1
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
2
|
Delafiori J, Faria AVDS, de Oliveira AN, Sales GM, Dias-Audibert FL, Catharino RR. Unraveling the Metabolic Alterations Induced by Zika Infection in Prostate Epithelial (PNT1a) and Adenocarcinoma (PC-3) Cell Lines. J Proteome Res 2023; 22:193-203. [PMID: 36469742 DOI: 10.1021/acs.jproteome.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of Zika virus infection in 2016 led to the identification of its presence in several types of biofluids, including semen. Later discoveries associated Zika infection with sexual transmission and persistent replication in cells of the male reproductive tract. Prostate epithelial and carcinoma cells are favorable to virus replication, with studies pointing to transcriptomics alterations of immune and inflammation genes upon persistence. However, metabolome alterations promoted by the Zika virus in prostate cells are unknown. Given its chronic effects and oncolytic potential, we aim to investigate the metabolic alterations induced by the Zika virus in prostate epithelial (PNT1a) and adenocarcinoma (PC-3) cells using an untargeted metabolomics approach and high-resolution mass spectrometry. PNT1a cells were viable up to 15 days post ZIKV infection, in contrast to its antiproliferative effect in the PC-3 cell lineage. Remarkable alterations in the PNT1a cell metabolism were observed upon infection, especially regarding glycerolipids, fatty acids, and acylcarnitines, which could be related to viral cellular resource exploitation, in addition to the over-time increase in oxidative stress metabolites associated with carcinogenesis. The upregulation of FA20:5 at 5 dpi in PC-3 cells corroborates the antiproliferative effect observed since this metabolite was previously reported to induce PC-3 cell death. Overall, Zika virus promotes extensive lipid alterations on both PNT1a and PC-3 cells, promoting different outcomes based on the cellular metabolic state.
Collapse
Affiliation(s)
- Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Alessandra V de S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Arthur N de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Geovana M Sales
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| |
Collapse
|
3
|
DGKB mediates radioresistance by regulating DGAT1-dependent lipotoxicity in glioblastoma. Cell Rep Med 2023; 4:100880. [PMID: 36603576 PMCID: PMC9873821 DOI: 10.1016/j.xcrm.2022.100880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.
Collapse
|
4
|
Korenevskiy NA, Al-Kasasbeh RT, Al-Kasasbeh ET, Al-Smadi MM, Aikeyeva AA, Al-Jundi M, Rodionova SN, Al-Habahbeh OM, Filist S, Alshamasin MS, Maksim I. Method for Determining the Body's Level of Protection According to Oxidant Status in Assessing the Influence of Industrial Risk Factors on Health. Crit Rev Biomed Eng 2023; 51:1-17. [PMID: 37551905 DOI: 10.1615/critrevbiomedeng.2023047224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
This work aims at improving the quality of health assessments, specifically under the influence of occupational risk factors. For this purpose, additional informative indicators are utilized in prognostic and diagnostic models. The models are used to characterize the level of body protection based on oxidative status. A quantitative method is proposed to assess the body's level of protection by means of the levels of lipid peroxidation and antioxidant activity, which characterize the body's oxidative status. A mechanism is developed for integrating the proposed method into prognostic and diagnostic decision rules. The developed rules are in the form of mathematical models used to synthesize hybrid fuzzy decision rules, which are then used to quantify the level of body protection (LBP) against external risk factors, based on the use of protection level functions in terms of lipid peroxidation and antioxidant activity. A mechanism for embedding LBP into predictive and diagnostic decision rules has been proposed. The proposed method is used to predict the occurrence and development of coronary heart disease in railroad locomotive drivers. It was found that to improve the predicting and diagnosing of diseases caused by external pathogenic factors, quantitative assessments of LBP, determined by oxidative status, can be implemented. It has been established that the use of the protection level indicator in predictive decision rules makes it possible to increase the efficiency of the prediction while simultaneously increasing its accuracy.
Collapse
Affiliation(s)
| | - Riad Taha Al-Kasasbeh
- Department of Mechatronics Engineering, School of Engineering, The University of Jordan, Amman, Jordan
| | | | | | - Altyn A Aikeyeva
- Eurasian National University named after L.N. Gumilyov, Nur-Sultan, Kazakhstan
| | - Mohammad Al-Jundi
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sofia N Rodionova
- Eurasian National University named after L.N. Gumilyov, Nur-Sultan, Kazakhstan; South-West State University, Kursk, Russia
| | - Osama M Al-Habahbeh
- Department of Mechatronics Engineering, School of Engineering, The University of Jordan, Amman, Jordan
| | | | - Mahdi Salman Alshamasin
- Department of Mechatronics Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, Jordan
| | | |
Collapse
|
5
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
6
|
Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs. Sci Rep 2022; 12:4863. [PMID: 35318410 PMCID: PMC8941097 DOI: 10.1038/s41598-022-08933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status.
Collapse
|
7
|
Blay C, Haffray P, D'Ambrosio J, Prado E, Dechamp N, Nazabal V, Bugeon J, Enez F, Causeur D, Eklouh-Molinier C, Petit V, Phocas F, Corraze G, Dupont-Nivet M. Genetic architecture and genomic selection of fatty acid composition predicted by Raman spectroscopy in rainbow trout. BMC Genomics 2021; 22:788. [PMID: 34732127 PMCID: PMC8564959 DOI: 10.1186/s12864-021-08062-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Background In response to major challenges regarding the supply and sustainability of marine ingredients in aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and fish meal. But, this also led to lower levels of healthful n−3 long-chain polyunsaturated fatty acids (PUFAs)—especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids—in flesh. One potential solution is to select fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the production of healthier fish products. To this end, we aimed i) to estimate the genetic variability in fatty acid (FA) composition in visceral fat quantified by Raman spectroscopy, with respect to both individual FAs and groups under a feeding regime with limited n-3 PUFAs; ii) to study the genetic and phenotypic correlations between FAs and processing yields- and fat-related traits; iii) to detect QTLs associated with FA composition and identify candidate genes; and iv) to assess the efficiency of genomic selection compared to pedigree-based BLUP selection. Results Proportions of the various FAs in fish were indirectly estimated using Raman scattering spectroscopy. Fish were genotyped using the 57 K SNP Axiom™ Trout Genotyping Array. Following quality control, the final analysis contained 29,652 SNPs from 1382 fish. Heritability estimates for traits ranged from 0.03 ± 0.03 (n-3 PUFAs) to 0.24 ± 0.05 (n-6 PUFAs), confirming the potential for genomic selection. n-3 PUFAs are positively correlated to a decrease in fat deposition in the fillet and in the viscera but negatively correlated to body weight. This highlights the potential interest to combine selection on FA and against fat deposition to improve nutritional merit of aquaculture products. Several QTLs were identified for FA composition, containing multiple candidate genes with indirect links to FA metabolism. In particular, one region on Omy1 was associated with n-6 PUFAs, monounsaturated FAs, linoleic acid, and EPA, while a region on Omy7 had effects on n-6 PUFAs, EPA, and linoleic acid. When we compared the effectiveness of breeding programmes based on genomic selection (using a reference population of 1000 individuals related to selection candidates) or on pedigree-based selection, we found that the former yielded increases in selection accuracy of 12 to 120% depending on the FA trait. Conclusion This study reveals the polygenic genetic architecture for FA composition in rainbow trout and confirms that genomic selection has potential to improve EPA and DHA proportions in aquaculture species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08062-7.
Collapse
Affiliation(s)
- Carole Blay
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jonathan D'Ambrosio
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,SYSAAF, Station LPGP-INRAE, Rennes, France
| | - Enora Prado
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | - Nicolas Dechamp
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Virginie Nazabal
- University of Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, Rennes, France
| | | | | | - David Causeur
- Laboratoire de Mathématiques Appliquées, IRMAR, Agrocampus Ouest, Rennes, France
| | | | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Geneviève Corraze
- INRAE, University of Pau & Pays Adour, E2S UPPA, UMR1419 NuMéA, St Pée sur, Nivelle, France
| | | |
Collapse
|
8
|
Comprehensive analysis of PPARγ agonist activities of stereo-, regio-, and enantio-isomers of hydroxyoctadecadienoic acids. Biosci Rep 2021; 40:222599. [PMID: 32266936 PMCID: PMC7198041 DOI: 10.1042/bsr20193767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hydroxyoctadecadienoic acids (HODEs) are produced by oxidation and reduction of linoleates. There are several regio- and stereo-isomers of HODE, and their concentrations in vivo are higher than those of other lipids. Although conformational isomers may have different biological activities, comparative analysis of intracellular function of HODE isomers has not yet been performed. We evaluated the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ), a therapeutic target for diabetes, and analyzed PPARγ agonist activity of HODE isomers. The lowest scores for docking poses of 12 types of HODE isomers (9-, 10-, 12-, and 13-HODEs) were almost similar in docking simulation of HODEs into PPARγ ligand-binding domain (LBD). Direct binding of HODE isomers to PPARγ LBD was determined by water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiments. In contrast, there were differences in PPARγ agonist activities among 9- and 13-HODE stereo-isomers and 12- and 13-HODE enantio-isomers in a dual-luciferase reporter assay. Interestingly, the activity of 9-HODEs was less than that of other regio-isomers, and 9-(E,E)-HODE tended to decrease PPARγ-target gene expression during the maturation of 3T3-L1 cells. In addition, 10- and 12-(Z,E)-HODEs, which we previously proposed as biomarkers for early-stage diabetes, exerted PPARγ agonist activity. These results indicate that all HODE isomers have PPARγ-binding affinity; however, they have different PPARγ agonist activity. Our findings may help to understand the biological function of lipid peroxidation products.
Collapse
|
9
|
Symmank J, Chorus M, Appel S, Marciniak J, Knaup I, Bastian A, Hennig CL, Döding A, Schulze-Späte U, Jacobs C, Wolf M. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep 2020; 10:15706. [PMID: 32973207 PMCID: PMC7518255 DOI: 10.1038/s41598-020-72736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.
Collapse
Affiliation(s)
- Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Martin Chorus
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Appel
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
10
|
Galvez L, Rusz M, Schwaiger-Haber M, El Abiead Y, Hermann G, Jungwirth U, Berger W, Keppler BK, Jakupec MA, Koellensperger G. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics 2020; 11:1716-1728. [PMID: 31497817 DOI: 10.1039/c9mt00141g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistance development is a major obstacle for platinum-based chemotherapy, with the anticancer drug oxaliplatin being no exception. Acquired resistance is often associated with altered drug accumulation. In this work we introduce a novel -omics workflow enabling the parallel study of platinum drug uptake and its distribution between nucleus/protein and small molecule fraction along with metabolic changes after different treatment time points. This integrated metallomics/metabolomics approach is facilitated by a tailored sample preparation workflow suitable for preclinical studies on adherent cancer cell models. Inductively coupled plasma mass spectrometry monitors the platinum drug, while the metabolomics tool-set is provided by hydrophilic interaction liquid chromatography combined with high-resolution Orbitrap mass spectrometry. The implemented method covers biochemical key pathways of cancer cell metabolism as shown by a panel of >130 metabolite standards. Furthermore, the addition of yeast-based 13C-enriched internal standards upon extraction enabled a novel targeted/untargeted analysis strategy. In this study we used our method to compare an oxaliplatin sensitive human colon cancer cell line (HCT116) and its corresponding resistant model. In the acquired oxaliplatin resistant cells distinct differences in oxaliplatin accumulation correlated with differences in metabolomic rearrangements. Using this multi-omics approach for platinum-treated samples facilitates the generation of novel hypotheses regarding the susceptibility and resistance towards oxaliplatin.
Collapse
Affiliation(s)
- Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Zhang HW, Guo YL, Zhu CG, Wu NQ, Li JJ. Free fatty acids as a marker for predicting periprocedural myocardial injury after coronary intervention. Postgrad Med J 2019; 95:18-22. [PMID: 30700582 DOI: 10.1136/postgradmedj-2018-136137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have revealed that plasma levels of free fatty acids (FFAs) are related to cardiovascular risk. However, whether FFAs could predict periprocedural myocardial injury (PMI) following percutaneous coronary intervention (PCI) in patients with stable coronary artery disease (CAD) remains unclear. PURPOSE This study aimed to investigate the relationship of FFAs to PMI in untreated patients with CAD who underwent PCI. METHODS A total of 374 consecutive patients with CAD without lipid-lowering treatment on admission and with normal preprocedural cardiac troponin I (cTnI) levels who underwent PCI were prospectively enrolled. The baseline characteristics were collected and PMI was evaluated by cTnI analysis within 24 hours. The relation of preprocedural FFA levels to peak cTnI values after PCI was examined. RESULTS Preprocedural FFAs were positively correlated with peak cTnI values after PCI in both simple regression model (β=0.119, p=0.021) and multiple regression model (β=0.198, p=0.001). Patients with higher FFA levels had higher postprocedural cTnI levels compared with those with normal FFA levels (0.27±0.68 ng/mL vs 0.66±0.31 ng/mL, p=0.014). In the multivariable model, preprocedural FFA levels were associated with an increased risk of postprocedural cTnI elevation above 1× upper limit of normal (ULN, OR: 1.185, 95% CI 0.997 to 1.223, p=0.019) up to 10× ULN (OR: 1.132, 95% CI 1.005 to 1.192, p=0.003) . CONCLUSIONS The present study first suggested that elevated FFA levels were associated with an increased risk of PMI in untreated patients with CAD. Further study with large sample size may be needed to confirm our findings.
Collapse
Affiliation(s)
- Yu Wang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Pino AM, Rodríguez JP. Is fatty acid composition of human bone marrow significant to bone health? Bone 2019; 118:53-61. [PMID: 29258874 DOI: 10.1016/j.bone.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs.
Collapse
Affiliation(s)
- Ana María Pino
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Chile
| | | |
Collapse
|
13
|
Rovadoscki GA, Pertile SFN, Alvarenga AB, Cesar ASM, Pértille F, Petrini J, Franzo V, Soares WVB, Morota G, Spangler ML, Pinto LFB, Carvalho GGP, Lanna DPD, Coutinho LL, Mourão GB. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genomics 2018; 19:375. [PMID: 29783944 PMCID: PMC5963081 DOI: 10.1186/s12864-018-4777-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite the health concerns and nutritional importance of fatty acids, there is a relative paucity of studies in the literature that report genetic or genomic parameters, especially in the case of sheep populations. To investigate the genetic architecture of fatty acid composition of sheep, we conducted genome-wide association studies (GWAS) and estimated genomic heritabilities for fatty acid profile in Longissimus dorsi muscle of 216 male sheep. RESULTS Genomic heritability estimates for fatty acid content ranged from 0.25 to 0.46, indicating that substantial genetic variation exists for the evaluated traits. Therefore, it is possible to alter fatty acid profiles through selection. Twenty-seven genomic regions of 10 adjacent SNPs associated with fatty acids composition were identified on chromosomes 1, 2, 3, 5, 8, 12, 14, 15, 16, 17, and 18, each explaining ≥0.30% of the additive genetic variance. Twenty-three genes supporting the understanding of genetic mechanisms of fat composition in sheep were identified in these regions, such as DGAT2, TRHDE, TPH2, ME1, C6, C7, UBE3D, PARP14, and MRPS30. CONCLUSIONS Estimates of genomic heritabilities and elucidating important genomic regions can contribute to a better understanding of the genetic control of fatty acid deposition and improve the selection strategies to enhance meat quality and health attributes.
Collapse
Affiliation(s)
- G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - S F N Pertile
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - A B Alvarenga
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - A S M Cesar
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - F Pértille
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - V Franzo
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - W V B Soares
- Institute of Zootechny (IZ), Nova Odessa, SP, Brazil
| | - G Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - L F B Pinto
- Department of Animal Science, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - G G P Carvalho
- Department of Animal Science, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - D P D Lanna
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, ESALQ/USP, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
14
|
Burrieza HP, Sanguinetti A, Michieli CT, Bertero HD, Maldonado S. Death of embryos from 2300-year-old quinoa seeds found in an archaeological site. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:107-117. [PMID: 27968979 DOI: 10.1016/j.plantsci.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/10/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
In the 1970s, during excavations at Los Morrillos, San Juan, Argentina, quinoa seeds were found within ancient pumpkin crocks protected from the light and high temperatures, and preserved in the very dry conditions of the region. The radiocarbon dates confirmed the age of these seeds at around 2300 years. Sectioning of some of these seeds showed reddish-brown embryos, different from the white embryos of recently harvested quinoa seeds. The ancient seeds did not germinate. The structure of the embryo cells was examined using light and transmission electron microscopy; proteins were analyzed by electrophoresis followed by Coomassie blue and periodic acid Schiff staining and fatty acids by gas chromatography. The state of nuclear DNA was investigated by TUNEL assay, DAPI staining, ladder agarose electrophoresis and flow cytometry. Results suggest that, although the embryo tissues contained very low water content, death occurred by a cell death program in which heterochromatin density was dramatically reduced, total DNA was degraded into small fragments of less than 500bp, and some proteins were modified by non-enzymatic glycation, generating Maillard products. Polyunsaturated fatty acids decreased and became fragmented, which could be attributable to the extensive oxidation of the most sensitive species (linolenic and linoleic acids) and associated with a collapse of lipid bodies.
Collapse
Affiliation(s)
- Hernán Pablo Burrieza
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Tecnológicos (IBBEA-CONICET), Argentina
| | - Agustín Sanguinetti
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Tecnológicos (IBBEA-CONICET), Argentina
| | - Catalina Teresa Michieli
- Instituto de Investigaciones Arqueológicas y Museo Prof. Mariano Gambier, Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan, Argentina
| | - Héctor Daniel Bertero
- Cátedra de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Sara Maldonado
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Tecnológicos (IBBEA-CONICET), Argentina.
| |
Collapse
|
15
|
Igal RA. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1865-1880. [PMID: 27639967 DOI: 10.1016/j.bbalip.2016.09.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
The processes of cell proliferation, cell death and differentiation involve an intricate array of biochemical and morphological changes that require a finely tuned modulation of metabolic pathways, chiefly among them is fatty acid metabolism. The critical participation of stearoyl CoA desaturase-1 (SCD1), the fatty acyl Δ9-desaturing enzyme that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), in the mechanisms of replication and survival of mammalian cells, as well as their implication in the biological alterations of cancer have been actively investigated in recent years. This review examines the growing body of evidence that argues for a role of SCD1 as a central regulator of the complex synchronization of metabolic and signaling events that control cellular metabolism, cell cycle progression, survival, differentiation and transformation to cancer.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Medical Center, New York City, NY, United States.
| |
Collapse
|
16
|
Semiserin VA, Karakozov AG, Malkuta MA, Zolotareva LA, Levchenko OB, Kalyagin IE, Eremin MN. [Evaluation of the efficiency of hepatoprotective monotherapy using succinic acid and methionine for nonalcoholic fatty liver disease at the stage of steatohepatitis]. TERAPEVT ARKH 2016; 88:58-63. [PMID: 27030185 DOI: 10.17116/terarkh201688258-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM To evaluate the efficiency of Remaxol monotherapy in patients with nonalcoholic fatty liver disease (NAFLD) at the stage of steatohepatitis (SH). MATERIALS AND METHODS The treatment of 156 patients with NAFLD at the stage of SH was analyzed. A study group included 84 patients who had received intravenous Remaxol, 400 ml, dropwise at a rate of 40-60 drops per minute once daily in the morning for 10 days; a control group of 72 patients had been treated with the conventional scheme. RESULTS During the treatment, the study group showed a rapider relief of the manifestations of asthenovegetative and dyspeptic syndromes and a reduction in the magnitude of biochemical manifestations of cytolytic and cholestatic syndromes than did the control group. CONCLUSION Incorporation of Remaxol into the therapy regimen in patients with NAFLD at the stage of SH enhances the effectiveness of treatment.
Collapse
Affiliation(s)
- V A Semiserin
- Consulting and Diagnostic Polyclinic, Therapeutic and Diagnostic Center Nine, Ministry of Defense of the Russian Federation, Moscow, Russia
| | - A G Karakozov
- Consulting and Diagnostic Polyclinic, Therapeutic and Diagnostic Center Nine, Ministry of Defense of the Russian Federation, Moscow, Russia
| | - M A Malkuta
- Consulting and Diagnostic Polyclinic, City Clinical Hospital Fifty-Nine, Moscow Healthcare Department, Moscow, Russia
| | - L A Zolotareva
- Consulting and Diagnostic Polyclinic, City Clinical Hospital Fifty-Nine, Moscow Healthcare Department, Moscow, Russia
| | - O B Levchenko
- Consulting and Diagnostic Polyclinic, Therapeutic and Diagnostic Center Nine, Ministry of Defense of the Russian Federation, Moscow, Russia
| | - I E Kalyagin
- Consulting and Diagnostic Polyclinic, Therapeutic and Diagnostic Center Nine, Ministry of Defense of the Russian Federation, Moscow, Russia
| | - M N Eremin
- Consulting and Diagnostic Polyclinic, Therapeutic and Diagnostic Center Nine, Ministry of Defense of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Hussein YM, Mohamed RH, Shalaby SM, Abd El-Haleem MR, Abd El Motteleb DM. Anti-oxidative and anti-apoptotic roles of spermatogonial stem cells in reversing cisplatin-induced testicular toxicity. Cytotherapy 2015; 17:1646-54. [DOI: 10.1016/j.jcyt.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/24/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
|
18
|
Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts. Br J Cancer 2015; 112:1675-86. [PMID: 25880005 PMCID: PMC4430719 DOI: 10.1038/bjc.2015.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
Background: Despite the recognised contribution of the stroma to breast cancer development and progression, the effective targeting of the tumor microenvironment remains a challenge to be addressed. We previously reported that normal fibroblasts (NFs) and, notably, breast cancer-associated fibroblasts (CAFs) induced epithelial-to-mesenchymal transition and increases in cell membrane fluidity and migration in well- (MCF-7) and poorly-differentiated (MDA-MB-231) breast cancer cells. This study was designed to better define the role played, especially by CAFs, in promoting breast tumor cell migration. Methods: Fibroblast/breast cancer cell co-cultures were set up to investigate the influence of NFs and CAFs on gene and protein expression of Stearoyl-CoA desaturase 1 (SCD1), the main enzyme regulating membrane fluidity, as well as on the protein level and activity of its transcription factor, the sterol regulatory element-binding protein 1 (SREBP1), in MCF-7 and MDA-MB-231 cells. To assess the role of SREBP1 in the regulation of SCD1 expression, the desaturase levels were also determined in tumor cells treated with an SREBP1 inhibitor. Migration was evaluated by wound-healing assay in SCD1-inhibited (by small-interfering RNA (siRNA) or pharmacologically) cancer cells and the effect of CAF-conditioned medium was also assessed. To define the role of stroma-derived signals in cancer cell migration speed, cell-tracking analysis was performed in the presence of neutralising antibodies to hepatocyte growth factor, transforming growth factor-β or basic fibroblast growth factor. Results: A two to three fold increase in SCD1 mRNA and protein expression has been induced, particularly by CAFs, in the two cancer cell lines that appear to be dependent on SREBP1 activity in MCF-7 but not in MDA-MB-231 cells. Both siRNA-mediated and pharmacological inhibition of SCD1 impaired tumor cells migration, also when promoted by CAF-released soluble factors. Fibroblast-triggered increase in cancer cell migration speed was markedly reduced or abolished by neutralising the above growth factors. Conclusion: These results provide further insights in understanding the role of CAFs in promoting tumor cell migration, which may help to design new stroma-based therapeutic strategies.
Collapse
|
19
|
Kelley NS, Yoshida Y, Erickson KL. Do n-3 Polyunsaturated Fatty Acids Increase or Decrease Lipid Peroxidation in Humans? Metab Syndr Relat Disord 2014; 12:403-15. [DOI: 10.1089/met.2014.0045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nirvair S. Kelley
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Yasukazu Yoshida
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Kent L. Erickson
- Department of Cell Biology and Human Anatomy, University of California, School of Medicine, Davis, California
| |
Collapse
|
20
|
Shichiri M, Adkins Y, Ishida N, Umeno A, Shigeri Y, Yoshida Y, Fedor DM, Mackey BE, Kelley DS. DHA concentration of red blood cells is inversely associated with markers of lipid peroxidation in men taking DHA supplement. J Clin Biochem Nutr 2014; 55:196-202. [PMID: 25411526 PMCID: PMC4227822 DOI: 10.3164/jcbn.14-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
An increase in the proportion of fatty acids with higher numbers of double bonds is believed to increase lipid peroxidation, which augments the risk for many chronic diseases. (n-3) Polyunsaturated fatty acids provide various health benefits, but there is a concern that they might increase lipid peroxidation. We examined the effects of docosahexaenoic acid [22:6 (n-3)] supplementation on lipid peroxidation markers in plasma and red blood cells (RBC) and their associations with red blood cell and plasma fatty acids. Hypertriglyceridemic men (n = 17 per group) aged 39–66 years participated in a double-blind, randomized, placebo-controlled, parallel study. They received no supplements for the first 8 days and then received 7.5 g/day docosahexaenoic acid oil (3 g/day docosahexaenoic acid) or olive oil (placebo) for 90 days. Fasting blood samples were collected 0, 45, and 91 days after supplementation. Docosahexaenoic acid supplementation did not change plasma or RBC concentrations of lipid peroxidation markers (total hydroxyoctadecadienoic acid, total hydroxyeicosatetraenoic acid, total 8-isoprostaglandin F2α, 7α-hydroxycholesterol, 7β-hydroxycholesterol) when pre- and post-supplement values were compared. However, the post-supplement docosahexaenoic acid (DHA) concentration was inversely associated with RBC concentrations of ZE-HODE, EE-HODE, t-HODE, and total 8-isoprostaglandin F2α, (p<0.05). RBC concentration of hydroxycholesterol was also inversely associated with DHA but it did not attain significance (p = 0.07). Our results suggest that increased concentration of DHA in RBC lipids reduced lipid peroxidation. This may be another health benefit of DHA in addition to its many other health promoting effects.
Collapse
Affiliation(s)
- Mototada Shichiri
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yuriko Adkins
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| | - Noriko Ishida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Aya Umeno
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasushi Shigeri
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasukazu Yoshida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Dawn M Fedor
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| | - Bruce E Mackey
- Western Regional Research Center, ARS, USDA, Albany, CA 94710, USA
| | - Darshan S Kelley
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| |
Collapse
|
21
|
Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. MOLECULAR PLANT 2014; 7:1075-93. [PMID: 24711293 DOI: 10.1093/mp/ssu037] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regulate these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.
Collapse
Affiliation(s)
- Sophia Ng
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Joint Research Laboratory in Genomics and Nutriomics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia
| | - Simon R Law
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Aneta Ivanova
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Patrick Willems
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium Department of Medical Protein Research and Department of Biochemistry, 9000 Ghent, Belgium
| | - Estelle Giraud
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Australia Present address: Illumina, ANZ, 1 International Court, Scoresby Victoria 3179, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
22
|
FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie 2014; 101:123-31. [DOI: 10.1016/j.biochi.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023]
|
23
|
Demmig-Adams B, Adams RB. Eye nutrition in context: mechanisms, implementation, and future directions. Nutrients 2013; 5:2483-501. [PMID: 23857222 PMCID: PMC3738983 DOI: 10.3390/nu5072483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Carotenoid-based visual cues and roles of carotenoids in human vision are reviewed, with an emphasis on protection by zeaxanthin and lutein against vision loss, and dietary sources of zeaxanthin and lutein are summarized. In addition, attention is given to synergistic interactions of zeaxanthin and lutein with other dietary factors affecting human vision (such as antioxidant vitamins, phenolics, and poly-unsaturated fatty acids) and the emerging mechanisms of these interactions. Emphasis is given to lipid oxidation products serving as messengers with functions in gene regulation. Lastly, the photo-physics of light collection and photoprotection in photosynthesis and vision are compared and their common principles identified as possible targets of future research.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|
24
|
Wang X, Bai H, Zhang X, Liu J, Cao P, Liao N, Zhang W, Wang Z, Hai C. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 2013; 34:1323-30. [PMID: 23404993 DOI: 10.1093/carcin/bgt058] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.
Collapse
|
26
|
Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc Nutr Soc 2012; 71:322-31. [PMID: 22369859 DOI: 10.1017/s0029665112000080] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reviewed effects of long chain (LC) n-3 PUFA on markers of atherosclerosis in human subjects with a focus on individual effects of EPA and DHA. Initial results from epidemiological studies suggested that LC n-3 PUFA from fish oils (FO) reduced incidence of CVD; those results have been confirmed in interventional studies. Dietary intervention with n-3 PUFA decreased fasting and postprandial TAG, number of remnant-like chylomicron particles, large VLDL, and total and small dense LDL particles. It increased mean size of LDL particles by increasing number of large and decreasing those of small dense particles. With some exceptions, n-3 PUFA decreased blood pressure (BP) and heart rate (HR), flow-mediated dilation (FMD) and plasma concentrations of inflammatory markers. n-3 PUFA also decreased circulating adhesion molecules and intima-media thickness (IMT) in some but not other studies. For IMT, results varied with the sex and artery being examined. EPA effects on FMD are endothelial cell dependent, while those of DHA seem to be endothelial cell independent. Individually, both EPA and DHA decreased TAG and inflammatory markers, but only DHA decreased HR, BP and number of small dense LDL particles. Results varied because of dose and duration of n-3 PUFA, EPA:DHA, health status of subjects and other reasons. Future studies are needed to determine optimal doses of EPA and DHA individually, their synergistic, additive or antagonistic effects, and to understand underlying mechanisms. In conclusion, n-3 PUFA decreased several risk factors for atherosclerosis without any serious adverse effects.
Collapse
|
27
|
FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J 2011; 437:125-34. [PMID: 21463259 DOI: 10.1042/bj20101861] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
FAT/CD36 (fatty acid translocase/Cluster of Differentiation 36), a plasma membrane fatty-acid transport protein, has been found on mitochondrial membranes; however, it remains unclear where FAT/CD36 resides on this organelle or its functional role within mitochondria. In the present study, we demonstrate, using several different approaches, that in skeletal muscle FAT/CD36 resides on the OMM (outer mitochondrial membrane). To determine the functional role of mitochondrial FAT/CD36 in this tissue, we determined oxygen consumption rates in permeabilized muscle fibres in WT (wild-type) and FAT/CD36-KO (knockout) mice using a variety of substrates. Despite comparable muscle mitochondrial content, as assessed by unaltered mtDNA (mitochondrial DNA), citrate synthase, β-hydroxyacyl-CoA dehydrogenase, cytochrome c oxidase complex IV and respiratory capacities [maximal OXPHOS (oxidative phosphorylation) respiration] in WT and KO mice, palmitate-supported respiration was 34% lower in KO animals. In contrast, palmitoyl-CoA-supported respiration was unchanged. These results indicate that FAT/CD36 is key for palmitate-supported respiration. Therefore we propose a working model of mitochondrial fatty-acid transport, in which FAT/CD36 is positioned on the OMM, upstream of long-chain acyl-CoA synthetase, thereby contributing to the regulation of mitochondrial fatty-acid transport. We further support this model by providing evidence that FAT/CD36 is not located in mitochondrial contact sites, and therefore does not directly interact with carnitine palmitoyltransferase-I as original proposed.
Collapse
|
28
|
Tyurina YY, Tyurin VA, Kapralova VI, Wasserloos K, Mosher M, Epperly MW, Greenberger JS, Pitt BR, Kagan VE. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Radiat Res 2011; 175:610-21. [PMID: 21338246 DOI: 10.1667/rr2297.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A(2) revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point, 100 Technology Drive, Suite 350, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fatty acid profile during the differentiation and infection with Mycobacterium tuberculosis of mononuclear phagocytes of patients with TB and healthy individuals. Cell Immunol 2011; 270:145-55. [DOI: 10.1016/j.cellimm.2011.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/02/2011] [Accepted: 04/18/2011] [Indexed: 11/23/2022]
|
30
|
Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 2010; 70:8117-26. [PMID: 20876798 DOI: 10.1158/0008-5472.can-09-3871] [Citation(s) in RCA: 535] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive cancers and has been implicated in the production of membranes for rapid cell proliferation. In the current report, we provide evidence that this activation has a more profound role. Using a mass spectrometry-based phospholipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype show an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipogenic switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic enzymes with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospholipid species and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are more susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products and renders cells more susceptible to oxidative stress-induced cell death. As saturated lipids pack more densely, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by diffusion of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin. These data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically changes membrane properties and protects cells from both endogenous and exogenous insults. These findings provide important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers.
Collapse
Affiliation(s)
- Evelien Rysman
- Laboratory for Experimental Medicine and Endocrinology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Doleman JF, Eady JJ, Elliott RM, Foxall RJ, Seers J, Johnson IT, Lund EK. Identification of the Eph receptor pathway as a novel target for eicosapentaenoic acid (EPA) modification of gene expression in human colon adenocarcinoma cells (HT-29). Nutr Metab (Lond) 2010; 7:56. [PMID: 20624275 PMCID: PMC2912917 DOI: 10.1186/1743-7075-7-56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/12/2010] [Indexed: 01/02/2023] Open
Abstract
Background The health benefits of polyunsaturated fatty acids (PUFAs), particularly those of the n-3 series are well documented. The mechanisms by which these effects are mediated are not fully clarified. Methods We used microarrays to assess the effects on gene expression in HT29 colon adenocarcinoma cells of exposure to the n-3 fatty acid eicosapentaenoic acid (EPA). HT29 cells were cultured with EPA (150 μM) for up to 24 hr prior to harvesting and isolation of RNA. Microarray results were analyzed within the statistical package 'R', and GeneGo MetaCore was used to identify key pathways of altered gene expression. Results EphB4, Vav2 and EphA1 gene expression were identified as significantly altered by EPA treatment. Statistically significant changes in gene expression after HT29 exposure to EPA were confirmed in a second experiment by real-time RT-PCR (TaqMan), This experiment also compared the effects of exposure to EPA to arachadonic acid (AA, n-6). Corresponding changes in protein expression were also assessed by Western blotting. Conclusions Eph receptor mediated signaling is an entirely novel signaling pathway through which EPA may promote a wide range of health benefits, in particular in relation to reduction of colorectal cancer progression.
Collapse
Affiliation(s)
- Joanne F Doleman
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ford JH. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. AGE (DORDRECHT, NETHERLANDS) 2010; 32:231-237. [PMID: 20431990 PMCID: PMC2861752 DOI: 10.1007/s11357-009-9128-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/16/2009] [Indexed: 05/29/2023]
Abstract
Cellular senescence is an in vivo and in vitro phenomenon, accompanied by physiological changes including cessation of division and disturbances of organelle structure and function. Review of the literature was undertaken to determine whether there is evidence that whole organism aging and cell senescence share a common initiation pathway. In vivo aged cells of different lineages, including aged T lymphocytes, show high expression of the INK4A-p16 gene. In cell culture when telomeres are shortened past a key length or state, the Arf/Ink gene system (p16/p14 humans, p16/p19 mice) switches on and activates p53, which suppresses further cell division. The p53 gene is a key tumor suppressor and its deletion or mutation allows cancerous growth. The switching on of p53 also causes changes in fatty acid metabolism, especially down-regulation of both fatty acid synthase and stearoyl-CoA (delta-9) desaturase. The co-suppression of these genes together with enhanced uptake of extracellular fatty acids, leads to raised levels of cellular palmitate and induction of either apoptosis or senescence. In senescent cells, the fatty acid composition of the cellular membranes alters and leads to changes in both structure and function of organelles, especially mitochondria. Animal models of accelerated aging exhibit repression of stearoyl-CoA desaturase activity while anti-aging calorie restriction stimulates the same enzyme system. It is concluded that aging in cells and whole organisms share a common initiation pathway and that cellular senescence is protective against cancer. Healthy longevity is likely to be most enhanced by factors that actively suppress excessive cell division.
Collapse
Affiliation(s)
- Judith H Ford
- Rural health and community engagement, University of South Australia, GPO Box 2471, Adelaide 5001, Australia.
| |
Collapse
|
33
|
Yoshida Y, Itoh N, Hayakawa M, Habuchi Y, Saito Y, Tsukamoto Y, Cynshi O, Jishage KI, Arai H, Niki E. The role of α-tocopherol in motor hypofunction with aging in α-tocopherol transfer protein knockout mice as assessed by oxidative stress biomarkers. J Nutr Biochem 2010; 21:66-76. [PMID: 19157826 DOI: 10.1016/j.jnutbio.2008.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/12/2008] [Accepted: 10/06/2008] [Indexed: 02/05/2023]
Affiliation(s)
- Yasukazu Yoshida
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Syn WK, Teaberry V, Choi SS, Diehl AM. Similarities and differences in the pathogenesis of alcoholic and nonalcoholic steatohepatitis. Semin Liver Dis 2009; 29:200-10. [PMID: 19387919 PMCID: PMC3644873 DOI: 10.1055/s-0029-1214375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subpopulations of individuals with alcohol-induced fatty livers and nonalcoholic steatosis develop steatohepatitis. Steatohepatitis is defined histologically: increased numbers of injured and dying hepatocytes distinguish this condition from simple steatosis. The increased hepatocyte death is generally accompanied by hepatic accumulation of inflammatory cells and sometimes increases in myofibroblastic cells, leading to hepatic fibrosis and eventually, cirrhosis. The purpose of this review is to summarize similarities and differences in the pathogenesis of steatohepatitis in alcoholic fatty liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC 27705
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
35
|
Bauer A, Schumann A, Gilbert M, Wilhelm C, Hengstler JG, Schiller J, Fuchs B. Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem Phys Lipids 2009; 159:21-9. [DOI: 10.1016/j.chemphyslip.2009.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 01/11/2023]
|
36
|
Ponnala S, Rao KP, Chaudhury JR, Ahmed J, Rama Rao B, Kanjilal S, Hasan Q, Das UN. Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins Leukot Essent Fatty Acids 2009; 80:43-50. [PMID: 19138888 DOI: 10.1016/j.plefa.2008.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
Phenytoin sodium/diphenyl hydantoin (DPH) is used by a major segment of epileptics and neuro surgery patients with head injury to prevent seizures. DPH is a known mutagen, carcinogen, and teratogen. Essential fatty acids (EFAs) are critical for various tissues and were reported to act as anti-mutagenic agents. In the present study we assessed the effect of five EFAs on DPH-induced genetic damage both in vitro and in vivo. DPH induced significant genetic damage. Of all the EFAs (linoleic acid, alpha-linolenic acid, gamma-linolenic acid, arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid) studied, all except eicosapentaenoic acid showed significant decrease in DPH induced genetic damage as assessed by micronucleus (MN) test. However, gamma-linolenic acid (GLA) was found to be the most effective in reducing the number of MN containing lymphocytes both in vitro and in vivo to control values. EFAs when tested alone produced insignificant increase in the amount of genetic damage but when tested in combination with DPH the number of micronuclei containing lymphocytes was reduced; but the DNA ladder pattern, an indication of DNA damage, was increased. This apparently paradoxical action of EFAs, especially of GLA, suggests that, in all probability, fatty acids induce apoptosis of cells that harbor significant DNA damage. Based on these results we suggest that GLA functions as a unique endogenous molecule that protects cells from accumulating genetic damage.
Collapse
Affiliation(s)
- Shivani Ponnala
- Department of Genetics, Osmania University, Hyderabad-500 007, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lykourinou V, Hanafy AI, da Silva GFZ, Bisht KS, Larsen RW, Livingston BT, Angerhofer A, Ming LJ. How Well Should the Active Site and the Specific Recognition Be Defined for Proficient Catalysis? – Effective and Cooperative Polyphenol/Catechol Oxidation and Oxidative DNA Cleavage by a Copper(II)-Binding and H-Bonding Copolymer. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Yoshida Y, Hayakawa M, Niki E. Evaluation of the Antioxidant Effects of Coffee and Its Components Using the Biomarkers Hydroxyoctadecadienoic Acid and Isoprostane. J Oleo Sci 2008; 57:691-7. [DOI: 10.5650/jos.57.691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Fontana A, d'Ippolito G, Cutignano A, Romano G, Lamari N, Massa Gallucci A, Cimino G, Miralto A, Ianora A. LOX-Induced Lipid Peroxidation Mechanism Responsible for the Detrimental Effect of Marine Diatoms on Zooplankton Grazers. Chembiochem 2007; 8:1810-8. [PMID: 17886321 DOI: 10.1002/cbic.200700269] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Some marine diatoms negatively affect the reproduction of dominant zooplankton grazers such as copepods, thus compromising the transfer of energy through the marine food chains. In this paper, the metabolic mechanism that leads to diatom-induced toxicity is investigated in three bloom-forming microalgae. We show that copepod dysfunctions can be induced by highly reactive oxygen species (hROS) and a blended mixture of diatom products, including fatty acid hydroperoxides (FAHs); these compounds display teratogenic and proapoptotic properties. The process is triggered by the early onset of lipoxygenase activities that elicit the synthesis of species-specific products, the basic structures of which were established (1-20); these compounds boost oxidative stress by massive lipid peroxidation. Our study might explain past laboratory and field results showing how diatoms damage zooplankton grazers even in the absence of polyunsaturated aldehydes, a class of molecules that has been formerly implicated in mediating the toxic activity of diatoms on copepods.
Collapse
Affiliation(s)
- Angelo Fontana
- CNR, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yoshida Y, Hayakawa M, Itoh N, Habuchi Y, Inoue R, Chen ZH, Cao J, Cynshi O, Jishage KI, Niki E. Antioxidant effects of 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran and α-tocopherol in hyperlipidemic mice as evaluated by hydroxyoctadecadienoic acid and 7-hydroxycholesterol. Biochem Pharmacol 2007; 74:1010-9. [PMID: 17706610 DOI: 10.1016/j.bcp.2007.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/09/2007] [Accepted: 07/17/2007] [Indexed: 11/17/2022]
Abstract
It has been hypothesized that oxidative modification of low density lipoprotein plays a key role in the pathogenesis of atherosclerosis. In order to elucidate the role of lipid oxidation and its inhibition in vivo, apolipoprotein E and alpha-tocopherol (alphaT) transfer protein double knockout (ApoE(-/-)alpha-TTP(-/-)) and apolipoprotein E knockout (ApoE(-/-)) mice fed with a vitamin E-depleted diet and a diet containing 0.002 wt.% alphaT, respectively, were used with or without the treatment of a synthetic antioxidant 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653, 0.2 wt.%). The lipid oxidation markers of total hydroxylinoleic acid (tHODE), 8-iso-prostaglandin F(2alpha), and 7-hydroxycholesterol (t7-OHCh) in the blood, liver, and brain were inclusively measured with or without an excessive cholesterol-feeding (Ch-diet). The tHODE levels were elevated by Ch-diet in the plasma and brain of ApoE(-/-)alpha-TTP(-/-) mice and in the liver of ApoE(-/-) mice without BO-653. The levels of t7-OHCh in the liver were also increased due to the Ch-diet, and the ratio of t7-OHCh to the parent compound cholesterol was reduced to the control levels by BO-653. In summary, it was demonstrated by biomarkers, tHODE and t7-OHCh, that the added BO-653 in their diets exerted antioxidative effects in vivo under the condition of reduced vitamin E.
Collapse
Affiliation(s)
- Yasukazu Yoshida
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
42
|
Yoshida Y, Hayakawa M, Habuchi Y, Itoh N, Niki E. Evaluation of lipophilic antioxidant efficacy in vivo by the biomarkers hydroxyoctadecadienoic acid and isoprostane. Lipids 2007; 42:463-72. [PMID: 17476550 DOI: 10.1007/s11745-007-3043-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/21/2007] [Indexed: 01/14/2023]
Abstract
The evaluation of antioxidant activity in vivo is difficult. In this study, the effects of dietary natural and synthetic antioxidants on the lipid peroxidation in mice were assessed using a biomarker, total hydroxyoctadecadienoic acid (tHODE). Biological samples such as plasma, erythrocytes, and tissues were first reduced and then saponified to convert various oxidation products of linoleates to tHODE. Subsequently, the absolute concentration of tHODE and its stereoisomer ratio, [9- and 13-(Z,E)-HODE)/[9- and 13-(E,E)-HODE], which is a measure of the hydrogen donor capacity of antioxidants, were determined by gas chromatography-mass spectrometry (GC-MS) analyses. These were then compared with total 8-iso-prostaglandin F(2alpha) (t8-iso-PGF(2alpha)) which was also assessed after reduction and saponification. Remarkable increases in tHODE and t8-iso-PGF(2alpha) levels were observed in the plasma, erythrocytes, liver, and brain of mice that were fed an alpha-tocopherol (alphaT)-stripped (E-free) diet for 1 month when compared with those of mice that were fed a standard diet (alphaT = 0.002 wt%). When mice were fed for 1 month on an E-free diet supplemented with a lipophilic antioxidant (0.04 wt%), namely, alphaT, alpha-tocotrienol (alphaT3), gamma-tocopherol (gammaT), or 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653), a potent synthetic antioxidant, the increases of tHODE and t8-iso-PGF(2alpha) in the plasma, erythrocytes, liver, and brain were suppressed to the levels lower than those of mice fed a standard diet. The (Z,E/E,E) HODE ratio was decreased in the plasma and erythrocytes of mice fed the E-free diet when compared with that in mice fed the standard diet. This stereo-isomeric ratio was significantly recovered by the addition of alphaT and BO-653. These results show that the tHODE level and the (Z,E/E,E) HODE ratio are useful biomarkers for the assessment of antioxidant capacity in vivo and that the antioxidant capacity decreased in the order: BO-653 > alphaT3 >or= alphaT, gammaT, as assessed by tHODE levels from blood, liver, and brain.
Collapse
Affiliation(s)
- Yasukazu Yoshida
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | |
Collapse
|
43
|
Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J Gastroenterol 2007; 13:361-8. [PMID: 17230603 PMCID: PMC4065889 DOI: 10.3748/wjg.v13.i3.361] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of different types of dietary fats on the hepatic lipid content and oxidative stress parameters in rat liver with experimental non-alcoholic fatty liver disease (NAFLD).
METHODS: A total of 32 Sprague-Dawley rats were randomly divided into five groups. The rats in the control group (n = 8) were on chow diet (Group 1), rats (n = 6) on methionine choline-deficient diet (MCDD) (Group 2), rats (n = 6) on MCDD enriched with olive oil (Group 3), rats (n = 6) on MCDD with fish oil (Group 4) and rats (n = 6) on MCDD with butter fat (Group 5). After 2 mo, blood and liver sections were examined for lipids composition and oxidative stress parameters.
RESULTS: The liver weight/rat weight ratio increased in all treatment groups as compared with the control group. Severe fatty liver was seen in MCDD + fish oil and in MCDD + butter fat groups, but not in MCDD and MCDD + olive oil groups. The increase in hepatic triglycerides (TG) levels was blunted by 30% in MCDD + olive oil group (0.59 ± 0.09) compared with MCDD group (0.85 ± 0.04, p < 0.004), by 37% compared with MCDD + fish oil group (0.95 ± 0.07, p < 0.001), and by 33% compared with MCDD + butter group (0.09 ± 0.1, p < 0.01). The increase in serum TG was lowered by 10% in MCDD + olive oil group (0.9 ± 0.07) compared with MCDD group (1.05 ± 0.06). Hepatic cholesterol increased by 15-fold in MCDD group [(0.08 ± 0.02, this increment was blunted by 21% in MCDD + fish oil group (0.09 ± 0.02)]. In comparison with the control group, ratio of long-chain polyunsaturated fatty acids omega-6/omega-3 increased in MCDD + olive oil, MCDD + fish oil and MCDD + butter fat groups by 345-, 30- and 397-fold, respectively. In comparison to MCDD group (1.58 ± 0.08), hepatic MDA contents in MCDD + olive oil (3.3 ± 0.6), MCDD + fish oil (3.0 ± 0.4), and MCDD + butter group (2.9 ± 0.36) were increased by 108%, 91% and 87%, respectively (p < 0.004). Hepatic paraoxonase activity decreased significantly in all treatment groups, mostly with MCDD + olive oil group (-68%).
CONCLUSION: Olive oil decreases the accumulation of triglyceride in the liver of rats with NAFLD, but does not provide the greatest antioxidant activity.
Collapse
Affiliation(s)
- Osamah Hussein
- Internal Medicine A, Sieff Government Hospital, PO Box 1008, Safed 13100, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Rhoads DM, Subbaiah CC. Mitochondrial retrograde regulation in plants. Mitochondrion 2007; 7:177-94. [PMID: 17320492 DOI: 10.1016/j.mito.2007.01.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/17/2023]
Abstract
Plant cells must react to a variety of adverse environmental conditions that they may experience on a regular basis. Part of this response centers around (1) ROS as damaging molecules and signaling molecules; (2) redox status, which can be influenced by ROS production; and (3) availability of metabolites. All of these are also likely to interface with changes in hormone levels [Desikan, R., Hancock, J., Neill, S., 2005. Reactive oxygen species as signalling molecules. In: Smirnoff, N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Pub. Ltd., Oxford, pp. 169-196; Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329]. Each of these areas can be strongly influenced by changes in mitochondrial function. Such changes trigger altered nuclear gene expression by a poorly understood process of mitochondrial retrograde regulation (MRR), which is likely composed of several distinct signaling pathways. Much of what is known about plant MRR centers around the response to a dysfunctional mtETC and subsequent induction of genes encoding proteins involved in recovery of mitochondrial functions, such as AOX and alternative NAD(P)H dehydrogenases, and genes encoding enzymes aimed at regaining ROS level/redox homeostasis, such as glutathione transferases, catalases, ascorbate peroxidases and superoxide dismutases. However, as evidence of new and interesting targets of MRR emerge, this picture is likely to change and the complexity and importance of MRR in plant responses to stresses and the decision for cells to either recover or switch into programmed cell death mode is likely to become more apparent.
Collapse
Affiliation(s)
- David M Rhoads
- Department of Applied Biological Sciences, Arizona State University, Mesa, AZ 85212, USA.
| | | |
Collapse
|
45
|
Zhang S, Lin Y, Kim YS, Hande MP, Liu ZG, Shen HM. c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 2007; 14:1001-10. [PMID: 17218956 DOI: 10.1038/sj.cdd.4402088] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Reactive oxygen species (ROS) have been closely associated with both apoptotic and non-apoptotic/necrotic cell death. Our previous study has illustrated that c-Jun-N-terminal kinase 1 (JNK1) is the main executor in hydrogen peroxide (H(2)O(2))-induced nonapoptotic cell death. The main objective of this study is to further elucidate the molecular mechanisms downstream of JNK1 in H(2)O(2)-induced cell death. In this study, poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair protein, was readily activated by H(2)O(2) and inhibition of PARP-1 activation by either a pharmacological or genetic approach offered significant protection against H(2)O(2)-induced cell death. More importantly, H(2)O(2)-mediated PARP-1 activation is subject to regulation by JNK1. Suppression of JNK1 activation by a chemical inhibitor or genetic deletion markedly suppressed the late-phase PARP-1 activation induced by H(2)O(2), suggesting that JNK1 contributes to the sustained activation of PARP-1. Such findings were supported by the temporal pattern of nuclear translocation of activated JNK and a direct protein-protein interaction between JNK1 and PARP-1 in H(2)O(2)-treated cells. Finally, in vitro kinase assay suggests that PARP-1 may serve as the direct phosphorylation target for JNK1. Taken together, data from our study reveal a novel underlying mechanism in H(2)O(2)-induced nonapoptotic cell death: JNK1 promotes a sustained PARP-1 activation via nuclear translocation, protein-protein interaction and PARP-1 phosphorylation.
Collapse
Affiliation(s)
- S Zhang
- Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Yoshida Y, Itoh N, Hayakawa M, Habuchi Y, Inoue R, Chen ZH, Cao J, Cynshi O, Niki E. Lipid peroxidation in mice fed a choline-deficient diet as evaluated by total hydroxyoctadecadienoic acid. Nutrition 2006; 22:303-11. [PMID: 16500556 DOI: 10.1016/j.nut.2005.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The relevance of oxidative stress in mice fed a choline-deficient diet (CDD) was investigated in relation to the oxidative stress marker, hydroxyoctadecadienoic acid (HODE) in comparison with F2-isoprostanes. Further, the protective effects of antioxidants against oxidative damage were assessed by using HODE. METHODS We recently proposed total HODE as a biomarker for oxidative stress in vivo. Biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert various oxidation products of linoleates to HODE. In the present study, this method was applied to measure oxidative damage in mice induced by CDD for 1 mo. RESULTS CDD, when compared with choline-controlled diet (CCD), increased liver weight and fatty acid accumulation but the increase in body weight was less significant. Remarkable increases in HODE and 8-iso-prostaglandin F(2alpha) in liver and plasma were observed when mice were fed with the CDD for 1 mo compared with the CCD. The HODE level was about two to three orders higher than the F2-isoprostane level. This increase was decreased to the level of the CCD when alpha-tocopherol or 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, a potent synthetic antioxidant, was mixed with the CDD. The stereoisomer ratio of HODE (9-and-13 (Z,E)-HODE/9-and-13 (E,E)-HODE) was decreased by CDD compared with CCD, which was spared by the addition of alpha-tocopherol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran. However, the increase in plasma glutamic-pyruvic transaminase and fatty acids in liver induced by the CDD was not recovered by any antioxidant. CONCLUSIONS This study clearly demonstrated that oxidative stress was involved in fatty liver formation induced by the CDD and that HODE was a good biomarker for an oxidative stress in vivo.
Collapse
Affiliation(s)
- Yasukazu Yoshida
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
CONTEXT The field of molecular pathology is expanding in complexity. To achieve competency, vigilance is required. OBJECTIVE To review the advances in clinically useful molecular biologic techniques and to identify their applications in clinical practice, as presented at the 13th Annual William Beaumont Hospital DNA Symposium. DATA SOURCES The 4 manuscripts submitted were reviewed and their major findings were compared with the literature on the same or related topics. STUDY SELECTION Manuscripts address the use of molecular or immunophenotyping by flow cytometry to evaluate the origin or presence of sepsis, respectively; the use of imatinib mesylate to treat chronic myeloid leukemia and the nature of resistance to imatinib; and the use of 9 and 10 fluorochromes during clinical flow cytometric studies. DATA SYNTHESIS The epidemiologic evaluation of a septic outbreak may be monitored using molecular techniques that track the relatedness of isolates. A potential biomarker for the presence of early sepsis is CD64. Intracellular signal transduction pathways are altered in malignancy. Imatinib mesylate inhibits the BCR-ABL kinase created by translocation of the long arms of chromosomes 9 and 22 in chronic myeloid leukemia. Resistance to imatinib may be secondary to mutation in the BCR-ABL kinase domain or residual leukemic stem cells that imatinib does not kill. The use of 9 or 10 fluorochromes simultaneously during flow cytometry has many clinical advantages; however, software for data analysis is needed. CONCLUSION The current postgenomic era will continue to emphasize the use of microarrays and database software for genomic, transcriptomic, proteomic, nutrigenomic, and pharmacogenomics screening to search for a useful clinical assay. The number of molecular pathologic techniques will expand as additional disease-associated mutations are defined.
Collapse
Affiliation(s)
- Frederick L Kiechle
- Department of Clinical Pathology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | | | | |
Collapse
|
48
|
Abstract
Most malignancies have increased glycolysis for energy requirement of rapid cell proliferation, which is the basis for tumor imaging through glucose analog FDG (2-deoxy-2-fluoro-D-glucose) with positron emission tomography. One of significant characteristics of prostate cancer is slow glycolysis and low FDG avidity. Recent studies showed that prostate cancer is associated with changes of fatty acid metabolism. Several enzymes involved in the metabolism of fatty acids have been determined to be altered in prostate cancer relative to normal prostate, which is indicative of an enhanced beta-oxidation pathway in prostate cancer. Increased fatty acid utilization in prostate cancer provides both ATP and acetyl-coenzyme A (CoA); subsequently, increased availability of acetyl-CoA makes acceleration of citrate oxidation possible, which is an important energy source as well. Dominant fatty acid metabolism rather than glycolysis has the potential to be the basis for imaging diagnosis and targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- Y Liu
- Nuclear Medicine Service, Department of Radiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101, USA.
| |
Collapse
|
49
|
Watts JL, Browse J. Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. elegans. Dev Biol 2006; 292:381-92. [PMID: 16487504 PMCID: PMC1584401 DOI: 10.1016/j.ydbio.2006.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 11/18/2005] [Accepted: 01/12/2006] [Indexed: 11/23/2022]
Abstract
Reproduction in C. elegans relies on continuously proliferating germ cells which, during germline development, exit mitosis, undergo meiosis and differentiate into gametes. Supplementing the diet of C. elegans with dihommogamma-linolenic acid (20:3n-6, DGLA), a long chain omega-6 polyunsaturated fatty acid, results in sterile worms that lack germ cells. The effect is remarkably specific for DGLA, as eicosapentaenoic acid (20:5n-3, EPA) and other long-chain polyunsaturated fatty acids with similar physical properties have little or no effect on fertility. Germ cells undergoing mitosis during larval stages are especially sensitive to DGLA, but exposure to DGLA during adulthood also reduces germ cells and brood size, in part by inducing inappropriate apoptosis of meiotic germ cells. Mutant strains with defects in fatty acid desaturation and elongation display altered susceptibility to DGLA, indicating that the sterility effect of the dietary lipid depends on the amount of DGLA present in membranes as well as on the capacity to convert DGLA to other fatty acids. We propose that DGLA produces a signal that interacts with one or more pathways regulating germ cell survival. Our DGLA findings are the first report of a role for a specific fatty acid affecting the development and maintenance of germ cells in C. elegans.
Collapse
Affiliation(s)
- Jennifer L Watts
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99614-6340, USA.
| | | |
Collapse
|
50
|
Yoshida Y, Niki E. Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol. Biofactors 2006; 27:195-202. [PMID: 17012775 DOI: 10.1002/biof.5520270117] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The biological role of lipid peroxidation products has continued to receive a great deal of attention not only for the elucidation of pathological mechanisms but also for their practical application to clinical use as bio-markers. In the last fifty years, lipid peroxidation has been the subject of extensive studies from the viewpoints of mechanisms, dynamics, product analysis, involvement in diseases, inhibition, and biological signaling. Lipid hydroperoxides are formed as the major primary products, however they are substrates for various enzymes and they also undergo various secondary reactions. In this decade, F2-isoprostanes from arachidonates and neuroprostanes from docosahexanoates have been proposed as bio-markers. Although these markers are formed by a free radical-mediated oxidation, the yields from the parent lipids are minimal. Compared to these markers, hydroperoxy octadecadienoates (HPODE) from linoleates and oxysterols from cholesterols are yielded by much simpler mechanisms from more abundant parent lipids in vivo. Recently, the method in which both free and ester forms of hydroperoxides and ketones as well as hydroxides of linoleic acid and cholesterol are measured as total hydroxyoctadecadienoic acid (tHODE) and 7-hydroxycholesterol (t7-OHCh), respectively, was proposed. The concentrations of tHODE and t7-OHCh determined by GC-MS analysis from physiological samples were much higher than that of 8-iso-prostagrandin F(2alpha). In addition to this advantage, hydrogen-donor activity of antioxidants in vivo could be determined by the isomeric-ratio of HODE (9- and 13-(Z,E)-HODE/9- and 13-(E,E)-HODE).
Collapse
Affiliation(s)
- Yasukazu Yoshida
- National Institute of Advanced Industrial Science and Technology (AIST), Human Stress Signal Research Center, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan.
| | | |
Collapse
|