1
|
González JT, Scharfman OH, Zhu W, Kasamoto J, Gould V, Perry RJ, Higgins-Chen AT. Transcriptomic and epigenomic signatures of liver metabolism and insulin sensitivity in aging mice. Mech Ageing Dev 2025; 225:112068. [PMID: 40324540 DOI: 10.1016/j.mad.2025.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Age-related declines in insulin sensitivity and glucose metabolism contribute to metabolic disease. Despite the liver's central role in glucose homeostasis, a comprehensive phenotypic characterization and concurrent molecular analysis of insulin resistance and metabolic dysfunction in the aging liver is lacking. We characterized hepatic insulin resistance and mitochondrial metabolic defects through metabolic cage, hyperinsulinemic-euglycemic clamp, and tracer studies paired with transcriptomic and DNA methylation analyses in young and aged male mice. Aged mice exhibited benchmark measures of whole body and liver insulin resistance. Aged mice showed lower pyruvate dehydrogenase flux, decreased fatty acid oxidation and citrate synthase fluxes, and increased pyruvate carboxylase flux under insulin-stimulated conditions. Molecular analysis revealed age-related changes in metabolic genes Pck1, Socs3, Tbc1d4, and Enpp1. Unsupervised network analysis identified an intercorrelated phenotype module (ME-Glucose), RNA module, and DNA methylation module. The DNA methylation module was enriched for lipid metabolism pathways and TCF-1 binding, while the RNA module was enriched for MZF-1 binding and regulation by miR-155-5p. Protein-protein interaction network analysis revealed interactions between module genes and canonical metabolic pathways, highlighting genes including Ets1, Ppp1r3b, and Enpp3. This study reveals novel genes underlying age-related hepatic insulin resistance as potential targets for metabolic interventions to promote healthy aging.
Collapse
Affiliation(s)
- John T González
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Olivia H Scharfman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Victoria Gould
- Altos Labs, Institute of Computation, San Diego, CA 92114, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA.
| | - Albert T Higgins-Chen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Demko J, Saha B, Takagi E, Manis A, Weber R, Koepsell H, Pearce D. Coordinated Regulation of Renal Glucose Reabsorption and Gluconeogenesis by mTORC2 and Potassium. J Am Soc Nephrol 2025:00001751-990000000-00621. [PMID: 40208690 DOI: 10.1681/asn.0000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Key Points
The insulin-regulated kinase, mammalian target of rapamycin complex 2 (mTORC2), coordinates regulation of sodium-glucose cotransport and gluconeogenesis in the kidney proximal tubule.Dietary potassium can bypass mTORC2 to regulate sodium-glucose cotransport and gluconeogenesis in mTORC2 knockout mice.The transcription factor forkhead box O4 may have an unexpected role in mediating mTORC2 effects on renal tubule glucose homeostasis.
Background
The kidney is uniquely responsible for reabsorption of filtered glucose and gluconeogenesis. Insulin stimulates glucose transport and suppresses gluconeogenesis in the proximal tubule; however, the signaling mechanisms and coordinated regulation of these processes are poorly understood. The kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for regulation of growth, metabolism, solute transport, and electrolyte homeostasis in response to a wide array of inputs. In this study, we examined its role in the regulation of renal glucose reabsorption and gluconeogenesis.
Methods
Rictor, an essential component of mTORC2, was knocked out using the Pax8-LC1 system to generate inducible tubule–specific Rictor knockout (KO) mice. A second Rictor KO model was generated using Cre-loxP technology and a proximal tubule–specific promoter. Animals were fasted and refed on normal- or high-potassium (K+) diets. Metabolic parameters, including glucose homeostasis and kidney function, were assessed. Kidneys and livers were harvested for molecular analysis of gluconeogenic enzymes, glucose transporters, and mTORC2-regulated signaling targets.
Results
On a normal-K+ diet, mTORC2 KO mice had marked glycosuria despite normal blood glucose. Immunofluorescence microscopy and immunostaining of plasma membrane protein fractions showed lower proximal tubule apical membrane sodium-glucose cotransporter 2 and sodium-glucose cotransporter 1 in the fed state of KO mice. Metabolic testing showed elevated fasting insulin, impaired pyruvate tolerance, and elevated hemoglobin A1c. In addition, renal gluconeogenic enzymes were increased, consistent with abnormal renal gluconeogenesis in KO mice. These effects correlated with reduced downstream phosphorylation of Akt and the transcription factor forkhead box O4, identifying a novel role of forkhead box O4 in the kidney tubules. Interestingly, high dietary K+ rapidly lowered glycosuria and gluconeogenesis, despite persistent reduction in mTORC2 substrate phosphorylation.
Conclusions
Renal tubule mTORC2 is critical for coordinated regulation of sodium-glucose cotransporter membrane localization and renal gluconeogenesis. In the absence of mTORC2, dietary K+ promotes glucose reabsorption and suppresses gluconeogenesis independent of insulin signaling.
Collapse
Affiliation(s)
- John Demko
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Bidisha Saha
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Enzo Takagi
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Anna Manis
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Robert Weber
- Division of Endocrinology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzberg, Würzberg, Germany
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
3
|
Lien EC, Vu N, Westermark AM, Danai LV, Lau AN, Gültekin Y, Kukurugya MA, Bennett BD, Vander Heiden MG. Effects of Aging on Glucose and Lipid Metabolism in Mice. Aging Cell 2025; 24:e14462. [PMID: 39731205 PMCID: PMC11984682 DOI: 10.1111/acel.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD+, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids. To further characterize how tissue metabolism changes with age, we intravenously infused [U-13C]-glucose into young and old C57BL/6J, WSB/EiJ, and diversity outbred mice to trace glucose fate into downstream metabolites within plasma, liver, gastrocnemius muscle, and brain tissues. We found that glucose incorporation into central carbon and amino acid metabolism was robust during healthy aging across these different strains of mice. We also observed that levels of NAD+, NADH, and the NAD+/NADH ratio were unchanged in these tissues with healthy aging. However, aging tissues, particularly brain, exhibited evidence of upregulated fatty acid and sphingolipid metabolism reactions that regenerate NAD+ from NADH. These data suggest that NAD+-generating lipid metabolism reactions may help to maintain the NAD+/NADH ratio during healthy aging.
Collapse
Affiliation(s)
- Evan C. Lien
- Department of Metabolism and Nutritional ProgrammingVan Andel InstituteGrand RapidsMichiganUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ngoc Vu
- Calico Life Sciences LLCSouth San FranciscoCaliforniaUSA
| | - Anna M. Westermark
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Laura V. Danai
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biochemistry and Molecular BiologyUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Allison N. Lau
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Yetiş Gültekin
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
4
|
Schuurman M, Nguyen J, Wilson RB, Barillaro M, Wallace M, Borradaile N, Wang R. Long-Term Administration of Antioxidant N-Acetyl-L-Cysteine Impacts Beta Cell Oxidative Stress, Insulin Secretion, and Intracellular Signaling Pathways in Aging Mice. Antioxidants (Basel) 2025; 14:417. [PMID: 40298742 PMCID: PMC12023964 DOI: 10.3390/antiox14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Research into the effects of long-term antioxidant supplementation on the islet microenvironment is limited. This study examined whether long-term N-acetyl-L-cysteine (NAC) supplementation can prevent changes in metabolic outcomes, beta cell function, and pancreatic stellate cell (PaSC) activation in aging mice. Male C57BL/6N mice at 18 weeks were administered 50 mM NAC through their daily drinking water and treated for up to 60 weeks. Aging NAC mice displayed lower body weights and improved glucose tolerance but reduced insulin secretion and insulin signaling compared to control (ND) mice. When some 40-week-old ND and NAC mice were subjected to 8 weeks of a high-fat diet (HFD)-stress challenge, results showed that NAC reduced HFD-induced beta cell oxidative stress and preserved nuclear PDX-1 expression. The findings from this study suggest that while NAC can be beneficial for diet-induced stress during aging, the effects of long-term NAC on the islets of physiologically aging mice are more ambiguous. Further exploration is required to determine the effects of NAC-mediated lowering of beta cell oxidative stress on insulin secretion and signaling pathways. This study highlights the importance of investigating oxidative stress balance in aging islets under normal diet conditions to determine if antioxidative therapies can be utilized without interfering with essential physiological processes.
Collapse
Affiliation(s)
- Meg Schuurman
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Jonathan Nguyen
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rachel B. Wilson
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Malina Barillaro
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Madison Wallace
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Nica Borradaile
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rennian Wang
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| |
Collapse
|
5
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
6
|
Reynolds TH, Mills N, Hoyte D, Ehnstrom K, Arata A. The Oldest of Old Male C57B/6J Mice Are Protected from Sarcopenic Obesity: The Possible Role of Skeletal Muscle Protein Kinase B Expression. Int J Mol Sci 2024; 25:10278. [PMID: 39408607 PMCID: PMC11476861 DOI: 10.3390/ijms251910278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of aging on body composition and glucose metabolism is not well established in C57BL/6J mice, despite being a common pre-clinical model for aging and metabolic research. The purpose of this study was to examine the effect of advancing age on body composition, in vivo glucose metabolism, and skeletal muscle AKT expression in young (Y: 4 months old, n = 7), old (O: 17-18 months old, n = 10), and very old (VO: 26-27 month old, n = 9) male C57BL/6J mice. Body composition analysis, assessed by nuclear magnetic resonance, demonstrated O mice had a significantly greater fat mass and body fat percentage when compared to Y and VO mice. Furthermore, VO mice had a significantly greater lean body mass than both O and Y mice. We also found that the VO mice had greater AKT protein levels in skeletal muscle compared to O mice, an observation that explains a portion of the increased lean body mass in VO mice. During glucose tolerance (GT) testing, blood glucose values were significantly lower in the VO mice when compared to the Y and O mice. No age-related differences were observed in insulin tolerance (IT). We also assessed the glucose response to AMPK activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). The change in blood glucose following AICAR administration was significantly reduced in VO mice compared to Y and AG mice. Our findings indicate that lean body mass and AKT2 protein expression in muscle are significantly increased in VO mice compared to O mice. The increase in AKT2 likely plays a role in the greater lean body mass observed in the oldest of old mice. Finally, despite the increased GT, VO mice appear to be resistant to AMPK-mediated glucose uptake.
Collapse
Affiliation(s)
- Thomas H. Reynolds
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | | | | | | |
Collapse
|
7
|
Yılmaz D, Singh A, Wehrle E, Kuhn GA, Mathavan N, Müller R. Unveiling frailty: comprehensive and sex-specific characterization in prematurely aging PolgA mice. FRONTIERS IN AGING 2024; 5:1365716. [PMID: 39372332 PMCID: PMC11449839 DOI: 10.3389/fragi.2024.1365716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Frailty, a geriatric syndrome, is assessed using the frailty phenotype (FP) and frailty index (FI). While these approaches have been applied to aging mice, their effectiveness in prematurely aging mouse models such as PolgAD257A/D257A (PolgA) has not been completely explored. We demonstrated that frailty became evident in PolgA mice around 40 weeks, validated through body weight loss, reduced walking speed, decreased physical activity, and weaker grip strength. Moreover, we also identified sex differences in these mice with females exhibiting slightly more physical decline compared to males. Frailty prevalence in PolgA mice at 40 weeks parallels that observed in naturally aging mice at 27 months and aging humans at 65-70 years. These findings contribute to understanding frailty onset and sex-specific patterns in this prematurely aging mouse model, emphasizing the significance of the PolgA mouse model in investigating aging and related disorders.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Amit Singh
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- AO Research Institute Davos, Davos, Davos Platz, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kolling LJ, Khan K, Wang R, Pierson SR, Hartman BD, Balasubramanian N, Guo DF, Rahmouni K, Marcinkiewcz CA. Interaction of serotonin/GLP-1 circuitry in a dual preclinical model for psychiatric disorders and metabolic dysfunction. Psychiatry Res 2024; 337:115951. [PMID: 38735240 PMCID: PMC11267813 DOI: 10.1016/j.psychres.2024.115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.
Collapse
Affiliation(s)
- Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kanza Khan
- Psychological Sciences, Daemen University, Amherst, New York, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin D Hartman
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
9
|
Demko J, Saha B, Takagi E, Mannis A, Weber R, Pearce D. Coordinated Regulation of Renal Glucose Reabsorption and Gluconeogenesis by mTORC2 and Potassium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600201. [PMID: 38979219 PMCID: PMC11230149 DOI: 10.1101/2024.06.22.600201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background The kidney proximal tubule is uniquely responsible for reabsorption of filtered glucose and gluconeogenesis (GNG). Insulin stimulates glucose transport and suppresses GNG in the proximal tubule, however, the signaling mechanisms and coordinated regulation of these processes remain poorly understood. The kinase complex mTORC2 is critical for regulation of growth, metabolism, solute transport, and electrolyte homeostasis in response to a wide array of inputs. Here we examined its role in the regulation of renal glucose reabsorption and GNG. Methods Rictor, an essential component of mTORC2, was knocked out using the Pax8-LC1 system to generate inducible tubule specific Rictor knockout (TRKO) mice. These animals were subjected to fasting, refeeding, and variation in dietary K + . Metabolic parameters including glucose homeostasis and renal function were assessed in balance cages. Kidneys and livers were also harvested for molecular analysis of gluconeogenic enzymes, mTORC2-regulated targets, and plasma membrane glucose transporters. Results On a normal chow diet, TRKO mice had marked glycosuria despite indistinguishable blood glucose relative to WT controls. Kidney plasma membrane showed lower SGLT2 and SGLT1 in the fed state, supporting reduced renal glucose reabsorption. Additional metabolic testing provided evidence for renal insulin resistance with elevated fasting insulin, impaired pyruvate tolerance, elevated hemoglobin A1c, and increased renal gluconeogenic enzymes in the fasted and fed states. These effects were correlated with reduced downstream phosphorylation of Akt and the transcription factor FOXO4, identifying a novel role of FOXO4 in the kidney. Interestingly, high dietary K + prevented glycosuria and excessive GNG in TRKO mice, despite persistent reduction in mTORC2 substrate phosphorylation. Conclusion Renal tubule mTORC2 is critical for coordinated regulation of sodium-glucose cotransport by SGLT2 and SGLT1 as well as renal GNG. Dietary K + promotes glucose reabsorption and suppresses GNG independently of insulin signaling and mTORC2, potentially providing an alternative signaling mechanism in states of insulin resistance. SIGNIFICANCE STATEMENT The kidney contributes to regulation of blood glucose through reabsorption of filtered glucose and gluconeogenesis. This study shows that mTORC2 and dietary potassium coordinate the regulation of sodium-glucose cotransport and glucose production in the kidney via independent mechanisms. New insights into the regulation of these processes in the kidney offer promising implications for diabetes mellitus management and treatment.
Collapse
|
10
|
Choi M, Toscano C, Edman MC, de Paiva CS, Hamm-Alvarez SF. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38829671 PMCID: PMC11156205 DOI: 10.1167/iovs.65.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old, ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.
Collapse
Affiliation(s)
- Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cindy Toscano
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
11
|
Khant Aung Z, Ladyman SR, Brown RSE. Transient loss of satiety effects of leptin in middle-aged male mice. J Neuroendocrinol 2024; 36:e13386. [PMID: 38549242 DOI: 10.1111/jne.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KK, Zhu J, Liu AC. Lifelong Chronic Sleep Disruption in a Mouse Model of Traumatic Brain Injury. Neurotrauma Rep 2024; 5:61-73. [PMID: 38288298 PMCID: PMC10823169 DOI: 10.1089/neur.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.
Collapse
Affiliation(s)
- Andrew R. Morris
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erwin K. Gudenschwager Basso
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Miguel A. Gutierrez-Monreal
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rawad Daniel Arja
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Firas H. Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Christopher G. Janus
- Center for Translational Research in Neurodegenerative Disease (CTRND), Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kevin K.W. Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jiepei Zhu
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
13
|
Lien EC, Vu N, Westermark AM, Danai LV, Lau AN, Gültekin Y, Kukurugya MA, Bennett BD, Vander Heiden MG. Effects of aging on glucose and lipid metabolism in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572088. [PMID: 38187759 PMCID: PMC10769226 DOI: 10.1101/2023.12.17.572088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Aging is accompanied by multiple molecular changes that contribute to aging-associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part because mitochondria are central to cellular metabolism. Moreover, the co-factor NAD+, which is reported to decline across multiple tissue types during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids. To further characterize how tissue metabolism changes with age, we intravenously infused [U-13C]-glucose into young and old C57BL/6J, WSB/EiJ, and Diversity Outbred mice to trace glucose fate into downstream metabolites within plasma, liver, gastrocnemius muscle, and brain tissues. We found that glucose incorporation into central carbon and amino acid metabolism was robust during healthy aging across these different strains of mice. We also observed that levels of NAD+, NADH, and the NAD+/NADH ratio were unchanged in these tissues with healthy aging. However, aging tissues, particularly brain, exhibited evidence of up-regulated fatty acid and sphingolipid metabolism reactions that regenerate NAD+ from NADH. Because mitochondrial respiration, a major source of NAD+ regeneration, is reported to decline with age, our data supports a model where NAD+-generating lipid metabolism reactions may buffer against changes in NAD+/NADH during healthy aging.
Collapse
Affiliation(s)
- Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Anna M. Westermark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura V. Danai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Allison N. Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yetiş Gültekin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Snieckute G, Ryder L, Vind AC, Wu Z, Arendrup FS, Stoneley M, Chamois S, Martinez-Val A, Leleu M, Dreos R, Russell A, Gay DM, Genzor AV, Choi BSY, Basse AL, Sass F, Dall M, Dollet LCM, Blasius M, Willis AE, Lund AH, Treebak JT, Olsen JV, Poulsen SS, Pownall ME, Jensen BAH, Clemmensen C, Gerhart-Hines Z, Gatfield D, Bekker-Jensen S. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science 2023; 382:eadf3208. [PMID: 38060659 DOI: 10.1126/science.adf3208] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zhenzhen Wu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ana Martinez-Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - David Michael Gay
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Beatrice So-Yun Choi
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lucile Chantal Marie Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper Velgaard Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Xiong L, Dorus S, Ramalingam L. Role of Fish Oil in Preventing Paternal Obesity and Improving Offspring Skeletal Muscle Health. Biomedicines 2023; 11:3120. [PMID: 38137341 PMCID: PMC10740802 DOI: 10.3390/biomedicines11123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigates the effects of fish oil supplementation during the periconceptional period in male mice. Specifically, it examines the impact of fish oil on intergenerational health, as determined by skeletal muscle markers. To mimic paternal obesity, thirty mice were separated into three groups with distinct dietary regimes for 10 weeks: a high-fat diet (HF), a high-fat diet supplemented with fish oil (FO), and a low-fat diet (LF). Then, these mice mated with control female mice. Dams and offspring consumed a chow diet during gestation and lactation, and the offspring continued on a chow diet. To study short-term (8 weeks) and long-term (16 weeks) effects of FO, skeletal muscle was isolated at the time of sacrifice, and gene analyses were performed. Results suggest that offspring born to FO-supplemented sires exhibited a significant, short-term upregulation of genes associated with insulin signaling, fatty acid oxidation, and skeletal muscle growth with significant downregulation of genes involved in fatty acid synthesis at 8 weeks. Prominent differences in the above markers were observed at 8 weeks compared to 16 weeks. These findings suggest the potential benefits of FO supplementation for fathers during the periconceptional period in reducing the health risks of offspring due to paternal obesity.
Collapse
Affiliation(s)
- Ligeng Xiong
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| | - Stephen Dorus
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
16
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KKW, Zhu J, Liu AC. Sleep Disruption in a Mouse Model of Chronic Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566553. [PMID: 38014315 PMCID: PMC10680804 DOI: 10.1101/2023.11.10.566553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.
Collapse
|
17
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
18
|
Kolling LJ, Khan K, Balasubramanian N, Guo DF, Rahmouni K, Marcinkiewcz CA. Involvement of a serotonin/GLP-1 circuit in adolescent isolation-induced diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544498. [PMID: 37398179 PMCID: PMC10312607 DOI: 10.1101/2023.06.12.544498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In 2020, stay-at-home orders were implemented to stem the spread of SARS-CoV-2 worldwide. Social isolation can be particularly harmful to children and adolescents-during the pandemic, the prevalence of obesity increased by ∼37% in persons aged 2-19. Obesity is often comorbid with type 2 diabetes, which was not assessed in this human pandemic cohort. Here, we investigated whether male mice isolated throughout adolescence develop type 2 diabetes in a manner consistent with human obesity-induced diabetes, and explored neural changes that may underlie such an interaction. We find that isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes. We observed fasted hyperglycemia, diminished glucose clearance in response to an insulin tolerance test, decreased insulin signaling in skeletal muscle, decreased insulin staining of pancreatic islets, increased nociception, and diminished plasma cortisol levels compared to group-housed control mice. Using Promethion metabolic phenotyping chambers, we observed dysregulation of sleep and eating behaviors, as well as a time-dependent shift in respiratory exchange ratio of the adolescent-isolation mice. We profiled changes in neural gene transcription from several brain areas and found that a neural circuit between serotonin-producing and GLP-1-producing neurons is affected by this isolation paradigm. Overall, spatial transcription data suggest decreased serotonin neuron activity (via decreased GLP-1-mediated excitation) and increased GLP-1 neuron activity (via decreased serotonin-mediated inhibition). This circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes, as well as a pharmacologically-relevant circuit to explore the effects of serotonin and GLP-1 receptor agonists. Article Highlights Isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes, presenting with fasted hyperglycemia.Adolescent-isolation mice have deficits in insulin responsiveness, impaired peripheral insulin signaling, and decreased pancreatic insulin production.Transcriptional changes across the brain include the endocannabinoid, serotonin, and GLP-1 neurotransmitters and associated receptors. The neural serotonin/GLP-1 circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes. Serotonin-producing neurons of adolescent-isolation mice produce fewer transcripts for the GLP-1 receptor, and GLP-1 neurons produce fewer transcripts for the 5-HT 1A serotonin receptor.
Collapse
|
19
|
Kwon I, Talib NF, Zhu J, Yang HI, Kim KS. Effects of aging-induced obesity on the transcriptional expression of adipogenesis and thermogenic activity in the gonadal white adipose, brown adipose, and skeletal muscle tissues. Phys Act Nutr 2023; 27:39-49. [PMID: 37583071 PMCID: PMC10440178 DOI: 10.20463/pan.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Aging is closely associated with chronic metabolic diseases, such as obesity, which lead to increased adiposity, skeletal muscle wasting, and imbalanced cellular energy metabolism. However, transcriptional profiles representing energy imbalances in aging-induced obesity are not fully understood. Thus, this study aimed to investigate the candidate genes predominantly regulated in aging-related obesity in spontaneously aged mice. METHODS Male C57BL/6J mice were divided into three age groups according to age: 2- (young), 12- (middle-aged), and 24- (old) months. Body weight and body composition parameters were measured in all mice. Gonadal white adipose tissue (gWAT), brown adipose tissue (BAT), and skeletal muscle (SM) were dissected and weighed. The target tissues were assessed using biochemical and histological assays. RESULTS Aging-induced obesity increased adipose mass and decreased SM weight through processes of adipocyte hypertrophy; however, recruitment of modulating adipogenesis-inducing transcription factors did not occur. Among adipokines, leptin level was greatly increased in the gWAT during aging. Interestingly, the β2-adrenergic receptor had a higher affinity than the β3-adrenergic receptor in aging-induced obesity. For the thermogenic regulation through β-adrenergic receptors (β-ARs), a declined uncoupling protein-1 (UCP-1) in the BAT was relevant to aging-induced obesity. CONCLUSION Aging-induced obesity increases leptin levels in adipocytes and decreases UCP-1 in BAT through β-ARs, according to transcriptional gene profiling. WAT browning increases energy expenditure due to exercise training adaptations. Further research is needed to discover more effective methods, such as exercise, against aging-induced obesity.
Collapse
Affiliation(s)
- Insu Kwon
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - JunShu Zhu
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-In Yang
- Division of Rheumatology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science, Graduate School, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
20
|
Buyco DG, Dempsey JL, Scorletti E, Jeon S, Lin C, Harkin J, Bayen S, Furth EE, Martin J, Delima M, Hooks R, Sostre-Colón J, Gharib SA, Titchenell PM, Carr RM. Concomitant western diet and chronic-binge alcohol dysregulate hepatic metabolism. PLoS One 2023; 18:e0281954. [PMID: 37134024 PMCID: PMC10155975 DOI: 10.1371/journal.pone.0281954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND AND AIMS There is significant overlap between non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) with regards to risk factors and disease progression. However, the mechanism by which fatty liver disease arises from concomitant obesity and overconsumption of alcohol (syndrome of metabolic and alcohol-associated fatty liver disease; SMAFLD), is not fully understood. METHODS Male C57BL6/J mice were fed chow diet (Chow) or high-fructose, high-fat, high-cholesterol diet (FFC) for 4 weeks, then administered either saline or ethanol (EtOH, 5% in drinking water) for another 12 weeks. The EtOH treatment also consisted of a weekly 2.5 g EtOH/kg body weight gavage. Markers for lipid regulation, oxidative stress, inflammation, and fibrosis were measured by RT-qPCR, RNA-seq, Western blot, and metabolomics. RESULTS Combined FFC-EtOH induced more body weight gain, glucose intolerance, steatosis, and hepatomegaly compared to Chow, EtOH, or FFC. Glucose intolerance by FFC-EtOH was associated with decreased hepatic protein kinase B (AKT) protein expression and increased gluconeogenic gene expression. FFC-EtOH increased hepatic triglyceride and ceramide levels, plasma leptin levels, hepatic Perilipin 2 protein expression, and decreased lipolytic gene expression. FFC and FFC-EtOH also increased AMP-activated protein kinase (AMPK) activation. Finally, FFC-EtOH enriched the hepatic transcriptome for genes involved in immune response and lipid metabolism. CONCLUSIONS In our model of early SMAFLD, we observed that the combination of an obesogenic diet and alcohol caused more weight gain, promoted glucose intolerance, and contributed to steatosis by dysregulating leptin/AMPK signaling. Our model demonstrates that the combination of an obesogenic diet with a chronic-binge pattern alcohol intake is worse than either insult alone.
Collapse
Affiliation(s)
- Delfin Gerard Buyco
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph L. Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eleonora Scorletti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sookyoung Jeon
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Chelsea Lin
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julia Harkin
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Susovon Bayen
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jasmin Martin
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Monique Delima
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Royce Hooks
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rotonya M. Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Islam MT, Tuday E, Allen S, Kim J, Trott DW, Holland WL, Donato AJ, Lesniewski LA. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 2023; 22:e13767. [PMID: 36637079 PMCID: PMC9924942 DOI: 10.1111/acel.13767] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Aging results in an elevated burden of senescent cells, senescence-associated secretory phenotype (SASP), and tissue infiltration of immune cells contributing to chronic low-grade inflammation and a host of age-related diseases. Recent evidence suggests that the clearance of senescent cells alleviates chronic inflammation and its associated dysfunction and diseases. However, the effect of this intervention on metabolic function in old age remains poorly understood. Here, we demonstrate that dasatinib and quercetin (D&Q) have senolytic effects, reducing age-related increase in senescence-associated β-galactosidase, expression of p16 and p21 gene and P16 protein in perigonadal white adipose tissue (pgWAT; all p ≤ 0.04). This treatment also suppressed age-related increase in the expression of a subset of pro-inflammatory SASP genes (mcp1, tnf-α, il-1α, il-1β, il-6, cxcl2, and cxcl10), crown-like structures, abundance of T cells and macrophages in pgWAT (all p ≤ 0.04). In the liver and skeletal muscle, we did not find a robust effect of D&Q on senescence and inflammatory SASP markers. Although we did not observe an age-related difference in glucose tolerance, D&Q treatment improved fasting blood glucose (p = 0.001) and glucose tolerance (p = 0.007) in old mice that was concomitant with lower hepatic gluconeogenesis. Additionally, D&Q improved insulin-stimulated suppression of plasma NEFAs (p = 0.01), reduced fed and fasted plasma triglycerides (both p ≤ 0.04), and improved systemic lipid tolerance (p = 0.006). Collectively, results from this study suggest that D&Q attenuates adipose tissue inflammation and improves systemic metabolic function in old age. These findings have implications for the development of therapeutic agents to combat metabolic dysfunction and diseases in old age.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Eric Tuday
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Cardiology, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Shanena Allen
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
| | - John Kim
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
| | - Daniel W. Trott
- Department of KinesiologyThe University of Texas at ArlingtonArlingtonTexasUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Anthony J. Donato
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of BiochemistryThe University of UtahSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
22
|
Bresilla D, Habisch H, Pritišanac I, Zarse K, Parichatikanond W, Ristow M, Madl T, Madreiter-Sokolowski CT. The sex-specific metabolic signature of C57BL/6NRj mice during aging. Sci Rep 2022; 12:21050. [PMID: 36473898 PMCID: PMC9726821 DOI: 10.1038/s41598-022-25396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.
Collapse
Affiliation(s)
- Doruntina Bresilla
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Hansjoerg Habisch
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Iva Pritišanac
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria
| | - Kim Zarse
- Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Faculty of Pharmacy, Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Mahidol University, Bangkok, 10400, Thailand
| | - Michael Ristow
- Laboratory of Energy Metabolism, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/VI, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
23
|
Yu A, Cable C, Sharma S, Shihan MH, Mattis AN, Mileva I, Hannun YA, Duwaerts CC, Chen JY. Targeting acid ceramidase ameliorates fibrosis in mouse models of non-alcoholic steatohepatitis. Front Med (Lausanne) 2022; 9:881848. [PMID: 36275798 PMCID: PMC9582277 DOI: 10.3389/fmed.2022.881848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Carson Cable
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mahbubul H. Shihan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aras N. Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Izolda Mileva
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A. Hannun
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Y. Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Reynolds TH, Ives SJ. Life without Proteinase Activated Receptor 2 (PAR2) Alters Body Composition and Glucose Tolerance in Mice. Nutrients 2022; 14:4096. [PMID: 36235747 PMCID: PMC9571032 DOI: 10.3390/nu14194096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
The potential role of proteinase activated receptor 2 (PAR2) in the development of age-related obesity and insulin resistance is not well-understood. To address the hypothesis that deletion of PAR2 might ameliorate age-related obesity and impaired glucose homeostasis, we assessed body composition and insulin action in 18-month-old male PAR2 knockout (PAR2KO-AG), age-matched (AG) and young C57BL6 (YG, 6-month-old) mice. Body composition was measured by magnetic resonance spectroscopy (MRS) and insulin action was assessed by glucose tolerance (GT), insulin tolerance (IT) and AICAR tolerance (AT) testing. AG mice weighed significantly more than YG mice (p = 0.0001) demonstrating age-related obesity. However, PAR2KO-AG mice weighed significantly more than AG mice (p = 0.042), indicating that PAR2 may prevent a portion of age-related obesity. PAR2KO-AG and AG mice had greater fat mass and body fat percentage than YG mice. Similar to body weight, fat mass was greater in PAR2KO-AG mice compared to AG mice (p = 0.045); however, only a trend for greater body fat percentage in PAR2KO-AG compared to AG mice was observed (p = 0.09). No differences existed in lean body mass among the PAR2KO-AG, AG, and YG mice (p = 0.58). With regard to insulin action, the area under the curve (AUC) for GT was lower in PAR2KO-AG compared to AG mice (p = 0.0003) and YG mice (p = 0.001); however, no differences existed for the AUC for IT or AT. Our findings indicate that age-related obesity is not dependent on PAR2 expression.
Collapse
Affiliation(s)
- Thomas H. Reynolds
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
25
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Muthu ML, Tiedemann K, Fradette J, Komarova S, Reinhardt DP. Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biol 2022; 110:106-128. [DOI: 10.1016/j.matbio.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
|
27
|
Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nat Commun 2022; 13:2025. [PMID: 35440545 PMCID: PMC9018781 DOI: 10.1038/s41467-022-29714-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making “CR mimetics” of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging. The anti-aging intervention calorie restriction (CR) is thought to act via the nutrient-sensing multiprotein complex mTORC1. Here the authors show that the mTORC1-inhibitor rapamycin and CR use largely distinct mechanisms to slow mouse muscle aging.
Collapse
|
28
|
Hazan G, Eubanks A, Gierasch C, Atkinson J, Fox C, Hernandez-Leyva A, Rosen AL, Kau AL, Agapov E, Alexander-Brett J, Steinberg D, Kelley D, White M, Byers D, Wu K, Keeler SP, Zhang Y, Koenitzer JR, Eiden E, Anderson N, Holtzman MJ, Haspel J. Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1467-1482. [PMID: 35173037 PMCID: PMC8917060 DOI: 10.4049/jimmunol.2101094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.
Collapse
Affiliation(s)
- Guy Hazan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO.,Division of Pediatric Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Anna Eubanks
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carrie Gierasch
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carolyn Fox
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Anne L Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer Alexander-Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Deborah Steinberg
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Diane Kelley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael White
- Department of Pathology/Immunology, Washington University School of Medicine, St. Louis, MO
| | - Derek Byers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey R Koenitzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elise Eiden
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO; and
| | - Neil Anderson
- Division of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
29
|
Whole Body Ip6k1 Deletion Protects Mice from Age-Induced Weight Gain, Insulin Resistance and Metabolic Dysfunction. Int J Mol Sci 2022; 23:ijms23042059. [PMID: 35216174 PMCID: PMC8878859 DOI: 10.3390/ijms23042059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.
Collapse
|
30
|
Zhou AL, Sharda N, Sarma VV, Ahlschwede KM, Curran GL, Tang X, Poduslo JF, Kalari KR, Lowe VJ, Kandimalla KK. Age-Dependent Changes in the Plasma and Brain Pharmacokinetics of Amyloid-β Peptides and Insulin. J Alzheimers Dis 2022; 85:1031-1044. [PMID: 34924382 PMCID: PMC10846947 DOI: 10.3233/jad-215128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Age is the most common risk factor for Alzheimer's disease (AD), a neurodegenerative disorder characterized by the hallmarks of toxic amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Moreover, sub-physiological brain insulin levels have emerged as a pathological manifestation of AD. OBJECTIVE Identify age-related changes in the plasma disposition and blood-brain barrier (BBB) trafficking of Aβ peptides and insulin in mice. METHODS Upon systemic injection of 125I-Aβ40, 125I-Aβ42, or 125I-insulin, the plasma pharmacokinetics and brain influx were assessed in wild-type (WT) or AD transgenic (APP/PS1) mice at various ages. Additionally, publicly available single-cell RNA-Seq data [GSE129788] was employed to investigate pathways regulating BBB transport in WT mice at different ages. RESULTS The brain influx of 125I-Aβ40, estimated as the permeability-surface area product, decreased with age, accompanied by an increase in plasma AUC. In contrast, the brain influx of 125I-Aβ42 increased with age, accompanied by a decrease in plasma AUC. The age-dependent changes observed in WT mice were accelerated in APP/PS1 mice. As seen with 125I-Aβ40, the brain influx of 125I-insulin decreased with age in WT mice, accompanied by an increase in plasma AUC. This finding was further supported by dynamic single-photon emission computed tomography (SPECT/CT) imaging studies. RAGE and PI3K/AKT signaling pathways at the BBB, which are implicated in Aβ and insulin transcytosis, respectively, were upregulated with age in WT mice, indicating BBB insulin resistance. CONCLUSION Aging differentially affects the plasma pharmacokinetics and brain influx of Aβ isoforms and insulin in a manner that could potentially augment AD risk.
Collapse
Affiliation(s)
- Andrew L. Zhou
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| | - Nidhi Sharda
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| | - Vidur V. Sarma
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| | - Kristen M. Ahlschwede
- Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, IL, USA
| | - Geoffry L. Curran
- Department of Radiology, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Xiaojia Tang
- Department of Health Sciences, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Joseph F. Poduslo
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Krishna R. Kalari
- Department of Health Sciences, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Karunya K. Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, MN, USA
| |
Collapse
|
31
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
32
|
Daniels Gatward LF, Kennard MR, Smith LIF, King AJF. The use of mice in diabetes research: The impact of physiological characteristics, choice of model and husbandry practices. Diabet Med 2021; 38:e14711. [PMID: 34614258 DOI: 10.1111/dme.14711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is characterised by hyperglycaemia, which results from an absolute or relative lack of insulin. Chronic and acute hyperglycaemia are associated with a range of health complications and an overall increased risk of mortality. Mouse models are vital in understanding the pathogenesis of this disease and its complications, as well as for developing new diabetes therapeutics. However, for experimental questions to be suitably tested, it is critical that factors inherent to the animal model are considered, as these can have profound impacts on experimental outcome, data reproducibility and robustness. In this review, we discuss key considerations relating to model choice, physiological characteristics (such as age, sex and genetic background) and husbandry practices and explore the impact of these on common experimental readouts used in preclinical diabetes research.
Collapse
|
33
|
Mothers' cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep 2021; 11:18573. [PMID: 34535697 PMCID: PMC8448886 DOI: 10.1038/s41598-021-97487-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Collapse
|
34
|
Lynn MA, Eden G, Ryan FJ, Bensalem J, Wang X, Blake SJ, Choo JM, Chern YT, Sribnaia A, James J, Benson SC, Sandeman L, Xie J, Hassiotis S, Sun EW, Martin AM, Keller MD, Keating DJ, Sargeant TJ, Proud CG, Wesselingh SL, Rogers GB, Lynn DJ. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep 2021; 36:109564. [PMID: 34433065 DOI: 10.1016/j.celrep.2021.109564] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Studies investigating whether there is a causative link between the gut microbiota and lifespan have largely been restricted to invertebrates or to mice with a reduced lifespan because of a genetic deficiency. We investigate the effect of early-life antibiotic exposure on otherwise healthy, normal chow-fed, wild-type mice, monitoring these mice for more than 700 days in comparison with untreated control mice. We demonstrate the emergence of two different low-diversity community types, post-antibiotic microbiota (PAM) I and PAM II, following antibiotic exposure. PAM II but not PAM I mice have impaired immunity, increased insulin resistance, and evidence of increased inflammaging in later life as well as a reduced lifespan. Our data suggest that differences in the composition of the gut microbiota following antibiotic exposure differentially affect host health and longevity in later life.
Collapse
Affiliation(s)
- Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Georgina Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Julien Bensalem
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen J Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Jocelyn M Choo
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Yee Tee Chern
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Lauren Sandeman
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sofia Hassiotis
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Marianne D Keller
- Preclinical, Imaging & Research Laboratories (PIRL), South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Timothy J Sargeant
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steve L Wesselingh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
35
|
Shytikov D, Shytikova I, Rohila D, Kulaga A, Dubiley T, Pishel I. Effect of Long-Term Treatment with C 60 Fullerenes on the Lifespan and Health Status of CBA/Ca Mice. Rejuvenation Res 2021; 24:345-353. [PMID: 33849306 DOI: 10.1089/rej.2020.2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several studies claimed C60 fullerenes as a prospective geroprotector drug due to their ability to capture free radicals effectively and caused a profound interest in C60 in life extension communities. Multiple additives are already sold for human consumption despite a small body of evidence supporting the beneficial effects of fullerenes on the lifespan. To test the effect of C60 fullerenes on lifespan and healthspan, we administered C60 fullerenes dissolved in virgin olive oil orally to 10-12 months old CBA/Ca mice of both genders for 7 months and assessed their survival. To uncover C60 and virgin olive effects, we established two control groups: mice treated with virgin olive oil (vehicle) and mice treated with drinking water. To measure healthspan, we conducted daily monitoring of health condition and lethality and monthly bodyweight measurements. We also assessed physical activity, glucose metabolism, and hematological parameters every 3 months. We did not observe health deterioration in the animals treated with C60 compared with the control groups. Treatment of mice with C60 fullerenes resulted in an increased lifespan of males and females compared with the olive oil-treated animals. The lifespan of C60-treated mice was similar to the mice treated with water. These results suggest that the lifespan-extending effect in C60-treated mice appears due to the protective effect of fullerenes in opposition to the negative effect of olive oil in CBA/Ca mice.
Collapse
Affiliation(s)
- Dmytro Shytikov
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Iryna Shytikova
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Deepak Rohila
- International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| | - Anton Kulaga
- International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France.,Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Tatiana Dubiley
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Iryna Pishel
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.,International Longevity Alliance, 19 Avenue Jean Jaurès, Sceaux, France
| |
Collapse
|
36
|
Tsukamoto-Sen S, Kawakami S, Maruki-Uchida H, Ito R, Matsui N, Komiya Y, Mita Y, Morisasa M, Goto-Inoue N, Furuichi Y, Manabe Y, Morita M, Fujii NL. Effect of antioxidant supplementation on skeletal muscle and metabolic profile in aging mice. Food Funct 2021; 12:825-833. [PMID: 33399617 DOI: 10.1039/d0fo02051f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aging induces drastic changes in muscle mass and function (sarcopenia); however, the detailed mechanisms underlying sarcopenia remain poorly understood. Recent studies suggested that age-related increases in oxidative stress induce muscle atrophy. In this study, we investigated the effect of 6-month supplementation of antioxidants, specifically piceatannol (PIC) and enzymatically modified isoquercitrin (EMIQ), on age-related physiological changes, including skeletal muscle weight and quality, in 25-month-old (OLD) mice, compared to in 4-month-old (young, YNG) C57BL/6J mice. Muscle weight corrected by body weight significantly declined in OLD mice, compared to in YNG mice. The control OLD mice also showed changes in the expression of genes related to muscle fiber type, reduced locomotor activity, and increased oxidative stress markers in blood. Consistent with the muscle weight and quality changes, whole-body fat oxidation during sedentary conditions and exercise periods in control OLD mice was significantly lower than that in YNG mice. Interestingly, compared to the control OLD mice, the PIC- or EMIQ-fed OLD mice showed higher fat oxidation. Furthermore, EMIQ, but not PIC, increased locomotor activity, the expression of genes encoding antioxidant enzymes, and suppressed the carbonylated protein in the skeletal muscle of OLD mice. These results suggested that chronic antioxidant intake could alleviate aging-related muscle function changes.
Collapse
Affiliation(s)
- Sakuka Tsukamoto-Sen
- Health Science Research Center, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
MacCannell ADV, Futers TS, Whitehead A, Moran A, Witte KK, Roberts LD. Sexual dimorphism in adipose tissue mitochondrial function and metabolic flexibility in obesity. Int J Obes (Lond) 2021; 45:1773-1781. [PMID: 34002038 PMCID: PMC8310795 DOI: 10.1038/s41366-021-00843-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The prevalence of obesity is growing globally. Adiposity increases the risk for metabolic syndrome, type 2 diabetes and cardiovascular disease. Adipose tissue distribution influences systemic metabolism and impacts metabolic disease risk. The link between sexual dimorphisms of adiposity and metabolism is poorly defined. We hypothesise that depot-specific adipose tissue mitochondrial function contributes to the sexual dimorphism of metabolic flexibility in obesity. METHODS Male and female mice fed high fat diet (HFD) or standard diet (STD) from 8-18 weeks of age underwent whole animal calorimetry and high-resolution mitochondrial respirometry analysis on adipose tissue depots. To determine translatability we used RT-qPCR to examine key brown adipocyte-associated gene expression: peroxisome proliferator-activated receptor co-activator 1α, Uncoupling protein 1 and cell death inducing DFFA like effector a in brown adipose tissue (BAT) and subcutaneous adipose tissue (sWAT) of 18-week-old mice and sWAT from human volunteers. RESULTS Male mice exhibited greater weight gain compared to female mice when challenged with HFD. Relative to increased body mass, the adipose to body weight ratio for BAT and sWAT depots was increased in HFD-fed males compared to female HFD-fed mice. Oxygen consumption, energy expenditure, respiratory exchange ratio and food consumption did not differ between males and females fed HFD. BAT mitochondria from obese females showed increased Complex I & II respiration and maximal respiration compared to lean females whereas obese males did not exhibit adaptive mitochondrial BAT respiration. Sexual dimorphism in BAT-associated gene expression in sWAT was also associated with Body Mass Index in humans. CONCLUSIONS We show that sexual dimorphism of weight gain is reflected in mitochondrial respiration analysis. Female mice have increased metabolic flexibility to adapt to changes in energy intake by regulating energy expenditure through increased complex II and maximal mitochondrial respiration within BAT when HFD challenged and increased proton leak in sWAT mitochondria.
Collapse
Affiliation(s)
- Amanda D. V. MacCannell
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - T. Simon Futers
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Anna Whitehead
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Amy Moran
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Klaus K. Witte
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Lee D. Roberts
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| |
Collapse
|
38
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
39
|
Ives SJ, Zaleski KS, Slocum C, Escudero D, Sheridan C, Legesse S, Vidal K, Lagalwar S, Reynolds TH. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep 2020; 8:e14630. [PMID: 33185326 PMCID: PMC7663994 DOI: 10.14814/phy2.14630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD). Mice consumed their respective diets for 4.5 months and then assigned to the following groups: (LFD)+vehicle, LFD + SA (0.75 mg/ml), HFD + vehicle, or HFD + SA. Body weight (BW), food, and water intake, were tracked weekly. After 6 weeks, insulin, glucose, and pyruvate tolerance tests were completed, and spontaneous physical activity was assessed. Epididymal white adipose tissue (EWAT) mass and in vitro measurements of oxidative skeletal muscle (soleus) respiration were obtained. Expectedly, the HFD increased BW and EWAT mass, and reduced glucose and insulin tolerance. SA significantly reduced EWAT mass, more so in HFD (p < .05), but had no effect on any in vivo measurements (BW, insulin, glucose, or pyruvate tolerance, nor physical activity, all p > .05). A significant (p < .05) interaction was observed between mitochondrial respiration and treatment, where SA increased respiration, likely owed to greater mitochondrial content, as assessed by complex IV activity in both LFD and HFD. In HFD-induced obesity, coupled with insulin desensitization, we found no favorable effect of succinic acid on glucose regulation, though adiposity was attenuated. In oxidative skeletal muscle, there was a tendency for increased respiratory capacity, likely owed to greater mitochondrial content, suggestive of a succinic acid-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stephen J. Ives
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kendall S. Zaleski
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Cheyanne Slocum
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Daniela Escudero
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Caty Sheridan
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Saada Legesse
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kavey Vidal
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Sarita Lagalwar
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
40
|
Morla L, Shore O, Lynch IJ, Merritt ME, Wingo CS. A noninvasive method to study the evolution of extracellular fluid volume in mice using time-domain nuclear magnetic resonance. Am J Physiol Renal Physiol 2020; 319:F115-F124. [PMID: 32475134 DOI: 10.1152/ajprenal.00377.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintaining water homeostasis is fundamental for cellular function. Many diseases and drugs affect water balance and plasma osmolality. Water homeostasis studies in small animals require the use of invasive or terminal methods that make intracellular fluid volume and extracellular fluid volume (ECF) monitoring over time stressful and time consuming. We examined the feasibility of monitoring mouse ECF by a noninvasive method using time-domain nuclear magnetic resonance (TD-NMR). This technique allows differentiation of protons in a liquid environment (free fluid) from protons in soft tissues containing a majority of either small molecules (lean) or large molecules (fat). Moreover, this apparatus enables rapid, noninvasive, and repeated measurements on the same animal. We assessed the feasibility of coupling TD-NMR analysis to a longitudinal metabolic cage study by monitoring mice daily. We determined the effect of 24-h water deprivation on mouse body parameters and detected a sequential and overlapping decrease in free fluid and lean mass during water deprivation. Finally, we studied the effect of mineralocorticoids that are known to induce a transient increase in ECF but for which no direct measurements have been performed in mice. We showed, for the first time, that mineralocorticoids induced a transient ~15% increase in free fluid in conscious mice. TD-NMR is, therefore, the first method to allow direct measurement of discrete changes in ECF in conscious small animals. This method allows analysis of kinetic changes to stimuli before investigating with terminal methods and will allow further understanding of fluid disorders.
Collapse
Affiliation(s)
- Luciana Morla
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Oliver Shore
- North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Department of Medicine, University of Florida, Gainesville, Florida
| | - I Jeanette Lynch
- North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Department of Medicine, University of Florida, Gainesville, Florida
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Charles S Wingo
- North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
41
|
Bloom SI, Tuluca A, Ives SJ, Reynolds TH. High-fat diet induced obesity and age influence the telomere shelterin complex and telomerase gene expression in mouse adipose tissue. Physiol Rep 2020; 8:e14461. [PMID: 32512652 PMCID: PMC7280005 DOI: 10.14814/phy2.14461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and aging are linked to inflammation and increased risk of chronic disease. Telomeres are the endcaps of chromosomes that are regulated by telomerase, the enzyme that elongates telomeres, as well as a protein complex known as shelterin. Telomere dysfunction is associated with inflammation, aging, and disease. However, the effect of high-fat diet (HFD) induced obesity and advancing age on the shelterin complex and telomerase in adipose tissue is unknown. The present study investigated the effects of obesity and aging on C57BL/6J mice adipose tissue mRNA expression of shelterin complex genes. Young (YG) mice (3 mo) were randomly assigned to be fed either a high-fat diet (YG + HFD; 60% kcal from fat) or a low-fat diet (YG + LFD; 10% kcal from fat). A subset of mice were aged until 16 months. Body weight and epididymal white adipose tissue (EWAT) weight increased with age or a HFD. There was a trend for increased Terf2 expression, as expression was increased in HFD + YG by ~47% and aged mice by ~80%. Pot1b expression was increased in aged mice by ~35%-60% compared to YG, independent of diet. mTert, the gene that codes for the catalytic subunit of telomerase, was significantly elevated in aged mice. Changes in telomere associated gene expression was accompanied by changes in expression of inflammatory markers Mcp1 and Tnfα. These findings suggest obesity and age impact expression of shelterin complex and telomerase related genes in adipose, perhaps altering telomere function in adipose tissue thereby increasing inflammation and risk of chronic disease.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUTUSA
| | - Andrei Tuluca
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- College of MedicineCentral Michigan UniversityMount PleasantMIUSA
| | - Stephen J. Ives
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
42
|
Differential Gender-Dependent Patterns of Cardiac Fibrosis and Fibroblast Phenotypes in Aging Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8282157. [PMID: 32566103 PMCID: PMC7267867 DOI: 10.1155/2020/8282157] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
Aging is characterized by physiological changes within the heart leading to fibrosis and dysfunction even in individuals without underlying pathologies. Gender has been shown to influence the characteristics of cardiac aging; however, gender-dependent cardiac fibrosis occurring with age remains largely not elucidated. Thus, broadening our understanding of this phenomenon proves necessary in order to develop novel anti-fibrotic strategies in the elderly. In this study, we aim to characterize cardiac fibrosis and cardiac fibroblast (CF) populations in aged male and female mice. Echocardiography revealed eccentric hypertrophy with left ventricular dilatation in the aged male versus concentric hypertrophy with left posterior wall thickening in the female, with preserved cardiac function in both groups. Reactive fibrosis was evidenced in the myocardium and epicardium of the aged female mice hearts whereas perivascular and replacement ones where present in the male heart. Collagen I was predominant in the aged male heart whereas collagen III was the main component in the female heart. CFs in the aged male heart were mainly recruited from resident PDGFRα+ populations but not derived from epicardium as evidenced by the absence of epicardial progenitor transcription factors Tcf21, Tbx18 and Wt1. Our results present a paradigm for gender-dependent cardiac fibrosis and the origins of CFs with age. This sets forth to revisit cardiac anti-fibrotic management according to the gender in the elderly and to explore novel therapeutic targets.
Collapse
|
43
|
Abstract
Neuroinflammation confers changes in brain function (i.e., behavior) that are hypothesized to be adaptive in the short-term, but detrimental (e.g., depression, anxiety) if they persist. Both peripheral tumor growth (outside of the brain) and natural aging independently cause neuroinflammation in rodents, which is corroborated by clinical studies. Mammary tumor effects on neuroinflammation and behavior, however, are typically studied in young rodents, whereas most breast cancer patients are middle-aged. Therefore, the existing literature likely underestimates the resulting neuroinflammation that may occur in clinical cancer populations. The present study tested the hypothesis that aging exacerbates mammary tumor-induced neuroinflammation in female mice. Aging (16 months and ovariectomized) increased body and spleen masses, whereas tumors grew faster and increased spleen mass in young mice (12 weeks) only. Tumors (IL-6, IL-10, TNFα, MCP-1, CXCL1, IP-10) and aging (IL-10, IFNγ) independently increased circulating inflammatory markers, although these variables were only significantly additive in one case (TNFα). In contrast to our prediction, the interaction between tumors and aging resulted in reduced mRNA and protein expression of select inflammatory markers in the hippocampus of tumor-bearing aged mice relative to aged controls. These results indicate that tumors reduce inflammatory activation in the brains of aged mice, a deficit that is likely disadvantageous. Further understanding of how aging and cancer interact to affect brain function is necessary to provide clinically-relevant results and identify mechanisms underlying persistent behavioral issues hampering adult cancer patients. Tumors grew more slowly in aged mice. Tumors and aging independently increased circulating inflammatory markers. Tumors reduced mRNA and protein expression of inflammatory markers in the hippocampus in aged mice. Reduced inflammatory activation in the brains of aged mice is likely not adaptive.
Collapse
|
44
|
Houdebine L, D'Amico D, Bastin J, Chali F, Desseille C, Rumeau V, Soukkari J, Oudot C, Rouquet T, Bariohay B, Roux J, Sapaly D, Weill L, Lopes P, Djouadi F, Bezier C, Charbonnier F, Biondi O. Low-Intensity Running and High-Intensity Swimming Exercises Differentially Improve Energy Metabolism in Mice With Mild Spinal Muscular Atrophy. Front Physiol 2019; 10:1258. [PMID: 31632295 PMCID: PMC6781613 DOI: 10.3389/fphys.2019.01258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal Muscular Atrophy (SMA), an autosomal recessive neurodegenerative disease characterized by the loss of spinal-cord motor-neurons, is caused by mutations on Survival-of-Motor Neuron (SMN)-1 gene. The expression of SMN2, a SMN1 gene copy, partially compensates for SMN1 disruption due to exon-7 excision in 90% of transcripts subsequently explaining the strong clinical heterogeneity. Several alterations in energy metabolism, like glucose intolerance and hyperlipidemia, have been reported in SMA at both systemic and cellular level, prompting questions about the potential role of energy homeostasis and/or production involvement in disease progression. In this context, we have recently reported the tolerance of mild SMA-like mice (SmnΔ7/Δ7; huSMN2+/+) to 10 months of low-intensity running or high-intensity swimming exercise programs, respectively involving aerobic and a mix aerobic/anaerobic muscular metabolic pathways. Here, we investigated whether those exercise-induced benefits were associated with an improvement in metabolic status in mild SMA-like mice. We showed that untrained SMA-like mice exhibited a dysregulation of lipid metabolism with an enhancement of lipogenesis and adipocyte deposits when compared to control mice. Moreover, they displayed a high oxygen consumption and energy expenditure through β-oxidation increase yet for the same levels of spontaneous activity. Interestingly, both exercises significantly improved lipid metabolism and glucose homeostasis in SMA-like mice, and enhanced oxygen consumption efficiency with the maintenance of a high oxygen consumption for higher levels of spontaneous activity. Surprisingly, more significant effects were obtained with the high-intensity swimming protocol with the maintenance of high lipid oxidation. Finally, when combining electron microscopy, respiratory chain complexes expression and enzymatic activity measurements in muscle mitochondria, we found that (1) a muscle-specific decreased in enzymatic activity of respiratory chain I, II, and IV complexes for equal amount of mitochondria and complexes expression and (2) a significant decline in mitochondrial maximal oxygen consumption, were reduced by both exercise programs. Most of the beneficial effects were obtained with the high-intensity swimming protocol. Taking together, our data support the hypothesis that active physical exercise, including high-intensity protocols, induces metabolic adaptations at both systemic and cellular levels, providing further evidence for its use in association with SMN-overexpressing therapies, in the long-term care of SMA patients.
Collapse
Affiliation(s)
- Léo Houdebine
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Domenico D'Amico
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Jean Bastin
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Farah Chali
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Céline Desseille
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Valentin Rumeau
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Judy Soukkari
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Carole Oudot
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Thaïs Rouquet
- Biomeostasis CRO, Nutritional Behavior and Metabolic Disorders, La Penne-sur-Huveaune, France
| | - Bruno Bariohay
- Biomeostasis CRO, Nutritional Behavior and Metabolic Disorders, La Penne-sur-Huveaune, France
| | - Julien Roux
- Biomeostasis CRO, Nutritional Behavior and Metabolic Disorders, La Penne-sur-Huveaune, France
| | - Delphine Sapaly
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Laure Weill
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Philippe Lopes
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,UFR STAPS, Université d'Evry Val-d'Essonne, Evry, France
| | - Fatima Djouadi
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Cynthia Bezier
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France.,Biophytis, Sorbonne Université, Paris, France
| | - Frédéric Charbonnier
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| | - Olivier Biondi
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, Paris, France
| |
Collapse
|