1
|
Kudryashova TV, Zaitsev S, Jiang L, Buckley BJ, McGuckin JP, Goncharov D, Zhyvylo I, Lin D, Newcomb G, Piper B, Bogamuwa S, Saiyed A, Teos L, Ranson M, Wolters PJ, Kelso MJ, Poncz M, DeLisser HM, Cines DB, Goncharova EA, Farkas L, Stepanova V. PAI-1 Deficiency Drives Pulmonary Vascular Smooth Muscle Remodeling and Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558893. [PMID: 37790328 PMCID: PMC10542168 DOI: 10.1101/2023.09.21.558893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and potentially a rapidly fatal disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PA) leading to increased pulmonary vascular resistance and right heart failure. Central to the remodeling process is a switch of the smooth muscle cells in small PAs (PASMC) to a proliferative, apoptosis-resistant phenotype. There is reason to suspect that the plasminogen activator system may play an important role in the remodeling program in PAH based on its roles in vascular post-injury restenosis, fibrosis, angiogenesis and tumorigenesis. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of the plasminogen activators - urokinase-type and tissue-type (uPA and tPA, respectively). Immunohisto- chemical and immunoblot analyses revealed that PAI-1 was deficient in smooth muscle areas of small remodeled PAs and early-passage PASMC from subjects with PAH compared to non-PAH controls. PAI1-/- male and female mice developed spontaneous pulmonary vascular remodeling and pulmonary hypertension (PH) as evidenced by significant increase in PA medial thickness, systolic right ventricular pressure, and right ventricular hypertrophy. Lastly, the uPA inhibitors upamostat (WX-671) and amiloride analog BB2-30F down-regulated mTORC1 and SMAD3, restored PAI-1 levels, reduced proliferation, and induced apoptosis in human PAH PASMC. We examined the effect of inhibition of uPA catalytic activity by BB2-30F on the development of SU5416/Hypoxia (SuHx)-induced PH in mice. Vehicletreated SuHx-exposed mice had up-regulated mTORC1 in small PAs, developed pulmonary vascular remodeling and PH, as evidenced by significant increase of PA MT, sRVP, RV hypertrophy, and a significant decrease in the pulmonary artery acceleration time/pulmonary ejection time (PAAT/PET) ratio compared to age- and sex-matched normoxia controls, whereas BB2-30F-treated group was protected from all these pathological changes. Taken together, our data strongly suggest that PAI-1 down- regulation in PASMC from human PAH lungs promotes PASMC hyper-proliferation, remodeling, and spontaneous PH due to unopposed uPA activation. Further studies are needed to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate the progression and/or reverse pulmonary vascular remodeling and PH.
Collapse
|
2
|
Wang B, Gu B, Zhang T, Li X, Wang N, Ma C, Xiang L, Wang Y, Gao L, Yu Y, Song K, He P, Wang Y, Zhu J, Chen H. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett 2023; 559:216117. [PMID: 36889376 DOI: 10.1016/j.canlet.2023.216117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The fibrinolytic system is involved in many physiological functions, among which the important members can interact with each other, either synergistically or antagonistically to participate in the pathogenesis of many diseases. Plasminogen activator inhibitor 1 (PAI-1) acts as a crucial element of the fibrinolytic system and functions in an anti-fibrinolytic manner in the normal coagulation process. It inhibits plasminogen activator, and affects the relationship between cells and extracellular matrix. PAI-1 not only involved in blood diseases, inflammation, obesity and metabolic syndrome but also in tumor pathology. Especially PAI-1 plays a different role in different digestive tumors as an oncogene or cancer suppressor, even a dual role for the same cancer. We term this phenomenon "PAI-1 paradox". PAI-1 is acknowledged to have both uPA-dependent and -independent effects, and its different actions can result in both beneficial and adverse consequences. Therefore, this review will elaborate on PAI-1 structure, the dual value of PAI-1 in different digestive system tumors, gene polymorphisms, the uPA-dependent and -independent mechanisms of regulatory networks, and the drugs targeted by PAI-1 to deepen the comprehensive understanding of PAI-1 in digestive system tumors.
Collapse
Affiliation(s)
- Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Baohong Gu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tao Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Na Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chenhui Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Yu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kewei Song
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yueyan Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jingyu Zhu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China; Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Badran M, Gozal D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int J Mol Sci 2022; 23:5516. [PMID: 35628326 PMCID: PMC9141273 DOI: 10.3390/ijms23105516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea is a chronic and prevalent condition that is associated with endothelial dysfunction, atherosclerosis, and imposes excess overall cardiovascular risk and mortality. Despite its high prevalence and the susceptibility of CVD patients to OSA-mediated stressors, OSA is still under-recognized and untreated in cardiovascular practice. Moreover, conventional OSA treatments have yielded either controversial or disappointing results in terms of protection against CVD, prompting the need for the identification of additional mechanisms and associated adjuvant therapies. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (tPA) and urinary-type plasminogen activator (uPA), is a key regulator of fibrinolysis and cell migration. Indeed, elevated PAI-1 expression is associated with major cardiovascular adverse events that have been attributed to its antifibrinolytic activity. However, extensive evidence indicates that PAI-1 can induce endothelial dysfunction and atherosclerosis through complex interactions within the vasculature in an antifibrinolytic-independent matter. Elevated PAI-1 levels have been reported in OSA patients. However, the impact of PAI-1 on OSA-induced CVD has not been addressed to date. Here, we provide a comprehensive review on the mechanisms by which OSA and its most detrimental perturbation, intermittent hypoxia (IH), can enhance the transcription of PAI-1. We also propose causal pathways by which PAI-1 can promote atherosclerosis in OSA, thereby identifying PAI-1 as a potential therapeutic target in OSA-induced CVD.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, 400 N Keene St, Suite 010, Columbia, MO 65201, USA;
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
4
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
5
|
PAI-1, the Plasminogen System, and Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21197066. [PMID: 32993026 PMCID: PMC7582753 DOI: 10.3390/ijms21197066] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
The plasminogen system is a critical proteolytic system responsible for the remodeling of the extracellular matrix (ECM). The master regulator of the plasminogen system, plasminogen activator inhibitor-1 (PAI-1), has been implicated for its role in exacerbating various disease states not only through the accumulation of ECM (i.e., fibrosis) but also its role in altering cell fate/behaviour. Examination of PAI-1 has extended through various tissues and cell-types with recent investigations showing its presence in skeletal muscle. In skeletal muscle, the role of this protein has been implicated throughout the regeneration process, and in skeletal muscle pathologies (muscular dystrophy, diabetes, and aging-driven pathology). Needless to say, the complete function of this protein in skeletal muscle has yet to be fully elucidated. Given the importance of skeletal muscle in maintaining overall health and quality of life, it is critical to understand the alterations—particularly in PAI-1—that occur to negatively impact this organ. Thus, we provide a comprehensive review of the importance of PAI-1 in skeletal muscle health and function. We aim to shed light on the relevance of this protein in skeletal muscle and propose potential therapeutic approaches to aid in the maintenance of skeletal muscle health.
Collapse
|
6
|
Abstract
The paradoxical pro-tumorigenic function of plasminogen activator inhibitor 1 (PAI-1, aka Serpin E1) in cancer progression and metastasis has been the subject of an abundant scientific literature that has pointed to a pro-angiogenic role, a growth and migration stimulatory function, and an anti-apoptotic activity, all directed toward promoting tumor growth, cancer cell survival, and metastasis. With uPA, PAI-1 is among the most reliable biomarkers and prognosticators in many cancer types. More recently, a novel pro-tumorigenic function of PAI-1 in cancer-related inflammation has been demonstrated. These multifaceted activities of PAI-1 in cancer progression are explained by the complex structure of PAI-1 and its multiple functions that go beyond its anti-fibrinolytic and anti-plasminogen activation activities. However, despite the multiple evidences supporting a pro-tumorigenic role of PAI-1 in cancer, and the development of several inhibitors, targeting PAI-1, has remained elusive. In this article, the various mechanisms responsible for the pro-tumorigenic functions of PAI-1 are reviewed with emphasis on its more recently described contribution to cancer inflammation. The challenges of targeting PAI-1 in cancer therapy are then discussed.
Collapse
Affiliation(s)
- Marta Helena Kubala
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute of Children's Hospital, Los Angeles, CA, 90027, USA
| | - Yves Albert DeClerck
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute of Children's Hospital, Los Angeles, CA, 90027, USA.
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Coudriet GM, Stoops J, Orr AV, Bhushan B, Koral K, Lee S, Previte DM, Dong HH, Michalopoulos GK, Mars WM, Piganelli JD. A Noncanonical Role for Plasminogen Activator Inhibitor Type 1 in Obesity-Induced Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1413-1422. [PMID: 31054988 DOI: 10.1016/j.ajpath.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/07/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes because of chronic hepatic inflammation and resultant insulin resistance. Hepatocyte growth factor (HGF) is responsible for resetting hepatic homeostasis after injury following activation by urokinase-type plasminogen activator (u-PA; encoded by the PLAU gene). Plasminogen activator inhibitor type-1 (PAI-1; encoded by the SERPINE1 gene), a u-PA inhibitor and antifibrinolytic agent, is often elevated in obesity and is linked to cardiovascular events. We hypothesized that, in addition to its role in preventing fibrinolysis, elevated PAI-1 inhibits HGF's activation by u-PA and the resultant anti-inflammatory and hepatoprotective properties. Wild-type and PAI-1 knockout (KO) mice on a high-fat diet both became significantly heavier than lean controls; however, the obese KO mice demonstrated improved glucose metabolism compared with wild-type mice. Obese KO mice also exhibited an increase in conversion of latent single-chain HGF to active two-chain HGF, coinciding with an increase in the phosphorylation of the HGF receptor (HGFR or MET, encoded by the MET gene), as well as dampened inflammation. These results strongly suggest that, in addition to its other functions, PAI-mediated inhibition of HGF activation prohibits the resolution of inflammation in the context of obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Gina M Coudriet
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anne V Orr
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly Koral
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sojin Lee
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dana M Previte
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - H Henry Dong
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Jon D Piganelli
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Chana-Muñoz A, Jendroszek A, Sønnichsen M, Wang T, Ploug M, Jensen JK, Andreasen PA, Bendixen C, Panitz F. Origin and diversification of the plasminogen activation system among chordates. BMC Evol Biol 2019; 19:27. [PMID: 30654737 PMCID: PMC6337849 DOI: 10.1186/s12862-019-1353-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Background The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. Results Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths. Conclusions This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system. Electronic supplementary material The online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Chana-Muñoz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Sønnichsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Tobias Wang
- Institute for Bioscience Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|
9
|
Chen X, Jiang Y, Pan D. miR-30c may serve a role in endometriosis by targeting plasminogen activator inhibitor-1. Exp Ther Med 2017; 14:4846-4852. [PMID: 29201189 PMCID: PMC5704271 DOI: 10.3892/etm.2017.5145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2016] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the role of miR-30c in endometriosis (EMs) and the underlying mechanism. The expression of miR-30c and plasminogen activator inhibitor type 1 (PAI-1) mRNA in EMs tissues was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the expression of PAI-1 protein was detected by western blot analysis. The proliferation, migration, invasion and adhesion of endometrial stromal cells (ESCs) in different groups transfected with miR-30c mimic or inhibitor were compared. It was demonstrated that miR-30c expression in ectopic and eutopic endometriosis tissues were significantly lower than in normal endometrial tissue. However, PAI-1 mRNA expression in ectopic and eutopic endometrial tissues was higher than in normal endometrial tissues. Furthermore, the expression of PAI-1 protein was higher in ectopic and eutopic endometrosis tissues than in normal tissues. RT-qPCR results indicated that miR-30c expression was significantly increased or decreased in ESCs following transfection of mimic or inhibitor of miR-30c, respectively. Overexpression of miR-30c repressed the expression of PAI-1 mRNA and protein, while inhibition of miR-30c upregulated the expression of PAI-1 in ESCs. In addition, the invasion, migration, proliferation and adhesion of ESCs was repressed following the overexpression of miR-30c, whereas they were promoted when miR-30c expression was downregulated. The results of the present study indicated that miR-30c serves an important role in the development and progression of EMs by regulating the expression of PAI-1.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Jiang
- Department of Gynecology and Obstetrics, Tengzhou Maternity and Child Care Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Dianling Pan
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
10
|
Qian JY, Chopp M, Liu Z. Mesenchymal Stromal Cells Promote Axonal Outgrowth Alone and Synergistically with Astrocytes via tPA. PLoS One 2016; 11:e0168345. [PMID: 27959956 PMCID: PMC5154605 DOI: 10.1371/journal.pone.0168345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
We reported that mesenchymal stromal cells (MSCs) enhance neurological recovery from experimental stroke and increase tissue plasminogen activator (tPA) expression in astrocytes. Here, we investigate mechanisms by which tPA mediates MSC enhanced axonal outgrowth. Primary murine neurons and astrocytes were isolated from wild-type (WT) and tPA-knockout (KO) cortices of embryos. Mouse MSCs (WT) were purchased from Cognate Inc. Neurons (WT or KO) were seeded in soma side of Xona microfluidic chambers, and astrocytes (WT or KO) and/or MSCs in axon side. The chambers were cultured as usual (normoxia) or subjected to oxygen deprivation. Primary neurons (seeded in plates) were co-cultured with astrocytes and/or MSCs (in inserts) for Western blot. In chambers, WT axons grew significantly longer than KO axons and exogenous tPA enhanced axonal outgrowth. MSCs increased WT axonal outgrowth alone and synergistically with WT astrocytes at both normoxia and oxygen deprivation conditions. The synergistic effect was inhibited by U0126, an ERK inhibitor, and receptor associated protein (RAP), a low density lipoprotein receptor related protein 1 (LRP1) ligand antagonist. However, MSCs exerted neither individual nor synergistic effects on KO axonal outgrowth. Western blot showed that MSCs promoted astrocytic tPA expression and increased neuronal tPA alone and synergistically with astrocytes. Also, MSCs activated neuronal ERK alone and synergistically with astrocytes, which was inhibited by RAP. We conclude: (1) MSCs promote axonal outgrowth via neuronal tPA and synergistically with astrocytic tPA; (2) neuronal tPA is critical to observe the synergistic effect of MSC and astrocytes on axonal outgrowth; and (3) tPA mediates MSC treatment-induced axonal outgrowth through the LRP1 receptor and ERK.
Collapse
Affiliation(s)
- Jian-Yong Qian
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay. Arch Biochem Biophys 2016; 604:128-42. [PMID: 27372899 DOI: 10.1016/j.abb.2016.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
Pro-coagulant, anti-coagulant and fibrinolytic pathways are responsible for maintaining hemostatic balance under physiological conditions. Any deviation from these pathways would result in hypercoagulability leading to life threatening diseases like myocardial infarction, stroke, portal vein thrombosis, deep vein thrombosis (DVT) and pulmonary embolism (PE). Angiogenesis is the process of sprouting of new blood vessels from pre-existing ones and plays a critical role in vascular repair, diabetic retinopathy, chronic inflammation and cancer progression. Serpins; a superfamily of protease inhibitors, play a key role in regulating both angiogenesis and coagulation. They are characterized by the presence of highly conserved secondary structure comprising of 3 β-sheets and 7-9 α-helices. Inhibitory role of serpins is modulated by binding to cofactors, specially heparin and heparan sulfate proteoglycans (HSPGs) present on cell surfaces and extracellular matrix. Heparin and HSPGs are the mainstay of anti-coagulant therapy and also have therapeutic potential as anti-angiogenic inhibitors. Many of the heparin binding serpins that regulate coagulation cascade are also potent inhibitors of angiogenesis. Understanding the molecular mechanism of the switch between their specific anti-coagulant and anti-angiogenic role during inflammation, stress and regular hemostasis is important. In this review, we have tried to integrate the role of different serpins, their interaction with cofactors and their interplay in regulating coagulation and angiogenesis.
Collapse
|
12
|
Qureshi T, Peterson CB. Single fluorescence probes along the reactive center loop reveal site-specific changes during the latency transition of PAI-1. Protein Sci 2015; 25:487-98. [PMID: 26540464 DOI: 10.1002/pro.2839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
The serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI-1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI-1, in which the solvent-exposed reactive center loop (RCL) inserts into its central β-sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13-P5') to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap-like RCL-insertion that occurs with a half-life of 1-2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half-life of ∼5 and 25 min at the P5' and P8 RCL positions, respectively. We hypothesize that the process detected at P5' represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
13
|
Estepa A, Coll J. Inhibition of SERPINe1 reduces rhabdoviral infections in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2015; 47:264-270. [PMID: 26363229 PMCID: PMC7185853 DOI: 10.1016/j.fsi.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
While exploring the molecular mechanisms behind the fin hemorrhages that follow zebrafish (Danio rerio) early infection with viral haemorrhagic septicemia virus (VHSV), we discovered that most serpin (serine protease inhibitor) gene transcripts were upregulated, except those of serpine1. Surprisingly, only SERPINe1-derived 14-mer peptide and low molecular weight drugs targeting SERPINe1 (i.e. tannic acid, EGCG, tiplaxtinin) inhibited in vitro infections not only of VHSV, but also of other fish rhabdoviruses such as infectious hematopoietic necrosis virus (IHNV) and spring viremia carp virus (SVCV). While the mechanisms that inhibited rhabdoviral infections remain speculative, these and other results suggested that SERPINEe1-derived peptide specifically targeted viral infectivity rather than virions. Practical applications might be developed from these studies since preliminary evidences showed that tannic acid could be used to reduce VHSV-caused mortalities. These studies are an example of how the identification of host genes targeted by viral infections using microarrays might facilitate the identification of novel prevention drugs in aquaculture and illuminate viral infection mechanisms.
Collapse
Affiliation(s)
- Amparo Estepa
- Universidad Miguel Hernández, UMH-IBMC, 03202 Elche, Spain.
| | - Julio Coll
- Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Crt. La Coruña, Km. 7, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Placencio VR, DeClerck YA. Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Res 2015; 75:2969-74. [PMID: 26180080 DOI: 10.1158/0008-5472.can-15-0876] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022]
Abstract
Despite its function as an inhibitor of urokinase and tissue-type plasminogen activator (PA), PA inhibitor-1 (PAI-1) has a paradoxical protumorigenic role in cancer, promoting angiogenesis and tumor cell survival. In this review, we summarize preclinical evidence in support of the protumorigenic function of PAI-1 that has led to the testing of small-molecule PAI-1 inhibitors, initially developed as antithrombotic agents, in animal models of cancer. The review discusses the challenges and the opportunities that lay ahead to the development of efficacious and nontoxic PAI-1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Veronica R Placencio
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| | - Yves A DeClerck
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
15
|
Hermann DM, Chopp M. Promoting Neurological Recovery in the Post-Acute Stroke Phase: Benefits and Challenges. Eur Neurol 2014; 72:317-25. [DOI: 10.1159/000365171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
16
|
Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 2013; 62:1-16. [PMID: 24272702 DOI: 10.1002/glia.22585] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/08/2013] [Accepted: 09/18/2013] [Indexed: 12/19/2022]
Abstract
Astrocytes have not been a major therapeutic target for the treatment of stroke, with most research emphasis on the neuron. Given the essential role that astrocytes play in maintaining physiological function of the central nervous system and the very rapid and sensitive reaction astrocytes have in response to cerebral injury or ischemic insult, we propose to replace the neurocentric view for treatment with a more nuanced astrocytic centered approach. In addition, after decades of effort in attempting to develop neuroprotective therapies, which target reduction of the ischemic lesion, there are no effective clinical treatments for stroke, aside from thrombolysis with tissue plasminogen activator, which is used in a small minority of patients. A more promising therapeutic approach, which may affect nearly all stroke patients, may be in promoting endogenous restorative mechanisms, which enhance neurological recovery. A focus of efforts in stimulating recovery post stroke is the use of exogenously administered cells. The present review focuses on the role of the astrocyte in mediating the brain network, brain plasticity, and neurological recovery post stroke. As a model to describe the interaction of a restorative cell-based therapy with astrocytes, which drives recovery from stroke, we specifically highlight the subacute treatment of stroke with multipotent mesenchymal stromal cell therapy.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | |
Collapse
|
17
|
Kousted TM, Skjoedt K, Petersen SV, Koch C, Vitved L, Sochalska M, Lacroix C, Andersen LM, Wind T, Andreasen PA, Jensen JK. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation. Thromb Haemost 2013; 111:29-40. [PMID: 24085288 DOI: 10.1160/th13-04-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/24/2013] [Indexed: 11/05/2022]
Abstract
Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jan K Jensen
- Jan K. Jensen, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, E-mail:
| |
Collapse
|
18
|
Trelle MB, Hirschberg D, Jansson A, Ploug M, Roepstorff P, Andreasen PA, Jørgensen TJD. Hydrogen/deuterium exchange mass spectrometry reveals specific changes in the local flexibility of plasminogen activator inhibitor 1 upon binding to the somatomedin B domain of vitronectin. Biochemistry 2012; 51:8256-66. [PMID: 22957734 DOI: 10.1021/bi3008998] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The native fold of plasminogen activator inhibitor 1 (PAI-1) represents an active metastable conformation that spontaneously converts to an inactive latent form. Binding of the somatomedin B domain (SMB) of the endogenous cofactor vitronectin to PAI-1 delays the transition to the latent state and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1 variant (14-1B) as well as the effect of stabilizing antibody Mab-1 on wild-type PAI-1. The three modes of stabilizing PAI-1 (SMB, Mab-1, and the mutations in 14-1B) all cause a delayed latency transition, and this effect was accompanied by unique signatures on the flexibility of PAI-1. Reduced flexibility in the region around helices B, C, and I was seen in all three cases, which suggests an involvement of this region in mediating structural flexibility necessary for the latency transition. These data therefore add considerable depth to our current understanding of the local structural flexibility in PAI-1 and provide novel indications of regions that may affect the functional stability of PAI-1.
Collapse
Affiliation(s)
- Morten Beck Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Koshiyama A, Ichibangase T, Imai K. Comprehensive fluorogenic derivatization-liquid chromatography/tandem mass spectrometry proteomic analysis of colorectal cancer cell to identify biomarker candidate. Biomed Chromatogr 2012; 27:440-50. [PMID: 22991145 DOI: 10.1002/bmc.2811] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/06/2012] [Accepted: 08/06/2012] [Indexed: 01/28/2023]
Abstract
Existing colorectal cancer biomarkers are insufficient for providing a quick and accurate diagnosis, which is critical for a good prognosis. More appropriate biomarkers are thus needed. To identify new colorectal cancer biomarker candidates, we conducted a comprehensive differential proteomic analysis of six cancer cell lines and a normal cell line, utilizing a fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) approach. Two sets of intracellular biomarker candidates were identified: one for colorectal cancer, and the other for metastatic colorectal cancer. Our results suggest that cooperative expression of FABP5 and cyclophilin A might be linked to Her2 signaling. Upregulation of LDHB and downregulation of GAPDH suggest the existence of a specific nonglycolytic energy production pathway in metastatic colorectal cancer cells. Downregulation of 14-3-3ζ/δ, cystatin-B, Ran and thioredoxin could be a result of their secretion, which then stimulates metastasis via activity in the sera and ascitic fluids. We propose a possible flow scheme to describe the dynamics of protein expression in colorectal cancer cells leading to tumor progression and metastasis via cell proliferation, angiogenesis, disorganization of actin filaments and epithelial-mesenchymal transition. Our results suggest that colorectal tumor progression may be regulated by signaling mediated by Her2, hypoxia, and TGFβ.
Collapse
Affiliation(s)
- Akiyo Koshiyama
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Liu J, Li X, Yu N, Yang YQ, Li X, Ye ZY, Li JC. Genetic instability and CpG methylation in the 5'-flanking region of the PAI-1 gene in Chinese patients with gastric cancer. GENETICS AND MOLECULAR RESEARCH 2012; 11:2899-908. [DOI: 10.4238/2012.may.18.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Laerum OD, Ovrebo K, Skarstein A, Christensen IJ, Alpízar-Alpízar W, Helgeland L, Danø K, Nielsen BS, Illemann M. Prognosis in adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia evaluated by uPAR-immunohistochemistry. Int J Cancer 2011; 131:558-69. [PMID: 21866548 DOI: 10.1002/ijc.26382] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 07/21/2011] [Indexed: 12/14/2022]
Abstract
Adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia in humans are highly invasive tumours with poor prognosis. The localisation of urokinase-type plasminogen activator receptor (uPAR) was determined in 66 patients; 60 with adenocarcinomas and six cases with Barrett's oesophagus. uPAR was expressed in nearly all cases of invasive adenocarcinomas by populations of cancer cells, macrophages and myofibroblasts at both the invasion front and the tumour core. In areas with high-grade dysplasia or with Barrett's metaplasia adjacent to the tumour tissue, no uPAR-immunoreactivity was found. High local expression of uPAR, therefore, appears to be a characteristic marker for invasive behaviour in this tumour, suggesting that uPAR's contribution to matrix degradation during invasive growth is a late event in carcinogenesis. Using a scoring system for semiquantitative estimation of uPAR-positivity on immmunohistochemically stained specimens, a significant association was found between poor overall survival and high uPAR-score for cancer cells in the tumour core and for macrophages peripherally at the tumour invasion zone. In multivariate analysis, these two uPAR-scores were confirmed as highly significant prognostic parameters independent of Tumour, Node, Metastasis (TNM)-stage and World Health Organization (WHO) classification. The proteolytic action of these malignant and nonmalignant accessory cells thus seemed to follow two main patterns: one dominated by uPAR positive cancer cells and one by uPAR-positive macrophages. Scoring of uPAR-positivity might be a useful parameter for onset of invasion and prognosis in these adenocarcinomas.
Collapse
Affiliation(s)
- Ole Didrik Laerum
- The Finsen Laboratory, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
23
|
Haiko J, Laakkonen L, Juuti K, Kalkkinen N, Korhonen TK. The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J Bacteriol 2010; 192:4553-61. [PMID: 20639337 PMCID: PMC2937412 DOI: 10.1128/jb.00458-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/23/2010] [Indexed: 01/03/2023] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reactive center loop. No cleavage of PAI-1 was detected with Yersinia pseudotuberculosis, an oral/fecal pathogen from which Y. pestis has evolved, or with Escherichia coli. The cleavage and inactivation of PAI-1 were mediated by the outer membrane proteases plasminogen activator Pla of Y. pestis and PgtE protease of S. enterica, which belong to the omptin family of transmembrane endopeptidases identified in Gram-negative bacteria. Cleavage of PAI-1 was also detected with the omptins Epo of Erwinia pyrifoliae and Kop of Klebsiella pneumoniae, which both belong to the same omptin subfamily as Pla and PgtE, whereas no cleavage of PAI-1 was detected with omptins of Shigella flexneri or E. coli or the Yersinia chromosomal omptins, which belong to other omptin subfamilies. The results reveal a novel serpinolytic mechanism by which enterobacterial species expressing omptins of the Pla subfamily bypass normal control of host proteolysis.
Collapse
Affiliation(s)
- Johanna Haiko
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Liisa Laakkonen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Katri Juuti
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Nisse Kalkkinen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Timo K. Korhonen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| |
Collapse
|
24
|
Blouse GE, Dupont DM, Schar CR, Jensen JK, Minor KH, Anagli JY, Gårdsvoll H, Ploug M, Peterson CB, Andreasen PA. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements. Biochemistry 2010; 48:1723-35. [PMID: 19193026 DOI: 10.1021/bi8017015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1. Complementary experiments using an engineered, fluorescently silent PAI-1 with non-natural amino acids showed that concomitant structural changes occur as well in native vitronectin. Furthermore, we have measured the effect of vitronectin on the rate of insertion of the reactive center loop into beta-sheet A of PAI-1 during reaction with target proteases. With a variety of PAI-1 variants, we observe that both full-length vitronectin and the SMB domain have protease-specific effects on the rate of loop insertion but that the two exhibit clearly different effects. These results support a model for PAI-1 binding to vitronectin in which the interaction surface extends beyond the region of PAI-1 occupied by the SMB domain. In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K., Christensen, A., Blouse, G. E., Andreasen, P. A., and Peterson, C. B. (2008) J. Biol. Chem. 283, 28487-28496).
Collapse
Affiliation(s)
- Grant E Blouse
- Laboratory of Cellular Protein Science, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Arhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Madsen JB, Dupont DM, Andersen TB, Nielsen AF, Sang L, Brix DM, Jensen JK, Broos T, Hendrickx MLV, Christensen A, Kjems J, Andreasen PA. RNA aptamers as conformational probes and regulatory agents for plasminogen activator inhibitor-1. Biochemistry 2010; 49:4103-15. [PMID: 20387790 DOI: 10.1021/bi100066j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hallmark of serpins is the ability to undergo the so-called "stressed-to-relaxed" switch during which the surface-exposed reactive center loop (RCL) becomes incorporated as strand 4 in central beta-sheet A. RCL insertion drives not only the inhibitory reaction of serpins with their target serine proteases but also the conversion to the inactive latent state. RCL insertion is coupled to conformational changes in the flexible joint region flanking beta-sheet A. One interesting serpin is plasminogen activator inhibitor-1 (PAI-1), a fast and specific inhibitor of the serine proteases tissue-type and urokinase-type plasminogen activator. Via its flexible joints' region, native PAI-1 binds vitronectin and relaxed, protease-complexed PAI-1 certain endocytosis receptors. From a library of 35-nucleotides long 2'-fluoropyrimidine-containing RNA oligonucleotides, we have isolated two aptamers binding PAI-1 by the flexible joint region with low nanomolar K(D) values. One of the aptamers exhibited measurable binding to native PAI-1 only, while the other also bound relaxed PAI-1. While none of the aptamers inhibited the antiproteolytic effect of PAI-1, both aptamers inhibited vitronectin binding and the relaxed PAI-1-binding aptamer also endocytosis receptor binding. The aptamer binding exclusively to native PAI-1 increased the half-life for the latency transition to more than 6 h, manyfold more than vitronectin. Contact with Lys124 in the flexible joint region was critical for strong inhibition of the latency transition and the lack of binding to relaxed PAI-1. We conclude that aptamers yield important information about the serpin conformational switch and, because they can compete with high-affinity protein-protein interactions, may provide leads for pharmacological intervention.
Collapse
Affiliation(s)
- Jeppe B Madsen
- Danish-Chinese Center for Proteases and Cancer, Aarhus University,10C Gustav Wieds Vej, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Illemann M, Bird N, Majeed A, Laerum OD, Lund LR, Danø K, Nielsen BS. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases. Int J Cancer 2009; 124:1860-1870. [PMID: 19123477 DOI: 10.1002/ijc.24166] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1). To compare the expression patterns of uPA, uPAR and PAI-1 in colon cancer with that in their liver metastases, we analysed matched samples from 14 patients. In all 14 primary colon cancers, we found upregulation of uPAR, uPA mRNA and PAI-1 in primarily stromal cells at the invasive front. In 5 of the 14 liver metastases, we found intense expression of uPAR, uPA-mRNA and PAI-1 in primarily stromal cells at the metastases periphery, and in an expression pattern similar to that found in the primary tumours. In the remaining 9 liver metastases, uPAR and uPA-mRNA were only seen associated with the presence of necrosis within the liver metastases. In addition, PAI-1-immunoreactivity was in all liver metastases seen in hepatocytes at the metastases periphery. Interestingly, the former 5 liver metastases positive for uPAR, uPA mRNA and PAI-1 at the metastasis periphery all had a predominantly desmoplastic reaction, whereas 8 of the remaining 9 showed direct contact between the cancer cells and the liver parenchyma. We conclude that there are 2 distinct patterns of expression of uPAR, uPA and PAI-1 in colon cancer liver metastases and that these correlate closely with 2 morphological growth patterns. These findings may have implication for the treatment of patients with metastatic disease.
Collapse
Affiliation(s)
- Martin Illemann
- The Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Ko CW, Wei Z, Marsh RJ, Armoogum DA, Nicolaou N, Bain AJ, Zhou A, Ying L. Probing nanosecond motions of plasminogen activator inhibitor-1 by time-resolved fluorescence anisotropy. MOLECULAR BIOSYSTEMS 2009; 5:1025-31. [DOI: 10.1039/b901691k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Laerum OD, Illemann M, Skarstein A, Helgeland L, Ovrebø K, Danø K, Nielsen BS. Crohn's disease but not chronic ulcerative colitis induces the expression of PAI-1 in enteric neurons. Am J Gastroenterol 2008; 103:2350-8. [PMID: 18844621 DOI: 10.1111/j.1572-0241.2008.01930.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic inflammation of the intestinal wall is the common characteristic of Crohn's disease and ulcerative colitis; disorders, which in some cases can be difficult to distinguish. The inflammation also affects the local neuronal plexuses of the enteric nervous system. It is known that plasminogen activator inhibitor-1 (PAI-1) and urokinase receptor (uPAR) are upregulated in neurons after experimental peripheral nerve injury and have been linked to nerve regeneration. METHODS The expression of PAI-1 and uPAR in neuronal cells in lesions of the gastrointestinal tract was analyzed by immunohistochemical techniques. RESULTS PAI-1 was found in a subset of neurons primarily located in the submucosal plexus of the small and large intestine in 24 of 28 cases (86%) with Crohn's disease, but in none of 17 cases with chronic ulcerative colitis and other severe inflammatory conditions in the intestinal wall. The PAI-1 was seen in the perikarya of the neurons and a few proximal axons, whereas nerves were negative. uPAR was seen in nerves in all types of lesion varying from 21% to 88% of the cases, most frequent in colon adenocarcinomas. No uPAR-positive nerves were detected in normal colon. CONCLUSIONS PAI-1-positive neurons in inflammatory bowel disease are linked to chronic inflammation in Crohn's disease, implying PAI-1 as a potential parameter for the differential diagnosis between Crohn's disease and ulcerative colitis. The findings also suggest that PAI-1 in neurons is related to pain and that both PAI-1 and uPAR are involved in neuronal repair in the inflamed tissue.
Collapse
Affiliation(s)
- Ole D Laerum
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Mathiasen L, Dupont DM, Christensen A, Blouse GE, Jensen JK, Gils A, Declerck PJ, Wind T, Andreasen PA. A peptide accelerating the conversion of plasminogen activator inhibitor-1 to an inactive latent state. Mol Pharmacol 2008; 74:641-53. [PMID: 18559377 DOI: 10.1124/mol.108.046417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and a potential therapeutic target in cancer and cardiovascular diseases. Accordingly, formation of a basis for development of specific PAI-1-inactivating agents is of great interest. One possible inactivation mode for PAI-1 is conversion to the inactive, so-called latent state. We have now screened a phage-displayed peptide library with PAI-1 as bait and isolated a 31-residue cysteine-rich peptide that will be referred to as paionin-4. A recombinant protein consisting of paionin-4 fused to domains 1 and 2 of the phage coat protein g3p caused a 2- to 3-fold increase in the rate of spontaneous inactivation of PAI-1. Paionin-4-D1D2 bound PAI-1 with a K(D) in the high nanomolar range. Using several biochemical and biophysical methods, we demonstrate that paionin-4-D1D2-stimulated inactivation consists of an acceleration of conversion to the latent state. As demonstrated by site-directed mutagenesis and competition with other PAI-1 ligands, the binding site for paionin-4 was localized in the loop between alpha-helix D and beta-strand 2A. We also demonstrate that a latency-inducing monoclonal antibody has an overlapping, but not identical binding site, and accelerates latency transition by another mechanism. Our results show that paionin-4 inactivates PAI-1 by a mechanism clearly different from other peptides, small organochemical compounds, or antibodies, whether they cause inactivation by stimulating latency transition or by other mechanisms, and that the loop between alpha-helix D and beta-strand 2A can be a target for PAI-1 inactivation by different types of compounds.
Collapse
Affiliation(s)
- Lisa Mathiasen
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jensen JK, Gettins PGW. High-resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: a new tool for detailed interaction studies and modeling. Protein Sci 2008; 17:1844-9. [PMID: 18725454 DOI: 10.1110/ps.036707.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wild-type plasminogen activator inhibitor type-1 (PAI-1) rapidly converts to the inactive latent state under conditions of physiological pH and temperature. For in vivo studies of active PAI-1 in cell culture and in vivo model systems, the 14-1B PAI-1 mutant (N150H-K154T-Q319L-M354I), with its stabilized active conformation, has thus become the PAI-1 of choice. As a consequence of the increased stability, the only two forms likely to be encountered are the active or the cleaved form, the latter either free or complexed with target proteinase. We hereby report the first structure of the stable 14-1B PAI-1 variant in its reactive center cleaved form, to a resolution of 2.0 A. The >99% complete structure represents the highest resolved structure of free cleaved PAI-1. This high-resolution structure should be of great use for drug target development and for modeling protein-protein interactions such as those of PAI-1 with vitronectin.
Collapse
Affiliation(s)
- Jan K Jensen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
31
|
Li SH, Gorlatova NV, Lawrence DA, Schwartz BS. Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands. J Biol Chem 2008; 283:18147-57. [PMID: 18436534 DOI: 10.1074/jbc.m709455200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.
Collapse
Affiliation(s)
- Shih-Hon Li
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
32
|
Liang MH, Wendland JR, Chuang DM. Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling. Mol Cell Neurosci 2007; 37:440-53. [PMID: 18077182 DOI: 10.1016/j.mcn.2007.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/23/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Smad proteins are intracellular transducers for transforming growth factor-beta (TGF-beta) signaling and play a critical role in differentiation, tissue repair and apoptosis of the central nervous system. Both TGF-beta and its regulated gene, plasminogen activator inhibitor type-1 (PAI-1), have been implicated in the etiology and progression of neurodegenerative diseases and mood disorders. We previously reported that GSK-3beta protein depletion suppresses Smad3/4-dependent gene transcription and causes a reduction in PAI-1 expression. Here, we provide evidence that lithium, the drug for the treatment and prophylaxis of bipolar disorder, inhibits Smad-dependent signaling by regulating cAMP-protein kinase A (PKA), AKT-glycogen synthase kinase-3beta (GSK-3beta), and CRE-dependent signaling pathways in neuron-enriched cerebral cortical cultures of rats. We demonstrate that lithium-induced activation of these pathways inhibits Smad3/4-dependent gene transcription through an increase in pCREB(Ser133) protein levels, an enhanced interaction between pCREB(Ser133) and p300/CBP, which causes Smad3/4-p300/CBP complex disruption and transcriptional suppression of Smad3/4-dependent genes. Therapeutic implications of our findings are discussed.
Collapse
Affiliation(s)
- Min-Huei Liang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Dr. MSC 1363, Bethesda, MD, USA
| | | | | |
Collapse
|
33
|
Komissarov AA, Zhou A, Declerck PJ. Modulation of serpin reaction through stabilization of transient intermediate by ligands bound to alpha-helix F. J Biol Chem 2007; 282:26306-15. [PMID: 17613529 DOI: 10.1074/jbc.m702089200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA.
| | | | | |
Collapse
|
34
|
Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 2006; 17:2999-3012. [PMID: 17035608 DOI: 10.1681/asn.2006050503] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Allison A Eddy
- Children's Hospital and Regional Medical Center, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA.
| | | |
Collapse
|
35
|
Kamikubo Y, Kroon G, Curriden SA, Dyson HJ, Loskutoff DJ. The reduced, denatured somatomedin B domain of vitronectin refolds into a stable, biologically active molecule. Biochemistry 2006; 45:3297-306. [PMID: 16519524 DOI: 10.1021/bi052278f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high-affinity binding site in human vitronectin (VN) for plasminogen activator inhibitor-1 (PAI-1) has been localized to the NH(2)-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44). A number of published structural and biochemical studies show conflicting results for the disulfide bonding pattern and the overall fold of the SMB domain, possibly because this domain may undergo disulfide shuffling and/or conformational changes during handling. Here we show that bacterially expressed recombinant SMB (rSMB) can be refolded to a single form that shows maximal activity in binding to PAI-1 and to a conformation-dependent monoclonal antibody (mAb 153). The oxidative refolding pathway of rSMB can be followed in the presence of glutathione redox buffers. This approach allowed the isolation and analysis of a number of intermediate folding species and of the final stably folded species at equilibrium. Competitive surface plasmon resonance analysis demonstrated that the stably refolded rSMB regained biological activity since it bound efficiently to PAI-1 and to mAb 153. In contrast, none of the folding intermediates bound to PAI-1 or to mAb 153. We also show by NMR analysis that the stably refolded rSMB is identical to the material used for the solution structure determination [Kamikubo et al. (2004) Biochemistry 43, 6519] and that it binds specifically to mAb 153 via an interface that includes the three aromatic side chains previously implicated in binding to PAI-1.
Collapse
Affiliation(s)
- Yuichi Kamikubo
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Lindberg P, Larsson A, Nielsen BS. Expression of plasminogen activator inhibitor-1, urokinase receptor and laminin γ-2 chain is an early coordinated event in incipient oral squamous cell carcinoma. Int J Cancer 2006; 118:2948-56. [PMID: 16395714 DOI: 10.1002/ijc.21568] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cancer cell invasion is facilitated by extracellular matrix degrading proteases such as plasmin. We have studied the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase receptor (uPAR) together with the gamma2-chain of laminin-5 (lam-gamma2) by immunohistochemistry in 20 cases with incipient oral squamous cell carcinoma (SCC). PAI-1-positive neoplastic cells located at the tip of the putative invasive front of grade 1 (incipient) carcinoma were seen in 16 of the 20 cases (75%), whereas adjacent normal and dysplastic epithelium was PAI-1-negative. Clusters of putative invasive neoplastic cells located in the lamina propria were PAI-1-positive in areas with grade 2 incipient carcinoma as were invasive cancer cells in areas of grade 3-4 invasive carcinoma. uPAR immunoreactivity was strongly expressed in numerous stromal cells in the carcinoma area in all 20 lesions, while a few uPAR-positive stromal cells were found in areas with normal and dysplastic epithelium. uPAR-positive neoplastic cell islands located at the front of the lesions were seen in 15 of the 20 cases. The expression pattern of lam-gamma2 was very similar to that of PAI-1; however, lam-gamma2-positive neoplastic cells were only detected in 11 of the 20 cases (55%) in areas of grade 1 incipient carcinoma. Direct comparison of the 3 components revealed colocalization in neoplastic cell islands in both incipient and invasive SCC. Our results suggest that PAI-1 is a novel potential marker of initial invasion in oral SCC, and that the coordinated expression of PAI-1 with uPAR and lam-gamma2 sustain the features of the early invasive cancer cells.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Oral Pathology, Center for Oral Health Science, Malmö University, Sweden.
| | | | | |
Collapse
|
37
|
Minor KH, Schar CR, Blouse GE, Shore JD, Lawrence DA, Schuck P, Peterson CB. A mechanism for assembly of complexes of vitronectin and plasminogen activator inhibitor-1 from sedimentation velocity analysis. J Biol Chem 2005; 280:28711-20. [PMID: 15905170 PMCID: PMC2034521 DOI: 10.1074/jbc.m500478200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) and vitronectin are cofactors involved in pathological conditions such as injury, inflammation, and cancer, during which local levels of PAI-1 are increased and the active serpin forms complexes with vitronectin. These complexes become deposited into surrounding tissue matrices, where they regulate cell adhesion and pericellular proteolysis. The mechanism for their co-localization has not been elucidated. We hypothesize that PAI-1-vitronectin complexes form in a stepwise and concentration-dependent fashion via 1:1 and 2:1 intermediates, with the 2:1 complex serving a key role in assembly of higher order complexes. To test this hypothesis, sedimentation velocity experiments in the analytical ultracentrifuge were performed to identify different PAI-1-vitronectin complexes. Analysis of sedimentation data invoked a novel multisignal method to discern the stoichiometry of the two proteins in the higher-order complexes formed (Balbo, A., Minor, K. H., Velikovsky, C. A., Mariuzza, R. A., Peterson, C. B., and Schuck, P. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 81-86). Our results demonstrate that PAI-1 and vitronectin assemble into higher order forms via a pathway that is triggered upon saturation of the two PAI-1-binding sites of vitronectin to form the 2:1 complex. This 2:1 PAI-1-vitronectin complex, with a sedimentation coefficient of 6.5 S, is the key intermediate for the assembly of higher order complexes.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Biochemistry, Cellular, and Molecular Biology and the Center of Excellence in Structural Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Vogel LK, Larsen JE, Hansen M, Truffer R. Conversion of proteins from a non-polarized to an apical secretory pattern in MDCK cells. Biochem Biophys Res Commun 2005; 330:665-72. [PMID: 15809049 DOI: 10.1016/j.bbrc.2005.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 11/15/2022]
Abstract
Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity of secretion is determined by conformational sensitive sorting signals.
Collapse
Affiliation(s)
- Lotte K Vogel
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
39
|
Holten-Andersen MN, Hansen U, Brünner N, Nielsen HJ, Illemann M, Nielsen BS. Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma. Int J Cancer 2005; 113:198-206. [PMID: 15386409 DOI: 10.1002/ijc.20566] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue inhibitor of matrix metalloproteases 1 (TIMP-1) inhibits the proteolytic activity of matrix metalloproteases and hereby prevents cancer invasion. However, TIMP-1 also possesses other functions such as inhibition of apoptosis, induction of malignant transformation and stimulation of cell-growth. We have previously demonstrated that TIMP-1 is elevated in blood from colorectal cancer patients and that high TIMP-1 levels predict poor prognosis. To clarify the role of TIMP-1 in colorectal tumorigenesis, the expression pattern of TIMP-1 in benign and malignant colorectal tumors was studied. In all of 24 cases of colorectal adenocarcinoma TIMP-1 mRNA was detected by in situ hybridization. In all cases TIMP-1 expression was found in fibroblast-like cells located at the invasive front but was seen only sporadically in normal mucosa. No TIMP-1 mRNA was seen in any of the cases in benign or malignant epithelial cells, in vascular cells or smooth muscle cells. Comparison of sections processed for TIMP-1 in situ hybridization with sections immunohistochemically stained with antibodies against TIMP-1 showed good correlation between TIMP-1 mRNA and immunoreactivity. Combining TIMP-1 in situ hybridization with immunohistochemical staining for alpha-smooth muscle actin or CD68 showed TIMP-1 mRNA in myofibroblasts but not in macrophages. TIMP-1 mRNA was detected in 2 of 7 adenomatous polyps in the adenoma area: in both cases associated with focal stromal inflammation at the epithelial-stromal interface. In conclusion, TIMP-1 expression is a rare event in benign human colon tissue but is highly expressed by myofibroblasts in association with invading colon cancer cells.
Collapse
|
40
|
Zhang Y, Pothakos K, Tsirka SAS. Extracellular proteases: biological and behavioral roles in the mammalian central nervous system. Curr Top Dev Biol 2005; 66:161-88. [PMID: 15825268 DOI: 10.1016/s0070-2153(05)66005-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Extracellular proteases and their inhibitors have been implicated in both physiological and pathological states in the central nervous system (CNS). Given the presence of several classes of proteases, it is believed that each enzyme may undertake distinct biological roles. Some are indispensible for neuronal migration, neurite outgrowth and pathfinding, and synaptic plasticity. Others are required for neuronal death and tumor growth and invasion. Furthermore, studies from transgenic animals lacking or overexpressing one or more of the proteases have suggested that functional compensations and redundance among different members do exist. Normally, protease activity is tightly regulated by specific inhibitors to prevent disastrous proteolysis. Various insults can disrupt the fine control of proteolysis and caise pathological changes. Novel strategies have been attempted to maintain or restore protease-inhibitors homeostasis, thus minimizing damages to the CNS. They may provide us with effective therapeutic tools for fighting certain neurological disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | | | |
Collapse
|
41
|
Komissarov AA, Andreasen PA, Bødker JS, Declerck PJ, Anagli JY, Shore JD. Additivity in effects of vitronectin and monoclonal antibodies against alpha-helix F of plasminogen activator inhibitor-1 on its reactions with target proteinases. J Biol Chem 2004; 280:1482-9. [PMID: 15516335 DOI: 10.1074/jbc.m408608200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators. Both mAbs delay the RCL insertion and induce an increase in the stoichiometry of inhibition (SI) to 1.4-9.5. Binding of vitronectin to NBD P9 PAI-1 does not affect SI but results in a 2.0-6.5-fold decrease in the limiting rate constant (klim) of RCL insertion for urokinase-type plasminogen activator at pH 6.2-8.0 and for tissue-type plasminogen activator at pH 6.2. Binding of vitronectin to the complexes of NBD P9 PAI-1 with mAbs results in a decrease in klim and in a 1.5-22-fold increase in SI. Thus, vitronectin and mAbs demonstrated additivity in the effects on the reaction with target proteinases. The same step in the reaction mechanism remains limiting for the rate of RCL insertion in the absence and presence of Vn and mAbs. We hypothesize that vitronectin, bound to alpha-helix F on the side opposite to the epitopes of the mAbs, potentiates the mAb-induced delay in RCL insertion and the associated substrate behavior by selectively decreasing the rate constant for the inhibitory branch of PAI-1 reaction (ki). These results demonstrate that mAbs represent a valid approach for inactivation of vitronectin-bound PAI-1 in vivo.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Division of Biochemical Research, Department of Pathology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM. Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 2004; 57:577-84. [PMID: 15166260 PMCID: PMC1770325 DOI: 10.1136/jcp.2003.014472] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell surface proteolysis is an important mechanism for generating biologically active proteins that mediate a range of cellular functions and contribute to biological processes such as angiogenesis. Although most studies have focused on the plasminogen system and matrix metalloproteinases (MMPs), recently there has been an increase in the identification of membrane associated proteases, including serine proteases, ADAMs, and membrane-type MMPs (MT-MMPs). Normally, protease activity is tightly controlled by tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitors (PAIs). The balance between active proteases and inhibitors is thought to determine the occurrence of proteolysis in vivo. High concentrations of proteolytic system components correlate with poor prognosis in many cancers. Paradoxically, high (not low) PAI-1 or TIMP concentrations predict poor survival in patients with various cancers. Recent observations indicate a much more complex role for protease inhibitors in tumour progression and angiogenesis than initially expected. As knowledge in the field of protease biology has improved, the unforeseen complexities of cell associated enzymes and their interaction with physiological inhibitors have emerged, often revealing unexpected mechanisms of action.
Collapse
Affiliation(s)
- A Noel
- Laboratory of Tumour and Development Biology, University of Liège, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kamikubo Y, De Guzman R, Kroon G, Curriden S, Neels JG, Churchill MJ, Dawson P, Ołdziej S, Jagielska A, Scheraga HA, Loskutoff DJ, Dyson HJ. Disulfide Bonding Arrangements in Active Forms of the Somatomedin B Domain of Human Vitronectin†. Biochemistry 2004; 43:6519-34. [PMID: 15157085 DOI: 10.1021/bi049647c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.
Collapse
Affiliation(s)
- Yuichi Kamikubo
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Offersen BV, Nielsen BS, Høyer-Hansen G, Rank F, Hamilton-Dutoit S, Overgaard J, Andreasen PA. The myofibroblast is the predominant plasminogen activator inhibitor-1-expressing cell type in human breast carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1887-99. [PMID: 14578188 PMCID: PMC1892443 DOI: 10.1016/s0002-9440(10)63547-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tumor level of plasminogen activator inhibitor-1 (PAI-1) is an informative biochemical marker of a poor prognosis in several cancer types. However, the tumor biological functions of PAI-1 and the identity of PAI-1-expressing cells are controversial. With the aim of immunohistochemically localizing PAI-1 in formalin-fixed, paraffin-embedded invasive ductal breast carcinoma samples, we raised new polyclonal antibodies against PAI-1 from different expression systems. The antibodies were affinity purified by absorption on immobilized preparations of PAI-1 different from those used for immunization. The specificity of the antibodies was ensured by immunoblotting analysis. In immunohistochemistry, the staining pattern obtained with the antibodies showed a good correlation with the PAI-1 mRNA expression pattern. In all 25 cases analyzed, PAI-1 immunoreactivity was predominantly localized in fibroblast-like cells. Double-immunofluorescence analyses showed co-expression of PAI-1 and alpha-smooth muscle actin in these cells, suggesting that they are myofibroblasts. PAI-1 was also seen in some myoepithelial cells surrounding occasional foci of ductal carcinoma in situ (9 of 25), some endothelial cells (8 of 25), some cancer cells (3 of 25), and some mast cells (6 of 25). In conclusion, we have provided a robust immunohistochemical procedure for detection of PAI-1 and shown that the majority of the PAI-1-expressing cells in invasive ductal breast carcinomas are myofibroblasts.
Collapse
Affiliation(s)
- Birgitte Vrou Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
45
|
Perron MJ, Blouse GE, Shore JD. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes. J Biol Chem 2003; 278:48197-203. [PMID: 14500731 DOI: 10.1074/jbc.m306184200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.
Collapse
Affiliation(s)
- Michel J Perron
- Department of Pathology, Division of Biochemical Research, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
46
|
Einholm AP, Pedersen KE, Wind T, Kulig P, Overgaard MT, Jensen JK, Bødker JS, Christensen A, Charlton P, Andreasen PA. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1. Biochem J 2003; 373:723-32. [PMID: 12723974 PMCID: PMC1223537 DOI: 10.1042/bj20021880] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 03/27/2003] [Accepted: 04/30/2003] [Indexed: 11/17/2022]
Abstract
XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases. Serpins inhibit their target proteases by the P(1) residue of their reactive centre loop (RCL) forming an ester bond with the active-site serine residue of the protease, followed by insertion of the RCL into the serpin's large central beta-sheet A. In the present study, we show that the RCL of XR5118-inactivated PAI-1 is inert to reaction with its target proteases and has a decreased susceptibility to non-target proteases, in spite of a generally increased proteolytic susceptibility of specific peptide bonds elsewhere in PAI-1. The properties of XR5118-inactivated PAI-1 were different from those of the so-called latent form of PAI-1. Alanine substitution of several individual residues decreased the susceptibility of PAI-1 to XR5118. The localization of these residues in the three-dimensional structure of PAI-1 suggested that the XR5118-induced inactivating conformational change requires mobility of alpha-helix F, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target.
Collapse
Affiliation(s)
- Anja P Einholm
- Department of Molecular Biology, Aarhus University, 10C Gustav Wied's Vej, 8000 C Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pedersen KE, Einholm AP, Christensen A, Schack L, Wind T, Kenney JM, Andreasen PA. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. Biochem J 2003; 372:747-55. [PMID: 12656676 PMCID: PMC1223451 DOI: 10.1042/bj20021868] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/24/2003] [Accepted: 03/26/2003] [Indexed: 12/29/2022]
Abstract
Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.
Collapse
Affiliation(s)
- Katrine E Pedersen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, Denmark.
| | | | | | | | | | | | | |
Collapse
|
48
|
Aaboe M, Offersen BV, Christensen A, Andreasen PA. Vitronectin in human breast carcinomas. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:72-82. [PMID: 12757937 DOI: 10.1016/s0925-4439(03)00059-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothelial area of some blood vessels. In normal tissue, vitronectin had a homogeneous periductal occurrence, with local accumulation much lower than that in the carcinomas. Using a new solid phase radioligand assay, the vitronectin concentrations of extracts of carcinomas and normal breast tissue were determined and found to be indistinguishable. Comparison of the vitronectin and the hemoglobin concentrations of the extracts showed that their vitronectin content was not derived from blood contamination. Vitronectin mRNA was undetectable in both carcinomas and normal tissue. We conclude that vitronectin is not synthesised locally in breast tissue but derived by leakage from vessels, followed by extracellular accumulation in patterns distinctly different in carcinomas and normal tissue. The observation of a high vitronectin content in the carcinomas and its localisation in the tissue contributes to the clarification of the role of vitronectin in tumour biology in interaction with the plasminogen activation system and integrins.
Collapse
MESH Headings
- Base Sequence
- Breast/blood supply
- Breast/metabolism
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Case-Control Studies
- Endothelium, Vascular/metabolism
- Extracellular Matrix/metabolism
- Female
- Humans
- Immunohistochemistry
- Plasminogen Activator Inhibitor 1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Tumor Cells, Cultured
- Vitronectin/genetics
- Vitronectin/metabolism
Collapse
Affiliation(s)
- Mads Aaboe
- Laboratory for Cellular Protein Science, Department for Molecular Biology, Aarhus University, Gustav Wied's Vej 10C, DK-8000 C, Aarhus, Denmark
| | | | | | | |
Collapse
|
49
|
Bødker JS, Wind T, Jensen JK, Hansen M, Pedersen KE, Andreasen PA. Mapping of the epitope of a monoclonal antibody protecting plasminogen activator inhibitor-1 against inactivating agents. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1672-9. [PMID: 12694180 DOI: 10.1046/j.1432-1033.2003.03523.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serpin family of serine proteinase inhibitors. Serpins inhibit their target proteinases by an ester bond being formed between the active site serine of the proteinase and the P1 residue of the reactive centre loop (RCL) of the serpin, followed by insertion of the RCL into beta-sheet A of the serpin. Concomitantly, there are conformational changes in the flexible joint region lateral to beta-sheet A. We have now, by site-directed mutagenesis, mapped the epitope for a monoclonal antibody, which protects the inhibitory activity of PAI-1 against inactivation by a variety of agents acting on beta-sheet A and the flexible joint region. Curiously, the epitope is localized in alpha-helix C and the loop connecting alpha-helix I and beta-strand 5A, on the side of PAI-1 opposite to beta-sheet A and distantly from the flexible joint region. By a combination of site-directed mutagenesis and antibody protection against an inactivating organochemical ligand, we were able to identify a residue involved in conferring the antibody-induced conformational change from the epitope to the rest of the molecule. We have thus provided evidence for communication between secondary structural elements not previously known to interact in serpins.
Collapse
Affiliation(s)
- Julie S Bødker
- Laboratory of Cellular Protein Science, Department of Molecular Biology, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Wind T, Jensen JK, Dupont DM, Kulig P, Andreasen PA. Mutational analysis of plasminogen activator inhibitor-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1680-8. [PMID: 12694181 DOI: 10.1046/j.1432-1033.2003.03524.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.
Collapse
Affiliation(s)
- Troels Wind
- Laboratory of Cellular Protein Science, Department of Molecular Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|