1
|
Dishlers A, Petrovskis I, Skrastina D, Zarina I, Lieknina I, Jansons J, Akopjana I, Zakova J, Ose V, Sominskaya I. PreS1 Containing HBc VLPs for the Development of a Combined Therapeutic/Prophylactic Hepatitis B Vaccine. Microorganisms 2023; 11:microorganisms11040972. [PMID: 37110395 PMCID: PMC10142831 DOI: 10.3390/microorganisms11040972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The available HBV vaccines based on the HBV surface protein are manufactured in yeasts and demonstrate excellent prophylactic but no therapeutic activity and are thus ineffective against chronic HBV infection. Five different HBV core proteins (HBc)-full length and C-terminally truncated-were used for the insertion of the short, preS1,aa 20-47 and long, preS1phil, aa 12-60 + 89-119 fragments. Modified virus-like particles (VLPs) were compared for their biotechnological and immunological properties. The expression level of HBc-preS1 proteins was high for all investigated proteins, allowing us to obtain 10-20 mg of purified VLPs from a gram of biomass with the combination of gel filtration and ion-exchange chromatography to reach approximately 90% purity of target proteins. The immunogenicity of chimeric VLPs was tested in BALB/c mice, showing a high anti-preS1 response and substantial T-cell proliferation after stimulation with HBc protein. Targeted incorporation of oligonucleotide ODN 1668 in modified HBc-preS1 VLPs was demonstrated.
Collapse
Affiliation(s)
- Andris Dishlers
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ieva Zarina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Jelena Zakova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Velta Ose
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, 1067 Riga, Latvia
| |
Collapse
|
2
|
Hillebrandt N, Vormittag P, Dietrich A, Wegner CH, Hubbuch J. Process development for cross-flow diafiltration-based VLP disassembly: A novel high-throughput screening approach. Biotechnol Bioeng 2021; 118:3926-3940. [PMID: 34170511 DOI: 10.1002/bit.27868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are particulate structures, which are applied as vaccines or delivery vehicles. VLPs assemble from subunits, named capsomeres, composed of recombinantly expressed viral structural proteins. During downstream processing, in vivo-assembled VLPs are typically dis- and reassembled to remove encapsulated impurities and to improve particle morphology. Disassembly is achieved in a high-pH solution and by the addition of a denaturant or reducing agent. The optimal disassembly conditions depend on the VLP amino acid sequence and structure, thus requiring material-consuming disassembly experiments. To this end, we developed a low-volume and high-resolution disassembly screening that provides time-resolved insight into the VLP disassembly progress. In this study, two variants of C-terminally truncated hepatitis B core antigen were investigated showing different disassembly behaviors. For both VLPs, the best capsomere yield was achieved at moderately high urea concentration and pH. Nonetheless, their disassembly behaviors differed particularly with respect to disassembly rate and aggregation. Based on the high-throughput screening results, a diafiltration-based disassembly process step was developed. Compared with mixing-based disassembly, it resulted in higher yields of up to 0.84 and allowed for integrated purification. This process step was embedded in a filtration-based process sequence of disassembly, capsomere separation, and reassembly, considerably reducing high-molecular-weight species.
Collapse
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Christina H Wegner
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16:39. [PMID: 29653575 PMCID: PMC5897928 DOI: 10.1186/s12951-018-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.
Collapse
Affiliation(s)
- Jens Schumacher
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tijana Bacic
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - René Staritzbichler
- TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Matin Daneschdar
- Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thorsten Klamp
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Arnold
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.,Anatomical Institute, Otto-Hahn Platz 8, 24118, Kiel, Germany
| | - Sabrina Jägle
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Özlem Türeci
- Ganymed Pharmaceuticals AG, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany. .,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Shan W, Zhang D, Wu Y, Lv X, Hu B, Zhou X, Ye S, Bi S, Ren L, Zhang X. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:725-734. [DOI: 10.1016/j.nano.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/12/2017] [Accepted: 12/03/2017] [Indexed: 01/08/2023]
|
5
|
The Hepatitis B Virus Core Variants that Expose Foreign C-Terminal Insertions on the Outer Surface of Virus-Like Particles. Mol Biotechnol 2016; 57:1038-49. [PMID: 26446016 PMCID: PMC4619458 DOI: 10.1007/s12033-015-9895-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The major immunodominant region (MIR) and N-terminus of the hepatitis B virus (HBV) core (HBc) protein were used to expose foreign insertions on the outer surface of HBc virus-like particles (VLPs). The additions to the HBc positively charged arginine-rich C-terminal (CT) domain are usually not exposed on the VLP surface. Here, we constructed a set of recombinant HBcG vectors in which CT arginine stretches were substituted by glycine residues. In contrast to natural HBc VLPs and recombinant HBc VLP variants carrying native CT domain, the HBcG VLPs demonstrated a lowered capability to pack bacterial RNA during expression in Escherichia coli cells. The C-terminal addition of a model foreign epitope from the HBV preS1 sequence to the HBcG vectors resulted in the exposure of the inserted epitope on the VLP surface, whereas the same preS1 sequences added to the native CT of the natural HBc protein remained buried within the HBc VLPs. Based on the immunisation of mice, the preS1 epitope added to the HBcG vectors as a part of preS1(20-47) and preS1phil sequences demonstrated remarkable immunogenicity. The same epitope added to the original C-terminus of the HBc protein did not induce a notable level of anti-preS1 antibodies. HBcG vectors may contribute to the further development of versatile HBc VLP-based vaccine and gene therapy applications.
Collapse
|
6
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016; 50:489-509. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/02/2025]
|
7
|
Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes. Viruses 2015; 7:4204-29. [PMID: 26230706 PMCID: PMC4576179 DOI: 10.3390/v7082818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes.
Collapse
|
8
|
Plasmid dimerization increases the production of hepatitis B core particles in E. coli. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Roseman AM, Borschukova O, Berriman JA, Wynne SA, Pumpens P, Crowther RA. Structures of hepatitis B virus cores presenting a model epitope and their complexes with antibodies. J Mol Biol 2012; 423:63-78. [PMID: 22750730 PMCID: PMC3465560 DOI: 10.1016/j.jmb.2012.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The core shell of hepatitis B virus is a potent immune stimulator, giving a strong neutralizing immune response to foreign epitopes inserted at the immunodominant region, located at the tips of spikes on the exterior of the shell. Here, we analyze structures of core shells with a model epitope inserted at two alternative positions in the immunodominant region. Recombinantly expressed core protein assembles into T = 3 and T = 4 icosahedral shells, and atomic coordinates are available for the T = 4 shell. Since the modified protein assembles predominantly into T = 3 shells, a quasi-atomic model of the native T = 3 shell was made. The spikes in this T = 3 structure resemble those in T = 4 shells crystallized from expressed protein. However, the spikes in the modified shells exhibit an altered conformation, similar to the DNA containing shells in virions. Both constructs allow full access of antibodies to the foreign epitope, DPAFR from the preS1 region of hepatitis B virus surface antigen. However, one induces a 10-fold weaker immune response when injected into mice. In this construct, the epitope is less constrained by the flanking linker regions and is positioned so that the symmetry of the shell causes pairs of epitopes to come close enough to interfere with one another. In the other construct, the epitope mimics the native epitope conformation and position. The interaction of native core shells with an antibody specific to the immunodominant epitope is compared to the constructs with an antibody against the foreign epitope. Our findings have implications for the design of vaccines based on virus-like particles.
Collapse
Affiliation(s)
- A M Roseman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1027-33. [PMID: 20410327 DOI: 10.1128/cvi.00468-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multivalent vaccine candidate against hepatitis B virus (HBV) and hepatitis C virus (HCV) infections was constructed on the basis of HBV core (HBc) virus-like particles (VLPs) as carriers. Chimeric VLPs that carried a virus-neutralizing HBV pre-S1 epitope corresponding to amino acids (aa) 20 to 47 in the major immunodominant region (MIR) and a highly conserved N-terminal HCV core epitope corresponding to aa 1 to 60 at the C terminus of the truncated HBcDelta protein (N-terminal aa 1 to 144 of full-length HBc) were produced in Escherichia coli cells and examined for their antigenicity and immunogenicity. The presence of two different foreign epitopes within the HBc molecule did not interfere with its VLP-forming ability, with the HBV pre-S1 epitope exposed on the surface and the HCV core epitope buried within the VLPs. After immunization of BALB/c mice, specific T-cell activation by both foreign epitopes and a high-titer antibody response against the pre-S1 epitope were found, whereas an antibody response against the HBc carrier was notably suppressed. Both inserted epitopes also induced a specific cytotoxic-T-lymphocyte (CTL) response, as shown by the gamma interferon (IFN-gamma) production profile.
Collapse
|
11
|
Kazaks A, Balmaks R, Voronkova T, Ose V, Pumpens P. Melanoma vaccine candidates from chimeric hepatitis B core virus-like particles carrying a tumor-associated MAGE-3 epitope. Biotechnol J 2009; 3:1429-36. [PMID: 18956370 DOI: 10.1002/biot.200800160] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccination of melanoma patients with tumor-specific antigens recognized by cytotoxic T lymphocytes (CTLs) may produce significant tumor regressions. Here, we suggest a novel type of tumor vaccines, with well-studied CTL epitopes presented on highly immunogenic virus-like particle (VLP) carriers. Cancer-germline gene MAGE-3 encodes for an antigenic nonapeptide (MAGE-3(168-176) peptide) that is recognized by CTLs on human leukocyte antigen (HLA)-A1 and HLA-B35 molecules. A set of recombinant genes encoding hepatitis B virus core protein carrying MAGE-3 epitope was constructed and expressed in Escherichia coli cells. Variants that led to formation of chimeric VLPs in vivo were purified and analyzed for their DNA binding properties in vitro. VLPs exhibiting the most pronounced nucleic acid binding affinity were selected and loaded either with single-stranded DNA oligodeoxynucleotides rich in nonmethylated CG motifs, or with longer double-stranded DNA fragments. Packaged DNA was protected, at least partially, against the action of bacterial DNase. Such highly purified chimeric VLPs with entrapped immunomodulatory sequences could possibly be used as antitumor vaccines.
Collapse
Affiliation(s)
- Andris Kazaks
- Latvian Biomedical Research and Study Center, Riga, Latvia.
| | | | | | | | | |
Collapse
|
12
|
Skrastina D, Bulavaite A, Sominskaya I, Kovalevska L, Ose V, Priede D, Pumpens P, Sasnauskas K. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine 2008; 26:1972-81. [DOI: 10.1016/j.vaccine.2008.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 01/16/2023]
|
13
|
Ling S, Li Z, Borschukova O, Xiao L, Pumpens P, Holoshitz J. The rheumatoid arthritis shared epitope increases cellular susceptibility to oxidative stress by antagonizing an adenosine-mediated anti-oxidative pathway. Arthritis Res Ther 2007; 9:R5. [PMID: 17254342 PMCID: PMC1865041 DOI: 10.1186/ar2111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/17/2007] [Accepted: 01/25/2007] [Indexed: 11/10/2022] Open
Abstract
We have recently demonstrated that the rheumatoid arthritis (RA) shared epitope (SE) acts as a ligand that triggers nitric oxide (NO) signaling in opposite cells. Given the known pro-oxidative effect of NO and the proposed role of oxidative stress in the pathogenesis of RA, this study explores whether SE-triggered signaling can increase cellular oxidative stress. cAMP levels, adenylyl cyclase activity, and protein kinase A activity were measured using commercial kits. Generation of reactive oxygen species (ROS) was quantified using the fluorochrome dichlorofluorescein diacetate. Oxidative DNA damage was quantified using the single-cell electrophoresis technique. Here, we report that cells exposed to cell surface SE-positive HLA-DR (human leukocyte antigen-DR) molecules, to cell-free recombinant proteins genetically engineered to express the SE motif, or to SE-positive synthetic peptide showed diminished cAMP-dependent signaling, increased ROS levels, and higher vulnerability to oxidative DNA damage. Introduction of single amino acid substitutions into SE-positive peptides revealed a consensus five-amino acid sequence motif of Q/R-K/R-X-X-A that is necessary and sufficient for SE-triggered signaling. The pro-oxidative effect of the SE could be reversed by inhibiting NO production. We conclude that the SE acts as a signaling ligand that activates an NO-mediated pro-oxidative pathway. The potential contribution of this signaling aberration to RA pathogenesis is discussed.
Collapse
Affiliation(s)
- Song Ling
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., 5520 MSRB I, Ann Arbor, MI 48109-0680, USA
| | - Zhanguo Li
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., 5520 MSRB I, Ann Arbor, MI 48109-0680, USA
- Department of Rheumatology, Beijing Medical University, Beijing, 11 S. Xizhimen Blvd, Beijing, 100044, The People's Republic of China
| | - Olga Borschukova
- Biomedical Research and Study Center, University of Latvia, Ratsupites 1, Riga, LV-1067, Latvia
| | - Liqun Xiao
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., 5520 MSRB I, Ann Arbor, MI 48109-0680, USA
| | - Paul Pumpens
- Biomedical Research and Study Center, University of Latvia, Ratsupites 1, Riga, LV-1067, Latvia
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., 5520 MSRB I, Ann Arbor, MI 48109-0680, USA
| |
Collapse
|
14
|
Zhang YL, Guo YJ, Wang KY, Lu K, Li K, Zhu Y, Sun SH. Enhanced Immunogenicity of Modified Hepatitis B Virus Core Particle Fused with Multiepitopes of Foot-and-Mouth Disease Virus. Scand J Immunol 2007; 65:320-8. [PMID: 17386022 DOI: 10.1111/j.1365-3083.2007.01900.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatitis B virus core (HBc) particles, self-assemble into capsid particles and are extremely immunogenic, hold promise as an immune-enhancing vaccine carrier for heterologous antigens. However, formation of virus-like particles (VLP) can be restricted by size and structure of heterlogous antigens. In the study, we investigated formation of VLP by modified HBc fused with specified foot-and-mouth disease virus (FMDV) multiepitopes and evaluated their immune effects. Firstly, three HBc display vectors (pHBc1, pHBc2 and pHBc3) were constructed by deletions of different lengths within the HBc c/e1 region: 75-78 amino acid (aa), 75-80 aa and 75-82 aa respectively. Secondly, we inserted different compositions of FMDV multiepitopes, BT [VP1(141-160)-VP4(21-40)] and BTB [VP1(141-160)-VP4(21-40)-VP1(141-160)], into modified regions. As a result, only plasmid pHBc3-BTB of six recombinant vectors was expressed as soluble protein, which resulted in the formation of complete VLP confirmed by electron microscopy. Recombinant VLP could be taken up by cells and presented in vitro and in vivo. Furthermore, the modified VLP displayed a significantly stronger immunogenicity than other five recombinant proteins and GST-BTB with a higher titer of peptide-specific and virus-specific antibody, elevated IFN-gamma and interleukin-4 production, especially enhanced lymphocyte proliferation. The results encourage further work towards the development of FMDV vaccines using hepatitis B virus core particles fused with FMDV epitopes.
Collapse
Affiliation(s)
- Y-L Zhang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Lucchese G, Stufano A, Trost B, Kusalik A, Kanduc D. Peptidology: short amino acid modules in cell biology and immunology. Amino Acids 2006; 33:703-7. [PMID: 17077961 DOI: 10.1007/s00726-006-0458-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/05/2006] [Indexed: 12/17/2022]
Abstract
Short amino acid motifs, either linear sequences or discontinuous amino acid groupings, can interact with specific protein domains, so exerting a central role in cell adhesion, signal transduction, hormone activity, regulation of transcript expression, enzyme activity, and antigen-antibody interaction. Here, we analyze the literature for such critical short amino acid motifs to determine the minimal peptide length involved in biologically important interactions. We report the pentapeptide unit as a common minimal amino acid sequence critically involved in peptide-protein interaction and immune recognition. The present survey may have implications in defining the dimensional module for peptide-based therapeutical approaches such as the development of novel antibiotics, enzyme inhibitors/activators, mimetic agonists/antagonists of neuropeptides, thrombolitic agents, specific anti-viral agents, etc. In such a therapeutical context, it is of considerable interest that low molecular weight peptides can easily cross biological barriers, are less susceptible to protease attacks, and can be administered at high concentrations. In addition, small peptides are a rational target for strategies aimed at antigen-specific immunotherapeutical intervention. As an example, specific short peptide fragments might be used to elicit antibodies capable of reacting with the full-length proteins containing the peptide fragment's amino acid sequence, so abolishing the risk of cross-reactivity.
Collapse
Affiliation(s)
- G Lucchese
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
16
|
Lico C, Capuano F, Renzone G, Donini M, Marusic C, Scaloni A, Benvenuto E, Baschieri S. Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles. J Gen Virol 2006; 87:3103-3112. [PMID: 16963770 DOI: 10.1099/vir.0.82097-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The potexvirus Potato virus X (PVX) can be modified genetically to generate chimeric virus particles (CVPs) carrying heterologous peptides fused to coat protein (CP) subunits. A spontaneous PVX mutant expressing a truncated, but functional, form of the CP has been isolated. With the aim of exploiting this virus to display peptides useful for vaccine formulations, two novel viral expression vectors based on pPVX201 (bearing the wild-type PVX genome) were constructed encoding the truncated CP. Both vectors were able to produce infectious virus particles in planta and were used to insert a panel of sequences encoding peptides of biopharmaceutical interest as N-terminal fusions to the truncated cp gene. The analysis of infection progression induced by the different constructs enabled identification of two important structural features of the fused peptide, namely tryptophan content and isoelectric point, critically affecting the formation of PVX CVPs and virus movement through the plant. These results are discussed in view of the rising interest in engineered plant viruses for development of peptide-based epitope vaccines.
Collapse
Affiliation(s)
- Chiara Lico
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | - Floriana Capuano
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Marcello Donini
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | - Carla Marusic
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Eugenio Benvenuto
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | - Selene Baschieri
- Sezione di Genetica e Genomica Vegetale, ENEA CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| |
Collapse
|
17
|
Mihailova M, Boos M, Petrovskis I, Ose V, Skrastina D, Fiedler M, Sominskaya I, Ross S, Pumpens P, Roggendorf M, Viazov S. Recombinant virus-like particles as a carrier of B- and T-cell epitopes of hepatitis C virus (HCV). Vaccine 2006; 24:4369-77. [PMID: 16574285 DOI: 10.1016/j.vaccine.2006.02.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 11/22/2022]
Abstract
The major aim of the project was the development of virus-like particles (VLP) displaying B- and T-cell epitopes of hepatitis C virus (HCV) proteins. To this end, hepatitis B virus core (HBc) particles were used as a carrier of HCV epitopes. Fragments of HCV genes encoding core (aa 98) and NS3 (aa 155) proteins were fused to the 3' terminus of the truncated HBV core gene. All recombinant plasmids led to relatively high levels of expression of chimeric proteins in E. coli, which resulted in the formation of complete "mature" VLP. Chimeric HBc/HCV VLPs were purified by combination of gel filtration and sucrose gradient centrifugation, and used for immunogenicity studies in mice. All variants of hybrid particles induced high humoral and cellular responses to HBcAg. Immunization with the HBc/HCV core particles led to relatively low antibody and T-cell proliferative responses to HCV core epitopes. The HBc/HCV NS3 particles were able to induce high levels of anti-NS3 antibodies in the absence of proliferative responses to HCV epitopes. Thus, the results of the current study have demonstrated the principal possibility of using VLP on the basis of HBcAg for creation of a new type of HCV-specific immunogen.
Collapse
Affiliation(s)
- Marija Mihailova
- Institute of Virology, Essen University Hospital, Essen 45122, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Freivalds J, Dislers A, Ose V, Skrastina D, Cielens I, Pumpens P, Sasnauskas K, Kazaks A. Assembly of bacteriophage Qbeta virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris. J Biotechnol 2006; 123:297-303. [PMID: 16406160 DOI: 10.1016/j.jbiotec.2005.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/30/2005] [Accepted: 11/23/2005] [Indexed: 11/26/2022]
Abstract
Recombinant bacteriophage Qbeta coat protein (CP), which has been proposed as a promising carrier of foreign epitopes via their incorporation either by gene engineering techniques or by chemical coupling, efficiently self-assembles into virus-like particles (VLPs) when expressed in Escherichia coli. Here, we demonstrate expression and self-assembly of Qbeta CP in yeast Saccharomyces cerevisiae and Pichia pastoris. Production reached 3-4 mg/1g of wet cells for S. cerevisiae and 4-6 mg for P. pastoris, which was about 15-20% and 20-30% of the E. coli expression level, respectively. Qbeta VLPs were easily purified by size-exclusion chromatography in both cases and contained nucleic acid, shown by native agarose gel electrophoresis. The obtained particles were highly immunogenic in mice and the resulting sera recognized both E. coli- and yeast-derived Qbeta VLPs equally well.
Collapse
Affiliation(s)
- Janis Freivalds
- Biomedical Research and Study Centre, Ratsupites 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ling S, Lai A, Borschukova O, Pumpens P, Holoshitz J. Activation of nitric oxide signaling by the rheumatoid arthritis shared epitope. ACTA ACUST UNITED AC 2006; 54:3423-32. [PMID: 17075829 DOI: 10.1002/art.22178] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Susceptibility to rheumatoid arthritis (RA) is closely associated with HLA-DRB1 alleles encoding a shared epitope (SE) in positions 70-74 of the HLA-DRbeta chain. The mechanistic basis for this association is unknown. Given the proposed pathogenic role of nitric oxide (NO) in RA, this study was undertaken to examine whether the SE can trigger NO signaling events. METHODS The intracellular levels of NO were measured with the fluorescent NO probe 4,5-diaminofluorescein diacetate and by the 2,3-diaminonaphthalene method. NO synthase activity was determined by measuring the rate of conversion of radioactive arginine to citrulline. Levels of cGMP were measured with a commercial enzyme-linked immunosorbent assay, and the cytolytic activity of T cells was measured using a standard (51)Cr release assay. RESULTS Lymphoblastoid B cell lines carrying SE-positive HLA-DR alleles displayed a higher rate of spontaneous NO production compared with SE-negative cells. L cell transfectants expressing SE-positive DR molecules on their surface also generated higher levels of NO. Tetrameric HLA-DR molecules containing a DRbeta-chain encoded by the SE-positive DRB1*0401 allele stimulated fibroblast cells to produce higher levels of NO compared with cells stimulated with a control HLA-DR tetramer. Multimeric hepatitis B core proteins engineered to express region 65-79 encoded by the DRB1*0401 allele, but not the same region encoded by the control allele DRB1*0402, stimulated NO production in fibroblasts. Similarly, synthetic 15-mer peptides corresponding to the region 65-79 encoded by SE-positive alleles triggered increased NO levels when incubated with class II major histocompatibility complex-negative cells. The signaling pathway was found to involve NO synthase activation, followed by increased production of cGMP. SE-triggered increased NO levels inhibited cytolytic elimination of target cells. CONCLUSION The SE can trigger NO-mediated signaling events in opposite cells, and may thereby contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Song Ling
- University of Michigan, Ann Arbor 48109-0680, USA
| | | | | | | | | |
Collapse
|
20
|
Kazaks A, Borisova G, Cvetkova S, Kovalevska L, Ose V, Sominskaya I, Pumpens P, Skrastina D, Dislers A. Mosaic hepatitis B virus core particles presenting the complete preS sequence of the viral envelope on their surface. J Gen Virol 2004; 85:2665-2670. [PMID: 15302960 DOI: 10.1099/vir.0.79810-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequence of the preS domain of the hepatitis B virus (HBV, genotype D) envelope was inserted into the major immunodominant region (MIR) of the C-terminally truncated HBV core (HBc) protein. In Escherichia coli, the HBc–preS fusion protein was partially soluble and did not produce particles. Co-expression of the wild-type HBc as a helper protein along with the fusion protein led to the formation of mosaic HBc particles that exhibited HBc, preS1 and preS2 antigenicity. Two alternative combinations of medium- and high-copy plasmids were used for co-expression of fusion and helper proteins, in an attempt to improve mosaic particle production. However, the preS fusion content of the particles remained the same in both expression combinations. In a third co-expression in which the modified HBc helper lacked aa 76–85 in the MIR, the incorporation level of HBc–preS fusion into the particles was noticeably lower. Purified chimeric particles were immunogenic in mice.
Collapse
Affiliation(s)
- Andris Kazaks
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Galina Borisova
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Svetlana Cvetkova
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Larisa Kovalevska
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Velta Ose
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Irina Sominskaya
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Paul Pumpens
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Dace Skrastina
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Andris Dislers
- Biomedical Research and Study Centre, University of Latvia, 1 Ratsupites Street, LV-1067 Riga, Latvia
| |
Collapse
|
21
|
|
22
|
Wei J, Wang YQ, Lu ZM, Li GD, Wang Y, Zhang ZC. Detection of anti-preS1 antibodies for recovery of hepatitis B patients by immunoassay. World J Gastroenterol 2002; 8:276-81. [PMID: 11925607 PMCID: PMC4658366 DOI: 10.3748/wjg.v8.i2.276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a convenient immunoassay method based on recombinant antigen preS1(21-119 aa) to detect anti-preS1 antibodies and evaluate the clinical significance of antibodies in hepatitis B.
METHODS: The expression plasmid pET-28a-preS1 was constructed, and a large quantity of preS1(21-119 aa) fragment of the large HBsAg protein was obtained. The preS1 fragment purified by Ni2+-IDA affinity chromatography was used as coated antigen to establish the indirect ELISA based on streptavidin-biotin system for detection of the anti-preS1 antibodies in sera from HBV-infected patients. For follow-up study, serial sera were collected during the clinical course of 21 HBV-infected patients and anti-preS1 antibodies, preS1 antigen, HBV-DNA and other serological HBV markers were analyzed.
RESULTS: preS1(21-119 aa) fragment was highly expressed from the plasmid pET-28a-preS1 in a soluble form in E. coli (30 mg•L⁻¹), and easily purified to high purity over 90% by one step of Ni2+-IDA-sepharose 6B affinity chromatography. The purity and antigenicity of the purified preS1(21-119 aa) protein was determined by 150 g•L⁻¹ SDS-PAGE, Western blot and a direct ELISA. Recombinant preS1(21-119 aa) protein was successfully applied in the immunoassay which could sensitively detect the anti-preS1 antibodies in serum specimens of acute or chronic hepatitis B patients. Results showed that more than half of 19 acute hepatitis B patients produced anti-preS1 antibodies during recovery of the disease, however, the response was only found in a few of chronic patients. In the clinical follow-up study of 11 patients with anti-preS1 positive serological profile, HBsAg and HBV-DNA clearance occurred in 6 of 10 acute hepatitis B patients in 5-6 mo, and seroconversion of HBeAg and disappearance of HBV-DNA occurred in 1 chronic patients treated with lavumidine, a antiviral agent.
CONCLUSION: The high-purity preS1(21-119 aa) coated antigen was successfully prepared by gene expression and affinity chromatography. Using this antigen, a conveniently detective system of anti-preS1 antibodies in sera was established. Preliminarily clinical trial the occurrence of anti-preS1 antibodies in acute hepatitis B patients suggests the clearance of HBV from serum in a short-term time, and anti-preS1 positive in chronic patients means health improvement or recovery from the disease.
Collapse
Affiliation(s)
- Jun Wei
- Institute of Biochemsitry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
23
|
Wei J, Liu XJ, Wang YQ, Lu ZM, Li GD, Wang Y, Zhang ZC. Development of the diagnostic immunoassay to detect anti-PreS1(21-47aa) antibody--a marker suggesting the health improvement of hepatitis B patients. Clin Chim Acta 2002; 317:159-69. [PMID: 11814471 DOI: 10.1016/s0009-8981(01)00783-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND A new immunoassay has been developed for the detection of the anti-PreS1(21-47aa) antibody in sera of hepatitis B virus (HBV)-infected patients. Anti-PreS1(21-47aa) antibody involves virus neutralization and is a new marker for diagnosing acute and chronic B hepatitis. METHODS The expression plasmids pGEXS I and pGEXS II, which expressed glutathione S-transferase (GST) fusion proteins containing a copy of PreS1(21-47aa) peptide and two orderly joined copies of PreS1(21-47aa) peptide, were constructed. The soluble expression products were purified by affinity chromatography. RESULTS The two PreS1(21-47aa) fusion proteins were both successfully applied in the immunoassay based on biotin-protein A and streptavidin-HRP, and could detect the anti-PreS1(21-47aa) antibody with high sensitivity in sera from hepatitis B patients. The anti-PreS1(21-27aa) antibody was detected during the recovery phase of acute hepatitis B patients, but it was found only in few of the chronic carriers by the established conventional system. CONCLUSIONS The follow-up study suggested that the presence of the anti-PreS1(21-27aa) antibody correlated well with the recovery of patients from hepatitis and the improvement in health.
Collapse
Affiliation(s)
- Jun Wei
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Lazdina U, Cao T, Steinbergs J, Alheim M, Pumpens P, Peterson DL, Milich DR, Leroux-Roels G, Sällberg M. Molecular basis for the interaction of the hepatitis B virus core antigen with the surface immunoglobulin receptor on naive B cells. J Virol 2001; 75:6367-74. [PMID: 11413303 PMCID: PMC114359 DOI: 10.1128/jvi.75.14.6367-6374.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleocapsid of the hepatitis B virus (HBV) is composed of 180 to 240 copies of the HBV core (HBc) protein. HBc antigen (HBcAg) capsids are extremely immunogenic and can activate naive B cells by cross-linking their surface receptors. The molecular basis for the interaction between HBcAg and naive B cells is not known. The functionality of this activation was evidenced in that low concentrations of HBcAg, but not the nonparticulate homologue HBV envelope antigen (HBeAg), could prime naive B cells to produce anti-HBc in vitro with splenocytes from HBcAg- and HBeAg-specific T-cell receptor transgenic mice. The frequency of these HBcAg-binding B cells was estimated by both hybridoma techniques and flow cytometry (B7-2 induction and direct HBcAg binding) to be approximately 4 to 8% of the B cells in a naive spleen. Cloning and sequence analysis of the immunoglobulin heavy- and light-chain variable (VH and VL) domains of seven primary HBcAg-binding hybridomas revealed that six (86%) were related to the murine and human VH1 germ line gene families and one was related to the murine VH3 family. By using synthetic peptides spanning three VH1 sequences, one VH3 sequence, and one VLkappaV sequence, a linear motif in the framework region 1 (FR1)complementarity-determining region 1 (CDR1) junction of the VH1 sequence was identified that bound HBcAg. Interestingly, the HBcAg-binding motif was present in the VL domain of the HBcAg-binding VH3-encoded antibody. Finally, two monoclonal antibodies containing linear HBcAg-binding motifs blocked HBcAg presentation by purified naive B cells to purified HBcAg-primed CD4(+) T cells. Thus, the ability of HBcAg to bind and activate a high frequency of naive B cells seems to be mediated through a linear motif present in the FR1-CDR1 junction of the heavy or light chain of the B-cell surface receptor.
Collapse
Affiliation(s)
- U Lazdina
- Division of Clinical Virology, F 68, Karolinska Institutet at Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gedvilaite A, Frömmel C, Sasnauskas K, Micheel B, Ozel M, Behrsing O, Staniulis J, Jandrig B, Scherneck S, Ulrich R. Formation of immunogenic virus-like particles by inserting epitopes into surface-exposed regions of hamster polyomavirus major capsid protein. Virology 2000; 273:21-35. [PMID: 10891404 DOI: 10.1006/viro.2000.0392] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We generated highly immunogenic virus-like particles that are based on the capsid protein VP1 of the hamster polyomavirus (HaPV-VP1) and harbor inserted foreign epitopes. The HaPV-VP1 regions spanning amino acids 81-88 (position 1), 222/223 (2), 244-246 (3), and 289-294 (4) were predicted to be surface exposed. An epitope of the pre-S1 region of the hepatitis B virus (designated S1; amino acid sequence DPAFR) was introduced into the predicted positions of VP1. All VP1/S1 fusion proteins were expressed in yeast and generated virus-like particles. Immunoassays using the S1-specific monoclonal antibody MA18/7 and immunization of C57Bl6 mice with different VP1/S1 constructs showed a pronounced reactivity and a strong S1-specific antibody response for particles carrying the insert in position 1, 2, 1+2, and 1+3. Our results suggest that HaPV-VP1 represents a highly flexible carrier moiety for the insertion of foreign sequences offering a broad range of potential uses, especially in vaccine development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Capsid/chemistry
- Capsid/genetics
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins
- Cricetinae
- Enzyme Multiplied Immunoassay Technique
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Hepatitis B Surface Antigens/chemistry
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Polyomavirus/chemistry
- Polyomavirus/genetics
- Polyomavirus/immunology
- Polyomavirus/metabolism
- Protein Conformation
- Protein Precursors/chemistry
- Protein Precursors/genetics
- Protein Precursors/immunology
- Protein Precursors/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- A Gedvilaite
- Institute of Biotechnology, Vilnius, LT-2028, Lithuania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wizemann H, Weiland F, Pfaff E, von Brunn A. Polyhistidine-tagged hepatitis B core particles as carriers of HIV-1/gp120 epitopes of different HIV-1 subtypes. Biol Chem 2000; 381:231-43. [PMID: 10782994 DOI: 10.1515/bc.2000.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hepatitis B core antigen is a widely accepted carrier particle to enhance the immunogenicity of foreign epitopes. From electron cryomicroscopy, the immunodominant region between amino acid positions 79 to 81 is known to protrude from the surface of the shells. It can be replaced by heterologous sequences without interfering with the particle-forming capacity in many cases. Here we have introduced various V3 sequences of the envelope protein of different subtypes (A, B, O) of HIV-1/gp120 in order to enhance their immunogenicity and broaden the immune response against the virus. To improve purification efficiency and solubility of the E. coli-expressed hybrids, six histidine residues were fused to amino acid 156. An adjustable purification scheme was utilised including denaturation, Ni(2+)-NTA affinity chromatography and particle renaturation under high salt conditions, resulting in highly pure antigen preparations. The hybrids reacted specifically with sera of HIV-1-infected patients. They further induced an autologous, subtype-specific anti-HIV-1 antibody response superior to that of Keyhole limpet-haemocyanine-coupled peptides.
Collapse
Affiliation(s)
- H Wizemann
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum, München Germany
| | | | | | | |
Collapse
|