1
|
Lafrance-Vanasse J, Sadekar SS, Yang Y, Yadav DB, Meilandt WJ, Wetzel-Smith MK, Cai H, Crowell SR, Nguyen V, Lee V, Chih B, Kwong M, Chan P, Santagostino S, Lee D, Chung S, Lazar GA, Ernst JA, Atwal JK. Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier. Nat Commun 2025; 16:4143. [PMID: 40319060 PMCID: PMC12049489 DOI: 10.1038/s41467-025-59447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
The blood-brain barrier (BBB) restricts efficient penetration of systemically delivered therapeutic antibodies into the brain, limiting the development of this class of drugs to treat neurodegenerative diseases. Here we demonstrate that the neonatal Fc receptor (FcRn), which is highly expressed at the BBB, can be used to facilitate IgG transport to the brain. Engineering of the antibody Fc region to promote binding to FcRn at neutral pH enhances antibody transcytosis in a cellular model. In vivo, these modifications improve brain penetration, as well as brain target engagement and activity, of systemically administered antibodies in both mice and non-human primates. This engineering approach can be broadly implemented to enhance central nervous system (CNS) exposure of antibody- and Fc-based drugs, improving the clinical potential of biotherapeutics for the treatment of human brain diseases.
Collapse
Affiliation(s)
| | - Shraddha S Sadekar
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yanli Yang
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Daniela Bumbaca Yadav
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | | | - Hao Cai
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Susan R Crowell
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Van Nguyen
- Department of Bioanalytical Science, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Vivian Lee
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Mandy Kwong
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Sara Santagostino
- Department of Translational Safety, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Donna Lee
- Department of Translational Safety, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Shan Chung
- Department of Bioanalytical Science, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
2
|
Cho N, Ho J, Rosario GD, Yu SF, Ferl GZ, Boswell CA. Measurement of specific and nonspecific tissue uptake of antibodies in tumor by SPECT imaging and nonlinear compartmental modeling. EJNMMI Res 2025; 15:15. [PMID: 39994098 PMCID: PMC11850665 DOI: 10.1186/s13550-025-01207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Understanding the mechanisms driving specific and nonspecific tissue uptake of antibodies can inform protein engineering strategies that maximize therapeutic efficacy in target tissues while minimizing off-target tissue toxicities. While in vitro cell assays are typically used to study these internalization mechanisms, there are few methods readily available to evaluate these pathways in vivo. Single photon emission computed tomography (SPECT) imaging with a non-residualizing radiohalogen probe can measure total levels of intact antibody, and a residualizing radiometal-chelate probe, in combination with a non-residualizing probe, can measure catabolized antibody associated with receptor-mediated and nonspecific internalization processes. Here, we describe a SPECT imaging study in human epidermal growth factor receptor 2 (HER2)-expressing tumor-bearing mice aimed at measuring whole body disposition kinetics of tumor-targeting trastuzumab (anti-HER2) and non-targeting (anti-gD) antibodies. Mice received these molecules labeled with either a non-residualizing prosthetic group ([125I]SIB) or with a residualizing radiometal-chelate (111In-DOTA). RESULTS SPECT imaging data confirmed significant HER2-mediated tumor uptake and catabolism of anti-HER2, evidenced by the high 111In-DOTA-anti-HER2 signal over time relative to 111In-DOTA-anti-gD and the respective [125I]SIB-labeled molecules. [125I]SIB-anti-HER2 still showed noticeably higher tumor signal than [125I]SIB-anti-gD, demonstrating a meaningful pool of intact anti-HER2 in the interstitial tumor compartment. Spleen showed the greatest catabolism of both mAbs amongst all non-tumor tissues. Compartmental modeling of the SPECT data demonstrated that cell-associated anti-HER2 was primarily receptor-bound, with a peak receptor occupancy of 35% at 13 h post administration of a 10 mg/kg dose, with minimal free and pinocytosed mAb. CONCLUSION Here, we successfully developed an imaging and modeling approach to capture anti-HER2 antibody receptor binding as well as specific and nonspecific internalization over time in vivo. These data and analyses demonstrate the power of SPECT imaging using both non-residualizing and residualizing radioisotopes to better characterize the different biological states (free, bound, and catabolized) of antibodies within interstitial and intracellular compartments. Understanding these distinct antibody internalization mechanisms in tumor and non-tumor tissues enables more informed decisions on dose selection to optimize treatment of tumors with heterogeneous antigen expression while minimizing nonspecific toxicities.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason Ho
- In Vivo Studies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Geoffrey Del Rosario
- Translational Oncology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shang-Fan Yu
- Translational Oncology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Gregory Z Ferl
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Translational Imaging, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - C Andrew Boswell
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Translational Imaging, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Gurkšnienė V, Alčauskas T, Majauskaitė F, Jančorienė L. The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review. Vaccines (Basel) 2024; 12:1419. [PMID: 39772080 PMCID: PMC11680401 DOI: 10.3390/vaccines12121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background and Objectives: Given that COVID-19 vaccination is a relatively recent development, particularly when compared to immunisation against other diseases, it is crucial to assess its efficacy in vaccinated populations. This literature review analysed studies that monitored antibody titres against SARS-CoV-2 in healthcare workers who received COVID-19 vaccines. Methods: Using the PICO (Population, Intervention, Comparators, Outcomes) model recommended in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines we included 43 publications which analyse antibody dynamics following primary vaccination, the effects of booster doses, and the influence of factors such as COVID-19C infection, age, and sex on antibody kinetics. Results: All the studies demonstrated a strong immunogenic response to the vaccines. Re-gardless of the vaccine used, over 95% of the pre-vaccination seronegative population be-came seropositive in all studies. Depending on the sampling intervals provided by the re-searchers, antibody levels were quantitatively highest during the first three months after vaccination, but levels inevitably declined over time. The monthly decline in antibodies observed in all these studies highlighted the necessity for booster doses. Studies analysing the impact of revaccination on antibody dynamics have confirmed that revaccination is an effective tool to boost humoral immunity against SARS-CoV-2. An-tibodies appear to persist for a longer period of time after revaccination, although they are subject to similar factors influencing antibody dynamics, such as age, comorbidities, and exposure to COVID-19. In addition, heterogeneous revaccination strategies have been shown to be more effective than homogeneous revaccination. Conclusions: Our review demonstrated that antibody levels against SARS-CoV-2 inevitably decline after vaccination, leaving the question of ongoing booster strategies open. The studies reviewed provided evidence of the effectiveness of booster vaccination, despite differences in age, sex, and prior COVID-19 infection. This suggests that repeated vaccination remains a highly effective method for mitigating the continued threat posed by COVID-19.
Collapse
Affiliation(s)
| | - Tadas Alčauskas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (V.G.); (F.M.); (L.J.)
| | | | | |
Collapse
|
4
|
Zhong X, Yan GG, Chaturvedi A, Li X, Gao Y, Girgenrath M, Corcoran CJ, Diblasio-Smith L, LaVallie ER, de Rham T, Zhou J, Abel M, Riegel L, Lim SK, Bloom L, Lin L, D’Antona AM. Metabolic Engineering of Glycofusion Bispecific Antibodies for α-Dystroglycanopathies. Antibodies (Basel) 2024; 13:83. [PMID: 39449325 PMCID: PMC11503271 DOI: 10.3390/antib13040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Background: α-dystroglycanopathies are congenital muscular dystrophies in which genetic mutations cause the decrease or absence of a unique and complex O-linked glycan called matriglycan. This hypoglycosylation of O-linked matriglycan on the α-dystroglycan (α-DG) protein subunit abolishes or reduces the protein binding to extracellular ligands such as laminins in skeletal muscles, leading to compromised survival of muscle cells after contraction. Methods: Surrogate molecular linkers reconnecting laminin-211 and the dystroglycan β-subunit through bispecific antibodies can be engineered to improve muscle function in the α-dystroglycanopathies. This study reports the metabolic engineering of a novel glycofusion bispecific (GBi) antibody that fuses the mucin-like domain of the α-DG to the light chain of an anti-β-DG subunit antibody. Results: Transient HEK production with the co-transfection of LARGE1, the glycoenzyme responsible for the matriglycan modification, produced the GBi antibody only with a light matriglycan modification and a weak laminin-211 binding activity. However, when a sugar feed mixture of uridine, galactose, and manganese ion (Mn2+) was added to the culture medium, the GBi antibody produced exhibited a dramatically enhanced matriglycan modification and a much stronger laminin-binding activity. Conclusions: Further investigation has revealed that Mn2+ in the sugar feeds played a critical role in increasing the matriglycan modification of the GBi antibody, key for the function of the resulting bispecific antibody.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Guoying Grace Yan
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Apurva Chaturvedi
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Xiuling Li
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Yijie Gao
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Mahasweta Girgenrath
- Rare Disease Research Unit, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Chris J. Corcoran
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Liz Diblasio-Smith
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Edward R. LaVallie
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Teresse de Rham
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Jing Zhou
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Molica Abel
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Logan Riegel
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Sean K.H. Lim
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Laird Bloom
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Laura Lin
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| |
Collapse
|
5
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
6
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
7
|
Wijngaarden JE, Jauw YWS, Zwezerijnen GJC, de Wit-van der Veen BJ, Vugts DJ, Zijlstra JM, van Dongen GAMS, Boellaard R, Menke-van der Houven van Oordt CW, Huisman MC. Non-specific irreversible 89Zr-mAb uptake in tumours: evidence from biopsy-proven target-negative tumours using 89Zr-immuno-PET. EJNMMI Res 2024; 14:18. [PMID: 38358425 PMCID: PMC10869322 DOI: 10.1186/s13550-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.
Collapse
Affiliation(s)
- Jessica E Wijngaarden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Yvonne W S Jauw
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Berlinda J de Wit-van der Veen
- Department of Nuclear Medicine, Antoni Van Leeuwenhoek Nederlands Kanker Instituut, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Daniëlle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chizenga EP, Abrahamse H. Design and assembly of a nanoparticle, antibody, phthalocyanine scaffold for intracellular delivery of photosensitizer to human papillomavirus-transformed cancer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:205-216. [PMID: 37083545 DOI: 10.1080/21691401.2023.2199037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In photodynamic therapy (PDT), internalization and uptake of the photosensitizer (PS) by the cells is a passive process that relies on the enhanced permeability and retention (EPR) effect of tumour tissues due to their vasculature, increased LDL receptors, and decreased lymphatic drainage in vivo. But as worries about PDT resistance grow, using passive techniques to administer PSs is becoming less and less viable. According to reported resistance mechanisms, it is necessary to improve PS delivery by changing PS absorption and bioavailability in order to enhance the therapeutic outcome. Therefore, in this study, a multifunctional photosensitizing agent with specific monoclonal antibodies (mAbs) to E6 oncoproteins was developed for PDT of human papillomavirus (HPV)-transformed cancer cells. Using PEGylated Gold Nanoparticles (PEGy-AuNP) at the core, anti-E6 mAbs and phthalocyanines were bound together. This compound demonstrated enhanced internalization of PS, resulting in enhanced PDT effects. In spite of being demonstrated in vitro, the substance in this work is intended for in vivo application, and conclusions are drawn to suggest possible outcomes for in vivo models based on observed data. By making PSs more bioavailable, facilitating their entry into cells, and preventing efflux through intracellular binding, this strategy may reduce cellular resistance to PDT.
Collapse
Affiliation(s)
- Elvin Peter Chizenga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
9
|
Embacher S, Maertens K, Herzog SA. Half-life Estimation of Pertussis-Specific Maternal Antibodies in (Pre)Term Infants After In-Pregnancy Tetanus, Diphtheria, Acellular Pertussis Vaccination. J Infect Dis 2023; 228:1640-1648. [PMID: 37285482 PMCID: PMC10681861 DOI: 10.1093/infdis/jiad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND To reduce the risk of pertussis-related morbidity and mortality in early life, an increasing number of countries recommend maternal pertussis vaccination. However, there is limited knowledge about half-lives of vaccine-induced pertussis-specific maternal antibodies, especially in preterm infants, and factors potentially influencing them. METHODS We compared 2 different approaches to provide estimates of the half-lives of pertussis-specific maternal antibodies in infants and explored potential effects on the half-life in 2 studies. In the first approach, we estimated the half-lives per child and used these estimates as responses in linear models. In the second approach, we used linear mixed effect models on a log2 transformed scale of the longitudinal data to use the inverse of the time parameter as an estimate for the half-lives. RESULTS Both approaches provided similar results. The identified covariates partly explain differences in half-life estimates. The strongest evidence we observed was a difference between term and preterm infants, with the preterm infants showing a longer half-life. Among others, a longer interval between vaccination and delivery increases the half-life. CONCLUSIONS Several variables influence the decay speed of maternal antibodies. Both approaches have advantages and disadvantages, while the choice is secondary when assessing the half-life of pertussis-specific antibodies. CLINICAL TRIALS REGISTRATION NCT02408926 and NCT02511327.
Collapse
Affiliation(s)
- Stefan Embacher
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, Graz, Austria
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Sereina A Herzog
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
11
|
Chiang CL, Ma Y, Hou YC, Pan J, Chen SY, Chien MH, Zhang ZX, Hsu WH, Wang X, Zhang J, Li H, Sun L, Fallen S, Lee I, Chen XY, Chu YS, Zhang C, Cheng TS, Jiang W, Kim BYS, Reategui E, Lee R, Yuan Y, Liu HC, Wang K, Hsiao M, Huang CYF, Shan YS, Lee AS, James Lee L. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat Commun 2023; 14:6692. [PMID: 37872156 PMCID: PMC10593751 DOI: 10.1038/s41467-023-42402-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Junjie Pan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sin-Yu Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Hsien Chien
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Zhi-Xuan Zhang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Hsiang Hsu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Xinyu Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Li
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | | | - Inyoul Lee
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Xing-Yu Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduardo Reategui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert Lee
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Yuan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hsiao-Chun Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kai Wang
- Institute of Systems Biology, Seattle, WA, 98109, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
- School of Chemical Biology and Biochemistry, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA.
| |
Collapse
|
12
|
Zhang Y, Zhang H, Chan DWH, Ma Y, Lu A, Yu S, Zhang B, Zhang G. Strategies for developing long-lasting therapeutic nucleic acid aptamer targeting circulating protein: The present and the future. Front Cell Dev Biol 2022; 10:1048148. [PMID: 36393853 PMCID: PMC9664076 DOI: 10.3389/fcell.2022.1048148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 08/09/2023] Open
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide sequences that can bind specific targets. The molecular weight of aptamers (<20 kDa) is lower than the renal filtration threshold (30∼50 kDa), resulting in very short half-lives in vivo, which limit their druggability. The development of long-lasting modification approaches for aptamers can help address the druggability bottleneck of aptamers. This review summarized two distinct kinds of long-lasting modification approaches for aptamers, including macromolecular modification and low-molecular-weight modification. Though it is a current approach to extend the half-life of aptamers, the macromolecular modification approach could limit the space for the dosage increases, thus causing potential compliance concerns due to large molecular weight. As for the other modification approach, the low-molecular-weight modification approach, which uses low molecular weight coupling agents (LMWCAs) to modify aptamers, could greatly increase the proportion of aptamer moiety. However, some LMWCAs could bind to other proteins, causing a decrease in the drug amounts in blood circulation. Given these issues, the outlook for the next generation of long-lasting modification approaches was proposed at the end, including improving the administration method to increase dosage for aptamer drugs modified by macromolecule and developing Artificial intelligence (AI)-based strategies for optimization of LMWCAs.
Collapse
Affiliation(s)
- Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel Wing Ho Chan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
13
|
Esposito S, Abu Raya B, Baraldi E, Flanagan K, Martinon Torres F, Tsolia M, Zielen S. RSV Prevention in All Infants: Which Is the Most Preferable Strategy? Front Immunol 2022; 13:880368. [PMID: 35572550 PMCID: PMC9096079 DOI: 10.3389/fimmu.2022.880368] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes a spectrum of respiratory illnesses in infants and young children that may lead to hospitalizations and a substantial number of outpatient visits, which result in a huge economic and healthcare burden. Most hospitalizations happen in otherwise healthy infants, highlighting the need to protect all infants against RSV. Moreover, there is evidence on the association between early-life RSV respiratory illness and recurrent wheezing/asthma-like symptoms As such, RSV is considered a global health priority. However, despite this, the only prevention strategy currently available is palivizumab, a monoclonal antibody (mAb) indicated in a subset of preterm infants or those with comorbidities, hence leaving the majority of the infant population unprotected against this virus. Therefore, development of prevention strategies against RSV for all infants entering their first RSV season constitutes a large unmet medical need. The aim of this review is to explore different immunization approaches to protect all infants against RSV. Prevention strategies include maternal immunization, immunization of infants with vaccines, immunization of infants with licensed mAbs (palivizumab), and immunization of infants with long-acting mAbs (e.g., nirsevimab, MK-1654). Of these, palivizumab use is restricted to a small population of infants and does not offer a solution for all-infant protection, whereas vaccine development in infants has encountered various challenges, including the immaturity of the infant immune system, highlighting that future pediatric vaccines will most likely be used in older infants (>6 months of age) and children. Consequently, maternal immunization and immunization of infants with long-acting mAbs represent the two feasible strategies for protection of all infants against RSV. Here, we present considerations regarding these two strategies covering key areas which include mechanism of action, "consistency" of protection, RSV variability, duration of protection, flexibility and optimal timing of immunization, benefit for the mother, programmatic implementation, and acceptance of each strategy by key stakeholders. We conclude that, based on current data, immunization of infants with long-acting mAbs might represent the most effective approach for protecting all infants entering their first RSV season.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Parma, Italy
| | - Bahaa Abu Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman’s and Child’s Health, Padova University Hospital, Padova, Italy
| | - Katie Flanagan
- School of Medicine, Faculty of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
| | - Federico Martinon Torres
- Genetics, Vaccines, Infections and Pediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens, “A&P Kyriakou” Children’s Hospital, Athens, Greece
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Huh KY, Hwang JG, Shin W, Baek S, Choi J, Lee N, Cho YM, Lee H. A double-blind, placebo-controlled, single-ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of HM15136, a novel long-acting glucagon analogue, in healthy subjects. Diabetes Obes Metab 2022; 24:411-420. [PMID: 34726329 DOI: 10.1111/dom.14590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022]
Abstract
AIM To evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics of HM15136, a novel long-acting glucagon analogue under development, in healthy males and females presenting with no childbearing potential. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled, single-ascending dose study was conducted in 56 subjects who randomly received a single subcutaneous dose of HM15136 or its matching placebo at a ratio of 6:2 at 10, 20, 30, 50, 80, 100, and 120 μg/kg. RESULTS All adverse events were mild and transient. Neither serious adverse events nor discontinuation as a result of adverse events occurred. The most frequent adverse drug reaction was nausea (5.3%, only in the 100- and 120-μg/kg groups). HM15136, particularly at doses of 50 μg/kg or higher, increased fasting blood glucose, with a maximum increase and area under the curve of 1.5 mmol/L at day 10 (P = .006) and 166.3 day·mmol/L (P = .022) at the dose of 80 μg/kg, while suppressing the secretion of endogenous glucagon, which continued until day 17. HM15136 also significantly reduced gluconeogenic and ketogenic amino acids. Compensatory changes in endogenous insulin and incretin hormones by HM15136 were not apparent. HM15136 was slowly but steadily absorbed and reached a peak concentration at 46-68 hours after a single subcutaneous injection. HM15136 was eliminated with a terminal phase half-life of 77.1-101.1 hours. CONCLUSIONS A single subcutaneous dose of HM15136 at 10-120 μg/kg was safe and well tolerated. The long half-life of HM15136, coupled with an increase in blood glucose for ~2 weeks, may warrant a weekly dosing regimen.
Collapse
Affiliation(s)
- Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Jun Gi Hwang
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University Hospital, Cheongju-si, South Korea
| | - Wonjung Shin
- Hanmi Pharmaceutical Co., Ltd, Seoul, South Korea
| | | | - JaeDuk Choi
- Hanmi Pharmaceutical Co., Ltd, Seoul, South Korea
| | - Nora Lee
- Hanmi Pharmaceutical Co., Ltd, Seoul, South Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Center for Convergence Approaches in Drug Development, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
15
|
Aftimos P, Rolfo C, Rottey S, Barthélémy P, Borg C, Park K, Oh DY, Kim SW, De Jonge N, Hanssens V, Zwanenpoel K, Molthoff C, Vugts D, Dreier T, Verheesen P, van Dongen GA, Jacobs J, Van Rompaey L, Hultberg A, Michieli P, Pauwels P, Fung S, Thibault A, de Haard H, Leupin N, Awada A. The NHance ® Mutation-Equipped Anti-MET Antibody ARGX-111 Displays Increased Tissue Penetration and Anti-Tumor Activity in Advanced Cancer Patients. Biomedicines 2021; 9:biomedicines9060665. [PMID: 34200749 PMCID: PMC8229762 DOI: 10.3390/biomedicines9060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of MET signaling has been implicated in tumorigenesis and metastasis. ARGX-111 combines complete blockade of this pathway with enhanced tumor cell killing and was investigated in 24 patients with MET-positive advanced cancers in a phase 1b study at four dose levels (0.3–10 mg/kg). ARGX-111 was well tolerated up to 3 mg/kg (MTD). Anti-tumor activity was observed in nearly half of the patients (46%) with a mean duration of treatment of 12 weeks. NHance® mutations in the Fc of ARGX-111 increased affinity for the neonatal Fc receptor (FcRn) at acidic pH, stimulating transcytosis across FcRn-expressing cells and radiolabeled ARGX-111 accumulated in lymphoid tissues, bone and liver, organs expressing FcRn at high levels in a biodistribution study using human FcRn transgenic mice. In line with this, we observed, in a patient with MET-amplified (>10 copies) gastric cancer, diminished metabolic activity in multiple metastatic lesions in lymphoid and bone tissues by 18F-FDG-PET/CT after two infusions with 0.3 mg/kg ARGX-111. When escalated to 1 mg/kg, a partial response was reached. Furthermore, decreased numbers of CTC (75%) possibly by the enhanced tumor cell killing witnessed the modes of action of the drug, warranting further clinical investigation of ARGX-111.
Collapse
Affiliation(s)
- Philippe Aftimos
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (A.A.)
| | - Christian Rolfo
- University Hospital Antwerp, 2650 Edegem, Belgium; (C.R.); (K.Z.); (P.P.)
| | | | - Philippe Barthélémy
- Medical Oncology Unit, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Christophe Borg
- Medical Oncology Department, University Hospital of Besançon, CEDEX, 25000 Besançon, France;
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Do-Youn Oh
- Seoul National University Hospital, Seoul 03080, Korea;
| | - Sang-We Kim
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Natalie De Jonge
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Valérie Hanssens
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Karen Zwanenpoel
- University Hospital Antwerp, 2650 Edegem, Belgium; (C.R.); (K.Z.); (P.P.)
| | - Carla Molthoff
- Department of Radiology & Nuclear Medicine, VU University Medical Center Amsterdam, 1012 Amsterdam, The Netherlands; (C.M.); (D.V.); (G.A.M.S.v.D.)
| | - Daniëlle Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center Amsterdam, 1012 Amsterdam, The Netherlands; (C.M.); (D.V.); (G.A.M.S.v.D.)
| | - Torsten Dreier
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
- AgomAb Therapeutics NV, 9000 Ghent, Belgium;
| | - Peter Verheesen
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Guus A.M.S. van Dongen
- Department of Radiology & Nuclear Medicine, VU University Medical Center Amsterdam, 1012 Amsterdam, The Netherlands; (C.M.); (D.V.); (G.A.M.S.v.D.)
| | - Julie Jacobs
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Luc Van Rompaey
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Anna Hultberg
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Paolo Michieli
- AgomAb Therapeutics NV, 9000 Ghent, Belgium;
- Department of Oncology, University of Torino Medical School, 10124 Turin, Italy
| | - Patrick Pauwels
- University Hospital Antwerp, 2650 Edegem, Belgium; (C.R.); (K.Z.); (P.P.)
| | - Samson Fung
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Alain Thibault
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Hans de Haard
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
| | - Nicolas Leupin
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (N.D.J.); (V.H.); (T.D.); (P.V.); (J.J.); (L.V.R.); (A.H.); (S.F.); (A.T.); (H.d.H.)
- Correspondence: ; Tel.: +41-79-293-18-14
| | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (A.A.)
| |
Collapse
|
16
|
Thibault G, Paintaud G, Sung HC, Lajoie L, Louis E, the GETAID, Desvignes C, Watier H, Gouilleux-Gruart V, Ternant D. Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients. Int J Mol Sci 2021; 22:ijms22116051. [PMID: 34205175 PMCID: PMC8199937 DOI: 10.3390/ijms22116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Collapse
Affiliation(s)
- Gilles Thibault
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +332-3437-9699
| | - Gilles Paintaud
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hsueh Cheng Sung
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Laurie Lajoie
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Edouard Louis
- Department of Gastroenterology, University Hospital, CHU of Liège, 4000 Liège, Belgium;
| | | | - Celine Desvignes
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hervé Watier
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| |
Collapse
|
17
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
18
|
Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, Deng R, Williams K, Sperinde G, Li JJ, Zheng K, Sukumaran S, Tesar D, Ernst JA, Fischer S, Lazar GA, Prabhu S, Song A. An in vitro FcRn- dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans. MAbs 2019; 11:942-955. [PMID: 30982394 PMCID: PMC6601550 DOI: 10.1080/19420862.2019.1605270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A cell-based assay employing Madin–Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and β2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans. FcRn was required to promote efficient transcytosis of mAbs and contributed directly to the observed correlation. Furthermore, the transcytosis assay correctly predicted rank order of clearance of glycosylation and Fv charge variants of Fc-containing proteins. These results strongly support the utility of this assay as a cost-effective and animal-sparing screening tool for evaluation of mAb-based drug candidates during lead selection, optimization, and process development for desired pharmacokinetic properties.
Collapse
Affiliation(s)
- Shan Chung
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Van Nguyen
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Yuwen Linda Lin
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | | | - Suzie J Scales
- c Department of Molecular Biology , Genentech Inc ., South San Francisco , CA , USA
| | - Kevin Lin
- d Department of Analytical Operations , Genentech Inc ., South San Francisco , CA , USA
| | - Rong Deng
- e Department of Clinical Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kathi Williams
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Gizette Sperinde
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Juan Jenny Li
- f Department of Biochemistry and Cellular Pharmacology , Genentech Inc ., South San Francisco , CA , USA
| | - Kai Zheng
- g Department of Late Stage Pharmaceutical Development , Genentech Inc ., South San Francisco , CA , USA
| | - Siddharth Sukumaran
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - Devin Tesar
- i Department of Drug Delivery , Genentech Inc ., South San Francisco , CA , USA
| | - James A Ernst
- b Department of Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Saloumeh Fischer
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| | - Greg A Lazar
- j Department of Antibody Engineering , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- h Department of Pharmacokinetics & Pharmacodynamics , Genentech Inc ., South San Francisco , CA , USA
| | - An Song
- a Department of BioAnalytical Sciences , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
19
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
20
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Taylor FR. Antigens and Antibodies in Disease With Specifics About CGRP Immunology. Headache 2018; 58 Suppl 3:230-237. [PMID: 30187471 DOI: 10.1111/head.13409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Growth in knowledge about calcitonin gene-related peptide (CGRP) in the pathophysiology of migraine brought CGRP antagonism to headache medicine. Failures in development of small molecule CGRP receptor antagonists and increasing knowledge and use of monoclonal antibodies (mAbs) in medicine led to the breakthrough development of large molecule anti-CGRP mAbs: eptinezumab, erenumab, fremanezumab, and galcanezumab. This specifics about CGRP immunology aims to outline: (1) knowledge needed for CGRP antagonism and (2) developmental issues of specific CGRP antagonists for provider use. This clinically oriented review documents IgG structure and function; state of the art of monoclonal IgG production and ligand-antigen-antibodies in migraine therapeutics contributing to immunogenic risks and off-target toxicities. Specifics to CGRP ligand, receptor, antagonism, and molecules, small and large, complete this review. Completion will facilitate assessment of the similarities, differences, and application of the forthcoming anti-CGRP receptor and ligand antagonists for patients.
Collapse
Affiliation(s)
- Frederick R Taylor
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
22
|
Morotti M, Dass PH, Harris AL, Lord S. Pharmacodynamic and Pharmacokinetic Markers For Anti-angiogenic Cancer Therapy: Implications for Dosing and Selection of Patients. Eur J Drug Metab Pharmacokinet 2018; 43:137-153. [PMID: 29019020 DOI: 10.1007/s13318-017-0442-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is integral to tumour growth and invasion, and is a key target for cancer therapeutics. However, for many of the licensed indications, only a modest clinical benefit has been observed for both monoclonal antibody and small-molecule tyrosine kinase inhibitor anti-angiogenic therapy. Pre-clinical and clinical studies have attempted to evaluate circulating, imaging, genomic, pharmacokinetic, and pharmacodynamic markers that may aid both the selection of patients for treatment and define dosing. Correct dosing is likely to be critical in the context of vascular normalization to allow better delivery of concomitant anti-cancer therapy and novel imaging techniques hold much promise in the early evaluation of pharmacodynamic response to improve efficacy.
Collapse
Affiliation(s)
- Matteo Morotti
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK.
- Department of Gynaecology Oncology, University of Oxford, Oxford, UK.
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Prashanth Hari Dass
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Adrian L Harris
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Lord
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
- Department of Oncology, Churchill Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
23
|
Granulocyte colony-stimulating factor (GCSF) fused with Fc Domain produced from E. coli is less effective than Polyethylene Glycol-conjugated GCSF. Sci Rep 2017; 7:6480. [PMID: 28744022 PMCID: PMC5526978 DOI: 10.1038/s41598-017-06726-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 01/24/2023] Open
Abstract
Human granulocyte colony-stimulating factor (GCSF) is a well-known cytokine for neutropenia treatment. However, daily injections are required due to the short circulating half-life of the protein. To overcome this bottleneck, we fused GCSF with the Fc domain of IgG1 at the C terminus (GCSF-Fc) and with the maltose binding protein (MBP) tag at the N-terminus and expressed it as a soluble protein in the cytoplasm of E. coli. We also conjugated PEG aldehyde to GCSF to make PEG-GCSF. The bioactivities of GCSF-Fc and PEG-GCSF were similar to native GCSF using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50 dose-response curves for GCSF, GCSF-Fc and PEG-GCSF were 37 ± 12 pM, 75 ± 13.5 pM and 46 ± 5.5 pM, respectively. When the proteins were injected into neutropenic rats, the group injected with PEG-GCSF showed the highest and fastest recovery of neutrophils, followed by GCSF-Fc and GCSF. ELISA assay revealed the PEG-GCSF had the longest plasma circulation (>72 h), followed by GCSF-Fc (>48 h) and GCSF (~24 h), which is consistent with the in vivo activities of the proteins. In summary, the GCSF-Fc purified from E. coli was not as efficient as PEG-GCSF in treating neutropenic rats.
Collapse
|
24
|
Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L, Bjornson G, Jones CE, Halperin SA, Edwards KM, Heath P, Openshaw PJ, Scheifele DW, Kollmann TR. Maternal immunisation: collaborating with mother nature. THE LANCET. INFECTIOUS DISEASES 2017; 17:e197-e208. [PMID: 28433705 DOI: 10.1016/s1473-3099(17)30229-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/07/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
Maternal immunisation has the potential to substantially reduce morbidity and mortality from infectious diseases after birth. The success of tetanus, influenza, and pertussis immunisation during pregnancy has led to consideration of additional maternal immunisation strategies to prevent group B streptococcus and respiratory syncytial virus infections, among others. However, many gaps in knowledge regarding the immunobiology of maternal immunisation prevent the optimal design and application of this successful public health intervention. Therefore, we did an innovative landscape analysis to identify research priorities. Key topics were delineated through review of the published literature, consultation with vaccine developers and regulatory agencies, and a collaborative workshop that gathered experts across several maternal immunisation initiatives-group B streptococcus, respiratory syncytial virus, pertussis, and influenza. Finally, a global online survey prioritised the identified knowledge gaps on the basis of expert opinion about their importance and relevance. Here we present the results of this worldwide landscape analysis and discuss the identified research gaps.
Collapse
Affiliation(s)
- Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mathieu Garand
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine and Immunity Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium; Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
| | - Valerie Verhasselt
- Faculty of Molecular Science, University of Western Australia, Perth, WA, Australia
| | | | - Gordean Bjornson
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Christine E Jones
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Paul Heath
- St George's Vaccine Institute, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Peter J Openshaw
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - David W Scheifele
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
25
|
A novel recombinant human thrombopoietin therapy for the management of immune thrombocytopenia in pregnancy. Blood 2017. [PMID: 28630121 DOI: 10.1182/blood-2017-01-761262] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determine the safety and efficacy of recombinant human thrombopoietin (rhTPO) for the management of immune thrombocytopenia (ITP) during pregnancy. Pregnant patients with ITP were enrolled in the study if they had a platelet count less than 30 × 109/L, were experiencing bleeding manifestations, had failed to respond to corticosteroids and/or intravenous immunoglobulin (IVIG), and had developed refractoriness to platelet transfusion. Thirty-one patients received rhTPO at an initial dose of 300 U/kg once daily for 14 days. Twenty-three patients responded (74.2%), including 10 complete responders (>100 × 109/L) and 13 responders (30-100 × 109/L). It appears that rhTPO ameliorated the bleeding symptoms remarkably, even in the nonresponders. rhTPO was well tolerated. Dizziness, fatigue, and pain at an injection site were reported in 1 patient each. No congenital disease or developmental delays were observed in the infants in a median follow-up of 53 (range, 39-68) weeks. In conclusion, rhTPO is a potentially safe and effective treatment choice for patients with ITP during pregnancy. Our work has paved the way for further study on the clinical application of rhTPO and other thrombopoietic agents for the management of ITP during pregnancy. This study is registered at www.clinicaltrials.gov as NCT02391272.
Collapse
|
26
|
Portnoff AD, Gao C, Borrok MJ, Gao X, Gao C, Rainey GJ. An antidote approach to reduce risk and broaden utility of antibody-based therapeutics. J Biol Chem 2017; 292:8498-8506. [PMID: 28258216 PMCID: PMC5437253 DOI: 10.1074/jbc.m117.775528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Antibody therapeutics offer effective treatment options for a broad range of diseases. One of the greatest benefits of antibody therapeutics is their extraordinarily long serum half-life, allowing infrequent dosing with long-lasting effects. A characteristic of antibodies that drives long half-life is the ability to interact with the recycling receptor, FcRn, in a pH-dependent manner. The benefit of long half-life, however, carries with it liabilities. Although the positive effects of antibody therapeutics are long-lasting, any acute adverse events or chronic negative impacts, such as immunosuppression in the face of an infection, are also long-lasting. Therefore, we sought to develop antibodies with a chemical handle that alone would enjoy the long half-life of normal antibodies but, upon addition of a small-molecule antidote, would interact with the chemical handle and inhibit the antibody recycling mechanism, thus leading to rapid degradation and shortened half-life in vivo Here we present a proof of concept study where we identify sites to incorporate a non-natural amino acid that can be chemically modified to modulate FcRn interaction in vitro and antibody half-life in vivo This is an important first step in developing safer therapeutics, and the next step will be development of technology that can perform the modifying chemistry in vivo.
Collapse
Affiliation(s)
| | - Cuihua Gao
- Departments of Antibody Discovery and Protein Engineering
| | - M Jack Borrok
- Departments of Antibody Discovery and Protein Engineering
| | - Xizhe Gao
- Translational Sciences, MedImmune, Gaithersburg, Maryland 20878
| | - Changshou Gao
- Departments of Antibody Discovery and Protein Engineering.
| | - G Jonah Rainey
- Departments of Antibody Discovery and Protein Engineering.
| |
Collapse
|
27
|
Ferl GZ, Theil FP, Wong H. Physiologically based pharmacokinetic models of small molecules and therapeutic antibodies: a mini-review on fundamental concepts and applications. Biopharm Drug Dispos 2016; 37:75-92. [PMID: 26461173 DOI: 10.1002/bdd.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 11/07/2022]
Abstract
The mechanisms of absorption, distribution, metabolism and elimination of small and large molecule therapeutics differ significantly from one another and can be explored within the framework of a physiologically based pharmacokinetic (PBPK) model. This paper briefly reviews fundamental approaches to PBPK modeling, in which drug kinetics within tissues and organs are explicitly represented using physiologically meaningful parameters. The differences in PBPK models applied to small/large molecule drugs are highlighted, thus elucidating differences in absorption, distribution and elimination properties between these two classes of drugs in a systematic manner. The absorption of small and large molecules differs with respect to their common extravascular routes of delivery (oral versus subcutaneous). The role of the lymphatic system in drug distribution, and the involvement of tissues as sites of elimination (through catabolism and target mediated drug disposition) are unique features of antibody distribution and elimination that differ from small molecules, which are commonly distributed into the tissues but are eliminated primarily by liver metabolism. Fundamental differences exist in the ability to predict human pharmacokinetics based upon preclinical data due to differing mechanisms governing small and large molecule disposition. These differences have influence on the evolving utilization of PBPK modeling in the discovery and development of small and large molecule therapeutics.
Collapse
Affiliation(s)
- Gregory Z Ferl
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Frank-Peter Theil
- Non-clinical Development, UCB Pharma S.A., Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Harvey Wong
- University of British Columbia, Faculty of Pharmaceutical Sciences, Vancouver, BC, Canada
| |
Collapse
|
28
|
Verstockt B, Van Assche G, Vermeire S, Ferrante M. Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease. Expert Opin Biol Ther 2016; 17:31-47. [PMID: 27817215 DOI: 10.1080/14712598.2017.1258399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION As many inflammatory bowel disease (IBD) patients do not benefit from long-term anti-tumour necrosis factor treatment, new anti-inflammatories are urgently needed. After the discovery of the interleukin (IL) 23/17 axis being pivotal in IBD pathogenesis, many different compounds were developed, targeting different components within this pathway. Areas covered: A literature search to March 2016 was performed to identify the most relevant reports on the role of the IL-23/IL-17 axis in IBD and on the different molecules targeting this pathway. First, the authors briefly summarize the immunology of the IL-23/IL-17 pathway to elucidate the mode of action of all different agents. Second, they describe all different molecules targeting this pathway. Besides discussing efficacy and safety data, they also explore immunogenicity, exposure during pregnancy and pharmacokinetics. Expert opinion: A new era in IBD treatment has recently been initiated: besides immunomodulators and TNF-antagonists, anti-adhesion molecules and monoclonal antibodies targeting the IL-23/IL-17 pathway have been developed. Biomarkers for personalized medicine are urgently needed. This therapeutic (r)evolution will further improve disease-related and patient-reported outcome, though a lot of questions should still be addressed in future years.
Collapse
Affiliation(s)
- Bram Verstockt
- a Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine , KU Leuven , Leuven , Belgium.,b Department of Medicine and Cambridge Institute for Medical Research , University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus , Cambridge , UK
| | - Gert Van Assche
- a Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine , KU Leuven , Leuven , Belgium.,c Department of Gastroenterology and Hepatology , University Hospitals Leuven, KU Leuven , Leuven , Belgium
| | - Séverine Vermeire
- a Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine , KU Leuven , Leuven , Belgium.,c Department of Gastroenterology and Hepatology , University Hospitals Leuven, KU Leuven , Leuven , Belgium
| | - Marc Ferrante
- a Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine , KU Leuven , Leuven , Belgium.,c Department of Gastroenterology and Hepatology , University Hospitals Leuven, KU Leuven , Leuven , Belgium
| |
Collapse
|
29
|
Foss S, Watkinson R, Sandlie I, James LC, Andersen JT. TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol Rev 2016; 268:328-39. [PMID: 26497531 PMCID: PMC4670481 DOI: 10.1111/imr.12363] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibodies are key molecules in the fight against infections. Although previously thought to mediate protection solely in the extracellular environment, recent research has revealed that antibody-mediated protection extends to the cytosolic compartment of cells. This postentry viral defense mechanism requires binding of the antibody to a cytosolic Fc receptor named tripartite motif containing 21 (TRIM21). In contrast to other Fc receptors, TRIM21 shows remarkably broad isotype specificity as it does not only bind IgG but also IgM and IgA. When viral pathogens coated with these antibody isotypes enter the cytosol, TRIM21 is rapidly recruited and efficient neutralization occurs before the virus has had the time to replicate. In addition, inflammatory signaling is induced. As such, TRIM21 acts as a cytosolic sensor that engages antibodies that have failed to protect against infection in the extracellular environment. Here, we summarize our current understanding of how TRIM21 orchestrates humoral immunity in the cytosolic environment.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Ruth Watkinson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Yang BB, Doshi S, Arkam K, Franklin J, Chow AT. Development of Romiplostim for Treatment of Primary Immune Thrombocytopenia From a Pharmacokinetic and Pharmacodynamic Perspective. Clin Pharmacokinet 2016; 55:1045-58. [DOI: 10.1007/s40262-016-0382-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Tanaka Y, Senoo A, Fujii H, Baker D. Evaluation of golimumab for the treatment of patients with active rheumatoid arthritis. Expert Opin Drug Metab Toxicol 2016; 12:319-26. [DOI: 10.1517/17425255.2016.1146682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational & Environmental Health, Kitakyushu, Japan
| | - Asako Senoo
- Research & Development, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Hideji Fujii
- Research & Development, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Daniel Baker
- Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
32
|
Chadha GS, Morris ME. Monoclonal Antibody Pharmacokinetics in Type 2 Diabetes Mellitus and Diabetic Nephropathy. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0048-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Roopenian DC, Christianson GJ, Proetzel G, Sproule TJ. Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies. Methods Mol Biol 2016; 1438:103-14. [PMID: 27150086 DOI: 10.1007/978-1-4939-3661-8_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Therapeutic monoclonal antibodies are widely recognized to be a most promising means to treat an increasing number of human diseases, including cancers and autoimmunity. To a large extent, the efficacy of monoclonal antibody treatment is because IgG antibodies have greatly extended persistence in vivo. However, conventional rodent models do not mirror human antibody pharmacokinetics. The key molecule responsible for the extended persistence antibodies is the major histocompatibility complex class I family Fc receptor, FcRn. We describe human FcRn transgenic mouse models and how they can be exploited productively for the preclinical pharmacokinetic evaluation of therapeutic antibodies.
Collapse
Affiliation(s)
- Derry C Roopenian
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | | | | | - Thomas J Sproule
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
34
|
Dechavanne C, Cottrell G, Garcia A, Migot-Nabias F. Placental Malaria: Decreased Transfer of Maternal Antibodies Directed to Plasmodium falciparum and Impact on the Incidence of Febrile Infections in Infants. PLoS One 2015; 10:e0145464. [PMID: 26698578 PMCID: PMC4689360 DOI: 10.1371/journal.pone.0145464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
The efficacy of mother-to-child placental transfer of antibodies specific to malaria blood stage antigens was investigated in the context of placental malaria infection, taking into account IgG specificity and maternal hypergammaglobulinemia. The impact of the resulting maternal antibody transfer on infections in infants up to the age of 6 months was also explored. This study showed that i) placental malaria was associated with a reduced placental transfer of total and specific IgG, ii) antibody placental transfer varied according to IgG specificity and iii) cord blood malaria IgG levels were similar in infants born to mothers with or without placental malaria. The number of malaria infections was negatively associated with maternal age, whereas it was not associated with the transfer of any malaria-specific IgG from the mother to the fetus. These results suggest that i) malaria-specific IgG may serve as a marker of maternal exposure but not as a useful marker of infant protection from malaria and ii) increasing maternal age contributes to diminishing febrile infections diagnosed in infants, perhaps by means of the transmission of an effective antibody response.
Collapse
Affiliation(s)
- Celia Dechavanne
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et enfant face aux infections tropicales, Université Paris Descartes, Paris, France
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- * E-mail:
| | - Gilles Cottrell
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et enfant face aux infections tropicales, Université Paris Descartes, Paris, France
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - André Garcia
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et enfant face aux infections tropicales, Université Paris Descartes, Paris, France
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et enfant face aux infections tropicales, Université Paris Descartes, Paris, France
- COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
35
|
Foss S, Grevys A, Sand KMK, Bern M, Blundell P, Michaelsen TE, Pleass RJ, Sandlie I, Andersen JT. Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization. J Control Release 2015; 223:42-52. [PMID: 26718855 DOI: 10.1016/j.jconrel.2015.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/28/2023]
Abstract
Monoclonal IgG antibodies (Abs) are used extensively in the clinic to treat cancer and autoimmune diseases. In addition, therapeutic proteins are genetically fused to the constant Fc part of IgG. In both cases, the Fc secures a long serum half-life and favourable pharmacokinetics due to its pH-dependent interaction with the neonatal Fc receptor (FcRn). FcRn also mediates transport of intact IgG across polarized epithelial barriers, a pathway that is attractive for delivery of Fc-containing therapeutics. So far, no study has thoroughly compared side-by-side how IgG and different Fc-fusion formats are transported across human polarizing epithelial cells. Here, we used an in vitro cellular transport assay based on the human polarizing epithelial cell line (T84) in which both IgG1 and Fc-fusions were transported in an FcRn-dependent manner. Furthermore, we found that the efficacy of transport was dependent on the format. We demonstrate that transepithelial delivery could be enhanced by Fc-engineering for improved FcRn binding as well as by Fc-polymerization. In both cases, transport was driven by pH-dependent binding kinetics and the pH at the luminal side. Hence, efficient transcellular delivery of IgG-based drugs across human epithelial cells requires optimal pH-dependent FcRn binding that can be manipulated by avidity and Fc-engineering, factors that should inspire the design of future therapeutics targeted for transmucosal delivery.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Algirdas Grevys
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Kine Marita Knudsen Sand
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Malin Bern
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Pat Blundell
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Terje E Michaelsen
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway; Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Jan Terje Andersen
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway.
| |
Collapse
|
36
|
Pharmacokinetic Comparability of a Biosimilar Trastuzumab Anticipated from Its Physicochemical and Biological Characterization. BIOMED RESEARCH INTERNATIONAL 2015; 2015:874916. [PMID: 26682224 PMCID: PMC4668334 DOI: 10.1155/2015/874916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
Comparability between a biosimilar and its reference product requires the evaluation of critical quality attributes that may impact on its pharmacological response. Herein we present a physicochemical characterization of a biosimilar trastuzumab focused on the attributes related to the pharmacokinetic response. Capillary isoelectrofocusing (cIEF) and cation exchange chromatography (CEX) were used to evaluate charge heterogeneity; glycosylation profiles were assessed through hydrophilic interaction liquid chromatography (HILIC); aggregates content was evaluated through size exclusion chromatography (SEC) while binding affinity to FcRn was evaluated using isothermal titration calorimetry (ITC). The biosimilar trastuzumab and its reference product exhibited a high degree of similarity for the evaluated attributes. In regard to the pharmacokinetic parameters, randomized, double blind, and two-arm parallel and prospective study was employed after the administration of a single intravenous dose in healthy volunteers. No significant differences were found between the pharmacokinetic profiles of both products. Our results confirm that similarity of the critical quality attributes between a biosimilar product, obtained from a different manufacturing process, and the reference product resulted in comparable pharmacokinetic profiles, diminishing the uncertainty related to the biosimilar's safety and efficacy.
Collapse
|
37
|
Meyer S, Nederend M, Jansen JHM, Reiding KR, Jacobino SR, Meeldijk J, Bovenschen N, Wuhrer M, Valerius T, Ubink R, Boross P, Rouwendal G, Leusen JHW. Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. MAbs 2015; 8:87-98. [PMID: 26466856 PMCID: PMC4966554 DOI: 10.1080/19420862.2015.1106658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.
Collapse
Affiliation(s)
- Saskia Meyer
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Maaike Nederend
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - J H Marco Jansen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Karli R Reiding
- b Center for Proteomics and Metabolomics; Leiden University Medical Center ; Leiden , The Netherlands
| | - Shamir R Jacobino
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Jan Meeldijk
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Niels Bovenschen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands.,c Department of Pathology ; UMC Utrecht ; Utrecht , The Netherlands
| | - Manfred Wuhrer
- b Center for Proteomics and Metabolomics; Leiden University Medical Center ; Leiden , The Netherlands
| | - Thomas Valerius
- d Division of Stem Cell Transplantation and Immunotherapy ; Department of Internal Medicine II; Christian-Albrechts-University ; Kiel , Germany
| | - Ruud Ubink
- e Synthon Biopharmaceuticals BV ; Nijmegen , The Netherlands
| | - Peter Boross
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | | | - Jeanette H W Leusen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| |
Collapse
|
38
|
Abstract
The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.
Collapse
Affiliation(s)
- William R Strohl
- Janssen BioTherapeutics, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, SH31-21757, 1400 Welsh and McKean Roads, PO Box 776, Spring House, PA, 19477, USA,
| |
Collapse
|
39
|
Traxlmayr MW, Lobner E, Hasenhindl C, Stadlmayr G, Oostenbrink C, Rüker F, Obinger C. Construction of pH-sensitive Her2-binding IgG1-Fc by directed evolution. Biotechnol J 2015; 9:1013-22. [PMID: 24964247 PMCID: PMC4314675 DOI: 10.1002/biot.201300483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/05/2014] [Accepted: 06/23/2014] [Indexed: 01/17/2023]
Abstract
For most therapeutic proteins, a long serum half-life is desired. Studies have shown that decreased antigen binding at acidic pH can increase serum half-life. In this study, we aimed to investigate whether pH-dependent binding sites can be introduced into antigen binding crystallizable fragments of immunoglobulin G1 (Fcab). The C-terminal structural loops of an Fcab were engineered for reduced binding to the extracellular domain of human epidermal growth factor receptor 2 (Her2-ECD) at pH 6 compared to pH 7.4. A yeast-displayed Fcab-library was alternately selected for binding at pH 7.4 and non-binding at pH 6.0. Selected Fcab variants showed clear pH-dependent binding to soluble Her2-ECD (decrease in affinity at pH 6.0 compared to pH 7.4) when displayed on yeast. Additionally, some solubly expressed variants exhibited pH-dependent interactions with Her2-positive cells whereas their conformational and thermal stability was pH-independent. Interestingly, two of the three Fcabs did not contain a single histidine mutation but all of them contained variations next to histidines that already occurred in loops of the lead Fcab. The study demonstrates that yeast surface display is a valuable tool for directed evolution of pH-dependent binding sites in proteins.
Collapse
Affiliation(s)
- Michael W Traxlmayr
- Christian Doppler Laboratory for Antibody Engineering at Department of Chemistry and Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria; Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Glassman PM, Abuqayyas L, Balthasar JP. Assessments of antibody biodistribution. J Clin Pharmacol 2015; 55 Suppl 3:S29-38. [DOI: 10.1002/jcph.365] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Patrick M. Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo, The State University of New York; Buffalo NY 14214 USA
| | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences; University at Buffalo, The State University of New York; Buffalo NY 14214 USA
| |
Collapse
|
41
|
Serum and plasma vascular endothelial growth factor concentrations before and after intravitreal injection of aflibercept or ranibizumab for age-related macular degeneration. Am J Ophthalmol 2014; 158:738-744.e1. [PMID: 24973606 DOI: 10.1016/j.ajo.2014.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate serum and plasma vascular endothelial growth factor (VEGF) concentrations in neovascular age-related macular degeneration patients treated bimonthly with an intravitreal injection of aflibercept or ranibizumab. DESIGN Prospective, interventional case series. METHODS This study includes 17 eyes of 17 patients treated with 2 mg aflibercept (the aflibercept group), 15 eyes of 15 patients treated with 0.5 mg ranibizumab (the ranibizumab group), and 12 patients with cataract (the control group). Serum and plasma VEGF concentrations were quantified using the enzyme-linked immunosorbent assay. RESULTS At baseline, mean serum VEGF concentration (in picograms per milliliter) did not differ significantly among the 3 groups (P = .99). In the aflibercept group, it was 28.3 pg/mL at baseline, decreased to below the detectable limit at 1 week (P < .0001), increased to 11.7 pg/mL at 1 month, which was still significantly less than the baseline level (P < .001), and returned to 23.9 pg/mL (P = .35) at 2 months. In the ranibizumab group, there were no significant differences. At baseline, mean plasma VEGF concentration did not differ significantly among the 3 groups (P = .64). In the aflibercept group, it was 16.2 at baseline, decreased to less than the detectable limit at 1 week (P < .01) and at 1 month (P < .05), and returned to 13.6 pg/mL at 2 months (P = .73). In the ranibizumab group, there were no significant differences. CONCLUSIONS Aflibercept significantly decreased serum and plasma VEGF concentrations 1 month after injection; however, ranibizumab had no significant effect on either serum or plasma VEGF level.
Collapse
|
42
|
Yip V, Palma E, Tesar DB, Mundo EE, Bumbaca D, Torres EK, Reyes NA, Shen BQ, Fielder PJ, Prabhu S, Khawli LA, Boswell CA. Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal Fc receptor. MAbs 2014; 6:689-96. [PMID: 24572100 PMCID: PMC4011913 DOI: 10.4161/mabs.28254] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Enzo Palma
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Devin B Tesar
- Drug Delivery Department; Pharma Technical Development, Genentech; South San Francisco, CA USA
| | - Eduardo E Mundo
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Daniela Bumbaca
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Elizabeth K Torres
- Non-Clinical Operations; Genentech Research & Early Development; South San Francisco, CA USA
| | - Noe A Reyes
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Ben Q Shen
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Paul J Fielder
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - Leslie A Khawli
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics; Genentech Research & Early Development; South San Francisco, CA USA
| |
Collapse
|
43
|
PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm 2014; 465:228-38. [PMID: 24508555 DOI: 10.1016/j.ijpharm.2014.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/30/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022]
Abstract
To facilitate the development of an inverse targeting strategy, where anti-topotecan antibodies are administered to prevent systemic toxicity following intraperitoneal topotecan, a pharmacokinetic/toxicodynamic (PK/TD) model was developed and evaluated. The pharmacokinetics of 8C2, a monoclonal anti-topotecan antibody, were assessed following IV and SC administration, and the data were characterized using a two compartmental model with nonlinear absorption and elimination. A hybrid PK model was constructed by combining a PBPK model for topotecan with the two-compartment model for 8C2, and the model was employed to predict the disposition of topotecan, 8C2, and the topotecan-8C2 complex. The model was linked to a toxicodynamic model for topotecan-induced weight-loss, and simulations were conducted to predict the effects of 8C2 on the toxicity of topotecan in mice. Increasing the molar dose ratio of 8C2 to topotecan resulted in a dose-dependent decrease in the unbound (i.e., not bound to 8C2) topotecan exposure in plasma (AUCf) and a decrease in the extent of topotecan-induced weight-loss. Consistent with model predictions, toxicodynamic experiments showed substantial reduction in the percent nadir weight loss observed with 30 mg/kg IP topotecan after co-administration of 8C2 (20 ± 8% vs. 10 ± 8%). The investigation supports the use of anti-topotecan mAb to reduce the systemic toxicity of IP topotecan chemotherapy.
Collapse
|
44
|
Peterson EC, Gentry WB, Owens SM. Customizing monoclonal antibodies for the treatment of methamphetamine abuse: current and future applications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:107-27. [PMID: 24484976 DOI: 10.1016/b978-0-12-420118-7.00003-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggests a scientific vision for how intact monoclonal antibody (mAb) (singular and plural) or small antigen-binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review, we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution X-ray crystal structure of a high-affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen-binding fragments and single-chain variable fragments are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites, and neuronal connections.
Collapse
Affiliation(s)
- Eric C Peterson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - W Brooks Gentry
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - S Michael Owens
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
45
|
Predicting the effects of 8C2, a monoclonal anti-topotecan antibody, on plasma and tissue disposition of topotecan. J Pharmacokinet Pharmacodyn 2013; 41:55-69. [PMID: 24368689 DOI: 10.1007/s10928-013-9346-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
We are investigating an inverse targeting strategy to reduce the dose limiting systemic toxicities resultant from intraperitoneal administration of topotecan, a model chemotherapeutic drug. This approach utilizes systemic co-administration of anti-topotecan antibodies to alter the plasma and tissue disposition kinetics of topotecan. To better predict the effects of 8C2, a high affinity anti-topotecan monoclonal antibody, on the pharmacokinetics of topotecan, two mathematical models have been developed and evaluated. Model 1 is a hybrid physiologically based pharmacokinetic (PBPK) model that was created by merging a PBPK model for topotecan with a simple two compartment model of 8C2 pharmacokinetics. Model 2 is a comprehensive PBPK model developed by merging a PBPK model for IgG with a PBPK model for topotecan. To help validate the simulation results from both the models, a tissue distribution experiment was conducted, in which topotecan and 8C2 were co-administered in mice. Experimental and simulated data were compared by calculating the median percent prediction error (%PE) for all tissues. For both models, the median %PE values for all the tissues were less than 100 %, indicating that the predicted values were, on average, less than twofold the observed plasma and tissue topotecan concentrations values. In general model 2 was found to be more predictive of the data set than model 1, as the overall median %PE value for model 2 (%PE = 63) was less than model 1 (%PE = 73).
Collapse
|
46
|
Balachandran S, Adams GP. Interferon-γ-induced necrosis: an antitumor biotherapeutic perspective. J Interferon Cytokine Res 2013; 33:171-80. [PMID: 23570383 DOI: 10.1089/jir.2012.0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon (IFN)-γ-like the well-known antitumor biotherapeutic IFN-α-is a powerful antiproliferative and immune modulatory cytokine, but mixed results from clinical trials, together with issues of systemic toxicity, have dampened enthusiasm for its use in the treatment of cancer. We suggest that at least 2 factors reduce the antitumor efficacy of IFN-γ: (1) poorly understood survival mechanisms that protect most tumor cells from IFN-γ-induced direct cytotoxicity, and (2) the short half-life of IFN-γ in serum. In this review, we outline avenues to overcome both these limitations. First, we have identified the transcription factor nuclear factor-kappa B (NF-κB) as a protective mechanism against IFN-γ-induced necrosis, and disabling NF-κB allows IFN-γ to trigger RIP1 kinase-dependent programmed necrosis (or necroptosis) in otherwise resistant cells. Second, we propose that fusing IFN-γ to tumor-specific antibodies will stabilize IFN-γ in serum and target this cytokine to tumor cells. We expect that such IFN-γ-antibody chimeras (called immunocytokines), when combined with agents that neutralize tumor-intrinsic survival signals such as NF-κB, will exert potent tumoricidal activity with minimized systemic side effects. Although this review will focus on exploiting IFN-γ-induced necrosis for treatment of renal cell carcinoma, these approaches are also directly applicable to several human cancers in which IFNs have shown therapeutic potential.
Collapse
Affiliation(s)
- Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center , Philadelphia, PA 19111, USA.
| | | |
Collapse
|
47
|
Fouliard S, Chenel M, Marcucci F. Influence of the duration of intravenous drug administration on tumor uptake. Front Oncol 2013; 3:192. [PMID: 23898461 PMCID: PMC3722550 DOI: 10.3389/fonc.2013.00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 01/04/2023] Open
Abstract
Enhancing tumor uptake of anticancer drugs is an important therapeutic goal, because insufficient drug accumulation is now considered to be an important reason for unresponsiveness or resistance to antitumor therapy. Based on a mechanistic tumor uptake model describing tumor exposure to molecules of different molecular size after bolus administration, we have investigated the influence of the duration of intravenous administration on tumor uptake. The model integrates empirical relationships between molecular size and drug disposition (capillary permeability, interstitial diffusivity, available volume fraction, and plasma clearance), together with a compartmental pharmacokinetics model and a drug/target binding model. Numerical simulations were performed using this model for protracted intravenous drug infusion, a common mode of administration of anticancer drugs. The impact of mode of administration on tumor uptake is described for a large range of molecules of different molecular size. Evaluation was performed not only for the maximal drug concentration achieved in the tumor, but also for the dynamic profile of drug concentration. It is shown that despite a lower maximal uptake for a given dose, infusion allows for a prolonged exposure of tumor tissues to both small- and large-sized molecules. Moreover, infusion may allow higher doses to be administered by reducing Cmax-linked toxicity, thereby achieving a similar maximal uptake compared to bolus administration.
Collapse
Affiliation(s)
- Sylvain Fouliard
- Clinical Pharmacokinetics Department, Institut de Recherches Internationales Servier , Suresnes , France
| | | | | |
Collapse
|
48
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
49
|
Chen P, Nogusa S, Thapa RJ, Shaller C, Simmons H, Peri S, Adams GP, Balachandran S. Anti-CD70 immunocytokines for exploitation of interferon-γ-induced RIP1-dependent necrosis in renal cell carcinoma. PLoS One 2013; 8:e61446. [PMID: 23613854 PMCID: PMC3629199 DOI: 10.1371/journal.pone.0061446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/09/2013] [Indexed: 01/19/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) is an incurable disease in clear need of new therapeutic interventions. In early-phase clinical trials, the cytokine IFN-γ showed promise as a biotherapeutic for advanced RCC, but subsequent trials were less promising. These trials, however, focused on the indirect immunomodulatory properties of IFN-γ, and its direct anti-tumor effects, including its ability to kill tumor cells, remains mostly unexploited. We have previously shown that IFN-γ induces RIP1 kinase-dependent necrosis in cells lacking NF-κB survival signaling. RCC cells display basally-elevated NF-κB activity, and inhibiting NF-κB in these cells, for example by using the small-molecule proteasome blocker bortezomib, sensitizes them to RIP1-dependent necrotic death following exposure to IFN-γ. While these observations suggest that IFN-γ-mediated direct tumoricidal activity will have therapeutic benefit in RCC, they cannot be effectively exploited unless IFN-γ is targeted to tumor cells in vivo. Here, we describe the generation and characterization of two novel ‘immunocytokine’ chimeric proteins, in which either human or murine IFN-γ is fused to an antibody targeting the putative metastatic RCC biomarker CD70. These immunocytokines display high levels of species-specific IFN-γ activity and selective binding to CD70 on human RCC cells. Importantly, the IFN-γ immunocytokines function as well as native IFN-γ in inducing RIP1-dependent necrosis in RCC cells, when deployed in the presence of bortezomib. These results provide a foundation for the in vivo exploitation of IFN-γ-driven tumoricidal activity in RCC.
Collapse
Affiliation(s)
- Peirong Chen
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shoko Nogusa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Roshan J. Thapa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Calvin Shaller
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Heidi Simmons
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Gregory P. Adams
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
Controlling the half-life of pharmaceuticals through Fc engineering is a desirable approach to achieve optimal exposure and targeting. The long serum residence time of gamma immunoglobulins is attributed to the Fc binding to the neonatal Fc receptor (FcRn). The residues in the Fc region that interact with FcRn have been mapped and individual mutations of these residues have demonstrated reduced affinity to FcRn and faster blood clearance. Here, we describe site-specific mutagenesis of Fc residues in a scFv-Fc fusion protein, as well as the mammalian production, purification, characterization, and the in vivo pharmacokinetics of these antibody fragments.
Collapse
|