemide inhalations maintained procedural blinding. Average visual analogue scale ratings (%full scale) during the last minute of air hunger or work/effort stimuli were analysed using Linear Mixed Methods. Results Data from all 16 participants were analysed. Inhaled furosemide relative to inhaled saline significantly improved visual analogues scale ratings of air hunger (Least Squares Mean ± SE − 9.7 ± 2%; p = 0.0015) but not work/effort (+ 1.6 ± 2%; p = 0.903). There were no significant adverse events. Conclusions Inhaled furosemide was effective at relieving laboratory induced air hunger but not work/effort in healthy adults; this is consistent with the notion that modulation of pulmonary stretch receptor feedback by inhaled furosemide leads to dyspnoea relief that is specific to air hunger, the most unpleasant quality of dyspnoea. Funding Oxford Brookes University Central Research Fund. Trial registration ClinicalTrials.gov Identifier: NCT02881866. Retrospectively registered on 29th August 2018.
Collapse
Affiliation(s)
- Joanna C Grogono
- Department of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK.
| | - Clare Butler
- Department of Nursing, Oxford Brookes University, Marston Road Site, Oxford, OX3 0FL, UK
| | - Hooshang Izadi
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Wheatley, Oxford, OX33 1HX, UK
| | - Shakeeb H Moosavi
- Department of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| |
Collapse
|
36
|
Tay ZW, Chandrasekharan P, Zhou XY, Yu E, Zheng B, Conolly S. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 2018; 8:3676-3687. [PMID: 30026874 PMCID: PMC6037024 DOI: 10.7150/thno.26608] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary delivery of therapeutics is attractive due to rapid absorption and non-invasiveness but it is challenging to monitor and quantify the delivered aerosol or powder. Currently, single-photon emission computed tomography (SPECT) is used but requires inhalation of radioactive labels that typically have to be synthesized and attached by hot chemistry techniques just prior to every scan. Methods: In this work, we demonstrate that superparamagnetic iron oxide nanoparticles (SPIONs) can be used to label and track aerosols in vivo with high sensitivity using an emerging medical imaging technique known as magnetic particle imaging (MPI). We perform proof-of-concept experiments with SPIONs for various lung applications such as evaluation of efficiency and uniformity of aerosol delivery, tracking of the initial aerosolized therapeutic deposition in vivo, and finally, sensitive visualization of the entire mucociliary clearance pathway from the lung up to the epiglottis and down the gastrointestinal tract to be excreted. Results: Imaging of SPIONs in the lung has previously been limited by difficulty of lung imaging with magnetic resonance imaging (MRI). In our results, MPI enabled SPION lung imaging with high sensitivity, and a key implication is the potential combination with magnetic actuation or hyperthermia for MPI-guided therapy in the lung with SPIONs. Conclusion: This work shows how magnetic particle imaging can be enabling for new imaging and therapeutic applications of SPIONs in the lung.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | | | - Xinyi Yedda Zhou
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Steven Conolly
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
37
|
Smith S, Rowbotham NJ, Regan KH, Cochrane Cystic Fibrosis and Genetic Disorders Group. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2018; 3:CD001021. [PMID: 29607494 PMCID: PMC8407188 DOI: 10.1002/14651858.cd001021.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inhaled antibiotics are commonly used to treat persistent airway infection with Pseudomonas aeruginosa that contributes to lung damage in people with cystic fibrosis. Current guidelines recommend inhaled tobramycin for individuals with cystic fibrosis and persistent Pseudomonas aeruginosa infection who are aged six years or older. The aim is to reduce bacterial load in the lungs so as to reduce inflammation and deterioration of lung function. This is an update of a previously published review. OBJECTIVES To evaluate the effects long-term inhaled antibiotic therapy in people with cystic fibrosis on clinical outcomes (lung function, frequency of exacerbations and nutrition), quality of life and adverse events (including drug sensitivity reactions and survival). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials registries.Date of last search: 13 February 2018. SELECTION CRITERIA We selected trials if inhaled anti-pseudomonal antibiotic treatment was used for at least three months in people with cystic fibrosis, treatment allocation was randomised or quasi-randomised, and there was a control group (either placebo, no placebo or another inhaled antibiotic). DATA COLLECTION AND ANALYSIS Two authors independently selected trials, judged the risk of bias, extracted data from these trials and judged the quality of the evidence using the GRADE system. MAIN RESULTS The searches identified 333 citations to 98 trials; 18 trials (3042 participants aged between five and 56 years) met the inclusion criteria. Limited data were available for meta-analyses due to the variability of trial design and reporting of results. A total of 11 trials (1130 participants) compared an inhaled antibiotic to placebo or usual treatment for a duration between three and 33 months. Five trials (1255 participants) compared different antibiotics, two trials (585 participants) compared different regimens of tobramycin and one trial (90 participants) compared intermittent tobramycin with continuous tobramycin alternating with aztreonam. One of the trials (18 participants) compared to placebo and a different antibiotic and so fell into both groups. The most commonly studied antibiotic was tobramycin which was studied in 12 trials.We found limited evidence that inhaled antibiotics improved lung function (four of the 11 placebo-controlled trials, n = 814). Compared to placebo, inhaled antibiotics also reduced the frequency of exacerbations (three trials, n = 946), risk ratio 0.66 (95% confidence interval (CI) 0.47 to 0.93). There were insufficient data for us to be able to report an effect on nutritional outcomes or survival and there were insufficient data for us to ascertain the effect on quality of life. There was no significant effect on antibiotic resistance seen in the two trials that were included in meta-analyses. Tinnitus and voice alteration were the only adverse events significantly more common in the inhaled antibiotics group. The overall quality of evidence was deemed to be low for most outcomes due to risk of bias within the trials and imprecision due to low event rates.Of the eight trials that compared different inhaled antibiotics or different antibiotic regimens, there was only one trial in each comparison. Forced expiratory volume at one second (FEV1) % predicted was only found to be significantly improved with aztreonam lysine for inhalation compared to tobramycin (n = 273), mean difference -3.40% (95% CI -6.63 to -0.17). However, the method of defining the endpoint was different to the remaining trials and the participants were exposed to tobramycin for a long period making interpretation of the results problematic. No significant differences were found in the remaining comparisons with regard to lung function. Pulmonary exacerbations were measured in different ways, but one trial (n = 273) found that the number of people treated with antibiotics was lower in those receiving aztreonam than tobramycin, risk ratio 0.66 (95% CI 0.51 to 0.86). We found the quality of evidence for these comparisons to be directly related to the risk of bias within the individual trials and varied from low to high. AUTHORS' CONCLUSIONS Inhaled anti-pseudomonal antibiotic treatment probably improves lung function and reduces exacerbation rate, but pooled estimates of the level of benefit were very limited. The best evidence is for inhaled tobramycin. More evidence from trials measuring similar outcomes in the same way is needed to determine a better measure of benefit. Longer-term trials are needed to look at the effect of inhaled antibiotics on quality of life, survival and nutritional outcomes.
Collapse
Affiliation(s)
- Sherie Smith
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Nicola J Rowbotham
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Kate H Regan
- NHS LothianRoyal Infirmary of Edinburgh51 Little France CrescentEdinburghUKEH16 4SA
| | | |
Collapse
|
38
|
Waskiw-Ford M, Wu A, Mainra A, Marchand N, Alhuzaim A, Bourbeau J, Smith BM, Jensen D. Effect of Inhaled Nebulized Furosemide (40 and 120 mg) on Breathlessness during Exercise in the Presence of External Thoracic Restriction in Healthy Men. Front Physiol 2018; 9:86. [PMID: 29483879 PMCID: PMC5816054 DOI: 10.3389/fphys.2018.00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023] Open
Abstract
Inhalation of nebulized furosemide has been shown to alleviate breathlessness provoked experimentally in health and disease; however, it remains unclear whether the efficacy of nebulized furosemide on breathlessness is dose-dependent. We tested the hypothesis that inhaled nebulized furosemide would be associated with a dose-dependent relief of breathlessness during exercise testing in the setting of abnormal restrictive constraints on tidal volume (VT) expansion. In a randomized, double-blind, crossover study, 24 healthy men aged 25.3 ± 1.2 years (mean ± SE) completed a symptom-limited constant-load cycle endurance exercise test in the setting of external thoracic restriction via chest wall strapping to reduce vital capacity by ~20% following single-dose inhalation nebulized furosemide (40 and 120 mg) and 0.9% saline. Compared with 0.9% saline, neither 40 nor 120 mg of inhaled nebulized furosemide had an effect on ratings of perceived breathlessness during exercise or an effect on cardiometabolic, ventilatory, breathing pattern, or dynamic operating lung volume responses during exercise. Urine production rate, the percentage of participants reporting an "urge to urinate" and the intensity of perceived "urge to urinate" were all significantly greater after inhaling the 120 mg furosemide solution compared with both 0.9% saline and 40 mg furosemide solutions. We concluded that, under the experimental conditions of this study, inhalation of nebulized furosemide at doses of 40 and 120 mg did not alleviate breathlessness during exercise in healthy men.
Collapse
Affiliation(s)
- Marcus Waskiw-Ford
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Anne Wu
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Amar Mainra
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Noah Marchand
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Abdullatif Alhuzaim
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
| | - Jean Bourbeau
- Department of Medicine, Respiratory Division, McGill University, Montréal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Research Centre for Physical Activity and Health, McGill University, Montréal, QC, Canada
| | - Benjamin M Smith
- Department of Medicine, Respiratory Division, McGill University, Montréal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Research Centre for Physical Activity and Health, McGill University, Montréal, QC, Canada
| | - Dennis Jensen
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada.,Department of Medicine, Respiratory Division, McGill University, Montréal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Research Centre for Physical Activity and Health, McGill University, Montréal, QC, Canada
| |
Collapse
|
39
|
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312:L110-L121. [PMID: 27881406 PMCID: PMC5283929 DOI: 10.1152/ajplung.00423.2016] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/10/2023] Open
Abstract
Exosomes are nanovesicles secreted by cells and contain various molecules including protein, lipid, and DNA/RNA. They are crucial mediators of the intercellular communication and serve as promising vehicles for drug delivery and gene therapy. Recently, accumulating evidence suggests that microRNAs (miRNAs) may serve as new and potentially powerful targets for therapeutic interventions against various human diseases. However, steadily and effectively delivering miRNA mimics or inhibitors to target cells remains a major obstacle. To enhance the efficacy of exosome-mediated delivery of miRNA molecules, it is crucial to develop a convenient and efficient method to enrich specific miRNAs or antisense oligos in isolated exosomes. Here we report a novel method to prepare specific miRNA molecule-loaded exosomes. Using a modified calcium chloride-mediated transfection method, we successfully enhanced the designated miRNA mimics or inhibitors in isolated exosomes directly, instead of transfecting their mother cells. We also compared this method with direct transfection of exosomes using electroporation. Both methods confirmed that exosomes can serve as cargos to deliver a robustly increased amount of selected miRNA mimic(s) or inhibitor(s) to the recipient cells. Delivery of these miRNA molecule enriched-exosomes subsequently results in highly efficient overexpression or deletion of the designated miRNAs in the recipient cells both in vivo and in vitro. Additionally, we confirmed that exosome-delivered miRNA mimics or inhibitors are functional in the recipient cells. Collectively, we developed a novel protocol to conveniently manipulate exosomal miRNAs with high efficiency and successfully deliver the exosomal miRNA molecules to recipient cells.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Jasleen K Minhas
- Department of Medicine, North Shore Medical Center, Salem Hospital, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| |
Collapse
|
40
|
|
41
|
Arroyo MG, Couëtil LL, Nogradi N, Kamarudin MM, Ivester KM. Efficacy of Inhaled Levalbuterol Compared to Albuterol in Horses with Recurrent Airway Obstruction. J Vet Intern Med 2016; 30:1333-7. [PMID: 27282625 PMCID: PMC5089594 DOI: 10.1111/jvim.14320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 11/30/2022] Open
Abstract
Background The (R)‐enantiomer of racemic albuterol (levalbuterol) has bronchodilatory properties whereas the (S)‐enantiomer causes adverse effects in human airways, animal models, and isolated equine bronchi. Levalbuterol is commercially available and improves pulmonary function of asthmatic patients with a longer duration of effect than albuterol. Objective To determine the dose at which inhaled levalbuterol produces maximal bronchodilatory effect (EDmax) and determine its duration of action in recurrent airway obstruction (RAO)‐affected horses in comparison to racemic albuterol. Animals Nine horses with inducible and reversible RAO. Methods Randomized, crossover trial. Horses were challenged with moldy hay to induce airway obstruction. Horses were treated with nebulized albuterol or levalbuterol chosen randomly. Pulmonary function testing (PFT) was measured before and for up to 3 hours after bronchodilatation challenge. Maximum change in transpulmonary pressure (DPmax) was measured to assess the dose effect and duration of action of each drug. After a 24 hours washout period, the bronchodilatation challenge was repeated with the second bronchodilator. Results The duration of effect was 60 minutes for albuterol and 120 minutes for levalbuterol. The dose of bronchodilator EDmax was not significantly different between albuterol and levalbuterol (EDmax = 125.0 [125–125 μg] and EDmax = 188 [125–188 μg] respectively; P = .068). The magnitude of bronchodilatation was not significantly different between the 2 treatments (61.1 and 59.9% decrease in DPmax for albuterol and levalbuterol respectively; P = .86). Conclusions and clinical importance Levalbuterol is as effective a bronchodilator as albuterol; although levalbuterol lasts twice as long as albuterol, its duration of action is still too short to make it practical for RAO treatment.
Collapse
Affiliation(s)
- M G Arroyo
- Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | - L L Couëtil
- Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | - N Nogradi
- Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | - M M Kamarudin
- Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | - K M Ivester
- Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| |
Collapse
|
42
|
Zambelli-Simões L, Martins MC, Possari JCDC, Carvalho GB, Coelho ACC, Cipriano SL, Carvalho-Pinto RMD, Cukier A, Stelmach R. Validation of scores of use of inhalation devices: valoration of errors. J Bras Pneumol 2016; 41:313-22. [PMID: 26398751 PMCID: PMC4635951 DOI: 10.1590/s1806-37132015000004435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective: To validate two scores quantifying the ability of patients to use metered dose inhalers (MDIs) or dry powder inhalers (DPIs); to identify the most common errors made during their use; and to identify the patients in need of an educational program for the use of these devices. Methods: This study was conducted in three phases: validation of the reliability of the inhaler technique scores; validation of the contents of the two scores using a convenience sample; and testing for criterion validation and discriminant validation of these instruments in patients who met the inclusion criteria. Results: The convenience sample comprised 16 patients. Interobserver disagreement was found in 19% and 25% of the DPI and MDI scores, respectively. After expert analysis on the subject, the scores were modified and were applied in 72 patients. The most relevant difficulty encountered during the use of both types of devices was the maintenance of total lung capacity after a deep inhalation. The degree of correlation of the scores by observer was 0.97 (p < 0.0001). There was good interobserver agreement in the classification of patients as able/not able to use a DPI (50%/50% and 52%/58%; p < 0.01) and an MDI (49%/51% and 54%/46%; p < 0.05). Conclusions: The validated scores allow the identification and correction of inhaler technique errors during consultations and, as a result, improvement in the management of inhalation devices.
Collapse
Affiliation(s)
- Letícia Zambelli-Simões
- Departamento de Fisiopatologia Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BR
| | - Maria Cleusa Martins
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BR
| | | | | | | | - Sonia Lucena Cipriano
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BR
| | | | - Alberto Cukier
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BR
| | - Rafael Stelmach
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, BR
| |
Collapse
|
43
|
|
44
|
MacGregor TR, ZuWallack R, Rubano V, Castles MA, Dewberry H, Ghafouri M, Wood CC. Efficiency of Ipratropium Bromide and Albuterol Deposition in the Lung Delivered via a Soft Mist Inhaler or Chlorofluorocarbon Metered-Dose Inhaler. Clin Transl Sci 2016; 9:105-13. [PMID: 26945929 PMCID: PMC5351312 DOI: 10.1111/cts.12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
The propellant-free Combivent Respimat Soft Mist Inhaler (CVT-R) was developed to replace the chlorofluorocarbon-propelled Combivent metered-dose inhaler (CVT-MDI). This steady-state pharmacokinetic (PK) substudy evaluated drug lung-delivery efficiency, using data from two phase III safety and efficacy trials. PK parameters were obtained from well-controlled population PK analyses. Area under the plasma concentration-time curve (AUC), maximum observed plasma concentration (C(max)), and minimum observed plasma concentration (C(min)) showed systemic exposure to ipratropium bromide and albuterol delivered via the CVT-R was proportional to ex-mouthpiece delivered dose. Although the labeled dose of ipratropium bromide in the CVT-R was half that in the CVT-MDI, the systemic exposure was comparable. No PK interaction for the ipratropium bromide and albuterol Respimat drug components was demonstrated. Ipratropium bromide alone resulted in similar exposure to the combination of ipratropium bromide and albuterol. These results show that CVT-R delivers drug more efficiently to the lung than CVT-MDI.
Collapse
Affiliation(s)
- TR MacGregor
- Boehringer Ingelheim Pharmaceuticals IncRidgefieldConnecticutUSA
| | - R ZuWallack
- St. Francis Hospital Medical CenterHartfordConnecticutUSA
| | - V Rubano
- Boehringer Ingelheim Pharmaceuticals IncRidgefieldConnecticutUSA
| | - MA Castles
- Boehringer Ingelheim Pharmaceuticals IncRidgefieldConnecticutUSA
| | - H Dewberry
- Boehringer Ingelheim LtdBracknellBerkshireUK
| | - M Ghafouri
- Boehringer Ingelheim Pharmaceuticals IncRidgefieldConnecticutUSA
| | - CC Wood
- Boehringer Ingelheim Pharmaceuticals IncRidgefieldConnecticutUSA
| |
Collapse
|
45
|
[Inhaled therapy in asthma]. Med Clin (Barc) 2015; 146:316-23. [PMID: 26683076 DOI: 10.1016/j.medcli.2015.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/20/2022]
Abstract
Because of its advantages, inhaled administration of aerosolized drugs is the administration route of choice for the treatment of asthma and COPD. Numerous technological advances in the devices used in inhaled therapy in recent decades have boosted the appearance of multiple inhalers and aerosolized drugs. However, this variety also requires that the prescribing physician is aware of their characteristics. The main objective of the present review is to summarize the current state of knowledge on inhalers and inhaled drugs commonly used in the treatment of asthma. The review ranges from theoretical aspects (fundamentals and available devices and drugs) to practical and relevant aspects for asthma care in the clinical setting (therapeutic strategies, education, and adherence to inhalers).
Collapse
|
46
|
Luo Q, Zheng Z, Cen H, Jiang M, Chen Q. A modified nebulization modality versus classical ultrasonic nebulization and oxygen-driven nebulization in facilitating airway clearance in patients with acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial. J Thorac Dis 2015; 7:1130-41. [PMID: 26380728 DOI: 10.3978/j.issn.2072-1439.2015.07.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/24/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND Ultrasonic nebulization (UN) and oxygen-driven nebulization (ON), two commonly used modalities for nebulization inhalation, are not ideally suitable for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS A total of 91 patients with AECOPD were randomized to three groups given different nebulization modalities: ON, UN, and ultrasonic nebulization with warming and oxygen (UNWO). The sputum clearance, lung function, changes in physiological measures such as peripheral oxygen saturation (SpO2) and tolerance to these nebulization modalities were recorded and compared among the three groups. RESULTS The time to the first expectoration was shorter and the sputum volume was larger after UN and UNWO than after ON (both P<0.01). Compared with pre-nebulization, SpO2 significantly increased (P<0.01) and the dyspnea decreased significantly (P<0.05) after UNWO. The SpO2 and dyspnea post-UNWO were significantly better than those post-UN (P<0.01, P<0.05), but not statistically different from those post-ON (both P>0.05). UNWO demonstrated significantly greater comfort and longer duration of nebulization than UN (P<0.01, P<0.05), but no significant differences in these respects from ON (both P>0.05). Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and peak expiratory flow (PEF) decreased significantly after UNWO (P<0.05, P<0.01, and P<0.01, respectively). CONCLUSIONS UNWO may promote expectoration of sputum with fewer adverse reactions and a higher level of comfort than simple UN and ON. Therefore, it can be used as an adjuvant therapy for AECOPD patients.
Collapse
Affiliation(s)
- Qiaoling Luo
- 1 College of Health Sciences, Guangzhou Medical University, Guangzhou 510120, China ; 2 State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zeguang Zheng
- 1 College of Health Sciences, Guangzhou Medical University, Guangzhou 510120, China ; 2 State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huihong Cen
- 1 College of Health Sciences, Guangzhou Medical University, Guangzhou 510120, China ; 2 State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Mei Jiang
- 1 College of Health Sciences, Guangzhou Medical University, Guangzhou 510120, China ; 2 State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qin Chen
- 1 College of Health Sciences, Guangzhou Medical University, Guangzhou 510120, China ; 2 State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
47
|
Zhu B, Young PM, Ong HX, Crapper J, Flodin C, Qiao EL, Phillips G, Traini D. Tuning Aerosol Performance Using the Multibreath Orbital® Dry Powder Inhaler Device: Controlling Delivery Parameters and Aerosol Performance via Modification of Puck Orifice Geometry. J Pharm Sci 2015; 104:2169-76. [DOI: 10.1002/jps.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 11/07/2022]
|
48
|
Westergaard CG, Porsbjerg C, Backer V. Emerging corticosteroid agonists for the treatment of asthma. Expert Opin Emerg Drugs 2015; 20:653-62. [PMID: 26108455 DOI: 10.1517/14728214.2015.1061503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is one of the most frequent chronic diseases worldwide. For decades, asthma has been treated with bronchodilators and inhaled corticosteroids (ICS). However, adverse effects of ICS and disease heterogeneity necessitate improvements in the existing treatment regimes. Recently approved ICS show improved pharmocodynamic properties. Nevertheless, emerging drugs acting on the same receptor as the ICS, glucocorticoid receptor agonists (GRAs), are under current research. These drugs exhibit selective action on the glucocorticoid receptor (GR), which may improve their adverse effect profile, compared to the currently approved ICS that act unselectively on the GR. AREAS COVERED The present article reviews emerging GRAs for the treatment of asthma. Furthermore, the more recently approved ICS with improved safety profiles are reviewed. EXPERT OPINION Compared with drugs acting on other pathological pathways, research in GRAs for asthma is sparse. However, a few promising agents acting selectively on the GR are currently under investigation and may reach approval for asthma treatment. These drugs exhibit improved pharmacodynamic properties due to selectivity in the mechanism of action, including promotion of transrepression and reduction of transactivation. However, competition from already approved ICS and other emerging treatment options may lead to cessation of development of the new GRAs.
Collapse
Affiliation(s)
- Christian G Westergaard
- a Bispebjerg University Hospital, Respiratory Research Unit , Copenhagen, Denmark +45 3531 3569 ; +45 3531 2179 ;
| | - Celeste Porsbjerg
- a Bispebjerg University Hospital, Respiratory Research Unit , Copenhagen, Denmark +45 3531 3569 ; +45 3531 2179 ;
| | - Vibeke Backer
- a Bispebjerg University Hospital, Respiratory Research Unit , Copenhagen, Denmark +45 3531 3569 ; +45 3531 2179 ;
| |
Collapse
|
49
|
Westergaard CG, Porsbjerg C, Backer V. Emerging corticosteroid agonists for the treatment of asthma. Expert Opin Emerg Drugs 2015. [DOI: 10.10.1517/14728214.2015.1061503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Kotrach HG, Bourbeau J, Jensen D. Does nebulized fentanyl relieve dyspnea during exercise in healthy man? J Appl Physiol (1985) 2015; 118:1406-14. [PMID: 26031762 DOI: 10.1152/japplphysiol.01091.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/10/2015] [Indexed: 12/21/2022] Open
Abstract
Few therapies exist for the relief of dyspnea in restrictive lung disorders. Accumulating evidence suggests that nebulized opioids selective for the mu-receptor subtype may relieve dyspnea by modulating intrapulmonary opioid receptor activity. Our respective primary and secondary objectives were to test the hypothesis that nebulized fentanyl (a mu-opioid receptor agonist) relieves dyspnea during exercise in the presence of abnormal restrictive ventilatory constraints and to identify the physiological mechanisms of this improvement. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of 250 μg nebulized fentanyl, chest wall strapping (CWS), and their interaction on detailed physiological and perceptual responses to constant work rate cycle exercise (85% of maximum incremental work rate) in 14 healthy, fit young men. By design, CWS decreased vital capacity by ∼20% and mimicked the negative consequences of a mild restrictive lung disorder on exercise endurance time and on dyspnea, breathing pattern, dynamic operating lung volumes, and diaphragmatic electromyographic and respiratory muscle function during exercise. Compared with placebo under both unrestricted control and CWS conditions, nebulized fentanyl had no effect on exercise endurance time, integrated physiological response to exercise, sensory intensity, unpleasantness ratings of exertional dyspnea. Our results do not support a role for intrapulmonary opioids in the neuromodulation of exertional dyspnea in health nor do they provide a physiological rationale for the use of nebulized fentanyl in the management of dyspnea due to mild restrictive lung disorders, specifically those arising from abnormalities of the chest wall and not affiliated with airway inflammation.
Collapse
Affiliation(s)
- Houssam G Kotrach
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology & Physical Education, McGill University, Montréal, Quebec, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, Quebec, Canada; and
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology & Physical Education, McGill University, Montréal, Quebec, Canada; Respiratory Epidemiology and Clinical Research Unit, Montréal Chest Institute, McGill University Health Centre, Montréal, Quebec, Canada; and Research Centre for Physical Activity and Health, McGill University, Montréal, Quebec, Canada
| |
Collapse
|