1
|
Li T, Gui X, Li B, Hu X, Wang Y. LSP1 promotes the progression of acute myelogenous leukemia by regulating KSR/ERK signaling pathway and cell migration. Hematology 2024; 29:2330285. [PMID: 38511641 DOI: 10.1080/16078454.2024.2330285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
We aimed to investigate the role and mechanism of LSP1 in the progression of acute myelogenous leukemia. In this study, we established shLSP1 cell line to analyze the function of LSP1 in AML. We observed high expression of LSP1 in AML patients, whereas it showed no expression in normal adults. Furthermore, we found that LSP1 expression was associated with disease prognosis. Our results indicate that LSP1 plays a crucial role in mediating proliferation and survival of leukemia cells through the KSR/ERK signaling pathway. Additionally, LSP1 promotes cell chemotaxis and homing by enhancing cell adhesion and migration. We also discovered that LSP1 confers chemotactic ability to leukemia cells in vivo. Finally, our study identified 12 genes related to LSP1 in AML, which indicated poor survival outcome in AML patients and were enriched in Ras and cell adhesion signaling pathways. Our results revealed that the overexpression of LSP1 is related to the activation of the KSR/ERK signaling pathway, as well as cell adhesion and migration in AML patients. Reducing LSP1 expression impair AML progression, suggesting that LSP1 may serve as a potential drug therapy target for more effective treatment of AML.
Collapse
Affiliation(s)
- Tan Li
- Department of Hematology, Hefei City First People's Hospital, Hefei, People's Republic of China
| | - Xiaochen Gui
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, People's Republic of China
| | - Bin Li
- Department of Hematology, Hefei City First People's Hospital, Hefei, People's Republic of China
| | - Xueying Hu
- Department of Hematology, Hefei City First People's Hospital, Hefei, People's Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
2
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
3
|
Mindikoglu AL, Park J, Opekun AR, Abdulsada MM, Wilhelm ZR, Jalal PK, Devaraj S, Jung SY. Dawn-to-dusk dry fasting induces anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic proteome in peripheral blood mononuclear cells in subjects with metabolic syndrome. Metabol Open 2022; 16:100214. [PMID: 36506940 PMCID: PMC9731888 DOI: 10.1016/j.metop.2022.100214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Metabolic syndrome characterized by abdominal obesity, high blood pressure, elevated fasting glucose and triglyceride levels and low high-density lipoprotein cholesterol level is associated with pro-inflammatory state, increased risk for atherosclerosis, and multiple cancers. Our previous results on subjects with metabolic syndrome showed that 4-week dawn-to-dusk (sunset) dry fasting resulted in significant changes in the serum proteome and improvement in several metabolic risk factors. Peripheral blood mononuclear cells (PBMC) proteomics is a powerful tool that can provide mechanistic insights into how dawn-to-dusk dry fasting affects protein expression in metabolic pathways at cellular level. In this study, we determined whether dawn-to-dusk dry fasting would induce favorable changes in PBMC proteome in subjects with metabolic syndrome, similar to the changes induced by dawn-to-dusk dry fasting in the same subjects' serum proteome. METHODS We conducted a prospective study on subjects with metabolic syndrome and collected blood specimens before 4-week dawn-to-dusk dry fasting, at the end of 4-week dawn-to-dusk dry fasting, and one week after 4-week dawn-to-dusk dry fasting. We performed untargeted proteomics using nano ultra-high performance liquid chromatography-tandem mass spectrometry to assess the impact of 4-week dawn-to-dusk dry fasting on PBMC proteome. RESULTS There were 14 subjects with metabolic syndrome with a mean age of 59 who fasted from dawn to dusk (strict dry fasting without any liquid or food intake) for more than 14 h daily for 29 days. The quantitative proteome analysis showed that apolipoprotein B (APOB) gene protein products (GP) levels were downregulated and had the most statistical significance of the observed difference at the end of 4-week dawn-to-dusk dry fasting (P = 0.008) and one week after 4-week dawn-to-dusk dry fasting (P = 0.0004) compared with the levels before 4-week dawn-to-dusk dry fasting. The comparison between GP levels before and at the end of 4-week dawn-to-dusk dry fasting showed an alteration in the expression of genes associated with lipid and atherosclerosis pathway (P = 6.014e-4) and C-type lectin receptor signaling pathway (P = 1.064e-5). The genes that were differentially expressed in the lipid and atherosclerosis pathway were APOB (P = 0.008), CD36 (P = 0.040), CALM1, CALM2, CALM3 (P = 0.015), and HSPA8 (P = 0.047). One of the differentially expressed genes in the C-type lectin receptor signaling pathway was lymphocyte-specific protein 1 (LSP1), which showed an average of 19-fold increase at the end of 4-week dawn-to-dusk dry fasting compared with the GP levels before fasting (P = 0.004). Several GPs associated with tumor-suppressor effect (TUBB4B, LSP1, ACTR3B) were upregulated, and GPs associated with tumor-promoter effect (CD36, CALM1, CALM2, CALM3, FLOT2, PPIF) were downregulated at the end of 4-week dawn-to-dusk dry fasting or one week after 4-week dawn-to-dusk dry fasting compared with the GP levels before 4-week dawn-to-dusk dry fasting. CONCLUSION Based on our results, we conclude that in subjects with metabolic syndrome, 4-week dawn-to-dusk dry fasting induced anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic PMBC proteome. Randomized, controlled clinical trials are needed to further investigate the effect of dawn-to-dusk dry fasting on subjects with chronic metabolic diseases and metabolic syndrome-induced cancers.
Collapse
Affiliation(s)
- Ayse L. Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Jihwan Park
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Antone R. Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Mustafa M. Abdulsada
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Zoe R. Wilhelm
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Prasun K. Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Koral K, Bhushan B, Orr A, Stoops J, Bowen WC, Copeland MA, Locker J, Mars WM, Michalopoulos GK. Lymphocyte-Specific Protein-1 Suppresses Xenobiotic-Induced Constitutive Androstane Receptor and Subsequent Yes-Associated Protein-Activated Hepatocyte Proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:887-903. [PMID: 35390317 PMCID: PMC9194659 DOI: 10.1016/j.ajpath.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 06/03/2023]
Abstract
Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Copeland
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Beane Freeman LE, Kogevinas M, Cantor KP, Villanueva CM, Prokunina-Olsson L, Florez-Vargas O, Figueroa JD, Ward MH, Koutros S, Baris D, Garcia-Closas M, Schwenn M, Johnson A, Serra C, Tardon A, Garcia-Closas R, Carrato A, Malats N, Karagas MR, Rothman N, Silverman DT. Disinfection By-Products in Drinking Water and Bladder Cancer: Evaluation of Risk Modification by Common Genetic Polymorphisms in Two Case-Control Studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57006. [PMID: 35536285 PMCID: PMC9088962 DOI: 10.1289/ehp9895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND By-products are formed when disinfectants react with organic matter in source water. The most common class of disinfection by-products, trihalomethanes (THMs), have been linked to bladder cancer. Several studies have shown exposure-response associations with THMs in drinking water and bladder cancer risk. Few epidemiologic studies have evaluated gene-environment interactions for total THMs (TTHMs) with known bladder cancer susceptibility variants. OBJECTIVES In this study, we investigated the combined effect on bladder cancer risk contributed by TTHMs, bladder cancer susceptibility variants identified through genome-wide association studies, and variants in several candidate genes. METHODS We analyzed data from two large case-control studies-the New England Bladder Cancer Study (n / n = 989 cases/1,162 controls), a population-based study, and the Spanish Bladder Cancer Study (n / n = 706 cases/772 controls), a hospital-based study. Because of differences in exposure distributions and metrics, we estimated effects of THMs and genetic variants within each study separately using adjusted logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CI) with and without interaction terms, and then combined the results using meta-analysis. RESULTS Of the 16 loci showing strong evidence of association with bladder cancer, rs907611 at 11p15.5 [leukocyte-specific protein 1 (LSP1 region)] showed the strongest associations in the highest exposure category in each study, with evidence of interaction in both studies and in meta-analysis. In the highest exposure category, we observed OR = 1.66 (95% CI: 1.17, 2.34, p -trend = 0.005 ) for those with the rs907611-GG genotype and p -interaction = 0.02 . No other genetic variants tested showed consistent evidence of interaction. DISCUSSION We found novel suggestive evidence for a multiplicative interaction between a putative bladder carcinogen, TTHMs, and genotypes of rs907611. Given the ubiquitous exposure to THMs, further work is needed to replicate and extend this finding and to understand potential molecular mechanisms. https://doi.org/10.1289/EHP9895.
Collapse
Affiliation(s)
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Kenneth P. Cantor
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Cristina M. Villanueva
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonine D. Figueroa
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | | | - Allison Johnson
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Consol Serra
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
- Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Adonina Tardon
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Reina Garcia-Closas
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
- Alcalá University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Nuria Malats
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | | |
Collapse
|
6
|
Chauhan D, Geetika S, Kumar S, Kumar R. Combined Interaction of Cellular and Extracellular Components Causes Genetic Cascade Activation in Breast Cancer Metastasis. Oncology 2022; 100:354-362. [PMID: 35342152 DOI: 10.1159/000524302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) consists of malignant cells as well as surrounding non-malignant cells-Fibroblasts, macrophages, endothelial cells, lymphocytes, neutrophils, mesenchymal stem cells, and extracellular matrix (ECM). This surrounding stroma is referred to as the Breast Tumor Microenvironment (BTME). The components of BTME interact with cancerous breast cells for the promotion of BC. The reciprocal cross-talk between BTME and neoplastic breast cells, through the secretion of chemicals, growth factors and chemokines, may lead to cell proliferation, migration, metastasis as well as immune response suppression. Multiple genetic loci, in association with stromal components, are linked to immunological stimuli to induce BC in ductal cells. These genes participate in tumor activation pathways and promote carcinogenesis via Fibroblast, Leukocyte, and Endothelial Cells-mediated responses. The collaborative effect of the cellular components and BTME-associated genes plays vital role in tumor initiation and metastasis of breast cells. This process involves genes which cause degenerative changes in ECM leading to Epithelial-Mesenchymal Transitions (EMT), which finally causes metastatic BC. This shows that metastatic breast cancer results from combined activation of different cellular and extracellular components and their activity is primarily controlled by activation of genetic cascade. These components work simultaneously to cause metastatic BC.
Collapse
Affiliation(s)
- Disha Chauhan
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Saini Geetika
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ranjit Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
7
|
Khbouz B, Rowart P, Poma L, Dahlke E, Bottner M, Stokes M, Bolen G, Rahmouni S, Theilig F, Jouret F. The genetic deletion of the Dual Specificity Phosphatase 3 (DUSP3) attenuates kidney damage and inflammation following ischaemia/reperfusion injury in mouse. Acta Physiol (Oxf) 2022; 234:e13735. [PMID: 34704357 DOI: 10.1111/apha.13735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
AIM Dual Specificity Phosphatase 3 (DUSP3) regulates the innate immune response, with a putative role in angiogenesis. Modulating inflammation and perfusion contributes to renal conditioning against ischaemia/reperfusion (I/R). We postulate that the functional loss of DUSP3 is associated with kidney resistance to I/R. METHODS Ten C57BL/6 male WT and Dusp3-/- mice underwent right nephrectomy and left renal I/R (30 min/48 hours). Renal injury was assessed based on serum levels of urea (BUN) and Jablonski score. The expression of CD31 and VEGF vascular markers was quantified by RT-qPCR and immuno-staining. Renal resistivity index (RRI) was measured in vivo by Doppler ultrasound. Comparative phosphoproteomics was conducted using IMAC enrichment of phosphopeptides. Inflammatory markers were quantified at both mRNA and protein levels in ischaemic vs non-ischaemic kidneys in WT vs Dusp3-/- . RESULTS At baseline, we located DUSP3 in renal glomeruli and endothelial cells. CD31-positive vascular network was significantly larger in Dusp3-/- kidneys compared to WT, with a lower RRI in Dusp3-/- mice. Following I/R, BUN and Jablonski score were significantly lower in Dusp3-/- vs WT mice. Phosphoproteomics highlighted a down-regulation of inflammatory pathways and up-regulation of phospho-sites involved in cell metabolism and VEGF-related angiogenesis in Dusp3-/- vs WT ischaemic kidneys. Dusp3-/- ischaemic kidneys showed decreased mRNA levels of CD11b, TNF-α, KIM-1, IL-6, IL-1β and caspase-3 compared to controls. The numbers of PCNA-, F4-80- and CD11b-positive cells were reduced in Dusp3-/- vs WT kidneys post-I/R. CONCLUSION Genetic inactivation of Dusp3 is associated with kidney conditioning against I/R, possibly due to attenuated inflammation and improved perfusion.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
- Department of Pharmacology and Chemical Biology School of Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Laurence Poma
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
| | - Eileen Dahlke
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
| | - Martina Bottner
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
| | - Matthew Stokes
- Cell Signaling Technology, Inc. Danvers Massachusetts USA
| | - Géraldine Bolen
- Department of Clinical Sciences Fundamental and Applied Research for Animals & Health (FARAH) Veterinary Faculty University of Liège (ULiège) Liège Belgium
| | - Souad Rahmouni
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Medical Genomics University of Liège (ULiège) Liège Belgium
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts‐University Kiel Germany
- Institute of Anatomy Department of Medicine University of Fribourg Fribourg Switzerland
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA) Cardiovascular Sciences University of Liège (ULiège) Liège Belgium
- Division of Nephrology CHU of Liège University of Liège (CHU ULiège) Liège Belgium
| |
Collapse
|
8
|
Zegallai HM, Abu-El-Rub E, Cole LK, Field J, Mejia EM, Gordon JW, Marshall AJ, Hatch GM. Tafazzin deficiency impairs mitochondrial metabolism and function of lipopolysaccharide activated B lymphocytes in mice. FASEB J 2021; 35:e22023. [PMID: 34767647 DOI: 10.1096/fj.202100811rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
B lymphocytes are responsible for humoral immunity and play a key role in the immune response. Optimal mitochondrial function is required to support B cell activity during activation. We examined how deficiency of tafazzin, a cardiolipin remodeling enzyme required for mitochondrial function, alters the metabolic activity of B cells and their response to activation by lipopolysaccharide in mice. B cells were isolated from 3-month-old wild type or tafazzin knockdown mice and incubated for up to 72 h with lipopolysaccharide and cell proliferation, expression of cell surface markers, secretion of antibodies and chemokines, proteasome and immunoproteasome activities, and metabolic function determined. In addition, proteomic analysis was performed to identify altered levels of proteins involved in survival, immunogenic, proteasomal and mitochondrial processes. Compared to wild type lipopolysaccharide activated B cells, lipopolysaccharide activated tafazzin knockdown B cells exhibited significantly reduced proliferation, lowered expression of cluster of differentiation 86 and cluster of differentiation 69 surface markers, reduced secretion of immunoglobulin M antibody, reduced secretion of keratinocytes-derived chemokine and macrophage-inflammatory protein-2, reduced proteasome and immunoproteasome activities, and reduced mitochondrial respiration and glycolysis. Proteomic analysis revealed significant alterations in key protein targets that regulate cell survival, immunogenicity, proteasomal processing and mitochondrial function consistent with the findings of the above functional studies. The results indicate that the cardiolipin transacylase enzyme tafazzin plays a key role in regulating mouse B cell function and metabolic activity during activation through modulation of mitochondrial function.
Collapse
Affiliation(s)
- Hana M Zegallai
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid, Jordan.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Regenerative Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jared Field
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Edgard M Mejia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph W Gordon
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.,College of Nursing, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Yu R, Zhang J, Zhuo Y, Hong X, Ye J, Tang S, Zhang Y. Identification of Diagnostic Signatures and Immune Cell Infiltration Characteristics in Rheumatoid Arthritis by Integrating Bioinformatic Analysis and Machine-Learning Strategies. Front Immunol 2021; 12:724934. [PMID: 34691030 PMCID: PMC8526926 DOI: 10.3389/fimmu.2021.724934] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. In the present study, the aim was at examining RA's diagnostic signatures and the effect of immune cell infiltration in this pathology. Methods Gene Expression Omnibus (GEO) database provided three datasets of gene expressions. Firstly, this study adopted R software for identifying differentially expressed genes (DEGs) and conducting functional correlation analyses. Subsequently, we integrated bioinformatic analysis and machine-learning strategies for screening and determining RA's diagnostic signatures and further verify by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. Moreover, this study employed cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an investigation was conducted on the relationship of diagnostic signatures and infiltrating immune cells. Results On the whole, 54 robust DEGs received the recognition. Lymphocyte-specific protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC = 0.955) were regarded as RA's diagnostic markers and showed their statistically significant difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages may be involved in the development of RA. Additionally, all diagnostic signatures might be different degrees of correlation with immune cells. Conclusions In conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms of diagnosing and treating RA, and the infiltration of immune cells mentioned above may critically impact RA development and occurrence.
Collapse
Affiliation(s)
- Rongguo Yu
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jiayu Zhang
- School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Youguang Zhuo
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xu Hong
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jie Ye
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Susu Tang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021; 61:173-199. [PMID: 34559922 DOI: 10.1002/mc.23348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, UNM School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Colby D Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannah M Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ajay Tejwani
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher E Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Kim HK, Zai G, Hennings JM, Müller DJ, Kloiber S. Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm (Vienna) 2021; 128:1461-1477. [PMID: 34415438 DOI: 10.1007/s00702-021-02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
More than a third of patients treated with antidepressants experience treatment resistance. Furthermore, molecular pathways involved in antidepressant effect have yet to be fully understood. Therefore, we performed a systematic review of clinical studies that examined changes in RNA expression levels produced by antidepressant treatment. Literature search was performed through April 2021 for peer-reviewed studies measuring changes in mRNA or non-coding RNA levels before and after antidepressant treatment in human participants following PRISMA guidelines. Thirty-one studies were included in qualitative synthesis. We identified a large amount of heterogeneity between the studies for genes/RNAs measured, antidepressants used, and treatment duration. Of the six RNAs examined by more than one study, expression of the brain-derived neurotrophic factor (BDNF) gene and genes in the inflammation pathway, particularly IL-1β, were consistently reported to be altered by antidepressant treatment. Limitations of this review include heterogeneity of the studies, possibility of positive publication bias, and risk of false-negative findings secondary to small sample sizes. In conclusion, our systematic review provides an updated synthesis of RNA expression changes produced by antidepressant treatment in human participants, where genes in the BDNF and inflammatory pathways were identified as potential targets of antidepressant effect. Importantly, these findings also highlight the need for replication of the included studies in multiple strong, placebo-controlled studies for the identification of evidence-based markers that can be targeted to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Albuquerque A, Óvilo C, Núñez Y, Benítez R, López-Garcia A, García F, Félix MDR, Laranjo M, Charneca R, Martins JM. Transcriptomic Profiling of Skeletal Muscle Reveals Candidate Genes Influencing Muscle Growth and Associated Lipid Composition in Portuguese Local Pig Breeds. Animals (Basel) 2021; 11:ani11051423. [PMID: 34065673 PMCID: PMC8156922 DOI: 10.3390/ani11051423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Screening and interpretation of differentially expressed genes and associated biological pathways was conducted among experimental groups with divergent phenotypes providing valuable information about the metabolic events occurring and identification of candidate genes with major regulation roles. This comparative transcriptomic analysis includes the first RNA-seq analysis of the Longissimus lumborum muscle tissue from two Portuguese autochthonous pig breeds with different genetic backgrounds, Alentejano and Bísaro. Moreover, a complementary candidate gene approach was employed to analyse, by real time qPCR, the expression profile of relevant genes involved in lipid metabolism, and therefore with potential impacts on meat composition. This study contributes to explaining the biological basis of phenotypical differences occurring between breeds, particularly the ones related to meat quality traits that affect consumer interest. Abstract Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.
Collapse
Affiliation(s)
- André Albuquerque
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
- Correspondence: (A.A.); (J.M.M.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Adrián López-Garcia
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Fabián García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (C.Ó.); (Y.N.); (R.B.); (A.L.-G.); (F.G.)
| | - Maria do Rosário Félix
- MED & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada & Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Rui Charneca
- MED & Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - José Manuel Martins
- MED & Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- Correspondence: (A.A.); (J.M.M.)
| |
Collapse
|
13
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Kwon R, Hong BK, Lee KG, Choi E, Sabbagh L, Cho CS, Lee N, Kim WU. Regulation of tumor growth by leukocyte-specific protein 1 in T cells. J Immunother Cancer 2020; 8:jitc-2020-001180. [PMID: 33020243 PMCID: PMC7537340 DOI: 10.1136/jitc-2020-001180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical efficacy of T cell-based cancer immunotherapy is limited by the lack of T cell infiltration in the tumor mass, especially in solid tumors. Our group demonstrated previously that leukocyte-specific protein 1 (LSP1), an intracellular signal regulator, negatively regulates T cell infiltration in inflamed tissues. METHODS To determine the immuno-regulatory effects of LSP1 in T cells on tumor progression, we investigated the growth of B16 melanoma in Lsp1 knockout (KO) mice and T cell-specific Lsp1 transgenic (Tg) mice. The immune cell subpopulation infiltrated into the tumor mass as well as the expression of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in T cells was assessed by flow cytometry and/or immunohistochemistry. Chemotactic migration was assayed with Lsp1 KO and Lsp1 Tg T cells. Adoptive transfer of Lsp1 KO or Lsp1 Tg T cells was performed in B16 melanoma-challenged Rag1 KO mice. RESULTS Lsp1 KO mice showed decreased growth of B16 melanoma and increased infiltration of T cells in the tumor mass, which were completely reversed in T cell-specific Lsp1 Tg mice. Lsp1 KO CD8+ T cells also exhibited elevated migratory capacity in response to CXCL9 and CXCL10, whereas Lsp1 Tg CD8+ T cells did the opposite. LSP1 expression was increased in tumor-infiltrating T cells and could be induced by T cell receptor activation. Intriguingly, gene expression profiling of Lsp1 KO T cells suggested enhanced cytotoxicity. Indeed, expression of IFN-γ and TNF-α was increased in tumor-infiltrating CD4+ and CD8+ T cells of Lsp1 KO mice, while it was markedly reduced in those of Lsp1 Tg mice. Adoptive transfer of Lsp1 KO T cells to Rag1 KO mice was more effective in suppressing melanoma growth than transfer of Lsp1 Tg T cells. Of note, when treated with antiprogrammed cell death protein 1 (PD-1) antibody, inhibition of melanoma growth was more pronounced in Lsp1 KO mice than in Lsp1-sufficient mice, suggesting that Lsp1 depletion additively increases the antitumor effects of anti-PD-1 antibody. CONCLUSIONS LSP1 in T cells regulates the growth of B16 melanoma in mice, possibly by affecting migration and infiltration of T cells into the tumor and by modulating production of antitumor effector cytokines by CD8+ T cells. These findings provide evidence that LSP1 can be a target to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Riri Kwon
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunbyeol Choi
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Laurent Sabbagh
- Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Chul-Soo Cho
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea .,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
15
|
Afzaljavan F, Moezzi A, Vahednia E, Khorshid Shamshiri A, Vakili F, Homaei Shandiz F, Pasdar A. Predictive and prognostic value of LSP1 rs3817198 in sporadic breast cancer in northeastern population of Iran. Exp Mol Pathol 2020; 116:104514. [PMID: 32738313 DOI: 10.1016/j.yexmp.2020.104514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Fahimeh Afzaljavan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Moezzi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Vahednia
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Vakili
- Midwifery department, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
The podosome cap: past, present, perspective. Eur J Cell Biol 2020; 99:151087. [DOI: 10.1016/j.ejcb.2020.151087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022] Open
|
17
|
Kulkarni R, Jiang S, Birrane G, Prasad A. Lymphocyte-specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BST-2)-mediated intracellular trafficking of HIV-1 in dendritic cells. FEBS Lett 2020; 594:1947-1959. [PMID: 32279313 DOI: 10.1002/1873-3468.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subverts intracellular trafficking pathways to avoid its degradation and elimination, thereby enhancing its survival and spread. The molecular mechanisms involved in intracellular transport of HIV-1 are not yet fully defined. We demonstrate that the actin-binding protein lymphocyte-specific protein 1 (LSP1) interacts with the interferon-inducible protein bone marrow stromal antigen 2 (BST-2) in dendritic cells (DCs) to facilitate both endocytosis of surface-bound HIV-1 and the formation of early endosomes. Analysis of the molecular interaction between LSP1 and BST-2 reveals that the N terminus of LSP1 interacts with BST-2. Overall, we identify a novel mechanism of intracellular trafficking of HIV-1 in DCs centering on the LSP1/BST-2 complex. We also show that the HIV-1 accessory protein Vpu subverts this pathway by inducing proteasomal degradation of LSP1, augmenting cell-cell transmission of HIV-1.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Elevated lymphocyte specific protein 1 expression is involved in the regulation of leukocyte migration and immunosuppressive microenvironment in glioblastoma. Aging (Albany NY) 2020; 12:1656-1684. [PMID: 32003759 PMCID: PMC7053627 DOI: 10.18632/aging.102706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Immune cell infiltration mediates therapeutic response to immune therapies. The investigation on the genes regulating leukocyte migration may help us to understand the mechanisms regulating immune cell infiltration in tumor microenvironment. Here, we collected the data from Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) to analyze the expression of leukocyte migration related genes in glioblastoma (GBM). Lymphocyte specific protein 1 (LSP1) was identified as the only gene in this family which not only has an elevated expression, but also serve as an independent predictive factor for progressive malignancy in glioma. We further confirmed these results in clinical glioma samples by quantitative PCR, immunofluorescence, immunohistochemistry, and western blot. Moreover, LSP1 expression was closely related to the response to radio- and chemotherapy in GBM, and positively correlated with immunosuppressive cell populations, including M2 macrophages, neutrophil, and regulatory T cell. Additionally, elevated LSP-1 expression enhanced the expression of immunosuppression related genes like programmed cell death 1 (PD1) and leukocyte associated immunoglobulin like receptor 1 (LAIR1) in macrophages. LSP1 also promoted the migration of macrophages. Together, our study suggests a novel role of LSP1 contributing to immunosuppressive microenvironment in GBM and serving as a potential therapeutic target for it.
Collapse
|
19
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
|
21
|
Haney MS, Bohlen CJ, Morgens DW, Ousey JA, Barkal AA, Tsui CK, Ego BK, Levin R, Kamber RA, Collins H, Tucker A, Li A, Vorselen D, Labitigan L, Crane E, Boyle E, Jiang L, Chan J, Rincón E, Greenleaf WJ, Li B, Snyder MP, Weissman IL, Theriot JA, Collins SR, Barres BA, Bassik MC. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat Genet 2018; 50:1716-1727. [PMID: 30397336 DOI: 10.1038/s41588-018-0254-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023]
Abstract
Phagocytosis is required for a broad range of physiological functions, from pathogen defense to tissue homeostasis, but the mechanisms required for phagocytosis of diverse substrates remain incompletely understood. Here, we developed a rapid magnet-based phenotypic screening strategy, and performed eight genome-wide CRISPR screens in human cells to identify genes regulating phagocytosis of distinct substrates. After validating select hits in focused miniscreens, orthogonal assays and primary human macrophages, we show that (1) the previously uncharacterized gene NHLRC2 is a central player in phagocytosis, regulating RhoA-Rac1 signaling cascades that control actin polymerization and filopodia formation, (2) very-long-chain fatty acids are essential for efficient phagocytosis of certain substrates and (3) the previously uncharacterized Alzheimer's disease-associated gene TM2D3 can preferentially influence uptake of amyloid-β aggregates. These findings illuminate new regulators and core principles of phagocytosis, and more generally establish an efficient method for unbiased identification of cellular uptake mechanisms across diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- Michael S Haney
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher J Bohlen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| | - David W Morgens
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - James A Ousey
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Amira A Barkal
- Institute for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Braeden K Ego
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Roni Levin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roarke A Kamber
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Collins
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Tucker
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Daan Vorselen
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lorenzo Labitigan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Crane
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Boyle
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Joanne Chan
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Rincón
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - William J Greenleaf
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Billy Li
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Koral K, Haynes M, Bowen WC, Orr A, Mars W, Michalopoulos GK. Lymphocyte-Specific Protein-1 Controls Sorafenib Sensitivity and Hepatocellular Proliferation through Extracellular Signal-Regulated Kinase 1/2 Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2074-2086. [PMID: 30126548 PMCID: PMC6854472 DOI: 10.1016/j.ajpath.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
The gene leukocyte-specific protein-1 (LSP1), encodes an F-actin binding protein that directly interacts with the mitogen-activated protein kinase pathway. LSP1 has copy number variations in 52% of human hepatocellular carcinoma (HCC). LSP1 suppresses proliferation and migration in hepatocytes. LSP1 binds to the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein/extracellular signal-regulated kinase (ERK)/ERK signaling cassette, the target for sorafenib, a crucial chemotherapeutic agent for HCC. This study addresses the role of LSP1 in liver regeneration and sensitivity to sorafenib in normal and neoplastic hepatocytes. Two mouse models, an Lsp1 global knockout (LSP1KO) and a hepatocyte-specific Lsp1 transgenic (LSP1TG) mouse, were used. After two-thirds hepatectomy (PHx), LSP1KO mice displayed increased proliferation and ERK activation, whereas LSP1TG mice displayed suppressed proliferation and decreased ERK activation. LSP1KO hepatocytes cultured without growth factors exhibited increased proliferation, whereas LSP1TG hepatocytes showed decreased proliferation. Rat and human hepatoma cells expressing Lsp1 shRNA displayed increased sensitivity to sorafenib, as evidenced by decreased cell numbers and phosphorylated ERK expression compared with control. LSP1 KO mice treated with sorafenib before PHx displayed decreased hepatocyte proliferation. Our data show that loss of LSP1 function, observed in HCC, leads to increased sensitivity to sorafenib treatment and enhanced hepatocellular proliferation after PHx in vivo and in cultured cells.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meagan Haynes
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
23
|
Flister MJ, Bergom C. Genetic Modifiers of the Breast Tumor Microenvironment. Trends Cancer 2018; 4:429-444. [PMID: 29860987 DOI: 10.1016/j.trecan.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Multiple nonmalignant cell types in the tumor microenvironment (TME) impact breast cancer risk, metastasis, and response to therapy, yet most heritable mechanisms that influence TME cell function and breast cancer outcomes are largely unknown. Breast cancer risk is ∼30% heritable and >170 genetic loci have been associated with breast cancer traits. However, the majority of candidate genes have poorly defined mechanistic roles in breast cancer biology. Research indicates that breast cancer risk modifiers directly impact cancer cells, yet it is equally plausible that some modifier alleles impact the nonmalignant TME. The objective of this review is to examine the list of current breast cancer candidate genes that may modify breast cancer risk and outcome through the TME.
Collapse
Affiliation(s)
- Michael J Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Carmen Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
25
|
López de Maturana E, Malats N. Genetic Testing, Genetic Variation, and Genetic Susceptibility. Bladder Cancer 2018. [DOI: 10.1016/b978-0-12-809939-1.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 2017; 1:1699-1711. [PMID: 29296817 DOI: 10.1182/bloodadvances.2017005710] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 11/20/2022] Open
Abstract
RUNX1 is an essential master transcription factor in hematopoietic development and plays important roles in immune functions. Although the gene regulatory mechanism of RUNX1 has been characterized extensively, the epigenetic role of RUNX1 remains unclear. Here, we demonstrate that RUNX1 contributes DNA demethylation in a binding site-directed manner in human hematopoietic cells. Overexpression analysis of RUNX1 showed the RUNX1-binding site-directed DNA demethylation. The RUNX1-mediated DNA demethylation was also observed in DNA replication-arrested cells, suggesting an involvement of active demethylation mechanism. Coimmunoprecipitation in hematopoietic cells showed physical interactions between RUNX1 and DNA demethylation machinery enzymes TET2, TET3, TDG, and GADD45. Further chromatin immunoprecipitation sequencing revealed colocalization of RUNX1 and TET2 in the same genomic regions, indicating recruitment of DNA demethylation machinery by RUNX1. Finally, methylome analysis revealed significant overrepresentation of RUNX1-binding sites at demethylated regions during hematopoietic development. Collectively, the present data provide evidence that RUNX1 contributes site specificity of DNA demethylation by recruitment of TET and other demethylation-related enzymes to its binding sites in hematopoietic cells.
Collapse
|
27
|
Hein A, Rack B, Li L, Ekici AB, Reis A, Lux MP, Cunningham JM, Rübner M, Fridley BL, Schneeweiss A, Tesch H, Lichtenegger W, Fehm T, Heinrich G, Rezai M, Beckmann MW, Janni W, Weinshilboum RM, Wang L, Fasching PA, Häberle L. Genetic Breast Cancer Susceptibility Variants and Prognosis in the Prospectively Randomized SUCCESS A Study. Geburtshilfe Frauenheilkd 2017; 77:651-659. [PMID: 28757652 DOI: 10.1055/s-0042-113189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
Large-scale genotyping studies have identified over 70 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. However, knowledge regarding genetic risk factors associated with the prognosis is limited. The aim of this study was therefore to investigate the prognostic effect of nine known breast cancer risk SNPs. BC patients (n = 1687) randomly sampled in an adjuvant, randomized phase III trial (SUCCESS A study) were genotyped for nine BC risk SNPs: rs17468277 (CASP8) , rs2981582 (FGFR2) , rs13281615(8q24), rs3817198 (LSP1) , rs889312 (MAP3K1) , rs3803662 (TOX3) , rs13387042(2q35), rs4973768 (SLC4A7) , rs6504950 (COX11) . Cox proportional hazards models were used to test the SNPs' association with overall survival (OS) and progression-free survival (PFS). Additional analyses were carried out for molecular subgroups. rs3817198 in LSP1 (lymphocyte-specific protein 1) was the only SNP that significantly influenced OS (p = 0.01) and PFS (p < 0.01) in the likelihood ratio test comparing the genetic survival model with the clinical survival model. In the molecular subgroups, triple-negative patients with two minor alleles in rs3817198 had a much better prognosis relative to OS (adjusted HR 0.03; 95% CI 0.002 - 0.279) and PFS (HR 0.09; 95% CI 0.02 - 0.36) than patients with the common alleles. The same effect on PFS was shown for patients with luminal A tumors (HR 0.19; 95% CI 0.05 - 0.84), whereas patients with luminal B tumors had a poorer PFS with two minor alleles (HR 2.13; 95% CI 1.02 - 4.40). The variant in rs3817198 has a prognostic effect particularly in the subgroup of patients with triple-negative BC, suggesting a possible link with immunomodulation and BC.
Collapse
Affiliation(s)
- A Hein
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - B Rack
- Department of Gynecology and Obstetrics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - L Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA.,Department of Oncology; Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Tiantan Xili, Beijing, 100050, China
| | - A B Ekici
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - A Reis
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - M P Lux
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - J M Cunningham
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | - M Rübner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - B L Fridley
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Schneeweiss
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - H Tesch
- Department of Oncology, Onkologie Bethanien, Frankfurt am Main, Germany
| | - W Lichtenegger
- Department of Gynecology and Obstetrics, Charité University Hospital Campus Virchow, Berlin, Germany
| | - T Fehm
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - G Heinrich
- Department of Gynecologic Oncology, Schwerpunktpraxis für Gynäkologische Onkologie, Fürstenwalde, Germany
| | - M Rezai
- Department of Breast Diseases, Breast Center of Düsseldorf, Luisenkrankenhaus, Düsseldorf, Germany
| | - M W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - W Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - R M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA
| | - L Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Medical School-Mayo Foundation, Rochester, MN, USA
| | - P A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Medicine, Division of Hematology/Oncology, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - L Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
28
|
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis. Proc Natl Acad Sci U S A 2015; 112:E6535-43. [PMID: 26554018 DOI: 10.1073/pnas.1514152112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.
Collapse
|
29
|
Le NPK, Channabasappa S, Hossain M, Liu L, Singh B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L995-1008. [PMID: 26320151 DOI: 10.1152/ajplung.00068.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/25/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms of excessive migration of activated neutrophils into inflamed lungs, credited with tissue damage, are not fully understood. We explored the hitherto unknown expression of leukocyte-specific protein 1 (LSP1) in human and mouse lungs and neutrophils and examined its role in neutrophil migration in acute lung inflammation. Autopsied septic human lungs showed increased LSP1 labeling in epithelium, endothelium, and leukocytes, including in their nuclei compared with normal lungs. We induced acute lung inflammation through intranasal administration of E. coli lipopolysaccharide (LPS) (80 μg) in LSP1-deficient (Lsp1(-/-)) and wild-type (WT) 129/SvJ mice. Immunocytochemistry and Western blots showed increased expression of LSP1 and phosphorylated LSP1 in lungs of LPS-treated WT mice. Histology showed more congestion, inflammation, and Gr-1(+) neutrophils in lung of WT mice than Lsp1(-/-) mice. LPS-treated WT mice had significantly more neutrophils in bronchoalveolar lavage (BAL) and myeloperoxidase levels in lungs compared with Lsp1(-/-) mice. However, there were no differences in lung tissue and BAL concentrations of keratinocyte-derived chemokine, monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and -1β, vascular permeability, and phosphorylated p38 MAPK between LPS-treated WT and Lsp1(-/-) mice, whereas TNF-α concentration was higher in BAL fluid from LPS-treated WT. Immunoelectron microscopy showed increased LSP1 in the nuclei of LPS-treated neutrophils. We also found increased levels of phosphorylated LSP1 associated with plasma membrane, nucleus, and cytosol at various times after LPS treatment of murine bone marrow-derived neutrophils, suggesting its role in modulation of neutrophil cytoskeleton and the membrane. These data collectively show increased expression of LSP1 in inflamed mouse and human lungs and its role in neutrophil recruitment and lung inflammation.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Shankaramurthy Channabasappa
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
30
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Koral K, Paranjpe S, Bowen WC, Mars W, Luo J, Michalopoulos GK. Leukocyte-specific protein 1: a novel regulator of hepatocellular proliferation and migration deleted in human hepatocellular carcinoma. Hepatology 2015; 61:537-547. [PMID: 25234543 PMCID: PMC4303494 DOI: 10.1002/hep.27444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/14/2014] [Indexed: 01/18/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the most commonly diagnosed form of liver cancer with high morbidity and mortality. Copy number variation (CNV) analysis of human HCC revealed that leukocyte-specific protein 1 (LSP1) had the highest number of cases with CNV. LSP1, a F-actin-binding protein, is expressed in hematopoietic cells and interacts with kinase suppressor of Ras (KSR), a scaffold for the extracellular signal-related kinase/mitogen-activated protein kinase pathway. Expression of LSP1 in liver, and its role in normal hepatocellular function and carcinogenesis, remains unknown. Therefore, LSP1 messenger RNA and protein levels were analyzed in normal hepatocytes in culture, rat liver following partial hepatectomy (PHx), and hepatoma cell lines. In culture and after PHx, LSP1 increased after the termination of hepatocyte proliferation. To investigate LSP1 function in HCC, short hairpin RNA was utilized to stably knock down LSP1 expression in the JM1 rat hepatoma cell line. Loss of LSP1 in JM1 cells resulted in dramatic up-regulation of cyclin D1 and phosphorylated ERK2, increased cell proliferation, and migration. Coimmunoprecipitation and immunofluorescence analysis displayed an interaction and colocalization between LSP1, KSR, and F-actin in JM1 cells and liver during regeneration. Conversely, expression of LSP1 in the JM2 rat hepatoma cell line led to decreased proliferation. Enhanced expression of LSP1 in mouse hepatocytes during liver regeneration after injection of an LSP1 expression plasmid also led to decreased hepatocyte proliferation. CONCLUSION LSP1 is expressed in normal hepatocytes and liver after PHx after termination of proliferation. In rat hepatoma cell lines and mouse liver in vivo, LSP1 functions as a negative regulator of proliferation and migration. Given the high frequency of LSP1 CNV in human HCC, LSP1 may be a novel target for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kelly Koral
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
32
|
Chandra S, Baribault C, Lacey M, Ehrlich M. Myogenic differential methylation: diverse associations with chromatin structure. BIOLOGY 2014; 3:426-51. [PMID: 24949935 PMCID: PMC4085616 DOI: 10.3390/biology3020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 11/16/2022]
Abstract
Employing a new algorithm for identifying differentially methylated regions (DMRs) from reduced representation bisulfite sequencing profiles, we identified 1972 hypermethylated and 3250 hypomethylated myogenic DMRs in a comparison of myoblasts (Mb) and myotubes (Mt) with 16 types of nonmuscle cell cultures. DMRs co-localized with a variety of chromatin structures, as deduced from ENCODE whole-genome profiles. Myogenic hypomethylation was highly associated with both weak and strong enhancer-type chromatin, while hypermethylation was infrequently associated with enhancer-type chromatin. Both myogenic hypermethylation and hypomethylation often overlapped weak transcription-type chromatin and Polycomb-repressed-type chromatin. For representative genes, we illustrate relationships between DNA methylation, the local chromatin state, DNaseI hypersensitivity, and gene expression. For example, MARVELD2 exhibited myogenic hypermethylation in transcription-type chromatin that overlapped a silenced promoter in Mb and Mt while TEAD4 had myogenic hypomethylation in intronic subregions displaying enhancer-type or transcription-type chromatin in these cells. For LSP1, alternative promoter usage and active promoter-type chromatin were linked to highly specific myogenic or lymphogenic hypomethylated DMRs. Lastly, despite its myogenesis-associated expression, TBX15 had multiple hypermethylated myogenic DMRs framing its promoter region. This could help explain why TBX15 was previously reported to be underexpressed and, unexpectedly, its promoter undermethylated in placentas exhibiting vascular intrauterine growth restriction.
Collapse
Affiliation(s)
- Sruti Chandra
- Center for Bioinformatics and Genomics, New Orleans, LA 70112, USA.
| | - Carl Baribault
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, New Orleans, LA 70112, USA.
| |
Collapse
|
33
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
34
|
Xie L. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics 2014; 15:301. [PMID: 24758171 PMCID: PMC4023608 DOI: 10.1186/1471-2164-15-301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serum response factor (SRF) is a widely expressed transcription factor involved in multiple regulatory programs. It is believed that SRF can toggle between disparate programs of gene expression through association with different cofactors. However, the direct evidence as to how these factors function on a genome-wide level is still lacking. RESULTS In the present study, I explored the functions of SRF and its representative cofactors, megakaryoblastic leukemia 1/2 (MKL1/2) and ETS-domain protein 4 (ELK4), during fungal infection challenge in macrophages. The knockdown study, combined with gene expression array analysis, revealed that MKL1/2 regulated SRF-dependent genes were related to actin cytoskeleton organization, while ELK4 regulated SRF-dependent genes were related to external stimulus responses. Subsequent chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) suggested that many of these regulations were mediated directly in cis. CONCLUSIONS I conclude that SRF utilizes MKL1/2 to fulfill steady state cellular functions, including cytoskeletal organization, and utilizes ELK4 to facilitate acute responses to external infection. Together, these findings indicate that SRF, along with its two cofactors, are important players in both cellular homeostasis and stress responses in macrophages.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
35
|
Figueroa JD, Ye Y, Siddiq A, Garcia-Closas M, Chatterjee N, Prokunina-Olsson L, Cortessis VK, Kooperberg C, Cussenot O, Benhamou S, Prescott J, Porru S, Dinney CP, Malats N, Baris D, Purdue M, Jacobs EJ, Albanes D, Wang Z, Deng X, Chung CC, Tang W, Bas Bueno-de-Mesquita H, Trichopoulos D, Ljungberg B, Clavel-Chapelon F, Weiderpass E, Krogh V, Dorronsoro M, Travis R, Tjønneland A, Brenan P, Chang-Claude J, Riboli E, Conti D, Gago-Dominguez M, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Hohensee C, Rodabough R, Cancel-Tassin G, Roupret M, Comperat E, Chen C, De Vivo I, Giovannucci E, Hunter DJ, Kraft P, Lindstrom S, Carta A, Pavanello S, Arici C, Mastrangelo G, Kamat AM, Lerner SP, Barton Grossman H, Lin J, Gu J, Pu X, Hutchinson A, Burdette L, Wheeler W, Kogevinas M, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Schwenn M, Karagas MR, Johnson A, Schned A, Armenti KR, Hosain G, Andriole G, Grubb R, Black A, Ryan Diver W, Gapstur SM, Weinstein SJ, Virtamo J, Haiman CA, Landi MT, Caporaso N, Fraumeni JF, Vineis P, Wu X, Silverman DT, Chanock S, Rothman N. Genome-wide association study identifies multiple loci associated with bladder cancer risk. Hum Mol Genet 2014; 23:1387-98. [PMID: 24163127 PMCID: PMC3919005 DOI: 10.1093/hmg/ddt519] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/24/2013] [Accepted: 10/16/2013] [Indexed: 11/12/2022] Open
Abstract
Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10(-5) was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10(-9)) and rs907611 on 11p15.5 (P = 4.11 × 10(-8)). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10(-7)) and rs4510656 on 6p22.3 (P = 6.98 × 10(-7)); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis.
Collapse
Affiliation(s)
- Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yuanqing Ye
- Department of Epidemiology and
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Afshan Siddiq
- Imperial College London, London, UK
- Human Genetics Foundation (HuGeF)
- Biochemistry and
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Victoria K. Cortessis
- Department of Preventive Medicine and
- Department of Obstetrics & Gynecology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivier Cussenot
- Department of Urology, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France
| | - Simone Benhamou
- Institut national de la sante et de la recherche medicale, U946, Foundation Jean Dausset Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France
- Centre National de la Receherche Scientifique, UMR8200, Institut Gustave-Roussy, Villejuif, France
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Stefano Porru
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Colin P. Dinney
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Núria Malats
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhaoming Wang
- Cancer Genomics Research, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, USA
| | - Xiang Deng
- Cancer Genomics Research, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, USA
| | - Charles C. Chung
- Cancer Genomics Research, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, USA
| | - Wei Tang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
| | - Dimitrios Trichopoulos
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
- Hellenic Health Foundation, Kaisareias, Athens, Greece
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Samfundet Folkhälsan, Helsinki, Finland
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Miren Dorronsoro
- Pubilc Health Division of Gipuzkoa, BioDonostia Research Institute, Health Department of Basque Region, San Sebastian, Spain
- CIBERESP, CIBER Epidemiologia y Salud Publica, Madrid, Spain
| | - Ruth Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | | | - Paul Brenan
- International Agency for Research on Cancer, Lyon, France
| | | | - Elio Riboli
- Imperial College London, London, UK
- Human Genetics Foundation (HuGeF)
- Biochemistry and
| | | | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Malcolm C. Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Chancellor Hohensee
- Department of Obstetrics & Gynecology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Rebecca Rodabough
- Department of Obstetrics & Gynecology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Geraldine Cancel-Tassin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
- UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Morgan Roupret
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
- UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Eva Comperat
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
- UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Constance Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
| | - Immaculata De Vivo
- Centre National de la Receherche Scientifique, UMR8200, Institut Gustave-Roussy, Villejuif, France
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
| | - David J. Hunter
- Centre National de la Receherche Scientifique, UMR8200, Institut Gustave-Roussy, Villejuif, France
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
- Broad Institute of Harvard and MIT, Êmbridge, MA, USA
| | - Peter Kraft
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
| | - Sara Lindstrom
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology
- Department of Epidemiology
- Department of Nutrition and
| | - Angela Carta
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Cecilia Arici
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Ashish M. Kamat
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Seth P. Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - H. Barton Grossman
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jie Lin
- Department of Epidemiology and
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology and
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xia Pu
- Department of Epidemiology and
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Amy Hutchinson
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Laurie Burdette
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | | | - Manolis Kogevinas
- Pubilc Health Division of Gipuzkoa, BioDonostia Research Institute, Health Department of Basque Region, San Sebastian, Spain
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona, Spain
- National School of Public Health, Athens, Greece
| | - Adonina Tardón
- Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Consol Serra
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Reina García-Closas
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
| | - Josep Lloreta
- CIBERESP, CIBER Epidemiologia y Salud Publica, Madrid, Spain
| | | | | | | | - Alan Schned
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Karla R. Armenti
- New Hampshire Department of Health and Human Services, Concord, NH, USA
| | - G.M. Hosain
- New Hampshire Department of Health and Human Services, Concord, NH, USA
| | - Gerald Andriole
- Department of Urology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Grubb
- Department of Urology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - W. Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jarmo Virtamo
- National Institute for Health and Welfare, Helsinki, Finland and
| | - Chris A. Haiman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Maria T. Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paolo Vineis
- Imperial College London, London, UK
- Human Genetics Foundation (HuGeF)
- Biochemistry and
| | - Xifeng Wu
- Department of Epidemiology and
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
36
|
Rager JE, Moeller BC, Miller SK, Kracko D, Doyle-Eisele M, Swenberg JA, Fry RC. Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol Sci 2013; 138:36-46. [PMID: 24304932 DOI: 10.1093/toxsci/kft267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains unknown regarding their changes resulting from environmental exposures as they influence cellular signaling across various tissues. We set out to investigate miRNA responses to formaldehyde, a critical air pollutant and known carcinogen that disrupts miRNA expression profiles. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde for 7, 28, or 28 days followed by a 7-day recovery. Genome-wide miRNA expression profiles were assessed within the nasal respiratory epithelium, circulating white blood cells (WBC), and bone marrow (BM). miRNAs showed altered expression in the nose and WBC but not in the BM. Notably in the nose, miR-10b and members of the let-7 family, known nasopharyngeal carcinoma players, showed decreased expression. To integrate miRNA responses with transcriptional changes, genome-wide messenger RNA profiles were assessed in the nose and WBC. Although formaldehyde-induced changes in miRNA and transcript expression were largely tissue specific, pathway analyses revealed an enrichment of immune system/inflammation signaling in the nose and WBC. Specific to the nose was enrichment for apoptosis/proliferation signaling, involving let-7a, let-7c, and let-7f. Across all tissues and time points assessed, miRNAs were predicted to regulate between 7% and 35% of the transcriptional responses and were suggested to play a role in signaling processes including immune/inflammation-related pathways. These data inform our current hypothesis that formaldehyde-induced inflammatory signals originating in the nose may drive WBC effects.
Collapse
Affiliation(s)
- Julia E Rager
- * Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVE Here, we determine how formula feeding impacts the gut microbiota and host transcriptome. BACKGROUND Formula-fed (FF) infants are at risk for diseases that involve complex interactions between microbes and host immune elements such as necrotizing enterocolitis. The aims of this study were to simultaneously examine the microbiota and host transcriptional profiles of FF and maternal-fed (MF) mice to evaluate how diet impacts gut colonization and host genes. METHODS After 72 hours of FF or MF, colonic tissue was collected. 16S ribosomal RNA was sequenced with Roche GS-FLX (Genome Sequencer-FLX) pyrosequencing. Operational taxonomical unit clustering, diversity analysis, and principal coordinate analysis (PCA) were performed. Complementary DNA libraries were sequenced by Solexa. Reads were annotated by BLAST (Basic Local Alignment Search Tool) search against mouse RNA database [National Center for Biotechnology Information (NCBI) build-37] and functionally classified using the KOG (Eukaryotic Orthologous Groups) database (NCBI). RESULTS Firmicutes (P < 0.001) was the dominant phylum in MF pups, whereas Proteobacteria (P < 0.001) and Bacteroidetes (P < 0.05) were dominant in FF mice. On the genus level, FF mice had increased Serratia (P < 0.001) and Lactococcus (P < 0.05) whereas MF mice had increased Lactobacillus (P < 0.001). PCA confirmed clustering by diet. Solexa sequencing demonstrated different (P < 0.05) messenger RNA transcript levels in 148 genes. Heme oxygenase 1 (P < 0.01), an oxidative stress marker, was increased 25-fold in FF mice. In addition, decreased vinculin (P < 0.05), a cytoskeletal protein associated with adherens junctions in FF pups suggested impaired gut structural integrity. Diet also impacted immune regulation, cell cycle control/gene expression, cell motility, and vascular function genes. CONCLUSIONS FF shifted gut microbiota and structural integrity, oxidative stress, and immune function genes, presumably increasing vulnerability to disease in FF mice. Interrogation of microbial and host gene expression in FF neonates may offer new insight on how diet affects disease pathogenesis.
Collapse
|
38
|
Hossain M, Qadri SM, Su Y, Liu L. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am J Physiol Cell Physiol 2013; 304:C895-904. [PMID: 23447036 DOI: 10.1152/ajpcell.00297.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leukocyte-endothelial interaction triggers signaling events in endothelial cells prior to transendothelial migration of leukocytes. Leukocyte-specific protein 1 (LSP1), expressed in endothelial cells, plays a pivotal role in regulating subsequent recruitment steps following leukocyte adhesion. In neutrophils, LSP1 is activated by phosphorylation of its serine residues by molecules downstream of p38 MAPK and PKC. Whether leukocyte adhesion to endothelial cells is required for endothelial LSP1 activation remains elusive. In addition, discrepancies in the functions of endothelial and leukocyte LSP1 in leukocyte adhesion prevail. We demonstrate that adhesion of wild-type (Lsp1(+/+)) neutrophils to LSP1-deficient (Lsp1(-/-)) endothelial cells was significantly reduced compared with adhesion to Lsp1(+/+) endothelial cells. Immunoblotting revealed increased phosphorylated endothelial LSP1 in the presence of adherent Lsp1(-/-) neutrophils [stimulated by macrophage inflammatory protein-2 (CXCL2), TNF-α, or thapsigargin], but not cytokine or chemokine alone. Pharmacological inhibition of p38 MAPK by SB-203580 (10 μM) significantly blunted the phosphorylation of endothelial LSP1. Functionally blocking endothelial ICAM-1 or neutrophil β2-integrins diminished neutrophil adhesion and phosphorylation of endothelial LSP1. The engagement of endothelial ICAM-1 cross-linking, which mimics leukocyte adhesion, resulted in phosphorylation of endothelial LSP1. In neutrophil-depleted Lsp1(+/+) mice, administration of ICAM-1 cross-linking antibody resulted in increased phosphorylation of LSP1 and p38 MAPK in TNF-α-stimulated cremaster muscle. In conclusion, endothelial LSP1 participates in leukocyte adhesion in vitro, and leukocyte adhesion through ICAM-1 fosters the activation of endothelial LSP1, an effect at least partially mediated by the activation of p38 MAPK. Endothelial LSP1, in contrast to neutrophil LSP1, is not phosphorylated by cytokine or chemokine stimulation alone.
Collapse
Affiliation(s)
- Mokarram Hossain
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
39
|
Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 2013; 5:553-68. [PMID: 24059801 PMCID: PMC3864898 DOI: 10.2217/epi.13.43] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Differentiation-related DNA methylation is receiving increasing attention, partly owing to new, whole-genome analyses. These revealed that cell type-specific differential methylation in gene bodies is more frequent than in promoters. We review new insights into the functionality of DNA methylation during differentiation, with emphasis on the methylomes of myoblasts, myotubes and skeletal muscle versus non-muscle samples. Biostatistical analyses of data from reduced representation bisulfite sequencing are discussed. Lastly, a model is presented for how promoter and intragenic DNA hypermethylation affect gene expression, including increasing the efficiency of polycomb silencing at some promoters, downmodulating other promoters rather than silencing them, counteracting enhancers with heterologous specificity, altering chromatin conformation by inhibiting the binding of CTCF, modulating mRNA transcript levels by inhibiting overlapping promoters of noncoding RNA genes or by regulating the use of alternative mRNA promoters, modulating transcription termination, regulating alternative splicing and acting as barriers to the spread of activating chromatin.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Human Genetics Program, Tulane Cancer Center, and Center for Bioinformatics & Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
40
|
Different microvascular permeability responses elicited by the CXC chemokines MIP-2 and KC during leukocyte recruitment: Role of LSP1. Biochem Biophys Res Commun 2012; 423:484-9. [DOI: 10.1016/j.bbrc.2012.05.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
|
41
|
Nalesnik MA, Tseng G, Ding Y, Xiang GS, Zheng ZL, Yu Y, Marsh JW, Michalopoulos GK, Luo JH. Gene deletions and amplifications in human hepatocellular carcinomas: correlation with hepatocyte growth regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1495-1508. [PMID: 22326833 PMCID: PMC3657620 DOI: 10.1016/j.ajpath.2011.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/09/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
Abstract
Tissues from 98 human hepatocellular carcinomas (HCCs) obtained from hepatic resections were subjected to somatic copy number variation (CNV) analysis. Most of these HCCs were discovered in livers resected for orthotopic transplantation, although in a few cases, the tumors themselves were the reason for the hepatectomies. Genomic analysis revealed deletions and amplifications in several genes, and clustering analysis based on CNV revealed five clusters. The LSP1 gene had the most cases with CNV (46 deletions and 5 amplifications). High frequencies of CNV were also seen in PTPRD (21/98), GNB1L (18/98), KIAA1217 (18/98), RP1-1777G6.2 (17/98), ETS1 (11/98), RSU1 (10/98), TBC1D22A (10/98), BAHCC1 (9/98), MAML2 (9/98), RAB1B (9/98), and YIF1A (9/98). The existing literature regarding hepatocytes or other cell types has connected many of these genes to regulation of cytoskeletal architecture, signaling cascades related to growth regulation, and transcription factors directly interacting with nuclear signaling complexes. Correlations with existing literature indicate that genomic lesions associated with HCC at the level of resolution of CNV occur on many genes associated directly or indirectly with signaling pathways operating in liver regeneration and hepatocyte growth regulation.
Collapse
Affiliation(s)
- Michael A. Nalesnik
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George Tseng
- Departments of Biostatistics, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Surgery, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Departments of Biostatistics, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guo-Sheng Xiang
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhong-liang Zheng
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - YanPing Yu
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James W. Marsh
- Joint CMU-Pitt Ph.D. Program in Computational Biology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K. Michalopoulos
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian-Hua Luo
- Department of Pathology, the Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2011; 2:195-209. [PMID: 21779493 DOI: 10.1177/1947601911407328] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is a central signaling pathway that regulates a wide variety of stimulated cellular processes, including mainly proliferation, differentiation, and survival, but apoptosis and stress response as well. The ability of this linear cascade to induce so many distinct and even opposing effects after various stimulations raises the question as to how the signaling specificity of the cascade is regulated. Over the past years, several specificity-mediating mechanisms have been elucidated, including temporal regulation, scaffolding interactions, crosstalks with other signaling components, substrate competition, and multiple components in each tier of the cascade. In addition, spatial regulation of various components of the cascade is probably one of the main ways by which signals can be directed to some downstream targets and not to others. In this review, we describe first the components of the ERK1/2 cascade and their mode of regulation by kinases, phosphatases, and scaffold proteins. In the second part, we focus on the role of MEK1/2 and ERK1/2 compartmentalization in the nucleus, mitochondria, endosomes, plasma membrane, cytoskeleton, and Golgi apparatus. We explain that this spatial distribution may direct ERK1/2 signals to regulate the organelles' activities. However, it can also direct the activity of the cascade's components to the outer surface of the organelles in order to bring them to close proximity to specific cytoplasmic targets. We conclude that the dynamic localization of the ERK1/2 cascade components is an important regulatory mechanism in determining the signaling specificity of the cascade, and its understanding should shed a new light on the understanding of many stimulus-dependent processes.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
43
|
Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2011; 12:81-92. [PMID: 21928070 DOI: 10.1007/s10142-011-0252-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a large-scale analysis of CNVs using SNP genotyping data from 472 animals of the same population. We detected 811 candidate CNV regions, which represent 141.8 Mb (~4.7%) of the genome. To investigate the functional impacts of CNVs, we created 2 groups of 100 individual animals with extremely low or high estimated breeding values of eggs per gram of feces and referred to these groups as parasite resistant (PR) or parasite susceptible (PS), respectively. We identified 297 (~51 Mb) and 282 (~48 Mb) CNV regions from PR and PS groups, respectively. Approximately 60% of the CNV regions were specific to the PS group or PR group of animals. Selected PR- or PS-specific CNVs were further experimentally validated by quantitative PCR. A total of 297 PR CNV regions overlapped with 437 Ensembl genes enriched in immunity and defense, like WC1 gene which uniquely expresses on gamma/delta T cells in cattle. Network analyses indicated that the PR-specific genes were predominantly involved in gastrointestinal disease, immunological disease, inflammatory response, cell-to-cell signaling and interaction, lymphoid tissue development, and cell death. By contrast, the 282 PS CNV regions contained 473 Ensembl genes which are overrepresented in environmental interactions. Network analyses indicated that the PS-specific genes were particularly enriched for inflammatory response, immune cell trafficking, metabolic disease, cell cycle, and cellular organization and movement.
Collapse
|
44
|
Serum response factor utilizes distinct promoter- and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol Cell Biol 2010; 31:861-75. [PMID: 21135125 DOI: 10.1128/mcb.00836-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells of the monocyte/macrophage lineage play essential roles in tissue homeostasis and immune responses, but mechanisms underlying the coordinated expression of cytoskeletal genes required for specialized functions of these cells, such as directed migration and phagocytosis, remain unknown. Here, using genetic and genomic approaches, we provide evidence that serum response factor (SRF) regulates both general and cell type-restricted components of the cytoskeletal gene expression program in macrophages. Genome-wide location analysis of SRF in macrophages demonstrates enrichment of SRF binding at ubiquitously expressed target gene promoters, as expected, but also reveals that the majority of SRF binding sites associated with cell type-restricted target genes are at distal inter- and intragenic locations. Most of these distal SRF binding sites are established by the prior binding of the macrophage- and the B cell-specific transcription factor PU.1 and exhibit histone modifications characteristic of enhancers. Consistent with this, representative cytoskeletal target genes associated with these elements require both SRF and PU.1 for full expression. These findings suggest that SRF uses two distinct molecular strategies to regulate programs of cytoskeletal gene expression: a promoter-based strategy for ubiquitously expressed target genes and an enhancer-based strategy at target genes that exhibit cell type-restricted patterns of expression.
Collapse
|
45
|
HIV-1 gp120-induced migration of dendritic cells is regulated by a novel kinase cascade involving Pyk2, p38 MAP kinase, and LSP1. Blood 2009; 114:3588-600. [PMID: 19700666 DOI: 10.1182/blood-2009-02-206342] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Targeting dendritic cell (DC) functions such as migration is a pivotal mechanism used by HIV-1 to disseminate within the host. The HIV-1 envelope protein is the most important of the virally encoded proteins that exploits the migratory capacity of DCs. In the present study, we elucidated the signaling machinery involved in migration of immature DCs (iDCs) in response to HIV-1 envelope protein. We observed that M-tropic HIV-1 glycoprotein 120 (gp120) induces phosphorylation of the nonreceptor tyrosine kinase, Pyk2. Inhibition of Pyk2 activity using a pharmacologic inhibitor, kinase-inactive Pyk2 mutant, and Pyk2-specific small interfering RNA blocked gp120-induced chemotaxis, confirming the role of Pyk2 in iDC migration. In addition, we also illustrated the importance of Pyk2 in iDC migration induced by virion-associated envelope protein, using aldithriol-2-inactivated M-tropic HIV-1 virus. Further analysis of the downstream signaling mechanisms involved in gp120-induced migration revealed that Pyk2 activates p38 mitogen-activated protein kinase, which in turn activates the F-actin-binding protein, leukocyte-specific protein 1, and enhances its association with actin. Taken together, our studies provide an insight into a novel gp120-mediated pathway that regulates DC chemotaxis and contributes to the dissemination of HIV-1 within an infected person.
Collapse
|
46
|
Increased Severity of Bleomycin-Induced Skin Fibrosis in Mice with Leukocyte-Specific Protein 1 Deficiency. J Invest Dermatol 2008; 128:2767-76. [DOI: 10.1038/jid.2008.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Lee E, Haiman CA, Ma H, Van Den Berg D, Bernstein L, Ursin G. The role of established breast cancer susceptibility loci in mammographic density in young women. Cancer Epidemiol Biomarkers Prev 2008; 17:258-60. [PMID: 18199735 DOI: 10.1158/1055-9965.epi-07-2749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|