1
|
Guan Y, Duan C, Xie X, Luo Z, Zhou D, Zhang Y, Li G, Liao Y, Tian C. Heat Acclimation Enhances Brain Resilience to Acute Thermal Stress in Clarias fuscus by Modulating Cell Adhesion, Anti-Apoptotic Pathways, and Intracellular Degradation Mechanisms. Animals (Basel) 2025; 15:1220. [PMID: 40362035 PMCID: PMC12071039 DOI: 10.3390/ani15091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Global climate change presents a significant challenge to aquatic ecosystems, with ectothermic fish being particularly sensitive to temperature fluctuations. The brain plays a crucial role in perceiving, regulating, and adapting to thermal changes, and its response to heat stress is crucial for survival. However, the molecular mechanisms underlying heat stress and acclimation in fish brains remain poorly understood. This study aimed to investigate the adaptive mechanisms of Hong Kong catfish (Clarias fuscus) brains under heat acclimation and acute heat stress using transcriptome analysis. Fish were divided into two groups: a normal temperature group (NT, 26 °C for 90 days) and a heat-acclimated group (HT, 34 °C for 90 days), followed by acute heat stress (34 °C for 72 h) and recovery (26 °C for 72 h). Heat acclimation improved C. fuscus tolerance to acute heat stress, with faster gene responses and stronger neuroprotection. Key pathways enriched included cell adhesion and ECM-receptor interactions during recovery. Apoptosis regulation was balanced, with the HT group upregulating anti-apoptotic genes to mitigate neuronal cell death. Additionally, the lysosome-phagosome pathway was activated during recovery, facilitating the transport of lysosomal enzymes and the clearance of damaged cellular components, aiding neuronal repair. Ribosome biogenesis was suppressed under heat stress to conserve energy, but this suppression was less pronounced in the HT group. In summary, heat acclimation enhances neural protection in C. fuscus brains by promoting neuronal repair, suppressing apoptosis, and activating lysosomal pathways, thereby improving tolerance to acute heat stress. These findings offer a molecular basis for breeding heat-tolerant fish species in aquaculture, and deepen our understanding of thermal adaptation in aquatic animals amid global climate change.
Collapse
Affiliation(s)
- Yingyi Guan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Cunyu Duan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Xinyu Xie
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Zhuoying Luo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China;
| | - Yulei Zhang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Yu Liao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China;
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| |
Collapse
|
2
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
3
|
Radwitz J, Hausrat TJ, Heisler FF, Janiesch PC, Pechmann Y, Rübhausen M, Kneussel M. Tubb3 expression levels are sensitive to neuronal activity changes and determine microtubule growth and kinesin-mediated transport. Cell Mol Life Sci 2022; 79:575. [DOI: 10.1007/s00018-022-04607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
AbstractMicrotubules are dynamic polymers of α/β-tubulin. They regulate cell structure, cell division, cell migration, and intracellular transport. However, functional contributions of individual tubulin isotypes are incompletely understood. The neuron-specific β-tubulin Tubb3 displays highest expression around early postnatal periods characterized by exuberant synaptogenesis. Although Tubb3 mutations are associated with neuronal disease, including abnormal inhibitory transmission and seizure activity in patients, molecular consequences of altered Tubb3 levels are largely unknown. Likewise, it is unclear whether neuronal activity triggers Tubb3 expression changes in neurons. In this study, we initially asked whether chemical protocols to induce long-term potentiation (cLTP) affect microtubule growth and the expression of individual tubulin isotypes. We found that growing microtubules and Tubb3 expression are sensitive to changes in neuronal activity and asked for consequences of Tubb3 downregulation in neurons. Our data revealed that reduced Tubb3 levels accelerated microtubule growth in axons and dendrites. Remarkably, Tubb3 knockdown induced a specific upregulation of Tubb4 gene expression, without changing other tubulin isotypes. We further found that Tubb3 downregulation reduces tubulin polyglutamylation, increases KIF5C motility and boosts the transport of its synaptic cargo N-Cadherin, which is known to regulate synaptogenesis and long-term potentiation. Due to the large number of tubulin isotypes, we developed and applied a computational model based on a Monte Carlo simulation to understand consequences of tubulin expression changes in silico. Together, our data suggest a feedback mechanism with neuronal activity regulating tubulin expression and consequently microtubule dynamics underlying the delivery of synaptic cargoes.
Collapse
|
4
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
6
|
Shao S, Li J, Chen S, Dong Y, Wang S, Zhu Z, Xie L, Li H. Sex-dependent expression of N-cadherin-GluA1 pathway-related molecules in the prefrontal cortex mediates anxiety-like behavior in male offspring following prenatal stress. Stress 2021; 24:612-620. [PMID: 34184955 DOI: 10.1080/10253890.2021.1942829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prenatal stress (PS) affects neurodevelopment and increases the risk for anxiety in adolescence in male offspring, but the mechanism is still unclear. N-Cadherin regulates the expression of AMPA receptors (AMPARs), which mediate anxiety by modulating network excitability in the prefrontal cortex (PFC). Our results revealed that in adolescent male, but not female, offspring rats, PS induced anxiety-like behavior, as assessed by the open field test (OFT). Furthermore, N-cadherin and AMPAR subunit GluA1 were colocalized in the PFC, and the expression of the N-cadherin and the GluA1 decreased following PS exposure in male offspring rats. We also found that the AMPAR agonist CX546 did not alleviate anxiety-like behavior in adolescent male offspring rats; however, it increased the expression of GluA1 in the PFC but did not alter the expression of N-cadherin. In conclusion, our study suggested that the N-cadherin-GluA1 pathway in the PFC mediates anxiety-like behavior in adolescent male offspring rats and that N-cadherin might be required for sex differences in the effect of PS on adolescent offspring.
Collapse
Affiliation(s)
- Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - YanKai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Shang Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Longshan Xie
- Department of Functional Neuroscience, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Ma Y, Zhang X, Li C, Liu S, Xing Y, Tao F. Spinal N-Cadherin/CREB Signaling Contributes to Chronic Alcohol Consumption-Enhanced Postsurgical Pain. J Pain Res 2020; 13:2065-2072. [PMID: 32848450 PMCID: PMC7429188 DOI: 10.2147/jpr.s267778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It has been reported that N-cadherin and cAMP response element binding protein (CREB) in the spinal cord are critical for synaptogenesis and regulation of excitatory synapse function, which could underlie chronic pain development. The aim of the present study was to investigate the role of spinal N-cadherin/CREB signaling in postsurgical pain chronicity following chronic alcohol consumption. METHODS C57BL/6 male mice were randomly assigned into different groups. Plantar incision was used to induce postsurgical pain. Chronic alcohol consumption was conducted by giving mice unlimited access to different concentrations of ethanol for five weeks. We measured paw withdrawal thresholds to test postsurgical pain. Using Western blotting, we examined the expression of N-Cadherin and CREB in the spinal dorsal horn. We further performed intrathecal injection of specific N-cadherin and CREB inhibitors to assess the role of spinal N-cadherin/CREB signaling in chronic alcohol consumption-enhanced postsurgical pain. RESULTS We observed that the chronic alcohol consumption significantly prolonged postsurgical pain and enhanced plantar incision-increased N-cadherin expression and CREB phosphorylation at the Ser133 in the spinal cord. Intrathecal injection of specific N-cadherin and CREB inhibitors attenuated chronic alcohol consumption-prolonged postsurgical pain. CONCLUSION Our results suggest that spinal N-cadherin/CREB signaling is involved in chronic alcohol consumption-caused postsurgical pain chronicity.
Collapse
Affiliation(s)
- Yajing Ma
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, People’s Republic of China
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Xinye Zhang
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Changsheng Li
- Department of Anesthesiology, Zhengzhou University School of Medicine, Zhengzhou, People’s Republic of China
| | - Sufang Liu
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, People’s Republic of China
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Ying Xing
- Department of Physiology and Neurobiology, Zhengzhou University School of Basic Medical Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
8
|
Tang W, Fang F, Liu K, Huang Z, Li H, Yin Y, Wang J, Wang G, Wei L, Ou Y, Wang Y. Aligned Biofunctional Electrospun PLGA-LysoGM1 Scaffold for Traumatic Brain Injury Repair. ACS Biomater Sci Eng 2020; 6:2209-2218. [PMID: 33455302 DOI: 10.1021/acsbiomaterials.9b01636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to poor regenerative capabilities of the brain, a treatment for traumatic brain injury (TBI) presents a serious challenge to modern medicine. Biofunctional scaffolds that can support neuronal growth, guide neurite elongation, and re-establish impaired brain tissues are urgently needed. To this end, we developed an aligned biofunctional scaffold (aPLGA-LysoGM1), in which poly (lactic-co-glycolic acid) (PLGA) was functionalized with sphingolipid ceramide N-deacylase (SCDase)-hydrolyzed monosialotetrahexosylganglioside (LysoGM1) and electrospinning was used to form an aligned fibrous network. As a ganglioside of neuronal membranes, the functionalized LysoGM1 endows the scaffold with unique biological properties favoring the growth of neuron and regeneration of injured brain tissues. Moreover, we found that the aligned PLGA-LysoGM1 fibers acted as a topographical cue to guide neurite extension, which is critical for organizing the formation of synaptic networks (neural networks). Systematic in vitro studies demonstrated that the aligned biofunctional scaffold promotes neuronal viability, neurite outgrowth, and synapse formation and also protects neurons from pressure-related injury. Additionally, in a rat TBI model, we demonstrated that the implantation of aPLGA-LysoGM1 scaffold supported recovery from brain injury, as more endogenous neurons were found to migrate and infiltrate into the defect zone compared with alternative scaffold. These results suggest that the aligned biofunctional aPLGA-LysoGM1 scaffold represents a promising therapeutic strategy for brain tissue regeneration following TBI.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Fang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hui Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guocheng Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyu Wei
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Ou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
The impact of N-cadherin–β-catenin signaling on the analgesic effects of glial cell-derived neurotrophic factor in neuropathic pain. Biochem Biophys Res Commun 2020; 522:463-470. [DOI: 10.1016/j.bbrc.2019.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
|
10
|
Hu HB, Yang XP, Zhou PX, Yang XA, Yin B. High expression of keratin 6C is associated with poor prognosis and accelerates cancer proliferation and migration by modulating epithelial-mesenchymal transition in lung adenocarcinoma. Genes Genomics 2019; 42:179-188. [PMID: 31768767 DOI: 10.1007/s13258-019-00889-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a more frequent subtype of lung cancer and most cases are discovered in the late stages. The proliferation and metastasis of LUAD are pivotal for disease progression. Despite unremitting deeper understanding of LUAD biology, the mechanisms involved in the proliferation and metastasis of LUAD remain unclear. The objective of our article was to inquiry the expression and the function of keratin 6C (KRT6C) in LUAD cells. METHODS First, the expression level and prognostic value of KRT6C in LUAD tissues were analyzed on the basis of the data acquired from TCGA database. Through qRT-PCR, the expression level of KRT6C on LUAD cell lines (A549, H1299, PC-9) and human normal lung cell line MRC-5 was tested. After that, CCK8 and colony formation assays was utilized to detect cell proliferation. In addition, to explore the influence of KRT6C on LUAD migration and invasion ability, scratch wound healing and transwell assays were utilized. Through western blotting, the protein expression levels of KRT6C, PCNA, E-cadherin, N-cadherin, Snail and Vimentin were detected. RESULTS The outcomes revealed that KRT6C was highly expressed in LUAD tissues and cell lines. Besides, elevated level of KRT6C was related to worse prognosis in LUAD patients. Ablation of KRT6C restrained proliferation, migration and invasion of A549 cells. KRT6C deficiency augmented the expression of E-cadherin as well as reduced the expression of N-cadherin, Snail and Vimentin. CONCLUSION Above all, these consequences indicated that depletion of KRT6C suppressed A549 cell proliferation, migration and invasion, which might be achieved by regulating EMT. In general, KRT6C is identified as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Hai-Bo Hu
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Xiao-Ping Yang
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Pei-Xia Zhou
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Xin-Ai Yang
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Bin Yin
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Amelot A, Mazel C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. World Neurosurg 2018; 120:265-273. [PMID: 30218798 DOI: 10.1016/j.wneu.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Intervertebral disc (ID) degeneration represents the number one cause for outpatient clinic visits worldwide. Mechanisms are discussed but not yet clearly established. Consequently, back pain management is commonly limited to symptomatic treatment therapies. OBJECTIVES The aim of this review is to evaluate major progress and to unravel the biology and pathology of ID discogenic pain. METHODS The design of this study is a systematic review. A literature search was conducted using Medline, EMBASE, and Google Scholar databases, with no time constraints to locate relevant literature. Significant articles (literature reviews, therapeutic essays, clinical-human-research studies, animal research, and laboratory research) on the intervertebral disc were identified and reviewed. The exclusion criteria were the following: case reports and clinical studies with <10 patients. RESULTS Through a dense review of the literature, the ID is deciphered and described as a fragile anatomic entity. For this systematic review, 132 studies were identified and 79 were retained. The main deterioration and alteration mechanisms that lead to the programmed death of the ID are summarized. In addition, the large variety of biological therapies that override surgical treatment are determined. CONCLUSIONS The degeneration mechanisms of the ID are well defined and decrypted. Although therapies have progressed, none has been effective. The regeneration of the ID remains highly challenging because of the complexity of its natural composition, microstructure, and mechanical properties.
Collapse
Affiliation(s)
- Aymeric Amelot
- Department of Neurosurgery, La Pitié Salpétrière Hospital, Paris, France; Sorbonne-University, UPMC, University Paris, Paris, France.
| | - Christian Mazel
- Department of Orthopedic Surgery, L'Institut Mutualiste Montsouris, Paris, France
| |
Collapse
|
12
|
Zhou H, Shi J, Zhang C, Li P. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture. Biosci Rep 2018; 38:BSR20171551. [PMID: 29273678 PMCID: PMC5803491 DOI: 10.1042/bsr20171551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis.
Collapse
Affiliation(s)
- Haibo Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jianmin Shi
- Department of Orthopedic Surgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, China
| | - Chao Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pei Li
- Department of Orthopedic Surgery, No. 89 Hospital of PLA, Weifang, Shandong 261026, China
| |
Collapse
|
13
|
Niu M, Ma F, Qian J, Li J, Wang T, Gao Y, Jin J. N‑cadherin attenuates nucleus pulposus cell senescence under high‑magnitude compression. Mol Med Rep 2017; 17:2879-2884. [PMID: 29257288 PMCID: PMC5783503 DOI: 10.3892/mmr.2017.8239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/18/2017] [Indexed: 11/21/2022] Open
Abstract
Mechanical compression is important in disc degeneration. N-cadherin (N-CDH)-mediated signaling contributes to the maintenance of the normal nucleus pulposus (NP) cell phenotype and NP matrix biosynthesis. Our preliminary study demonstrated that a high-magnitude compression (20% deformation) promotes NP cell senescence in a three-dimensional scaffold culture system. The aim of the present study was to investigate whether N-CDH-mediated signaling alleviates NP cell senescence under the above-mentioned high-magnitude compression. NP cells were transfected with recombinant lentiviral vectors to enhance N-CDH expression. All the transfected or un-transfected NP cells were seeded into the scaffolds and subjected to 20% deformation at a frequency of 1.0 Hz for 4 h once per day for 5 days. Results indicated that N-CDH overexpressed NP cells exhibited decreased senescence-associated β-galactosidase activity and downregulated expression levels of senescence-associated markers (p16 and p53). Furthermore, the N-CDH overexpressed NP cells exhibited increased cell proliferation potency, telomerase activity and matrix biosynthesis compared with NP cells without N-CDH overexpression under high-magnitude compression. Thus, N-CDH-mediated signaling contributes to the attenuation of NP cell senescence under high-magnitude compression.
Collapse
Affiliation(s)
- Ming Niu
- The Second Department of Surgery, Ganzhou People's Hospital, Zhangye, Gansu 734000, P.R. China
| | - Fei Ma
- The Second Department of Surgery, Ganzhou People's Hospital, Zhangye, Gansu 734000, P.R. China
| | - Jun Qian
- The First Department of Orthopaedic Surgery, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu 734000, P.R. China
| | - Junwei Li
- The Second Department of Surgery, Ganzhou People's Hospital, Zhangye, Gansu 734000, P.R. China
| | - Tong Wang
- The Second Department of Surgery, Ganzhou People's Hospital, Zhangye, Gansu 734000, P.R. China
| | - Yuzhen Gao
- The Second Department of Surgery, Ganzhou People's Hospital, Zhangye, Gansu 734000, P.R. China
| | - Jian Jin
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
González-Mayorga A, López-Dolado E, Gutiérrez MC, Collazos-Castro JE, Ferrer ML, del Monte F, Serrano MC. Favorable Biological Responses of Neural Cells and Tissue Interacting with Graphene Oxide Microfibers. ACS OMEGA 2017; 2:8253-8263. [PMID: 30023578 PMCID: PMC6044865 DOI: 10.1021/acsomega.7b01354] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 05/24/2023]
Abstract
Neural tissue engineering approaches show increasing promise for the treatment of neural diseases including spinal cord injury, for which an efficient therapy is still missing. Encouraged by both positive findings on the interaction of carbon nanomaterials such as graphene with neural components and the necessity of more efficient guidance structures for neural repair, we herein study the potential of reduced graphene oxide (rGO) microfibers as substrates for neural growth in the injured central neural tissue. Compact, bendable, and conductive fibers are obtained. When coated with neural adhesive molecules (poly-l-lysine and N-cadherin), these microfibers behave as supportive substrates of highly interconnected cultures composed of neurons and glial cells for up to 21 days. Synaptic contacts close to rGO are identified. Interestingly, the colonization by meningeal fibroblasts is dramatically hindered by N-cadherin coating. Finally, in vivo studies reveal the feasible implantation of these rGO microfibers as a guidance platform in the injured rat spinal cord, without evident signs of subacute local toxicity. These positive findings boost further investigation at longer implantation times to prove the utility of these substrates as components of advanced therapies for enhancing repair in the damaged central neural tissue including the injured spinal cord.
Collapse
Affiliation(s)
- Ankor González-Mayorga
- Hospital
Nacional de Parapléjicos, Servicio de Salud de Castilla-La
Mancha (HNP-SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Elisa López-Dolado
- Hospital
Nacional de Parapléjicos, Servicio de Salud de Castilla-La
Mancha (HNP-SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
- Research
Unit of “Design and Development of Biomaterials for Neural
Regeneration”, Hospital Nacional
de Parapléjicos (HNP-SESCAM), Joint Research Unit with CSIC, 45071 Toledo, Spain
| | - María C. Gutiérrez
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas
(ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jorge E. Collazos-Castro
- Hospital
Nacional de Parapléjicos, Servicio de Salud de Castilla-La
Mancha (HNP-SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - M. Luisa Ferrer
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas
(ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Francisco del Monte
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas
(ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María C. Serrano
- Research
Unit of “Design and Development of Biomaterials for Neural
Regeneration”, Hospital Nacional
de Parapléjicos (HNP-SESCAM), Joint Research Unit with CSIC, 45071 Toledo, Spain
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas
(ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
15
|
Fanfone D, Despretz N, Stanicki D, Rubio-Magnieto J, Fossépré M, Surin M, Rorive S, Salmon I, Vander Elst L, Laurent S, Muller RN, Saussez S, Burtea C. Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1. Med Oncol 2017; 34:184. [PMID: 28986753 DOI: 10.1007/s12032-017-1042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022]
Abstract
The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.
Collapse
Affiliation(s)
- Deborah Fanfone
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Nadège Despretz
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, University of Mons, Avenue du Champ de Mars, 6, 7000, Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.
| |
Collapse
|
16
|
Li P, Zhang R, Wang L, Gan Y, Xu Y, Song L, Luo L, Zhao C, Zhang C, Ouyang B, Tu B, Zhou Q. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture. Biosci Rep 2017; 37:BSR20160582. [PMID: 28351894 PMCID: PMC5408662 DOI: 10.1042/bsr20160582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ruijie Zhang
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lei Luo
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chen Zhao
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Bin Ouyang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Bing Tu
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
17
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
18
|
Tanaka T, Goto K, Iino M. Sec8 modulates TGF-β induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell Signal 2017; 29:115-126. [DOI: 10.1016/j.cellsig.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
19
|
Carlson AL, Bennett NK, Francis NL, Halikere A, Clarke S, Moore JC, Hart RP, Paradiso K, Wernig M, Kohn J, Pang ZP, Moghe PV. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 2016; 7:10862. [PMID: 26983594 PMCID: PMC4800432 DOI: 10.1038/ncomms10862] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. Human pluripotent stem cell derived neurons have the potential for cell replacement therapy for brain injury and disease but problems on transplantation need to be overcome. Here, the authors use a microtopographic scaffold to graft neurons into both hippocampal organoids and the mouse brain striatum.
Collapse
Affiliation(s)
- Aaron L Carlson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Nicola L Francis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Apoorva Halikere
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Stephen Clarke
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Jennifer C Moore
- Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.,Human Genetics Institute of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Kenneth Paradiso
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, New Jersey 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA.,Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
20
|
Wagh D, Terry-Lorenzo R, Waites CL, Leal-Ortiz SA, Maas C, Reimer RJ, Garner CC. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1. PLoS One 2015; 10:e0120093. [PMID: 25897839 PMCID: PMC4405365 DOI: 10.1371/journal.pone.0120093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1.
Collapse
Affiliation(s)
- Dhananjay Wagh
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Ryan Terry-Lorenzo
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology Columbia University New York, New York, United States of America
| | - Sergio A. Leal-Ortiz
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Christoph Maas
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Richard J. Reimer
- Department of Neurology and Neurological Sciences Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ma J, Tong Y, Yu D, Mao M. Tissue plasminogen activator-independent roles of neuroserpin in the central nervous system. Neural Regen Res 2015; 7:146-51. [PMID: 25767491 PMCID: PMC4354132 DOI: 10.3969/j.issn.1673-5374.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/19/2011] [Indexed: 11/18/2022] Open
Abstract
A number of studies have confirmed the existence of tissue-type plasminogen activator-independent roles of neuroserpin, a member of the serine protease inhibitor superfamily. In this review article, we aim to clarify this role. These unique roles of neuroserpin are involved in its neuroprotective effect during ischemic brain injury, its regulation of tumorigenesis, and the mediation of emotion and cognition through the inhibition of urokinase-type plasminogen activator and fibrinolysin, modification of Th cells, reducing plaque formation, promoting process growth and intracellular adhesion, and altering the expression of cadherin and nuclear factor kappa B.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
22
|
Lee M, Ji H, Furuta Y, Park JI, McCrea PD. p120-catenin regulates REST and CoREST, and modulates mouse embryonic stem cell differentiation. J Cell Sci 2014; 127:4037-51. [PMID: 25074806 DOI: 10.1242/jcs.151944] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the canonical Wnt pathway and β-catenin have been extensively studied, less is known about the role of p120-catenin (also known as δ1-catenin) in the nuclear compartment. Here, we report that p120-catenin binds and negatively regulates REST and CoREST (also known as Rcor1), a repressive transcriptional complex that has diverse developmental and pathological roles. Using mouse embryonic stem cells (mESCs), mammalian cell lines, Xenopus embryos and in vitro systems, we find that p120-catenin directly binds the REST-CoREST complex, displacing it from established gene targets to permit their transcriptional activation. Importantly, p120-catenin levels further modulate the mRNA and protein levels of Oct4 (also known as POU5F1), Nanog and Sox2, and have an impact upon the differentiation of mESCs towards neural fates. In assessing potential upstream inputs to this new p120-catenin-REST-CoREST pathway, REST gene targets were found to respond to the level of E-cadherin, with evidence suggesting that p120-catenin transduces signals between E-cadherin and the nucleus. In summary, we provide the first evidence for a direct upstream modulator and/or pathway regulating REST-CoREST, and reveal a substantial role for p120-catenin in the modulation of stem cell differentiation.
Collapse
Affiliation(s)
- Moonsup Lee
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| | - Hong Ji
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jae-il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| |
Collapse
|
23
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
24
|
Brusés JL. Cell surface localization of α3β4 nicotinic acetylcholine receptors is regulated by N-cadherin homotypic binding and actomyosin contractility. PLoS One 2013; 8:e62435. [PMID: 23626818 PMCID: PMC3633863 DOI: 10.1371/journal.pone.0062435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and α3β4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of α3β4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. α3β4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of α3β4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the β-catenin binding region or the entire cytoplasmic domain showed control levels of α3β4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect α3β4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in α3β4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of α3β4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of α3β4 nAChRs presumably through interactions with a particular pool of F-actin.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America.
| |
Collapse
|
25
|
The regulation and functional impact of actin assembly at cadherin cell–cell adhesions. Semin Cell Dev Biol 2013; 24:298-307. [DOI: 10.1016/j.semcdb.2012.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/25/2012] [Accepted: 12/14/2012] [Indexed: 11/17/2022]
|
26
|
Flannery RJ, Brusés JL. N-cadherin induces partial differentiation of cholinergic presynaptic terminals in heterologous cultures of brainstem neurons and CHO cells. Front Synaptic Neurosci 2012; 4:6. [PMID: 23227006 PMCID: PMC3514636 DOI: 10.3389/fnsyn.2012.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
N-cadherin is a calcium-sensitive cell adhesion molecule commonly expressed at synaptic junctions and contributes to formation and maturation of synaptic contacts. This study used heterologous cell cultures of brainstem cholinergic neurons and transfected Chinese Hamster Ovary (CHO) cells to examine whether N-cadherin is sufficient to induce differentiation of cholinergic presynaptic terminals. Brainstem nuclei isolated from transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of choline acetyltransferase (ChAT) transcriptional regulatory elements (ChATBACEGFP) were cultured as tissue explants for 5 days and cocultured with transfected CHO cells for an additional 2 days. Immunostaining for synaptic vesicle proteins SV2 and synapsin I revealed a ~3-fold increase in the area of SV2 immunolabeling over N-cadherin expressing CHO cells, and this effect was enhanced by coexpression of p120-catenin. Synapsin I immunolabeling per axon length was also increased on N-cadherin expressing CHO cells but required coexpression of p120-catenin. To determine whether N-cadherin induces formation of neurotransmitter release sites, whole-cell voltage-clamp recordings of CHO cells expressing α3 and β4 nicotinic acetylcholine receptor (nAChR) subunits in contact with cholinergic axons were used to monitor excitatory postsynaptic potentials (EPSPs) and miniature EPSPs (mEPSPs). EPSPs and mEPSPs were not detected in both, control and in N-cadherin expressing CHO cells in the absence or presence of tetrodotoxin (TTX). These results indicate that expression of N-cadherin in non-neuronal cells is sufficient to initiate differentiation of presynaptic cholinergic terminals by inducing accumulation of synaptic vesicles; however, development of readily detectable mature cholinergic release sites and/or clustering of postsynaptic nAChR may require expression of additional synaptogenic proteins.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine Kansas City, KS, USA
| | | |
Collapse
|
27
|
Mishra M, Heese K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med 2012; 15:2462-77. [PMID: 21199326 PMCID: PMC3822957 DOI: 10.1111/j.1582-4934.2010.01248.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the present study, we show that overexpression of the G-protein-coupled receptor (GPCR)-associated sorting protein p60TRP (transcription regulator protein) in neural stem cells (NSCs) and in a transgenic mouse model modulates the phosphorylation and proteolytic processing of amyloid precursor protein (App), N-cadherin (Cdh2), presenilin (Psen) and τ protein (Mapt). Our results suggest that p60TRP is an inhibitor of Bace1 (β-site App cleaving enzyme) and Psen. We performed several apoptosis assays [Annexin-V, TdT-mediated dUTP Nick-End Labeling (TUNEL), caspase-3/7] using NSCs and PC12 cells (overexpressing p60TRP and knockdown of p60TRP) to substantiate the neuroprotective role of p60TRP. Functional analyses, both in vitro and in vivo, revealed that p60TRP promotes neurosynaptogenesis. Characterization of the cognitive function of p60TRP transgenic mice using the radial arm water maze test demonstrated that p60TRP improved memory and learning abilities. The improved cognitive functions could be attributed to increased synaptic connections and plasticity, which was confirmed by the modulation of the γ-aminobutyric acid receptor system and the elevated expression of microtubule-associated protein 2, synaptophysin and Slc17a7 (vesicle glutamate transporter, Vglut1), as well as by the inhibition of Cdh2 cleavage. In conclusion, interference with the p60TRP/ GPCR/secretase signalling pathway might be a new therapeutic target for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Manisha Mishra
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | | |
Collapse
|
28
|
The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology 2011; 62:78-88. [PMID: 21903109 DOI: 10.1016/j.neuropharm.2011.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 01/30/2023]
Abstract
In addition to its role in development and cell proliferation, β-catenin has been implicated in neuronal synapse regulation and remodeling. Here we review basic molecular and structural mechanisms of synaptic plasticity, followed by a description of the structure and function of β-catenin. We then describe a role for β-catenin in the cellular processes underlying synaptic plasticity. We also review recent data demonstrating that β-catenin mRNA and protein phosphorylation are dynamically regulated during fear memory consolidation in adult animals. Such alterations are correlated with a change in the association of β-catenin with cadherin, and deletion of the β-catenin gene prevents fear learning. Overall, the extant data suggest that β-catenin may function in mediating the structural changes associated with memory formation. This suggests a general role for β-catenin in synaptic remodeling and stabilization underlying long-term memory in adults, and possible roles for dysfunction in the β-catenin pathway in disorders of memory impairment (e.g. Alzheimer's Disease) and in disturbances in which emotional memories are too strong or resistant to inhibition (e.g. fear learning in Posttraumatic Stress Disorder). Further understanding of the β-catenin pathway may lead to better appreciation for the structural mechanisms underlying learning and memory as well as provide novel therapeutic approaches in memory related disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
29
|
Lamprecht R. The roles of the actin cytoskeleton in fear memory formation. Front Behav Neurosci 2011; 5:39. [PMID: 21808614 PMCID: PMC3139223 DOI: 10.3389/fnbeh.2011.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023] Open
Abstract
The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.
Collapse
Affiliation(s)
- Raphael Lamprecht
- Faculty of Natural Sciences, Department of Neurobiology and Ethology, University of Haifa Haifa, Israel
| |
Collapse
|
30
|
Spatiotemporal profile of N-cadherin expression in the mossy fiber sprouting and synaptic plasticity following seizures. Mol Cell Biochem 2011; 358:201-5. [DOI: 10.1007/s11010-011-0935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
31
|
Waites CL, Garner CC. Presynaptic function in health and disease. Trends Neurosci 2011; 34:326-37. [PMID: 21596448 DOI: 10.1016/j.tins.2011.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Neurons communicate with one another at specialized contact sites called synapses, composed of pre- and postsynaptic compartments. Presynaptic compartments, or 'boutons', signal to the postsynaptic compartment by releasing chemical neurotransmitter in response to incoming electrical impulses. Recent studies link defects in the function of presynaptic boutons to the etiology of several neurodevelopmental and neurodegenerative diseases, including autism, schizophrenia and Alzheimer's disease. In this review, we describe five core functions of presynaptic boutons and the molecules that mediate these functions, focusing on a subset that are linked to human disease. We also discuss potential mechanisms through which the loss or alteration of these specific molecules could lead to defects in synaptic communication, neural circuit function and, ultimately, cognition and behavior.
Collapse
Affiliation(s)
- Clarissa L Waites
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University School of Medicine, 1201 Welch Rd. Palo Alto, CA 94304-5485, USA
| | | |
Collapse
|
32
|
Liu Q, Dalman MR, Sarmah S, Chen S, Chen Y, Hurlbut AK, Spencer MA, Pancoe L, Marrs JA. Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development. Dev Dyn 2011; 240:1716-26. [PMID: 21584906 DOI: 10.1002/dvdy.22665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2011] [Indexed: 11/10/2022] Open
Abstract
Cadherins regulate the vertebrate nervous system development. We previously showed that cadherin-6 message (cdh6) was strongly expressed in the majority of the embryonic zebrafish cranial and lateral line ganglia during their development. Here, we present evidence that cdh6 has specific functions during cranial and lateral line ganglia and nerve development. We analyzed the consequences of cdh6 loss-of-function on cranial ganglion and nerve differentiation in zebrafish embryos. Embryos injected with zebrafish cdh6 specific antisense morpholino oligonucleotides (MOs, which suppress gene expression during development; cdh6 morphant embryos) displayed a specific phenotype, including (i) altered shape and reduced development of a subset of the cranial and lateral line ganglia (e.g., the statoacoustic ganglion and vagal ganglion) and (ii) cranial nerves were abnormally formed. These data illustrate an important role for cdh6 in the formation of cranial ganglia and their nerves.
Collapse
Affiliation(s)
- Q Liu
- Department of Biology, Integrated Bioscience Program, University of Akron, Akron, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reis SA, Thompson MN, Lee JM, Fossale E, Kim HH, Liao JK, Moskowitz MA, Shaw SY, Dong L, Haggarty SJ, MacDonald ME, Seong IS. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum Mol Genet 2011; 20:2344-55. [PMID: 21447599 DOI: 10.1093/hmg/ddr127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.
Collapse
Affiliation(s)
- Surya A Reis
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oroz J, Valbuena A, Vera AM, Mendieta J, Gómez-Puertas P, Carrión-Vázquez M. Nanomechanics of the cadherin ectodomain: "canalization" by Ca2+ binding results in a new mechanical element. J Biol Chem 2011; 286:9405-18. [PMID: 21177864 PMCID: PMC3058956 DOI: 10.1074/jbc.m110.170399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Indexed: 11/06/2022] Open
Abstract
Cadherins form a large family of calcium-dependent cell-cell adhesion receptors involved in development, morphogenesis, synaptogenesis, differentiation, and carcinogenesis through signal mechanotransduction using an adaptor complex that connects them to the cytoskeleton. However, the molecular mechanisms underlying mechanotransduction through cadherins remain unknown, although their extracellular region (ectodomain) is thought to be critical in this process. By single molecule force spectroscopy, molecular dynamics simulations, and protein engineering, here we have directly examined the nanomechanics of the C-cadherin ectodomain and found it to be strongly dependent on the calcium concentration. In the presence of calcium, the ectodomain extends through a defined ("canalized") pathway that involves two mechanical resistance elements: a mechanical clamp from the cadherin domains and a novel mechanostable component from the interdomain calcium-binding regions ("calcium rivet") that is abolished by magnesium replacement and in a mutant intended to impede calcium coordination. By contrast, in the absence of calcium, the mechanical response of the ectodomain becomes largely "decanalized" and destabilized. The cadherin ectodomain may therefore behave as a calcium-switched "mechanical antenna" with very different mechanical responses depending on calcium concentration (which would affect its mechanical integrity and force transmission capability). The versatile mechanical design of the cadherin ectodomain and its dependence on extracellular calcium facilitate a variety of mechanical responses that, we hypothesize, could influence the various adhesive properties mediated by cadherins in tissue morphogenesis, synaptic plasticity, and disease. Our work represents the first step toward the mechanical characterization of the cadherin system, opening the door to understanding the mechanical bases of its mechanotransduction.
Collapse
Affiliation(s)
- Javier Oroz
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Alejandro Valbuena
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Andrés Manuel Vera
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
- Biomol-Informatics SL, E-28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, E-28049 Madrid, Spain, and
| | - Mariano Carrión-Vázquez
- From the Instituto Cajal/Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| |
Collapse
|
35
|
Aiga M, Levinson JN, Bamji SX. N-cadherin and neuroligins cooperate to regulate synapse formation in hippocampal cultures. J Biol Chem 2010; 286:851-8. [PMID: 21056983 DOI: 10.1074/jbc.m110.176305] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cadherins and neuroligins (NLs) represent two families of cell adhesion proteins that are essential for the establishment of synaptic connections in vitro; however, it remains unclear whether these proteins act in concert to regulate synapse density. Using a combination of overexpression and knockdown analyses in primary hippocampal neurons, we demonstrate that NL1 and N-cadherin promote the formation of glutamatergic synapses through a common functional pathway. Analysis of the spatial relationship between N-cadherin and NL1 indicates that in 14-day in vitro cultures, almost half of glutamatergic synapses are associated with both proteins, whereas only a subset of these synapses are associated with N-cadherin or NL1 alone. This suggests that NL1 and N-cadherin are spatially distributed in a manner that enables cooperation at synapses. In young cultures, N-cadherin clustering and its association with synaptic markers precede the clustering of NL1. Overexpression of N-cadherin at this time point enhances NL1 clustering and increases synapse density. Although N-cadherin is not sufficient to enhance NL1 clustering and synapse density in more mature cultures, knockdown of N-cadherin at later time points significantly attenuates the density of NL1 clusters and synapses. N-cadherin overexpression can partially rescue synapse loss in NL1 knockdown cells, possibly due to the ability of N-cadherin to recruit NL2 to glutamatergic synapses in these cells. We demonstrate that cadherins and NLs can act in concert to regulate synapse formation.
Collapse
Affiliation(s)
- Mytyl Aiga
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
36
|
Parent AT, Thinakaran G. Modeling presenilin-dependent familial Alzheimer's disease: emphasis on presenilin substrate-mediated signaling and synaptic function. Int J Alzheimers Dis 2010; 2010:825918. [PMID: 20798900 PMCID: PMC2925324 DOI: 10.4061/2010/825918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/17/2010] [Indexed: 11/24/2022] Open
Abstract
Mutations in PSEN genes, which encode presenilin proteins, cause familial early-onset Alzheimer's disease (AD). Transgenic mouse models based on coexpression of familial AD-associated presenilin and amyloid precursor protein variants successfully mimic characteristic pathological features of AD, including plaque formation, synaptic dysfunction, and loss of memory. Presenilins function as the catalytic subunit of gamma-secretase, the enzyme that catalyzes intramembraneous proteolysis of amyloid precursor protein to release beta-amyloid peptides. Familial AD-associated mutations in presenilins alter the site of gamma-secretase cleavage in a manner that increases the generation of longer and highly fibrillogenic beta-amyloid peptides. In addition to amyloid precursor protein, gamma-secretase catalyzes intramembrane proteolysis of many other substrates known to be important for synaptic function. This paper focuses on how various animal models have enabled us to elucidate the physiological importance of diverse gamma-secretase substrates, including amyloid precursor protein and discusses their roles in the context of cellular signaling and synaptic function.
Collapse
Affiliation(s)
- Angèle T. Parent
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
- Department of Neurology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. J Neurosci 2010; 29:15770-9. [PMID: 20016093 DOI: 10.1523/jneurosci.4951-09.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rate and timing of information transfer at neuronal synapses are critical for determining synaptic efficacy and higher network function. Both synchronous and asynchronous neurotransmitter release shape the pattern of synaptic influences on a neuron. The PSD-95 family of postsynaptic scaffolding proteins, in addition to organizing postsynaptic components at glutamate synapses, acts transcellularly to regulate synchronous glutamate release. Here we show that PSD-95 family members at nicotinic synapses on chick ciliary ganglion neurons in culture execute multiple functions to enhance transmission. Together, endogenous PSD-95 and SAP102 in the postsynaptic cell appear to regulate transcellularly the synchronous release of transmitter from presynaptic terminals onto the neuron while stabilizing postsynaptic nicotinic receptor clusters under the release sites. Endogenous SAP97, in contrast, has no effect on receptor clusters but acts transcellularly from the postsynaptic cell through N-cadherin to enhance asynchronous release. These separate and parallel regulatory pathways allow postsynaptic scaffold proteins to dictate the pattern of cholinergic input a neuron receives; they also require balancing of PSD-95 protein levels to avoid disruptive competition that can occur through common binding domains.
Collapse
|
38
|
Brusés JL. Identification of gene transcripts expressed by postsynaptic neurons during synapse formation encoding cell surface proteins with presumptive synaptogenic activity. Synapse 2010; 64:47-60. [PMID: 19728367 PMCID: PMC2783745 DOI: 10.1002/syn.20702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synapse formation is a well-programmed developmental process involving a variety of cell-cell interactions carried out by distinct groups of molecules. Various molecules that contribute to the assembly of synaptic contacts have been characterized; however, the repertoire of identified proteins expressed by postsynaptic neurons capable of inducing presynaptic differentiation is quite limited. To identify gene transcripts encoding cell surface proteins expressed by postsynaptic cells with molecular features suggestive of synaptogenic activity, this study carried out a genome-wide expression analysis in the chick ciliary ganglion during the different phases of synapse formation. It was found that from the 21,493 gene-probes detected throughout development, 302 protein-coding transcripts were upregulated during the initiation of synapse formation. Analysis of this pool of transcripts showed that 51 of them encoded cell surface proteins (27 membrane-bound and 24 secreted) with protein-protein interacting domains. This includes twelve cell adhesion molecules, six ligand-receptors, six proteins with ligand-like domains, three membrane bound enzymes, eight components of the extracellular matrix, three neuropeptides, three cytokines and growth factors, five extracellular modulators of cell signaling, and five unrelated secreted proteins. Furthermore, the role of synaptic transmission during the initiation of synapse formation was evaluated by assessing the effect of synaptic activity blockade with d-tubocurarine on the expression levels of the pool of 51 transcripts encoding cell surface proteins. Treatment with d-tubocurarine reduced the expression levels of 22% of the selected genes, while the expression levels of 78% of the genes was not affected or was enhanced.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA.
| |
Collapse
|
39
|
Murthy V, Taranda J, Elgoyhen AB, Vetter DE. Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs. Dev Neurobiol 2009; 69:931-49. [PMID: 19790106 PMCID: PMC2819290 DOI: 10.1002/dneu.20753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) alpha9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR alpha9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in alpha9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the alpha9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult alpha9 null mice. Finally, by using mice expressing the nondesensitizing alpha9 L9'T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation.
Collapse
Affiliation(s)
- Vidya Murthy
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
40
|
LaMora A, Voigt MM. Cranial sensory ganglia neurons require intrinsic N-cadherin function for guidance of afferent fibers to their final targets. Neuroscience 2009; 159:1175-84. [PMID: 19356698 PMCID: PMC2667798 DOI: 10.1016/j.neuroscience.2009.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 01/21/2009] [Accepted: 01/24/2009] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules, such as N-cadherin (cdh2), are essential for normal neuronal development, and as such have been implicated in an array of processes including neuronal differentiation and migration, and axon growth and fasciculation. cdh2 is expressed in neurons of the peripheral nervous system during development, but its role in these cells during this time is poorly understood. Using the transgenic zebrafish line, tg(p2xr3.2:eGFP(sl1)), we have examined the involvement of cdh2 in the formation of sensory circuits by the peripheral nervous system. The tg(p2xr3.2:eGFP(sl1)) fish allows visualization of neurons comprising the trigeminal, facial, glossopharyngeal and vagal ganglia and their axons throughout development. Reduction of cdh2 in this line was achieved by either crosses to the cdh2-mutant strain, glass onion (glo) or injection of a cdh2 morpholino (MO) into single-cell embryos. Here we show that cdh2 function is required to alter the directional vectors of growing axons upon reaching intermediate targets. The central axons enter the hindbrain appropriately but fail to turn caudally towards their final targets. Similarly, the peripheral axons extend ventrally, but fail to turn and project along a rostral/caudal axis. Furthermore, by expressing dominant negative cdh2 constructs selectively within cranial sensory ganglia (CSG) neurons, we found that cdh2 function is necessary within the axons to elicit these stereotypic turns, thus demonstrating that cdh2 acts cell autonomously. Together, our in vivo data reveal a novel role for cdh2 in the establishment of circuits by peripheral sensory neurons.
Collapse
Affiliation(s)
- Angela LaMora
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104
| | - Mark M. Voigt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104
| |
Collapse
|
41
|
Marrs GS, Theisen CS, Brusés JL. N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin-actin interaction. Mol Cell Neurosci 2009; 40:390-400. [PMID: 19162191 PMCID: PMC2883866 DOI: 10.1016/j.mcn.2008.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 01/12/2023] Open
Abstract
N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.
Collapse
Affiliation(s)
| | - Christopher S. Theisen
- University of Kansas School of Medicine, Department of Anatomy and Cell Biology, Kansas City, KS 66160
| | - Juan L. Brusés
- University of Kansas School of Medicine, Department of Anatomy and Cell Biology, Kansas City, KS 66160
| |
Collapse
|
42
|
Bizzoca A, Corsi P, Gennarini G. The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell Adh Migr 2009; 3:53-63. [PMID: 19372728 PMCID: PMC2675150 DOI: 10.4161/cam.3.1.7462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 12/18/2022] Open
Abstract
F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | |
Collapse
|
43
|
Mysore SP, Tai CY, Schuman EM. N-cadherin, spine dynamics, and synaptic function. Front Neurosci 2008; 2:168-75. [PMID: 19225589 PMCID: PMC2622743 DOI: 10.3389/neuro.01.035.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/09/2008] [Indexed: 11/13/2022] Open
Abstract
Dendritic spines are one-half (the postsynaptic half) of most excitatory synapses. Ever since the direct observation over a decade ago that spines can continually change size and shape, spine dynamics has been of great research interest, especially as a mechanism for structural synaptic plasticity. In concert with this ongoing spine dynamics, the stability of the synapse is also needed to allow continued, reliable synaptic communication. Various cell-adhesion molecules help to structurally stabilize a synapse and its proteins. Here, we review the effects of disrupting N-cadherin, a prominent trans-synaptic adhesion molecule, on spine dynamics, as reported in Mysore et al. (2007). We highlight the novel method adopted therein to reliably detect even subtle changes in fast and slow spine dynamics. We summarize the structural, functional, and molecular consequences of acute N-cadherin disruption, and tie them in, in a working model, with longer-term effects on spines and synapses reported in the literature.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Neurobiology, Stanford University School of Medicine Stanford, CA, USA
| | | | | |
Collapse
|
44
|
Maarouf CL, Daugs ID, Spina S, Vidal R, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Walker DG, Castaño EM, Beach TG, Ghetti B, Roher AE. Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol Neurodegener 2008; 3:20. [PMID: 19021905 PMCID: PMC2600784 DOI: 10.1186/1750-1326-3-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/20/2008] [Indexed: 01/19/2023] Open
Abstract
Background Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA. Results We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. Conclusion These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee TW, Coates LC, Birch NP. Neuroserpin regulates N-cadherin-mediated cell adhesion independently of its activity as an inhibitor of tissue plasminogen activator. J Neurosci Res 2008; 86:1243-53. [PMID: 18092357 DOI: 10.1002/jnr.21592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroserpin is an inhibitor of tissue plasminogen activator (tPA) that is expressed in developing and adult nervous systems. Spatial and temporal analysis of neuroserpin expression suggests that it is involved in regulating the proteolytic balance associated with axonogenesis and synaptogenesis during development and synaptic plasticity in the adult. Here we demonstrate that altered expression of neuroserpin modulates the degree of cell-cell adhesion in pheochromocytoma PC12 cells independently of its role as an inhibitor of tPA. Levels of the homophilic cell-cell adhesion molecule N-cadherin are increased in neuroserpin-overexpressing cell lines. N-cadherin immunoreactivity was detected in a Triton X-100-insoluble fraction and localized to regions of cell contact, consistent with a role in enhancing cell surface adhesion. PC12 cell lines expressing neuroserpin mutants that lack tPA inhibitory activity also showed increased cell-cell adhesion and N-cadherin expression. Our results identify neuroserpin as a novel regulator of cell-cell adhesion and the synaptic adhesion molecule N-cadherin as a key effecter in this response. In nerve cells, neuroserpin may regulate the levels of N-cadherin available for construction, maintenance, and control of synapses and synaptic dynamics.
Collapse
Affiliation(s)
- Tet Woo Lee
- Molecular, Cellular and Developmental Biology Section, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
46
|
Al-Housseini AM, Sivanandam TM, Bradbury EL, Tannenberg RK, Dodd PR, Gu Q. Upregulation of beta-catenin levels in superior frontal cortex of chronic alcoholics. Alcohol Clin Exp Res 2008; 32:1080-90. [PMID: 18445113 DOI: 10.1111/j.1530-0277.2008.00670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic and excessive alcohol misuse results in neuroadaptive changes in the brain. The complex nature of behavioral, psychological, emotional, and neuropathological characteristics associated with alcoholism is likely a reflection of the network of proteins that are affected by alcohol-induced gene expression patterns in specific brain regions. At the molecular level, however, knowledge remains limited regarding alterations in protein expression levels affected by chronic alcohol abuse. Thus, novel techniques that allow a comprehensive assessment of this complexity will enable the simultaneous assessment of changes across a group of proteins in the relevant neural circuitry. METHODS A proteomics analysis was performed using antibody microarrays to determine differential protein levels in superior frontal cortices between chronic alcoholics and age- and gender-matched control subjects. Seventeen proteins related to the catenin signaling pathway were analyzed, including alpha-, beta-, and delta-catenins, their upstream activators cadherin-3 (type I cadherin) and cadherin-5 (type II cadherin), and 5 cytoplasmic regulators c-Src, CK1 epsilon, GSK-3beta, PP2A-C alpha, and APC, as well as the nuclear complex partner of beta-catenin CBP and 2 downstream genes Myc and cyclin D1. ILK, G(alpha1), G(beta1), and G(beta2), which are activity regulators of GSK-3beta, were also analyzed. RESULTS Both alpha- and beta-catenin showed significantly increased levels, while delta-catenin did not change significantly, in chronic alcoholics. In addition, the level of the beta-catenin downstream gene product Myc was significantly increased. Average levels of the catenin regulators c-Src, CK1 epsilon, and APC were also increased in chronic alcoholics, but the changes were not statistically significant. CONCLUSION Chronic and excessive alcohol consumption leads to an upregulation of alpha- and beta-catenin levels, which in turn increase downstream gene expressions such as Myc that is controlled by beta-catenin signaling. This study showed that the beta-catenin signal transduction pathway was upregulated by chronic alcohol abuse, and prompts further investigation of mechanisms underlying the upregulation of alpha- and beta-catenins in alcoholism, which may have considerable pathogenic and therapeutic relevance.
Collapse
Affiliation(s)
- Ali M Al-Housseini
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
47
|
Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R. Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci 2008; 27:559-71. [PMID: 18279309 DOI: 10.1111/j.1460-9568.2008.06052.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The formation of synapses is dependent on the expression of surface adhesion molecules that facilitate correct recognition, stabilization and function. The more than 60 clustered protocadherins (Pcdhalpha, Pcdhbeta and Pcdhgamma) identified in human and mouse have attracted considerable attention because of their clustered genomic organization and the potential role of alpha- and gamma-Pcdhs in allocating a neuronal surface code specifying synaptic connectivity. Here, we investigated whether beta-Pcdhs also contribute to these processes. By performing RT-PCR, we found a striking parallel onset of expression of many beta-Pcdhs around the onset of neurogenesis and wide expression in the central nervous system. We generated antibodies specific to Pcdhb16 and showed localization of Pcdhb16 protein in the adult mouse cerebellum, hippocampus and cerebral cortex. Analysing the mouse retina in detail revealed localization of Pcdhb16 to specific cell types and, importantly, subsets of synapses. We show that Pcdhb16 localizes predominantly to postsynaptic compartments and the comparison with Pcdhb22 implies differential localization and functions of individual beta-Pcdhs in the mammalian central nervous system. Moreover, we provide evidence for a role of beta-Pcdhs in the outer segments and connecting cilia of photoreceptors. Our data show for the first time that beta-Pcdhs also localize to specific neuronal subpopulations and synapses, providing support for the hypothesis that clustered Pcdhs are candidate genes for the specification of synaptic connectivity and neuronal networks.
Collapse
Affiliation(s)
- Dirk Junghans
- Max-Planck Institute of Immunobiology, Department of Molecular Embryology, 79011 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Parkyn CJ, Vermeulen EGM, Mootoosamy RC, Sunyach C, Jacobsen C, Oxvig C, Moestrup S, Liu Q, Bu G, Jen A, Morris RJ. LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J Cell Sci 2008; 121:773-83. [PMID: 18285446 DOI: 10.1242/jcs.021816] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The trafficking of normal cellular prion protein (PrPC) is believed to control its conversion to the altered conformation (designated PrPSc) associated with prion disease. Although anchored to the membrane by means of glycosylphosphatidylinositol (GPI), PrPC on neurons is rapidly and constitutively endocytosed by means of coated pits, a property dependent upon basic amino acids at its N-terminus. Here, we show that low-density lipoprotein receptor-related protein 1 (LRP1), which binds to multiple ligands through basic motifs, associates with PrPC during its endocytosis and is functionally required for this process. Moreover, sustained inhibition of LRP1 levels by siRNA leads to the accumulation of PrPC in biosynthetic compartments, with a concomitant lowering of surface PrPC, suggesting that LRP1 expedites the trafficking of PrPC to the neuronal surface. PrPC and LRP1 can be co-immunoprecipitated from the endoplasmic reticulum in normal neurons. The N-terminal domain of PrPC binds to purified human LRP1 with nanomolar affinity, even in the presence of 1 μM of the LRP-specific chaperone, receptor-associated protein (RAP). Taken together, these data argue that LRP1 controls both the surface, and biosynthetic, trafficking of PrPC in neurons.
Collapse
Affiliation(s)
- Celia J. Parkyn
- King's College London, Wolfson Centre for Age Related Disease, Guy's Campus, London SE1 1UL, UK
| | | | - Roy C. Mootoosamy
- King's College London, Wolfson Centre for Age Related Disease, Guy's Campus, London SE1 1UL, UK
| | - Claire Sunyach
- King's College London, Wolfson Centre for Age Related Disease, Guy's Campus, London SE1 1UL, UK
| | - Christian Jacobsen
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Søren Moestrup
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St Louis Children's Hospital, St Louis MO 63110, USA
| | - Guojun Bu
- Department of Pediatrics, Washington University School of Medicine, St Louis Children's Hospital, St Louis MO 63110, USA
| | - Angela Jen
- King's College London, Wolfson Centre for Age Related Disease, Guy's Campus, London SE1 1UL, UK
| | - Roger J. Morris
- King's College London, Wolfson Centre for Age Related Disease, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
49
|
Barnes NY, Shi J, Yajima H, Thinakaran G, Parent AT. Steady-state increase of cAMP-response element binding protein, Rac, and PAK signaling in presenilin-deficient neurons. J Neurochem 2008; 104:1637-48. [PMID: 17996025 PMCID: PMC2598774 DOI: 10.1111/j.1471-4159.2007.05102.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mutations in the genes encoding presenilins (PS1 and PS2) account for the majority of cases of early-onset Alzheimer's disease. PS1 and PS2 form the catalytic center of gamma-secretase, an enzyme responsible for intramembraneous proteolysis of several type I transmembrane proteins. Many gamma-secretase substrates are coupled to intracellular signaling events such as cAMP-response element binding protein and Rac1/p21-activated kinase pathways, which are associated with synaptic function. Here, we have examined the activation of these pathways in neurons lacking PS1 expression or gamma-secretase activity. We found evidence for heightened steady-state activation of cAMP-response element binding protein, Rac1, and p21-activated kinase signaling in PS-deficient neurons. Our study highlights the importance of PS-dependent proteolytic cleavage of gamma-secretase substrates in regulating neuronal signal transduction.
Collapse
Affiliation(s)
- Natalie Y. Barnes
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Jun Shi
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Hiroshi Yajima
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Gopal Thinakaran
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | - Angèle T. Parent
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Gottmann K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J Neurosci Res 2008; 86:223-32. [PMID: 17787017 DOI: 10.1002/jnr.21484] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Delicate control of the synaptic vesicle cycle is required to meet the demands imposed on synaptic transmission by the brain's complex information processing. In addition to intensively analyzed intrinsic regulation, extrinsic modulation of the vesicle cycle by the postsynaptic target neuron has become evident. Recent studies have demonstrated that several families of synaptic cell-adhesion molecules play a significant role in transsynaptic retrograde signaling. Different adhesion systems appear to specifically target distinct steps of the synaptic vesicle cycle. Signaling via classical cadherins regulates the recruitment of synaptic vesicles to the active zone. The neurexin/neuroligin system has been shown to modulate presynaptic release probability. In addition, reverse signaling via the EphB/ephrinB system plays an important role in the activity-dependent induction of long-term potentiation of presynaptic transmitter release. Moreover, the first hints of involvement of cell-adhesion molecules in vesicle endocytosis have been published. A general hypothesis is that specific adhesion systems might use different but parallel transsynaptic signaling pathways able to selectively modulate each step of the synaptic vesicle cycle in a tightly coordinated manner.
Collapse
Affiliation(s)
- Kurt Gottmann
- Institut für Neuro- und Sinnesphysiologie, Heinrich-Heine Universität, Düsseldorf, Germany.
| |
Collapse
|