1
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
2
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
3
|
Jun JH, Shim JK, Oh JE, Kim KS, Kwak YL, Soh S. Effects of dexmedetomidine on A549 non-small cell lung cancer growth in a clinically relevant surgical xenograft model. Sci Rep 2023; 13:12471. [PMID: 37528154 PMCID: PMC10393998 DOI: 10.1038/s41598-023-39704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023] Open
Abstract
The perioperative milieu following curative lung cancer surgery is accompanied by a stress response. Inflammasomes mediate inflammation resulting in the unfavorable immunomodulation of natural killer (NK) cell activity, thus promoting cancer progression. This study aimed to investigate the effects of dexmedetomidine (DEX) on the innate immune system, chronic inflammation, and lung cancer progression in a clinically relevant human-to-mouse xenograft model. The human lung cancer cell line A549-luc was subcutaneously injected into BALB/c nude mice. Saline or dexmedetomidine was administered for 2 weeks via an implanted osmotic minipump. After 4 weeks, the tumor size and weight were measured. NK cell activity, serum interferon-γ, interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels were also measured. IL-10, IL-18, and inflammasome expression levels were assessed in the tumor tissues. DEX caused a decrease in tumor size, tumor weight, and IL-1β and TNF-α levels and an increase in NK cell activity and IFN-γ level. IL-10 and IL-18 expression was significantly decreased in the DEX-treated group. NLRP3, CTP1A, TXNIP, ASC, IL-1β, and caspase-1 protein levels were decreased in the DEX-treated group. In conclusion, the use of DEX for 2 weeks inhibited lung cancer progression by suppressing inflammasome- and IL-1β signaling-induced inflammation and enhancing NK cell activity.
Collapse
Affiliation(s)
- Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Sub Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sarah Soh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Liu T, Li Y, Wang X, Yang X, Fu Y, Zheng Y, Gong H, He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front Immunol 2022; 13:1087620. [PMID: 36618371 PMCID: PMC9810991 DOI: 10.3389/fimmu.2022.1087620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a common gynecologic malignancy with poor prognosis and high mortality. Changes in the OC microenvironment are closely related to the genesis, invasion, metastasis, recurrence, and drug-resistance. The OC microenvironment is regulated by Interferons (IFNs) known as a type of important cytokines. IFNs have a bidirectional regulation for OC cells growth and survival. Meanwhile, IFNs positively regulate the recruitment, differentiation and activation of immune cells. This review summarizes the secretion and the role of IFNs. In particular, we mainly elucidate the actions played by IFNs in various types of therapy. IFNs assist radiotherapy, targeted therapy, immunotherapy and biotherapy for OC, except for some IFN pathways that may cause chemo-resistance. In addition, we present some advances in OC treatment with the help of IFN pathways. IFNs have the ability to powerfully modulate the tumor microenvironment and can potentially provide new combination strategies for OC treatment.
Collapse
Affiliation(s)
- Taiqing Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinqi Li
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhai Fu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yeteng Zheng
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| |
Collapse
|
7
|
Duwa R, Pokhrel RH, Banstola A, Pandit M, Shrestha P, Jeong JH, Chang JH, Yook S. T-cell engaging poly(lactic-co-glycolic acid) nanoparticles as a modular platform to induce a potent cytotoxic immunogenic response against PD-L1 overexpressing cancer. Biomaterials 2022; 291:121911. [DOI: 10.1016/j.biomaterials.2022.121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|
8
|
Wang KW, Wang MD, Li ZX, Hu BS, Wu JJ, Yuan ZD, Wu XL, Yuan QF, Yuan FL. An antigen processing and presentation signature for prognostic evaluation and immunotherapy selection in advanced gastric cancer. Front Immunol 2022; 13:992060. [PMID: 36311733 PMCID: PMC9615473 DOI: 10.3389/fimmu.2022.992060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the study was to propose a signature based on genes associated with antigen processing and presentation (APscore) to predict prognosis and response to immune checkpoint inhibitors (ICIs) in advanced gastric cancer (aGC). Background How antigen presentation-related genes affected the immunotherapy response and whether they could predict the clinical outcomes of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown. Methods In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by ICIs, and 467 aGC patients from seven cohorts were conducted to investigate the value of the APscore predicting the prognosis and response to ICIs. Subsequently, the associations of the APscore with the tumor microenvironment (TME), molecular characteristics, clinical features, and somatic mutation variants in aGC were assessed. The area under the receiver operating characteristic curve (AUROC) of the APscore was analyzed to estimate response to ICIs. Cox regression or Log-rank test was used to estimate the prognosis of aGC patients. Results The APscore constructed by principal component analysis algorithms was an effective predictive biomarker of the response to ICIs in the Kim cohort and 467 aGC patients (Kim: AUC =0.85, 95% CI: 0.69–1.00; 467 aGC: AUC =0.69, 95% CI: 0.63–0.74). The APscore also was a prognostic biomarker in 467 aGC patients (HR=1.73, 95% CI: 1.21−2.46). Inhibitory immunity, decreased TMB and low stromal scores were observed in the high APscore group, while activation of immunity, increased TMB, and high stromal scores were observed in the low APscore group. Next, we evaluated the value of several central genes in predicting the prognosis and response to ICIs in aGC patients, and verified them using immunogenic, transcriptomic, genomic, and multi-omics methods. Lastly, a predictive model built successfully discriminated patients with vs. without immunotherapy response and predicted the survival of aGC patients. Conclusions The APscore was a new biomarker for identifying high-risk aGC patients and patients with responses to ICIs. Exploration of the APscore and hub genes in multi-omics GC data may guide treatment decisions.
Collapse
Affiliation(s)
- Ke-wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zi-xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ben-shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-dong Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-long Wu
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qin-fang Yuan
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-lai Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Feng-lai Yuan,
| |
Collapse
|
9
|
Excretory-secretory product of Trichinella spiralis inhibits tumor cell growth by regulating the immune response and inducing apoptosis. Acta Trop 2022; 225:106172. [PMID: 34627760 DOI: 10.1016/j.actatropica.2021.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The excretory-secretory product (ESP) of Trichinella spiralis (T. spiralis) has been reported to inhibit the growth of various tumor cells, but the mechanism is not yet clear. To explore the effect and mechanism of ESP on liver cancer cells, tumor models were established with H22 cells and then infected with T. spiralis. The results showed that the growth of tumors in mice infected with T. spiralis was significantly inhibited. ESP from adult worms or muscle larvae were then incubated with H22 cells in vitro, and it was found that the ESP could inhibit cell proliferation and promote apoptosis. Subsequently, apoptosis-related proteins in stimulated H22 cells were evaluated, and ESP was found to induce cell apoptosis through the mitochondrial pathway. Additionally, Th-related cytokines were investigated in vivo, and the results showed that the levels of Th1 cytokines were significantly increased in the early stage of T. spiralis infection, while Th2 cytokines increased later than Th1 cytokines, implying that Th1 cytokines with antitumor effects may play a role in inhibiting tumor growth at early stage. In short, ESP can directly induce tumor cell apoptosis and indirectly inhibit tumor cell growth through the host immune system, which may be the antitumor mechanism of T. spiralis infection.
Collapse
|
10
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
11
|
Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, Olive AJ. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. eLife 2021; 10:e65109. [PMID: 34726598 PMCID: PMC8598164 DOI: 10.7554/elife.65109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn McCann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
12
|
Zhong X, Zhou Y, Cao Y, Ding J, Wang P, Luo Y, Liu H, Zhu Z, Jing X. Enhanced antitumor efficacy through microwave ablation combined with a dendritic cell-derived exosome vaccine in hepatocellular carcinoma. Int J Hyperthermia 2021; 37:1210-1218. [PMID: 33100037 DOI: 10.1080/02656736.2020.1836406] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the antitumor efficacy of microwave ablation combined with dendritic cell-derived exosomes (Dex) or dendritic cells (DC) in treating hepatocellular carcinoma using a tumor-bearing mouse model. METHODS We used a bilateral tumor-bearing mouse model treated with MWA, MWA + DC (DC-combined group) or MWA + Dex (Dex-combined group). Following tumor ablation on one side, the tumor volume on the contralateral side was monitored. The proportions of CD8+ (cytotoxic) T cells and regulatory T (Treg) cells in the spleen were analyzed by flow cytometry, and the number of CD8+ T cells and Treg cells in tumor sites was detected by immunohistochemistry. The concentration of interleukin-10 and interferon-γ in plasma was identified using enzyme-linked immunosorbent assay. RESULTS The combination therapy significantly inhibited tumor growth compared with MWA monotherapy. In addition, the tumor immune microenvironment was significantly improved in HCC mice in the combination therapy groups compared to MWA group demonstrated by an increased number of CD8+ T cells and a decreased number of Treg cells in tumor sites. A lower proportion of Treg cells were observed in the spleen in the combination therapy groups compared to MWA group. Moreover, the concentration of plasma IFN-γ increased, and the concentration of plasma IL-10 decreased in the combination therapy groups compared to the MWA group. However, there was no statistical difference between the Dex-combined group and the DC-combined group in the comparisons mentioned above. CONCLUSIONS Our results provide evidence that MWA combined with Dex can significantly inhibit tumor growth and improve the immune microenvironment compared to MWA alone. Furthermore, the immune-enhancing effect of Dex and DC was equivalent in our combination therapy strategy.
Collapse
Affiliation(s)
- Xinyu Zhong
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yan Zhou
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Yuting Cao
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jianmin Ding
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Zhengyan Zhu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Xiang Jing
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Ramesh P, Shivde R, Jaishankar D, Saleiro D, Le Poole IC. A Palette of Cytokines to Measure Anti-Tumor Efficacy of T Cell-Based Therapeutics. Cancers (Basel) 2021; 13:821. [PMID: 33669271 PMCID: PMC7920025 DOI: 10.3390/cancers13040821] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key molecules within the tumor microenvironment (TME) that can be used as biomarkers to predict the magnitude of anti-tumor immune responses. During immune monitoring, it has been customary to predict outcomes based on the abundance of a single cytokine, in particular IFN-γ or TGF-β, as a readout of ongoing anti-cancer immunity. However, individual cytokines within the TME can exhibit dual opposing roles. For example, both IFN-γ and TGF-β have been associated with pro- and anti-tumor functions. Moreover, cytokines originating from different cellular sources influence the crosstalk between CD4+ and CD8+ T cells, while the array of cytokines expressed by T cells is also instrumental in defining the mechanisms of action and efficacy of treatments. Thus, it becomes increasingly clear that a reliable readout of ongoing immunity within the TME will have to include more than the measurement of a single cytokine. This review focuses on defining a panel of cytokines that could help to reliably predict and analyze the outcomes of T cell-based anti-tumor therapies.
Collapse
Affiliation(s)
- Prathyaya Ramesh
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Rohan Shivde
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Dinesh Jaishankar
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - I. Caroline Le Poole
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology and Immunology, Northwestern University at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Liu Y, Tian Y, Cai W, Guo Y, Xue C, Wang J. DHA/EPA-Enriched Phosphatidylcholine Suppresses Tumor Growth and Metastasis via Activating Peroxisome Proliferator-Activated Receptor γ in Lewis Lung Cancer Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:676-685. [PMID: 33406839 DOI: 10.1021/acs.jafc.0c06890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, the antitumor effects of docosahexaenoic acid-phosphatidylcholine (DHA-PC) and eicosapentanoic acid-phosphatidylcholine (EPA-PC) in Lewis lung cancer mice were investigated. As observed, DHA-PC and EPA-PC obviously inhibited the transplanted tumor growth and the positive expression of Ki67. The metastatic nodules and hematoxylin and eosin (HE) staining of the lung indicated that DHA-PC and EPA-PC suppressed lung metastasis. PPARγ has a key role in cell survival, which may be a target for cancer therapy. Further mechanism research indicated that DHA-PC and EPA-PC significantly enhanced the levels of PPARγ and subsequently downregulated the NF-κB pathway. DHA-PC and EPA-PC accelerate cancer cell apoptosis by decreasing NF-κB-mediated antiapoptotic factors Bcl-2 and Bcl-XL, thereby inhibiting tumor growth. In addition, DHA-PC and EPA-PC significantly decreased the levels of NF-κB-mediated matrix metallopeptidase 9 (MMP9) and heparanase (HPA), which block the extracellular matrix (ECM) degradation, thereby suppressing lung metastasis. These findings suggested that DHA-PC and EPA-PC could be used as food supplements and/or functional ingredients for cancer patients.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao 266061, Shandong, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, Shandong, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
15
|
Gerber DE, Putnam WC, Fattah FJ, Kernstine KH, Brekken RA, Pedrosa I, Skelton R, Saltarski JM, Lenkinski RE, Leff RD, Ahn C, Padmanabhan C, Chembukar V, Kasiri S, Kallem RR, Subramaniyan I, Yuan Q, Do QN, Xi Y, Reznik SI, Pelosof L, Faubert B, DeBerardinis RJ, Kim J. Concentration-dependent Early Antivascular and Antitumor Effects of Itraconazole in Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:6017-6027. [PMID: 32847935 DOI: 10.1158/1078-0432.ccr-20-1916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Itraconazole has been repurposed as an anticancer therapeutic agent for multiple malignancies. In preclinical models, itraconazole has antiangiogenic properties and inhibits Hedgehog pathway activity. We performed a window-of-opportunity trial to determine the biologic effects of itraconazole in human patients. EXPERIMENTAL DESIGN Patients with non-small cell lung cancer (NSCLC) who had planned for surgical resection were administered with itraconazole 300 mg orally twice daily for 10-14 days. Patients underwent dynamic contrast-enhanced MRI and plasma collection for pharmacokinetic and pharmacodynamic analyses. Tissues from pretreatment biopsy, surgical resection, and skin biopsies were analyzed for itraconazole and hydroxyitraconazole concentration, and vascular and Hedgehog pathway biomarkers. RESULTS Thirteen patients were enrolled in this study. Itraconazole was well-tolerated. Steady-state plasma concentrations of itraconazole and hydroxyitraconazole demonstrated a 6-fold difference across patients. Tumor itraconazole concentrations trended with and exceeded those of plasma. Greater itraconazole levels were significantly and meaningfully associated with reduction in tumor volume (Spearman correlation, -0.71; P = 0.05) and tumor perfusion (Ktrans; Spearman correlation, -0.71; P = 0.01), decrease in the proangiogenic cytokines IL1b (Spearman correlation, -0.73; P = 0.01) and GM-CSF (Spearman correlation, -1.00; P < 0.001), and reduction in tumor microvessel density (Spearman correlation, -0.69; P = 0.03). Itraconazole-treated tumors also demonstrated distinct metabolic profiles. Itraconazole treatment did not alter transcription of GLI1 and PTCH1 mRNA. Patient size, renal function, and hepatic function did not predict itraconazole concentrations. CONCLUSIONS Itraconazole demonstrates concentration-dependent early antivascular, metabolic, and antitumor effects in patients with NSCLC. As the number of fixed dose cancer therapies increases, attention to interpatient pharmacokinetics and pharmacodynamics differences may be warranted.
Collapse
Affiliation(s)
- David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. .,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - William C Putnam
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Farjana J Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kemp H Kernstine
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rachael Skelton
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica M Saltarski
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert E Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Richard D Leff
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Chul Ahn
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chyndhri Padmanabhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vaidehi Chembukar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sahba Kasiri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raja Reddy Kallem
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Indhumathy Subramaniyan
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, Texas
| | - Qing Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N Do
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott I Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lorraine Pelosof
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Brandon Faubert
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Kim
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Guo B, Tan X, Cen H. EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. PLoS One 2020; 15:e0242191. [PMID: 33180829 PMCID: PMC7660515 DOI: 10.1371/journal.pone.0242191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The enhancer of zeste homolog 2 (EZH2) plays a critical role in different components of anti-tumor immunity. However, the specific role of EZH2 in modulating MHC Class I antigen presentation and T cell infiltration have not been investigated in HCC. This study analyzed the expression and clinical significance of EZH2 in HCC. The EZH2 genetic alterations were identified using cBioPortal. The EZH2 mRNA and protein levels were found to be significantly higher in HCC than in adjacent normal liver tissues in multiple datasets from the GEO and TCGA databases. High expression of EZH2 was significantly correlated with poor overall survival, disease-specific survival, progression-free survival, and relapse-free survival in almost all patients with HCC. The gene set variance analysis (GSVA) showed that the expression of EZH2 is positively correlated with an immunosuppressive microenvironment and negatively correlated with major MHC class I antigen presentation molecules. Gene set enrichment analysis (GSEA) showed that high EZH2 expression is positively associated with the MYC and glycolysis signaling pathway and negatively associated with the interferon-gamma signaling pathway in HCC tissues. These findings demonstrate that EZH2 is a potential prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Baoping Guo
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiaohong Tan
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Cen
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
17
|
Amirgholami N, Karampour NS, Ghadiri A, Tagavi Moghadam A, Ghasemi Dehcheshmeh M, Pipelzadeh MH. A. crassicauda, M. eupeus and H. lepturus scorpion venoms initiate a strong in vivo anticancer immune response in CT26-tumor mice model. Toxicon 2020; 180:31-38. [PMID: 32275983 DOI: 10.1016/j.toxicon.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
In the present in vivo study the anticancer efficacy of the venoms from Androctonus crassicauda, Messobuthus eupeus and Hemiscorpius lepturus scorpions was investigated. In addition, we attempted to clarify whether the immune system is involved in this activity. Initially, the LD50 of the venoms from these scorpions were determined and their 0.1 and 0.2 LD50 were calculated. The toxicity of 0.1 and 0.2 LD50 was tested on healthy mice by daily SC administration of these venoms for 12 consecutive days. CT26 cells were inoculated by SC route in BALB/c mice to establish a sold tumor, and ten days later, the mice were treated with 0.1 and 0.2 LD50 doses of the venoms on daily basis for 12 consecutive days. The tumor volume was measured every 4 days. At day 13, the tumors from untreated-control and venom-treated groups were removed, weighed, and assessed by histopathological and immunohistochemical techniques. In addition, the levels of mRNA expression of IL-12, IFN-γ and IL-1β were measured by real-time PCR. All the venoms induced anticancer effects as evidenced by significant inhibition in tumor growth; significant increases in inflammatory and CD+-T cells and expression of mRNA IL-12 and IFN-γ in tumor microenvironment of venom-treated as compared to untreated-control. These findings demonstrated, for the first time, that sub-lethal doses of the venoms from these scorpions induce their in vivo anticancer effects by stimulating the immune system. Further studies, specifically designed to identify these active constituents are recommended.
Collapse
Affiliation(s)
- Neda Amirgholami
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Neda Sistani Karampour
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | - Mohamad Ghasemi Dehcheshmeh
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hassan Pipelzadeh
- Toxicology Research Centre, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sceinces, Ahvaz, Iran.
| |
Collapse
|
18
|
Rogers NK, Romero C, SanMartín CD, Ponce DP, Salech F, López MN, Gleisner A, Tempio F, Behrens MI. Inverse Relationship Between Alzheimer’s Disease and Cancer: How Immune Checkpoints Might Explain the Mechanisms Underlying Age-Related Diseases. J Alzheimers Dis 2020; 73:443-454. [DOI: 10.3233/jad-190839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nicole K. Rogers
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Unidad de Paciente Crítico, Instituto de Neurocirugía Asenjo, Santiago, Chile
| | - Cesar Romero
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carol D. SanMartín
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Daniela P. Ponce
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Felipe Salech
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mercedes N. López
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Gleisner
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabián Tempio
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María I. Behrens
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
19
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
20
|
Wang S, He Z, Wang X, Li H, Liu XS. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 2019; 8:49020. [PMID: 31767055 PMCID: PMC6879305 DOI: 10.7554/elife.49020] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy, represented by immune checkpoint inhibitors (ICI), is transforming the treatment of cancer. However, only a small percentage of patients show response to ICI, and there is an unmet need for biomarkers that will identify patients who are more likely to respond to immunotherapy. The fundamental basis for ICI response is the immunogenicity of a tumor, which is primarily determined by tumor antigenicity and antigen presentation efficiency. Here, we propose a method to measure tumor immunogenicity score (TIGS), which combines tumor mutational burden (TMB) and an expression signature of the antigen processing and presenting machinery (APM). In both correlation with pan-cancer ICI objective response rates (ORR) and ICI clinical response prediction for individual patients, TIGS consistently showed improved performance compared to TMB and other known prediction biomarkers for ICI response. This study suggests that TIGS is an effective tumor-inherent biomarker for ICI-response prediction. In the last decade a new kind of cancer therapy, called immunotherapy, has changed how doctors treat cancer patients. These therapies mean that previously incurable cancers, including some skin and lung cancers, can now sometimes be cured. Immunotherapy does this by activating the patient’s own immune system so that it will attack the cancer cells. But for this to work, the cancer cells, much like invading bacteria or viruses, need to be recognized as foreign. Cancer cells contain many DNA mutations that cause the cell to make mutated proteins it would not normally make. These proteins betray the cancer cells as foreign to the immune system. The extent to which cancer cells make mutated proteins – also called the ‘tumor mutational burden’ – can sometimes predict whether a patient will respond to immunotherapy. In general, patients with a high mutational burden respond well to immunotherapy, but overall fewer than one in five cancer patients are cured by this treatment. An important question is whether there are better ways of predicting if a cancer patient will respond to immunotherapy. Wang et al. have addressed this problem by adding a second variable to the prediction. Not only do cancer cells have to make mutated proteins, but these proteins also have to be ‘seen’ by immune cells. Cancer cells, like normal cells, have mechanisms to present protein fragments to immune cells. Wang et al. hypothesized that patients with a high mutational burden would not respond to immunotherapy if they were lacking the machinery required for presenting protein fragments. The experiments revealed that measuring both tumor mutational burden and the levels of the machinery that presents protein fragments resulted in better predictions of patients’ responses to immunotherapy than measuring tumor mutational burden alone. Additionally, this new way of predicting responses to immunotherapy was successful across many different cancer types. The combined measurement of these two variables could be applied in clinical practice as a way to predict cancer patients’ response to immunotherapy. This should allow doctors to determine which course of treatment will work best for a specific patient. The results also suggest that inducing tumor cells to produce more of the machinery that presents protein fragments to the immune system could increase their responsiveness to immunotherapy. In the future, predicting how well a patient will respond to immunotherapy could become even more accurate by incorporating additional variables.
Collapse
Affiliation(s)
- Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zaoke He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
21
|
Effective oral delivery of gp100 plasmid vaccine against metastatic melanoma through multi-faceted blending-by-blending nanogels. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102114. [DOI: 10.1016/j.nano.2019.102114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
|
22
|
Bai S, Zhang P, Zhang JC, Shen J, Xiang X, Yan YB, Xu ZQ, Zhang J, Long L, Wang C, Shi P, Yang L, Chen W, Liu H. A gene signature associated with prognosis and immune processes in head and neck squamous cell carcinoma. Head Neck 2019; 41:2581-2590. [PMID: 30839132 DOI: 10.1002/hed.25731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis that has not significantly improved in the past several decades. A prognostic-related signature was needed. METHODS The Cancer Genome Atlas and GSE41613 databases were downloaded as a training and validation set, respectively. We identified 12 genes that demonstrated progression and prognostic value, and then, a gene signature was constructed. RESULTS This classification could reflect distinct characteristics, phenotypically and molecularly, among HNSCC tumors. It could stratify patients with significantly different survival rates (median survival: 2083 days vs 927 days; P = 3.85E-08) in the training cohort and validation cohort (P = 0.007) and was significantly involved in immune/inflammatory response and tumor progression processes. CONCLUSIONS This bioinformatics-based signature suggested the presence of two distinct populations of patients with HNSCC with distinguishable phenotypic characteristics and clinical outcomes and might provide insight for new types of immune therapy.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jian-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Xu Xiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ying-Bin Yan
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Zhen-Qi Xu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Long
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Chao Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Ping Shi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Wei Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Nankai University, Tianjin Stomatological Hospital, Tianjin, China
| |
Collapse
|
23
|
Bhat MY, Solanki HS, Advani J, Khan AA, Keshava Prasad TS, Gowda H, Thiyagarajan S, Chatterjee A. Comprehensive network map of interferon gamma signaling. J Cell Commun Signal 2018; 12:745-751. [PMID: 30191398 PMCID: PMC6235777 DOI: 10.1007/s12079-018-0486-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/26/2018] [Indexed: 11/25/2022] Open
Abstract
Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at ( http://www.netpath.org/pathways?path_id=NetPath_32 ). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.
Collapse
Affiliation(s)
- Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Hitendra S Solanki
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India.
| |
Collapse
|
24
|
Haeryfar SMM, Shaler CR, Rudak PT. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother 2018; 67:1885-1896. [PMID: 29470597 PMCID: PMC11028145 DOI: 10.1007/s00262-018-2132-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T lymphocytes known for their ability to respond to MHC-related protein 1 (MR1)-restricted stimuli and select cytokine signals. They are abundant in humans and especially enriched in mucosal layers, common sites of neoplastic transformation. MAIT cells have been found within primary and metastatic tumors. However, whether they promote malignancy or contribute to anticancer immunity is unclear. On the one hand, MAIT cells produce IL-17A in certain locations and under certain circumstances, which could in turn facilitate neoangiogenesis, intratumoral accumulation of immunosuppressive cell populations, and cancer progression. On the other hand, they can express a potent arsenal of cytotoxic effector molecules, NKG2D and IFN-γ, all of which have established roles in cancer immune surveillance. In this review, we highlight MAIT cells' characteristics as they might pertain to cancer initiation, progression, or control. We discuss recent findings, including our own, that link MAIT cells to cancer, with a focus on colorectal carcinoma, as well as some of the outstanding questions in this active area of research. Finally, we provide a hypothetical picture in which MAIT cells constitute attractive targets in cancer immunotherapy.
Collapse
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
25
|
Yin Y, Hu Q, Xu C, Qiao Q, Qin X, Song Q, Peng Y, Zhao Y, Zhang Z. Co-delivery of Doxorubicin and Interferon-γ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Mol Pharm 2018; 15:4161-4172. [PMID: 30011369 DOI: 10.1021/acs.molpharmaceut.8b00564] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFβ, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.
Collapse
|
26
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
27
|
Anti-tumor properties of anthocyanins from Lonicera caerulea 'Beilei' fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomed Pharmacother 2018; 104:520-529. [PMID: 29800916 DOI: 10.1016/j.biopha.2018.05.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, the anthocyanin from Lonicera caerulea 'Beilei' fruit (ABL) was extracted and purified. The purified component (ABL-2) was then evaluated for its anti-tumor properties on human hepatoma cells (SMMC-7721) in vitro and the murine hepatoma cells (H22) in vivo. In vitro, ABL-2 not only significantly inhibited the growth of SMMC-7721 cells, but also remarkably blocked the cells' cycle in G2/M phase, inducing DNA damage and eventually leading to apoptosis. In vivo, ABL also killed tumor cells, inhibited tumor growth, and improved the survival status of H22 tumor-bearing mice. These effects were associated with an increase in the activities of antioxidase and a decrease in the level of lipid peroxidation, as evidenced by changes in SOD, GSH-Px, GSH, and MDA levels. In addition, ABL-2 also regulated the levels of immune cytokines including IL-2, IFN-γ, and TNF-α. These results revealed that ABL-2 exerts an effective anti-tumor effect by dynamically adjusting the REDOX balance and improving the immunoregulatory activity of H22 tumor-bearing mice. High performance liquid chromatography (HPLC) analysis revealed that cyanidin-3,5-diglucoside (8.16 mg/g), cyanidin-3-glucoside (387.60 mg/g), cyanidin-3-rutinoside (23.62 mg/g), and peonidin-3-glucoside (22.20 mg/g) were the main components in ABL-2, which may contribute to its anti-tumor activity.
Collapse
|
28
|
Dias LP, Luzo ÂCM, Volpe BB, Durán M, Galdames SEM, Ferreira LAB, Durán N, Fávaro WJ. Effects of intravesical therapy with platelet-rich plasma (PRP) and Bacillus Calmette-Guérin (BCG) in non-muscle invasive bladder cancer. Tissue Cell 2018; 52:17-27. [PMID: 29857824 DOI: 10.1016/j.tice.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
This study describes the effects of a promising therapeutic alternative for non-muscle invasive bladder cancer (NMIBC) based on Bacillus Calmette-Guerin (BCG) intravesical immunotherapy combined with Platelet-rich plasma (PRP) in an animal model. Furthermore, this study describes the possible mechanisms of this therapeutic combination involving Toll-like Receptors (TLRs) 2 and 4 signaling pathways. NMIBC was induced by treating female Fischer 344 rats with N-methyl-N-nitrosourea (MNU). After treatment with MNU, the animals were distributed into four experimental groups: Control (without MNU) group, MNU (cancer) group, MNU + PRP group, MNU + BCG group and MNU + PRP + BCG group. Our results demonstrated that PRP treatment alone or associated with BCG triggered significant cytotoxicity in bladder carcinoma cells (HTB-9). Animals treated with PRP associated to BCG clearly showed better histopathological recovery from the cancer state and decrease of urothelial neoplastic lesions progression in 70% of animals when compared to groups that received the same therapies administered singly. In addition, this therapeutic association led to distinct activation of immune system TLRs 2 and 4-mediated, resulting in increased MyD88, TRIF, IRF3, IFN-γ immunoreactivities. Taken together, the data obtained suggest that interferon signaling pathway activation by PRP treatment in combination with BCG immunotherapy may provide novel therapeutic approaches for non-muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Lara Paro Dias
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ângela C Malheiros Luzo
- Public Umbilical Cord Blood Bank, Haematology Hemotherapy Center/INCT do Sangue, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno B Volpe
- Public Umbilical Cord Blood Bank, Haematology Hemotherapy Center/INCT do Sangue, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sofia E M Galdames
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz A B Ferreira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nelson Durán
- NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
29
|
Renuka, Agnihotri N, Bhatnagar A. Differential ratios of fish/corn oil ameliorated the colon carcinoma in rat by altering intestinal intraepithelial CD8+ T lymphocytes, dendritic cells population and modulating the intracellular cytokines. Biomed Pharmacother 2018; 98:600-608. [DOI: 10.1016/j.biopha.2017.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
|
30
|
Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res 2018; 77:6795-6811. [PMID: 29247038 DOI: 10.1158/0008-5472.can-17-2285] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Small-molecule inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) are emerging at the vanguard of experimental agents in oncology. Here, pioneers of this new drug class provide a bench-to-bedside review on preclinical validation of IDO1 as a cancer therapeutic target and on the discovery and development of a set of mechanistically distinct compounds, indoximod, epacadostat, and navoximod, that were first to be evaluated as IDO inhibitors in clinical trials. As immunometabolic adjuvants to widen therapeutic windows, IDO inhibitors may leverage not only immuno-oncology modalities but also chemotherapy and radiotherapy as standards of care in the oncology clinic. Cancer Res; 77(24); 6795-811. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - James B DuHadaway
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania
| | | |
Collapse
|
31
|
Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive 'Cold' Tumors 'Hot'. Trends Cancer 2017; 4:38-58. [PMID: 29413421 DOI: 10.1016/j.trecan.2017.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
We discuss how small-molecule inhibitors of the tryptophan (Trp) catabolic enzyme indoleamine 2,3-dioxygenase (IDO) represent a vanguard of new immunometabolic adjuvants to safely enhance the efficacy of cancer immunotherapy, radiotherapy, or 'immunogenic' chemotherapy by leveraging responses to tumor neoantigens. IDO inhibitors re-program inflammatory processes to help clear tumors by blunting tumor neovascularization and restoring immunosurveillance. Studies of regulatory and effector pathways illuminate IDO as an inflammatory modifier. Recent work suggests that coordinate targeting of the Trp catabolic enzymes tryptophan 2,3-dioxygenase (TDO) and IDO2 may also safely broaden efficacy. Understanding IDO inhibitors as adjuvants to turn immunologically 'cold' tumors 'hot' can seed new concepts in how to improve the efficacy of cancer therapy while limiting collateral damage.
Collapse
|
32
|
Cai C, Tang J, Shen B, Ding L, Shao Y, Chen Z, Ma Y, Xue H, Wei Z. Preclinical trial of the multi-targeted lenvatinib in combination with cellular immunotherapy for treatment of renal cell carcinoma. Exp Ther Med 2017; 14:3221-3228. [PMID: 28912872 DOI: 10.3892/etm.2017.4858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
Lenvatinib is an oral, multi-targeted tyrosine kinase inhibitor of vascular endothelial growth factor receptors 1-3, fibroblast growth factor receptors 1-4, platelet-derived growth factor receptor β, RET and KIT. Cellular immunotherapy has the potential to be a highly targeted treatment, with low toxicity to normal tissues and a high capacity to eradicate tumor tissue. The present study assessed the safety, maximum tolerated dose (MTD) and preliminary antitumor activity of lenvatinib and cellular immunotherapy in a murine model of renal cell carcinoma (RCC). The present study used a therapeutic dose of 0.12 mg lenvatinib and/or 104 rat uterine cancer adenocarcinoma (RuCa)-sensitized lymphocytes administered once daily continuously in 7-day cycles. Tumor regression was observed in mice with RCC following treatment with lenvatinib and 104 RuCa-sensitized lymphocytes. MTD was established as once daily administration of 0.18 mg lenvatinib and 106 RuCa-sensitized lymphocytes. The most common treatment-related adverse effects observed were fatigue (40%), mucosal inflammation (30%), proteinuria, diarrhea, vomiting, hypertension and nausea (all 40%). Combination therapy using lenvatinib and cellular immunotherapy enhanced the antitumor effect induced by single treatments and prolonged the survival of mice with RCC compared with either of the single treatments. Treatment with lenvatinib (0.12 mg) combined with 104 RuCa-sensitized lymphocytes was associated with manageable toxicity consistent with individual agents. Further evaluation of this combination therapy in mice with advanced RCC is required. In conclusion, cellular immunotherapy and oncolytic therapy for cancer may be improved by the synergistic effects of lenvatinib and sensitized lymphocytes. In the present study, the inherent antineoplastic and immune stimulatory properties of the two agents were enhanced when used in combination, which may provide a basis for clinical treatment of patients with RCC.
Collapse
Affiliation(s)
- Chengkuan Cai
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Jingyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Liucheng Ding
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Yunpeng Shao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhengsen Chen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Yinchao Ma
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Haoliang Xue
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Probiotics can be used as an adjuvant for cancer prevention or/and treatment through their abilities to modulate intestinal microbiota and host immune response. Although most of the recent reviews have focused on the potential role of probiotics against colon cancer, only few of them include the probiotic effect on extraintestinal cancers. The present review covers the most important findings from the literature published during the past 20 months (from January 2015 to August 2016) regarding the probiotics-mediated suppression of both gastrointestinal and extraintestinal cancers and the underlying mechanisms. RECENT FINDINGS A comprehensive literature search in Pubmed, Science direct and Google scholar databases was conducted to locate all relevant articles that investigated the effect of probiotics on prevention/treatment of both gastrointestinal and extraintestinal cancers. Different mechanisms for the beneficial effects of probiotics against cancer were also discussed, mainly via modulation of gut microbiota which thereby influences host metabolism and immunity. SUMMARY Despite laboratory-based studies having demonstrated encouraging outcomes that probiotics possess antitumor effects, the benefits should not be exaggerated before we get more results from human clinical trials. These are very important before the medical community can accept the use of probiotics as an alternative therapy for cancer control.
Collapse
|
34
|
Lin IY, Pan MH, Lai CS, Lin TT, Chen CT, Chung TS, Chen CL, Lin CH, Chuang WC, Lee MC, Lin CC, Ma N. CCM111, the water extract of Antrodia cinnamomea, regulates immune-related activity through STAT3 and NF-κB pathways. Sci Rep 2017; 7:4862. [PMID: 28687744 PMCID: PMC5501807 DOI: 10.1038/s41598-017-05072-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Antrodia cinnamomea (AC) exhibits many bioactivities, including anti-inflammatory, anti-cancer, and hepatoprotection activities. Many researchers have studied the functions of the components or fractions of AC, but the functions of the original extractions of AC have not been studied. In addition, the detailed relationship between AC and immune-related signaling pathways is unclear. In this study, we screened the effects of CCM111, which is the extract of AC, on seven immune-related signaling pathways and further investigated whether CCM111 can influence inflammation. Interestingly, our results showed that CCM111 significantly inhibited the IL-6-stimulated STAT3 pathway and the LPS-stimulated NF-κB pathway in macrophages. CCM111 also decreased the phosphorylation of STAT3, Tyk2 and the nuclear translocation of p65. Moreover, CCM111 and F4, a fraction of CCM111, down-regulated nitric oxide (NO) production, the protein levels of iNOS and COX-2, and inflammatory cytokines in macrophage cells. Therefore, our study suggested that CCM111 has the potential to be developed as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- In-Yu Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Ting-Ting Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tao-Sheng Chung
- Division of Radiation Oncology, Landseed Hospital Taoyuan, Taoyuan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.,Division of Nephrology, Landseed Hospital Taoyuan, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | | | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City, Taiwan
| | - Ching-Che Lin
- Brion Research Institute of Taiwan, New Taipei City, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Mondal A, Smith C, DuHadaway JB, Sutanto-Ward E, Prendergast GC, Bravo-Nuevo A, Muller AJ. IDO1 is an Integral Mediator of Inflammatory Neovascularization. EBioMedicine 2016; 14:74-82. [PMID: 27889479 PMCID: PMC5161421 DOI: 10.1016/j.ebiom.2016.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022] Open
Abstract
The immune tolerogenic effects of IDO1 (indoleamine 2,3-dioxygenase 1) have been well documented and genetic studies in mice have clearly established the significance of IDO1 in tumor promotion. Dichotomously, the primary inducer of IDO1, the inflammatory cytokine IFNγ (interferon-γ), is a key mediator of immune-based tumor suppression. One means by which IFNγ can exert an anti-cancer effect is by decreasing tumor neovascularization. We speculated that IDO1 might contribute to cancer promotion by countering this anti-neovascular effect of IFNγ, possibly through IDO1-potentiated elevation of the pro-tumorigenic inflammatory cytokine IL6 (interleukin-6). In this study, we investigated how genetic loss of IDO1 affects neovascularization in mouse models of oxygen-induced retinopathy and lung metastasis. Neovascularization in both models was significantly reduced in mice lacking IDO1, was similarly reduced with loss of IL6, and was restored in both cases by concomitant loss of IFNγ. Likewise, the lack of IDO1 or IL6 resulted in reduced metastatic tumor burden and increased survival, which the concomitant loss of IFNγ abrogated. This insight into IDO1's involvement in pro-tumorigenic inflammatory neovascularization may have important ramifications for IDO1 inhibitor development, not only in cancer where clinical trials are currently ongoing, but in other disease indications associated with neovascularization as well.
Collapse
Affiliation(s)
- Arpita Mondal
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States; Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 W. Queen Ln., Philadelphia, PA 19129, United States
| | - Courtney Smith
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States
| | - Erika Sutanto-Ward
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St., Philadelphia, PA 19107, United States
| | - Arturo Bravo-Nuevo
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States
| | - Alexander J Muller
- Lankenau Institute for Medical Research, 100 E. Lancaster Ave., Wynnewood, PA 19096, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St., Philadelphia, PA 19107, United States.
| |
Collapse
|
36
|
El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, Hannig M, Hassan SY, Santourlidis S, Friedlander PL, Haikel Y, Vijaykumar S, Kandil E, Hassan M. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div 2016; 11:11. [PMID: 27486476 PMCID: PMC4969639 DOI: 10.1186/s13008-016-0023-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Tumor response to immunotherapy is the consequence of a concerted crosstalk between cytokines and effector cells. Interferon gamma (IFNγ) is one of the common cytokines coordinating tumor immune response and the associated biological consequences. Although the role of IFNγ in the modulation of tumor immunity has been widely documented, the mechanisms regulating IFNγ-induced cell death, during the course of immune therapy, is not described in detail. Results IFNγ triggered apoptosis of CLS-354 and RPMI 2650 cells, enhanced the protein expression and activation of indoleamine 2,3-dioxygenase (IDO), and suppressed the basal expression of heme oxygenase-1(HO-1). Interestingly, IFNγ induced the loss of mitochondrial membrane potential (Δψm) and increased accumulation of reactive oxygen species (ROS). The cytokine also induced the activation of Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT)1, apoptosis signal-regulating kinase 1 (ASK1), p38, c-jun-N-terminal kinase (JNK) and NF-κB pathways and the transcription factors STAT1, interferon regulatory factor 1 (IRF1), AP-1, ATF-2, NF-κB and p53, and expression of Noxa protein. Furthermore, IFNγ was found to trigger endoplasmic reticulum (ER) stress as evidenced by the cleavage of caspase-4 and activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol-requiring-1α (IRE1α) pathways. Using specific inhibitors, we identified a potential role for IDO as apoptotic mediator in the regulation of IFNγ-induced apoptosis of head and neck squamous cell carcinoma (HNSCC) cells via Noxa-mediated mitochondrial dysregulation and ER stress. Conclusion In addition to the elucidation of the role of IDO in the modulation of apoptosis, our study provides new insights into the molecular mechanisms of IFNγ-induced apoptosis of HNSCC cells during the course of immune therapy.
Collapse
Affiliation(s)
- Siraj M El Jamal
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | | | - Abdulhadi A Alamodi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Division of Oral Health Science, Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Abdulaziz Alkhateeb
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany ; College of Medicine, King Faisal University, Alhofuf, Saudi Arabia
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany
| | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Duesseldorf, Heinrich-Heine-University of Duesseldorf, Mooren Str.5, 40225 Duesseldorf, Germany
| | - Paul L Friedlander
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Srinivasan Vijaykumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Mohamed Hassan
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| |
Collapse
|
37
|
Garcia PV, Seiva FRF, Carniato AP, de Mello Júnior W, Duran N, Macedo AM, de Oliveira AG, Romih R, Nunes IDS, Nunes ODS, Fávaro WJ. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer 2016; 16:422. [PMID: 27389279 PMCID: PMC4937612 DOI: 10.1186/s12885-016-2474-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. RESULTS Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. CONCLUSIONS Thus, P-MAPA immunotherapy could be considered an important therapeutic strategy for NMIBC, as well as, opens a new perspective for treatment of patients that are refractory or resistant to BCG intravesical therapy.
Collapse
Affiliation(s)
- Patrick Vianna Garcia
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
| | | | - Amanda Pocol Carniato
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
| | - Wilson de Mello Júnior
- />Department of Anatomy, Institute of Biosciences, UNESP - Univ Estadual Paulista, Botucatu, SP Brazil
| | - Nelson Duran
- />Farmabrasilis R&D Division, Campinas, SP Brazil
- />NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP Brazil
| | | | - Alexandre Gabarra de Oliveira
- />Department of Internal Medicine, University of Campinas (UNICAMP), Campinas, SP Brazil
- />Department of Physical Education, São Paulo State University (UNESP), Rio Claro, SP Brazil
| | - Rok Romih
- />Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Wagner José Fávaro
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
- />Farmabrasilis R&D Division, Campinas, SP Brazil
- />NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP Brazil
| |
Collapse
|
38
|
Basingab FS, Ahmadi M, Morgan DJ. IFNγ-Dependent Interactions between ICAM-1 and LFA-1 Counteract Prostaglandin E2-Mediated Inhibition of Antitumor CTL Responses. Cancer Immunol Res 2016; 4:400-11. [PMID: 26928462 DOI: 10.1158/2326-6066.cir-15-0146] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022]
Abstract
Tumor-expressed ICAM-1 interaction with LFA-1 on naïve tumor-specific CD8(+) T cells not only stabilizes adhesion, but, in the absence of classical B7-mediated costimulation, is also able to provide potent alternative costimulatory signaling resulting in the production of antitumor cytotoxic T lymphocyte (CTL) responses. This study shows that overproduction of prostaglandin (PG) E2 by metastatic murine renal carcinoma (Renca) cells inhibited direct priming of tumor-specific CTL responses in vivo by preventing the IFNγ-dependent upregulation of ICAM-1 that is vital during the initial priming of naïve CD8(+) T cells. The addition of exogenous IFNγ during naïve CD8(+) T-cell priming abrogated PGE2-mediated suppression, and overexpression of ICAM-1 by tumor cells restored IFNγ production and proliferation among PGE2-treated tumor-specific CD8(+) T cells; preventing tumor growth in vivo These findings suggest that novel anticancer immunotherapies, which increase expression of ICAM-1 on tumor cells, could help alleviate PGE2-mediated immunosuppression of antitumor CTL responses. Cancer Immunol Res; 4(5); 400-11. ©2016 AACR.
Collapse
Affiliation(s)
- Fatemah Salem Basingab
- Department of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, Bristol, United Kingdom
| | - Maryam Ahmadi
- Department of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, Bristol, United Kingdom
| | - David John Morgan
- Department of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, Bristol, United Kingdom.
| |
Collapse
|
39
|
Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 2016; 6:20070. [PMID: 26818188 PMCID: PMC4730182 DOI: 10.1038/srep20070] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Strategies that enhance the function of T cells are critical for immunotherapy. One negative regulator of T-cell activity is ligand PD-L1, which is expressed on dentritic cells (DCs) or some tumor cells, and functions through binding of programmed death-1 (PD-1) receptor on activated T cells. Here we described for the first time a non-viral mediated approach to reprogram primary human T cells by disruption of PD-1. We showed that the gene knockout of PD-1 by electroporation of plasmids encoding sgRNA and Cas9 was technically feasible. The disruption of inhibitory checkpoint gene PD-1 resulted in significant reduction of PD-1 expression but didn't affect the viability of primary human T cells during the prolonged in vitro culture. Cellular immune response of the gene modified T cells was characterized by up-regulated IFN-γ production and enhanced cytotoxicity. These results suggest that we have demonstrated an approach for efficient checkpoint inhibitor disruption in T cells, providing a new strategy for targeting checkpoint inhibitors, which could potentialy be useful to improve the efficacy of T-cell based adoptive therapies.
Collapse
Affiliation(s)
- Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Bian Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Juan Du
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yinan Du
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Jiankui Zhou
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fangjun Chen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lei Cheng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| |
Collapse
|
40
|
Cancer Dormancy: A Regulatory Role for Endogenous Immunity in Establishing and Maintaining the Tumor Dormant State. Vaccines (Basel) 2015; 3:597-619. [PMID: 26350597 PMCID: PMC4586469 DOI: 10.3390/vaccines3030597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
The significant contribution of host immunity in early tumorigenesis has been recently recognized as a result of our better understanding of the molecular pathways regulating tumor cell biology and tumor-lymphocyte interactions. Emerging evidence suggests that disseminated dormant tumor cells derived from primary tumors before or after immune surveillance, are responsible for subsequent metastases. Recent trends from the field of onco-immunology suggest that efficiently stimulating endogenous anticancer immunity is a prerequisite for the successful outcome of conventional cancer therapies. Harnessing the immune system to achieve clinical efficacy is realistic in the context of conventional therapies resulting in immunogenic cell death and/or immunostimulatory side effects. Targeted therapies designed to target oncogenic pathways in tumor cells can also positively regulate the endogenous immune response and tumor microenvironment. Identification of T cell inhibitory signals has prompted the development of immune checkpoint inhibitors, which specifically hinder immune effector inhibition, reinvigorating and potentially expanding the preexisting anticancer immune response. This anticancer immunity can be amplified in the setting of immunotherapies, mostly in the form of vaccines, which boost naturally occurring T cell clones specifically recognizing tumor antigens. Thus, a promising anticancer therapy will aim to activate patients' naturally occurring anticancer immunity either to eliminate residual tumor cells or to prolong dormancy in disseminated tumor cells. Such an endogenous anticancer immunity plays a significant role for controlling the balance between dormant tumor cells and tumor escape, and restraining metastases. In this review, we mean to suggest that anticancer therapies aiming to stimulate the endogenous antitumor responses provide the concept of the therapeutic management of cancer.
Collapse
|
41
|
Human Wharton's jelly mesenchymal stem cell secretome display antiproliferative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin. Tissue Cell 2015; 47:229-34. [DOI: 10.1016/j.tice.2015.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
|
42
|
Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, Chu PK, Ping Y, Tang G. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. NANO LETTERS 2015; 15:2732-9. [PMID: 25806599 DOI: 10.1021/acs.nanolett.5b00570] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.
Collapse
MESH Headings
- Administration, Oral
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cell Line, Tumor
- Coated Materials, Biocompatible/chemical synthesis
- Humans
- Immunotherapy, Active/methods
- Nanocapsules/administration & dosage
- Nanocapsules/chemistry
- Nanocapsules/ultrastructure
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Neoplasms, Experimental/pathology
- Salmonella/physiology
- Transformation, Bacterial
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/chemistry
Collapse
Affiliation(s)
- Qinglian Hu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Min Wu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Chun Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Changyong Cheng
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Mengmeng Zhao
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weihuan Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- §Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuan Ping
- ∥School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guping Tang
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
43
|
Bahrambeigi V, Ahmadi N, Moisyadi S, Urschitz J, Salehi R, Haghjooy Javanmard S. PhiC31/PiggyBac modified stromal stem cells: effect of interferon γ and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Mol Cancer 2014; 13:255. [PMID: 25428727 PMCID: PMC4258801 DOI: 10.1186/1476-4598-13-255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023] Open
Abstract
Background TRAIL and IFNγ are promising anti-cancer cytokines and it has been shown that IFNγ may sensitize cancer cells to TRAIL. Adipose derived mesenchymal stem cells (ADSCs) are attractive vehicles for delivering anti-cancer agents. In this study, we evaluated the therapeutic potential of PhiC31 (φC31) recombinase and/or piggyBac transposase (pBt) modified ADSCs expressing either TRAIL, IFNγ, or co-expressing TRAIL/IFNγ in mouse models of melanoma. Methods The expression and bioactivity of mouse IFNγ and TRAIL in φC31 and pBt modified cells were confirmed. We examined the effects of modified ADSCs on signal intensity of red fluorescence protein expressed by melanoma cells in subcutaneous tumors or established lung metastases and on survival (6 mice per group). We also conducted a flow cytometric analysis of systemic CD4+CD25+FOXP3+ T regulatory cells (Tregs) and histological analysis of melanoma tumors. Data were analyzed by Student t test, ANOVA, and log-rank tests. All statistical tests were two-sided. Results We demonstrated non-viral DNA-integrating vectors can be used for stable transgene expression. IFNγ inhibited melanoma cell growth in vitro probably via IFNγ-induced JAK/STAT1 signaling pathway activation. Murine TRAIL induced apoptosis in the human cell lines CAOV-4 and Ej-138, while MCF7 and B16F10 cells appeared to be insensitive to TRAIL. Treatment of melanoma cells with IFNγ did not influence their response to TRAIL. In contrast, results from in vivo studies showed that IFNγ-expressing ADSCs, engrafted into tumor stroma, inhibited tumor growth and angiogenesis, prevented systemic increase of Tregs, increased PD-L1 expression and CD8+ infiltration (but not interleukin-2+ cells), and prolonged the survival of mice (68 days, 95% confidence interval [CI] =52 to 86 days compared to 36 days, 95% CI =29 to 39 days for control, P < .001). Conclusions For the first time, we employed DNA integrating vectors for safe and stable modification of MSCs. Our data indicate potential of non-virally modified IFNγ-expressing ADSCs for treatment of melanoma through direct effects of IFNγ. This study may have a significant role in the management of cancer in the future. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-255) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Kanagavelu S, Gupta S, Wu X, Philip S, Wattenberg MM, Hodge JW, Couto MD, Chung KD, Ahmed MM. In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res 2014; 182:149-62. [PMID: 25036982 DOI: 10.1667/rr3819.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiation is a potent immune-modulator that elicits cell death upon tumor, stromal and angiogenic compartments of tumor microenvironment. Here, we test a novel approach of high-dose radiation delivery using three dimensional volume based lattice radiation therapy (LRT) to understand the impact of different volume irradiation in eliciting both local and metastatic/distant tumor control through modulation of tumor immune micro-environment. To study such effects of LRT, tumors were implanted in both hind legs of C57BL/6 mice using Lewis lung carcinoma 1 (LLC1) cells. Mice were divided into five groups: untreated; partial tumor volume groups included two 10% vertices, one 20% vertex and one 50% vertex of the total tumor volume; and 100% open-field irradiation. Tumors implanted in the left flank were irradiated with a single dose of 20 Gy while the tumors in the right flank were unirradiated. Tumor growth and regression as well as immune responses (such as Th1 and Th2; T-cell infiltration) were determined after radiation treatment. Results demonstrated that both 100% open-field irradiation and 20% volume irradiation (in two 10% volumes) resulted in significant growth delay in the irradiated tumor. Further, all types of radiation exposures, partial or 100% volume, demonstrated distal effectiveness, however, 20% volume irradiation (in two 10% volumes) and 50% tumor volume irradiation led to maximum growth delay. Mice treated with partial tumor volume radiation induced a robust IFN-γ and Th1 response when compared to whole-tumor irradiation and down-modulated Th2 functions. The presence of increased CD3+ cells and TRAIL in partially irradiated tumor volumes correlated well with tumor growth delay. Further, serum obtained from any of the LRT treated mice caused growth inhibition of endothelial cells when compared to serum obtained from either untreated or open-field irradiated groups. These results indicate that high-dose partial volume irradiation can cause an improved distant effect than the total tumor volume irradiation through activating the host immune system.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- a Department of Radiation Oncology, University of Miami, Miami, Florida 33136
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Active, but dysfunctional, immune responses in patients with cancer have been studied in several tumour types, but owing to the heterogeneity of cancer theories of common reaction mechanisms seem to be obsolete. In this Review of published clinical studies of patients with cancer, expression and interplay of the following cytokines are examined: interleukin 2, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 18, tumour necrosis factor α (TNFα), transforming growth factor β (TGFβ), interferon-γ, HLA-DR, macrophage migration inhibitory factor (MIF), and C-X-C motif chemokine receptor 4 (CXCR4). Clinical data were analysed in a non-quantitative descriptive manner and interpreted with regard to experimentally established physiological cytokine interactions. The clinical cytokine pattern that emerged suggests that simultaneous immunostimulation and immunosuppression occur in patients with cancer, with increased concentrations of the cytokines MIF, TNFα, interleukin 6, interleukin 8, interleukin 10, interleukin 18, and TGFβ. This specific cytokine pattern seems to have a prognostic effect, since high interleukin 6 or interleukin 10 serum concentrations are associated with negative prognoses in independent cancer types. Although immunostimulatory cytokines are involved in local cancer-associated inflammation, cancer cells seem to be protected from immunological eradication by cytokine-mediated local immunosuppression and a resulting defect of the interleukin 12-interferon-γ-HLA-DR axis. Cytokines produced by tumours might have a pivotal role in this defect. A working hypothesis is that the cancer-specific and histology-independent uniform cytokine cascade is one of the manifestations of the underlying paraneoplastic systemic disease, and this hypothesis links the stage of cancer with both the functional status of the immune system and the patient's prognosis. Neutralisation of this cytokine pattern could offer novel and so far unexploited treatment approaches for cancer.
Collapse
|
46
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
47
|
Nikitczuk KP, Schloss RS, Yarmush ML, Lattime EC. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. ACTA ACUST UNITED AC 2013; 4:280-290. [PMID: 23741626 DOI: 10.4236/jct.2013.41035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Critical to the generation of an effective therapeutic antitumor immune response is the elicitation of effective antigen presentation coupled with overcoming tumor-immune escape mechanisms. Towards this end, we aimed to understand the therapeutic effectiveness of a polymer based vaccine approach at enhancing the anti-tumor responses in a tumor-bearing mouse model. While we and others have previously demonstrated the effectiveness of PLGA based systems in delivering antigen etc., studies scarcely focus on understanding the immunological mechanisms of polymer based therapies in tumor bearing treatment models. Considering tumors modulate the immune system and consequently the efficacy of therapies, understanding treatment mechanisms in the presence of tumor will help lead to more efficacious treatment options. We demonstrate here that a poly(lactic-co-glycolic acid) (PLGA) based delivery system encapsulating tumor antigen (OVA) and the TLR9 agonist CpG motif DNA administered into the tumor microenvironment initiates an effective type 1 mediated (IFN-γ producing) anti-tumor response in a syngeneic murine model of T cell lymphoma (E.G7-OVA). Although E.G7-OVA tumors spontaneously generate antigen specific CTLs in draining lymph nodes (LN), tumors progress rapidly. Modulation of the tumor microenvironment via local PLGA based therapy led to the generation of a systemic antigen specific Th1 response, absent in the non-polymer delivery method, subsequently associated with reduced tumor growth and prolongation of survival. These studies provide further insight into the use of a PLGA-based therapeutic approach at modulating the tumor microenvironment and highlight the need for analyzing the treatment effects in a tumor bearing model.
Collapse
Affiliation(s)
- Kevin P Nikitczuk
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854
| | | | | | | |
Collapse
|
48
|
Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, Alfieri A, Rothman J, Guha C. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother 2012; 61:2227-38. [PMID: 22644735 PMCID: PMC11028516 DOI: 10.1007/s00262-012-1257-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated, Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy using Listeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10 Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-γ ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60 % of the mice. ELISpot and immunohistochemistry of CD8+ cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-γ production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, UT Southwestern Medical Center, 5801 Forest Park Rd., Dallas, TX, 75390-9183, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kumar A, Kantele A, Järvinen T, Chen T, Kavola H, Sadeghi M, Hedman K, Franssila R. Trichodysplasia spinulosa-associated polyomavirus (TSV) and Merkel cell polyomavirus: correlation between humoral and cellular immunity stronger with TSV. PLoS One 2012; 7:e45773. [PMID: 23029236 PMCID: PMC3454342 DOI: 10.1371/journal.pone.0045773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022] Open
Abstract
Merkel Cell Polyomavirus (MCV) is a common infectious agent likely to be involved in the pathogenesis of most Merkel cell carcinomas (MCC). Trichodysplasia spinulosa-associated polyomavirus (TSV), which exhibit high seroprevalence in general population, has been detected in trichodysplasia spinulosa (TS) skin lesions suggesting an etiological role for this disease. Previous studies have shown strong MCV-specific T-cell responses, while no data exist on T-cell immunity against TSV. In order to characterize Th-cell immunity against TSV, and to allow comparisons with the MCV-specific Th-cell immunity, we studied TSV-specific proliferation, IFN-γ, IL-10 and IL-13, and MCV-specific IFN-γ and IL-10 responses in 51 healthy volunteers, and in one MCC patient. Recombinant TSV and MCV VP1 virus-like particles (VLPs) were used as antigens. A significant correlation was found between virus-specific Th-cell and antibody responses with TSV; with MCV it proved weaker. Despite significant homology in amino acid sequences, Th-cell crossreactivity was not evident between these viruses. Some subjects seronegative to both TSV and MCV exhibited Th-cell responses to both viruses. The agent initially priming these Th-cells remains an enigma. As CD8+ cells specific to MCV T-Ag oncoprotein clearly provide an important defense against established MCC, the MCV VP1-specific Th-cells may, by suppressing MCV replication with antiviral cytokines such as IFN-γ, significantly contribute to preventing the full process of oncogenesis.
Collapse
MESH Headings
- Adult
- Antigens, Fungal/immunology
- Antigens, Viral/immunology
- Candida albicans/immunology
- Capsid Proteins/immunology
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/virology
- Cell Proliferation
- Cells, Cultured
- Female
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/physiology
- Middle Aged
- Polyomavirus Infections/blood
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/physiology
- T-Lymphocytes, Helper-Inducer/virology
- Tumor Virus Infections/blood
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Virus Replication
- Young Adult
Collapse
Affiliation(s)
- Arun Kumar
- Departments of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer. Cancer Res 2012; 72:1651-60. [DOI: 10.1158/0008-5472.can-11-2788] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|