1
|
Yeh WH, Ju YJ, Shaw FZ, Liu YT. Comparative effectiveness of electroencephalogram-neurofeedback training of 3-45 frequency band on memory in healthy population: a network meta-analysis with systematic literature search. J Neuroeng Rehabil 2025; 22:94. [PMID: 40275307 PMCID: PMC12020070 DOI: 10.1186/s12984-025-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVE To investigate which brain activity frequency of electroencephalogram (EEG)-neurofeedback training (NFT) was the most effective for enhancing working memory (WM) and episodic memory (EM) in healthy participants through network meta-analysis (NMA). METHODS Searched PubMed, Embase, and Cochrane Library for studies published from January 1990 to January 2025. We performed Bayesian NMA, pooling continuous outcome data using the standardized mean difference effect size (ES). Global and local evaluations of inconsistency were conducted using the chi-square test, side-splitting, and loop-specific approaches. A consistency model was applied and the global approach to inconsistency showed no significance. Efficacy ranks were determined using the surface under the cumulative ranking curve (SUCRA) for each intervention. Publication bias was assessed using the comparison-adjusted funnel plot and Egger's test. Finally, sensitivity analysis confirmed our findings' robustness. RESULTS Sixty studies were included, comprising 50 trials on WM and 24 trials on EM. While the global inconsistency analysis showed no significant inconsistency for WM (χ2(22) = 30.89, p = 0.10) and EM (χ2(10) = 13.48, p = 0.19), the consistency model exhibited the most significant difference between active control (AC) and alpha combined with working memory training (WMT) (ES of 6.64, p < 0.001) for WM, and between AC and alpha (ES of 0.84, p = 0.01) for EM. Alpha combined with WMT for WM (100%) and alpha NFT for EM (87.0%) also showed the highest efficacy according to the SUCRA. No publication bias was found for either type of memory. The sensitivity analysis for WM and EM aligns with the original results. CONCLUSION Through NMA, alpha activity (7-13 Hz) may be a crucial frequency impacting memory. Brain activity combined with other training methods requires more robust studies for future investigation. This study registered with www.crd.york.ac.uk/prospero/ (CRD42024539656).
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Department of Gerontological Health Care, Central Taiwan University of Science and Technology, Taichung City, 406, Taiwan.
| | - Ya-Ju Ju
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan
- Department of Physical Therapy, College of Health Care, China Medical University, Taichung, 406, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, 701, Taiwan
- Mind Research and Imaging Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Science Industries, Chang Jung Christian University, Tainan, 711, Taiwan
- Bachelor Degree Program in Medical Sociology and Health Care, Chang Jung Christian University, Tainan, 711, Taiwan
| |
Collapse
|
2
|
Funahashi S, Gao B, Takeda K, Watanabe Y, Wu J, Yan T. Individual prefrontal neurons contribute to sensory-to-motor information transformation by rotating reference frames during spatial working memory performance. Cereb Cortex 2023; 33:10258-10271. [PMID: 37557911 DOI: 10.1093/cercor/bhad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Performing working memory tasks correctly requires not only the temporary maintenance of information but also the visual-to-motor transformation of information. Although sustained delay-period activity is known to be a mechanism for temporarily maintaining information, the mechanism for information transformation is not well known. An analysis using a population of delay-period activities recorded from prefrontal neurons visualized a gradual change of maintained information from sensory to motor as the delay period progressed. However, the contributions of individual prefrontal neurons to this process are not known. In the present study, we used a version of the delayed-response task, in which monkeys needed to make a saccade 90o clockwise from a visual cue after a 3-s delay, and examined the temporal change in the preferred directions of delay-period activity during the delay period for individual neurons. One group of prefrontal neurons encoded the cue direction by a retinotopic reference frame and either maintained it throughout the delay period or rotated it 90o counterclockwise to adjust visual information to saccade information, whereas other groups of neurons encoded the cue direction by a saccade-based reference frame and rotated it 90o clockwise. The results indicate that visual-to-motor information transformation is achieved by manipulating the reference frame to adjust visual coordinates to motor coordinates.
Collapse
Affiliation(s)
- Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Haidian District, Beijing 100018, People's Republic of China
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100018, People's Republic of China
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Kokoro Research Center, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Binbin Gao
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100018, People's Republic of China
| | - Kazuyoshi Takeda
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yumiko Watanabe
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Haidian District, Beijing 100018, People's Republic of China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100018, People's Republic of China
| |
Collapse
|
3
|
Tao XD, Liu ZR, Zhang YQ, Zhang XH. Connexin43 hemichannels contribute to working memory and excitatory synaptic transmission of pyramidal neurons in the prefrontal cortex of rats. Life Sci 2021; 286:120049. [PMID: 34662549 DOI: 10.1016/j.lfs.2021.120049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
The gap junction is essential for the communication between astrocytes and neurons by various connexins. Connexin43 hemichannels (Cx43 HCs), one of important subunits of gap junction protein, is highly expressed in astrocytes. It has been demonstrated that Cx43 HCs is involved in synaptic plasticity and learning and memory. However, whether the role of Cx43 HCs in the prefrontal cortex (PFC), a key brain region mediating cognitive and executive functions including working memory, still remains unclear. Here, we investigate that the role of Cx43 HCs in working memory through pharmacological inhibition of Cx43 HCs in the PFC. Gap26, a specific hemichannels blocker for Cx43 HCs, was bilaterally infused into the prelimbic (PrL) area of the PFC and then spatial working memory was examined in delayed alternation task in T-maze. Furthermore, the effect of Gap26 on synaptic transmission of prefrontal pyramidal neurons was examined using whole-cell patch recording in slice containing PFC. The demonstrate that inhibition of prefrontal cortex Cx43 HCs impairs the working memory and excitatory synaptic transmission of PFC neurons, suggesting that Cx43 HCs in the PFC contributes to working memory and excitatory synaptic transmission of neurons in rats.
Collapse
Affiliation(s)
- Xiao-Dong Tao
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhao-Rui Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xue-Han Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Ve H, Cabana VC, Gouspillou G, Lussier MP. Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. Neuroscience 2020; 442:100-113. [PMID: 32652177 DOI: 10.1016/j.neuroscience.2020.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
Optimal synaptic activity is essential for cognitive function, including memory and learning. Evidence indicates that cognitive decline in elderly individuals is associated with altered synaptic function. However, the impact of aging on the expression of neurotransmitter receptors and accessory proteins in brain synapses remains unclear. To fill this knowledge gap, we investigated the effect of aging on the mouse brain by utilizing a subcellular brain tissue fractionation procedure to measure protein abundance using quantitative Western Blotting. Comparing 7-month- (control) and 22-month- (aged) old mouse tissue, no significant differences were identified in the levels of AMPA receptor subunits between the experimental groups. The abundance of GluN2B NMDA receptor subunits decreased in aged mice, whereas the levels of GluN2A did not change. The analysis of cytoskeletal proteins showed an altered level of actin and tubulin in aged mice while PSD-95 protein did not change. Vesicle protein analysis revealed that synaptophysin abundance is decreased in older brains whereas EEA1 was significantly increased. Thus, our results suggest that physiological aging profoundly impacts the abundance of molecules associated with neurotransmitter release and vesicle cycling, proteins implicated in cognitive function.
Collapse
Affiliation(s)
- Hou Ve
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Valérie C Cabana
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adaptée, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marc P Lussier
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Bidirectional optogenetic modulation of prefrontal-hippocampal connectivity in pain-related working memory deficits. Sci Rep 2019; 9:10980. [PMID: 31358862 PMCID: PMC6662802 DOI: 10.1038/s41598-019-47555-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of the prefrontal-hippocampal circuit has been identified as a leading cause to pain-related working-memory (WM) deficits. However, the underlying mechanisms remain poorly determined. To address this issue, we implanted multichannel arrays of electrodes in the prelimbic cortex (PL-mPFC), and in the dorsal hippocampal CA1 field (dCA1) to record the neural activity during the performance of a delayed non-match to sample (DNMS) task. The prefrontal-hippocampal connectivity was selectively modulated by bidirectional optogenetic inhibition or stimulation of local PL-mPFC glutamatergic calcium/calmodulin-dependent protein kinase-II alpha (CaMKIIα) expressing neurons during the DNMS task delay-period. The within-subject behavioral performance was assessed using a persistent neuropathic pain model – spared nerve injury (SNI). Our results showed that the induction of the neuropathic pain condition affects the interplay between PL-mPFC and dCA1 regions in a frequency-dependent manner, and that occurs particularly across theta oscillations while rats performed the task. In SNI-treated rats, this disruption was reversed by the selective optogenetic inhibition of PL-mPFC CaMKIIα-expressing neurons during the last portion of the delay-period, but without any significant effect on pain responses. Finally, we found that prefrontal-hippocampal theta connectivity is strictly associated with higher performance levels. Together, our findings suggest that PL-mPFC CaMKIIα-expressing neurons could be modulated by painful conditions and their activity may be critical for prefrontal-hippocampal connectivity during WM processing.
Collapse
|
6
|
Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 2019; 160:805-823. [PMID: 30681984 DOI: 10.1097/j.pain.0000000000001457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stability of local medial prefrontal cortex (mPFC) network activity is believed to be critical for sustaining cognitive processes such as working memory (WM) and decision making. Dysfunction of the mPFC has been identified as a leading cause to WM deficits in several chronic pain conditions; however, the underlying mechanisms remain largely undetermined. Here, to address this issue, we implanted multichannel arrays of electrodes in the prelimbic region of the mPFC and recorded the neuronal activity during a food-reinforced delayed nonmatch to sample (DNMS) task of spatial WM. In addition, we used an optogenetic technique to selectively suppress the activity of excitatory pyramidal neurons that are considered the neuronal substrate for memory retention during the delay period of the behavioral task. Within-subject behavioral performance and pattern of neuronal activity were assessed after the onset of persistent pain using the spared nerve injury model of peripheral neuropathy. Our results show that the nerve lesion caused a disruption in WM and prelimbic spike activity and that this disruption was reversed by the selective inhibition of prelimbic glutamatergic pyramidal neurons during the delay period of the WM task. In spared nerve injury animals, photoinhibition of excitatory neurons improved the performance level and restored neural activity to a similar profile observed in the control animals. In addition, we found that selective inhibition of excitatory neurons does not produce antinociceptive effects. Together, our findings suggest that disruption of balance in local prelimbic networks may be crucial for the neurological and cognitive deficits observed during painful syndromes.
Collapse
|
7
|
|
8
|
Mansouri FA, Koechlin E, Rosa MGP, Buckley MJ. Managing competing goals — a key role for the frontopolar cortex. Nat Rev Neurosci 2017; 18:645-657. [DOI: 10.1038/nrn.2017.111] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Leavitt ML, Pieper F, Sachs AJ, Martinez-Trujillo JC. A Quadrantic Bias in Prefrontal Representation of Visual-Mnemonic Space. Cereb Cortex 2017; 28:2405-2421. [DOI: 10.1093/cercor/bhx142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew L Leavitt
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, Ontario, Canada
| | - Florian Pieper
- Department of Neuro- & Pathophysiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Adam J Sachs
- Division of Neurosurgery, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, Ontario, Canada
- Department of Psychiatry, University of Western Ontario, Ontario, Canada
| |
Collapse
|
10
|
Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and meta-analyses. NEUROIMAGE-CLINICAL 2015; 12:940-948. [PMID: 27995059 PMCID: PMC5153561 DOI: 10.1016/j.nicl.2015.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Working memory ability matures through puberty and early adulthood. Deficits in working memory are linked to the risk of onset of neurodevelopmental disorders such as schizophrenia, and there is a significant temporal overlap between the peak of first episode psychosis risk and working memory maturation. In order to characterize the normal working memory functional maturation process through this critical phase of cognitive development we conducted a systematic review and coordinate based meta-analyses of all the available primary functional magnetic resonance imaging studies (n = 382) that mapped WM function in healthy adolescents (10–17 years) and young adults (18–30 years). Activation Likelihood Estimation analyses across all WM tasks revealed increased activation with increasing subject age in the middle frontal gyrus (BA6) bilaterally, the left middle frontal gyrus (BA10), the left precuneus and left inferior parietal gyri (BA7; 40). Decreased activation with increasing age was found in the right superior frontal (BA8), left junction of postcentral and inferior parietal (BA3/40), and left limbic cingulate gyrus (BA31). These results suggest that brain activation during adolescence increased with age principally in higher order cortices, part of the core working memory network, while reductions were detected in more diffuse and potentially more immature neural networks. Understanding the process by which the brain and its cognitive functions mature through healthy adulthood may provide us with new clues to understanding the vulnerability to neurodevelopmental disorders. Healthy working memory functional maturation process in adolescence Brain activation increased with age in higher order cortices. Activation decreased in more diffuse and potentially more immature networks. Provide new clues to understanding vulnerability to neurodevelopmental disorders
Collapse
|
11
|
Liu K, Li B, Qian S, Jiang Q, Li L, Sun G. Altered interhemispheric resting state functional connectivity during passive hyperthermia. Int J Hyperthermia 2015; 31:840-9. [PMID: 26608616 DOI: 10.3109/02656736.2015.1058977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This study examines the effect of passive hyperthermia on interhemispheric resting state functional connectivity and the correlation between interhemispheric resting state functional connectivity and efficiency of a succedent working memory task. MATERIALS AND METHODS We performed voxel-mirrored homotopic connectivity (VMHC) analyses on resting state MRI data and a one-back task from 14 healthy subjects in both HT (hyperthermia, 50 °C) conditions and normal control (NC, 25 °C) conditions. The group analyses of the differences for VMHC between the two conditions and the correlation analysis between the VMHC and the reaction time (RT) of the one-back task were performed with the statistical parametric mapping software package and the software REST. RESULTS Compared with NC conditions, HT conditions increased VMHC in the cuneus, the postcentral gyrus, and the fusiform gyrus. No region showed decreased VMHC in the HT group in comparison with the NC group. For NC conditions, negative correlations were demonstrated between RT of the one-back task and VMHC in bilateral superior temporal gyrus, and bilateral middle frontal gyrus; for HT conditions, negative correlations were demonstrated between RT and VMHC in bilateral inferior frontal gyrus, bilateral middle frontal gyrus, as well as cerebellum posterior lobe. CONCLUSION Passive heat stress can impact the interhemispheric information interactions at resting state and the VMHC deficits may play an important role in cognitive dysfunction.
Collapse
Affiliation(s)
- Kai Liu
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Bo Li
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Shaowen Qian
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Qingjun Jiang
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Li Li
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| | - Gang Sun
- a Department of Medical Imaging , Jinan Military General Hospital , Shandong , China
| |
Collapse
|
12
|
Abstract
During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms.
Collapse
Affiliation(s)
- Narender Ramnani
- Department of Psychology, Royal Holloway, University of London, Egham, UK.
| |
Collapse
|
13
|
Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc Natl Acad Sci U S A 2014; 112:E214-9. [PMID: 25540412 DOI: 10.1073/pnas.1410130112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that neurons of monkey dorsolateral prefrontal cortex (DLPFC) integrate information across modalities and maintain it throughout the delay period of working-memory (WM) tasks. However, the mechanisms of this temporal integration in the DLPFC are still poorly understood. In the present study, to further elucidate the role of the DLPFC in crossmodal WM, we trained monkeys to perform visuo-haptic (VH) crossmodal and haptic-haptic (HH) unimodal WM tasks. The neuronal activity recorded in the DLPFC in the delay period of both tasks indicates that the early-delay differential activity probably is related to the encoding of sample information with different strengths depending on task modality, that the late-delay differential activity reflects the associated (modality-independent) action component of haptic choice in both tasks (that is, the anticipation of the behavioral choice and/or active recall and maintenance of sample information for subsequent action), and that the sustained whole-delay differential activity likely bridges and integrates the sensory and action components. In addition, the VH late-delay differential activity was significantly diminished when the haptic choice was not required. Taken together, the results show that, in addition to the whole-delay differential activity, DLPFC neurons also show early- and late-delay differential activities. These previously unidentified findings indicate that DLPFC is capable of (i) holding the coded sample information (e.g., visual or tactile information) in the early-delay activity, (ii) retrieving the abstract information (orientations) of the sample (whether the sample has been haptic or visual) and holding it in the late-delay activity, and (iii) preparing for behavioral choice acting on that abstract information.
Collapse
|
14
|
Yang ST, Shi Y, Wang Q, Peng JY, Li BM. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol Brain 2014; 7:61. [PMID: 25159295 PMCID: PMC4237901 DOI: 10.1186/s13041-014-0061-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022] Open
Abstract
Working memory is a process for short-term active maintenance of information. Behavioral neurophysiological studies in monkeys have demonstrated that the dorsolateral prefrontal cortex (dlPFC) is a key cortical region for working memory. The medial prefrontal cortex (mPFC) in rats is a cortical area similar to the dlPFC in monkeys in terms of anatomical connections, and is also required for behavioral performance on working-memory tasks. However, it is still controversial regarding whether and how mPFC neurons encode working memory. In the present study, we trained rats on a two-choice spatial delayed alternation task in Y maze, a typical working memory task for rodents, and investigated neuronal activities in the mPFC when rats performed the task. Our results show that, (1) inactivation of the mPFC severely impaired the performance of rats on the task, consistent with previous studies showing the importance of the mPFC for working-memory tasks; (2) 93.7% mPFC cells (449 in 479) exhibited changes in spiking frequency that were temporally locked with the task events, some of which, including delay-related cells, were tuned by spatial information; (3) differential delay activities in individual mPFC cells appeared transiently and sequentially along the delay, especially during the early phase of the delay; (4) some mPFC cells showed no change in discharge frequency but exhibited differential synchronization in firing during the delay. The present results suggest that mPFC neurons in rats are involved in encoding working memory, via increasing firing frequency or synchronization.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Ming Li
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
16
|
Funahashi S. Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions. Front Integr Neurosci 2014; 8:54. [PMID: 25071482 PMCID: PMC4074701 DOI: 10.3389/fnint.2014.00054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions.
Collapse
|
17
|
Prefrontal cortex and neural mechanisms of executive function. ACTA ACUST UNITED AC 2013; 107:471-82. [DOI: 10.1016/j.jphysparis.2013.05.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022]
|
18
|
Funahashi S. Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex. Front Syst Neurosci 2013; 7:36. [PMID: 23914160 PMCID: PMC3728470 DOI: 10.3389/fnsys.2013.00036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/13/2013] [Indexed: 01/15/2023] Open
Abstract
Working memory is a dynamic neural system that includes processes for temporarily maintaining and processing information. Working memory plays a significant role in a variety of cognitive functions, such as thinking, reasoning, decision-making, and language comprehension. Although the prefrontal cortex (PFC) is known to play an important role in working memory, several lines of evidence indicate that the thalamic mediodorsal nucleus (MD) also participates in this process. While monkeys perform spatial working memory tasks, MD neurons exhibit directionally selective delay-period activity, which is considered to be a neural correlate for the temporary maintenance of information in PFC neurons. Studies have also shown that, while most MD neurons maintain prospective motor information, some maintain retrospective sensory information. Thus, the MD plays a greater role in prospective motor aspects of working memory processes than the PFC, which participates more in retrospective aspects. For the performance of spatial working memory tasks, the information provided by a sensory cue needs to be transformed into motor information to give an appropriate response. A population vector analysis using neural activities revealed that, although the transformation of sensory-to-motor information occurred during the delay period in both the PFC and the MD, PFC activities maintained sensory information until the late phase of the delay period, while MD activities initially represented sensory information but then started to represent motor information in the earlier phase of the delay period. These results indicate that long-range neural interactions supported by reciprocal connections between the MD and the PFC could play an important role in the transformation of maintained information in working memory processes.
Collapse
|
19
|
Yadav A, Gao YZ, Rodriguez A, Dickstein DL, Wearne SL, Luebke JI, Hof PR, Weaver CM. Morphologic evidence for spatially clustered spines in apical dendrites of monkey neocortical pyramidal cells. J Comp Neurol 2012; 520:2888-902. [PMID: 22315181 DOI: 10.1002/cne.23070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The general organization of neocortical connectivity in rhesus monkey is relatively well understood. However, mounting evidence points to an organizing principle that involves clustered synapses at the level of individual dendrites. Several synaptic plasticity studies have reported cooperative interaction between neighboring synapses on a given dendritic branch, which may potentially induce synapse clusters. Additionally, theoretical models have predicted that such cooperativity is advantageous, in that it greatly enhances a neuron's computational repertoire. However, largely because of the lack of sufficient morphologic data, the existence of clustered synapses in neurons on a global scale has never been established. The majority of excitatory synapses are found within dendritic spines. In this study, we demonstrate that spine clusters do exist on pyramidal neurons by analyzing the three-dimensional locations of ∼40,000 spines on 280 apical dendritic branches in layer III of the rhesus monkey prefrontal cortex. By using clustering algorithms and Monte Carlo simulations, we quantify the probability that the observed extent of clustering does not occur randomly. This provides a measure that tests for spine clustering on a global scale, whenever high-resolution morphologic data are available. Here we demonstrate that spine clusters occur significantly more frequently than expected by pure chance and that spine clustering is concentrated in apical terminal branches. These findings indicate that spine clustering is driven by systematic biological processes. We also found that mushroom-shaped and stubby spines are predominant in clusters on dendritic segments that display prolific clustering, independently supporting a causal link between spine morphology and synaptic clustering.
Collapse
Affiliation(s)
- Aniruddha Yadav
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience 2012; 251:21-32. [PMID: 23069756 DOI: 10.1016/j.neuroscience.2012.09.077] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging.
Collapse
Affiliation(s)
- D L Dickstein
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
21
|
Tanaka A, Funahashi S. Macaque monkeys exhibit behavioral signs of metamemory in an oculomotor working memory task. Behav Brain Res 2012; 233:256-70. [DOI: 10.1016/j.bbr.2012.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
|
22
|
Wu J, Li X, Yang J, Cai C, Sun H, Guo Q. Prominent activation of the bilateral inferior parietal lobule of literate compared with illiterate subjects during Chinese logographic processing. Exp Brain Res 2012; 219:327-37. [PMID: 22543811 DOI: 10.1007/s00221-012-3094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Chinese is a logographic language system that differs from alphabetic languages, and some of the neurocognitive mechanisms underlying Chinese logographic reading also differ from those underlying alphabetic word reading. However, whether education level effects the neural activation associated with logographic processing of Chinese is still unknown. In the present study, 11 Chinese illiterate and 11 literate (age-matched) subjects participated in an event-related fMRI experiment with Chinese character discrimination (CD) and figure discrimination (FD) tasks. All subjects were asked to view the character or figure pairs and discriminate whether the characters or figures of each stimuli pair were the same or not using response keys. Both literate and illiterate subjects activated a widely distributed cerebral network, including the bilateral inferior, middle and superior frontal gyri, superior temporal gyrus and parietal lobe, in the CD task. Finally, we directly compared the activations of literate subjects with illiterate subjects. The results suggest that the bilateral parts of the angular gyrus and supramarginal gyrus are more active for literate than illiterate subjects in the CD task. We found no significant group difference in the FD task. Therefore, the present results may indicate that education level effects the neural activation associated with the logographic processing of Chinese.
Collapse
Affiliation(s)
- Jinglong Wu
- Biomedical Engineering Laboratory, The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Funahashi S. Space representation in the prefrontal cortex. Prog Neurobiol 2012; 103:131-55. [PMID: 22521602 DOI: 10.1016/j.pneurobio.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022]
Abstract
The representation of space and its function in the prefrontal cortex have been examined using a variety of behavioral tasks. Among them, since the delayed-response task requires the temporary maintenance of spatial information, this task has been used to examine the mechanisms of spatial representation. In addition, the concept of working memory to explain prefrontal functions has helped us to understand the nature and functions of space representation in the prefrontal cortex. The detailed analysis of delay-period activity observed in spatial working memory tasks has provided important information for understanding space representation in the prefrontal cortex. Directional delay-period activity has been shown to be a neural correlate of the mechanism for temporarily maintaining information and represent spatial information for the visual cue and the saccade. In addition, many task-related prefrontal neurons exhibit spatially selective activities. These neurons are also important components of spatial information processing. In fact, information flow from sensory-related neurons to motor-related neurons has been demonstrated, along with a change in spatial representation as the trial progresses. The dynamic functional interactions among neurons exhibiting different task-related activities and representing different aspects of information could play an essential role in information processing. In addition, information provided from other cortical or subcortical areas might also be necessary for the representation of space in the prefrontal cortex. To better understand the representation of space and its function in the prefrontal cortex, we need to understand the nature of functional interactions between the prefrontal cortex and other cortical and subcortical areas.
Collapse
Affiliation(s)
- Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
24
|
Watanabe Y, Funahashi S. Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev 2012; 36:134-42. [DOI: 10.1016/j.neubiorev.2011.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/17/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
25
|
Elston GN, Benavides-Piccione R, Elston A, Manger PR, DeFelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat 2011; 5:2. [PMID: 21347276 PMCID: PMC3039119 DOI: 10.3389/fnana.2011.00002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/11/2011] [Indexed: 11/16/2022] Open
Abstract
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.
Collapse
Affiliation(s)
- Guy N. Elston
- Centre for Cognitive NeuroscienceSunshine Coast, QLD, Australia
| | - Ruth Benavides-Piccione
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Javier DeFelipe
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
26
|
Molecular mechanisms of working memory. Behav Brain Res 2011; 219:329-41. [PMID: 21232555 DOI: 10.1016/j.bbr.2010.12.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/29/2010] [Indexed: 11/22/2022]
Abstract
Working memory is a process for temporary active maintenance of information and the role of prefrontal cortex in this memory has been known since the pioneering experiments of Fulton in the early 20th century. Sustained firing of prefrontal neurons during the delay period is considered the neural correlate of working memory. Evidence in literature suggests the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks. Prefrontal cortex is part of a complex neural circuit that includes both cortical and subcortical components and many of these regions play vital roles in working memory function. In this article, we review the current understanding of the neural mechanisms of memory maintenance in the brain.
Collapse
|
27
|
Abstract
Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.
Collapse
|
28
|
Effects of normal aging on prefrontal area 46 in the rhesus monkey. ACTA ACUST UNITED AC 2009; 62:212-32. [PMID: 20005254 DOI: 10.1016/j.brainresrev.2009.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 01/12/2023]
Abstract
This review is concerned with the effects of normal aging on the structure and function of prefrontal area 46 in the rhesus monkey (Macaca mulatta). Area 46 has complex connections with somatosensory, visual, visuomotor, motor, and limbic systems and a key role in cognition, which frequently declines with age. An important question is what alterations might account for this decline. We are nowhere near having a complete answer, but as will be shown in this review, it is now evident that there is no single underlying cause. There is no significant loss of cortical neurons and although there are a few senile plaques in rhesus monkey cortex, their frequency does not correlate with cognitive decline. However, as discussed in this review, the following do correlate with cognitive decline. Loss of white matter has been proposed to result in some disconnections between parts of the central nervous system and changes in the structure of myelin sheaths reduce conduction velocity and the timing in neuronal circuits. In addition, there are reductions in the inputs to cortical neurons, as shown by regression of dendritic trees, loss of dendritic spines and synapses, and alterations in transmitters and receptors. These factors contribute to alterations in the intrinsic and network physiological properties of cortical neurons. As more details emerge, it is to be hoped that effective interventions to retard cognitive decline can be proposed.
Collapse
|
29
|
Sidiropoulou K, Lu FM, Fowler MA, Xiao R, Phillips C, Ozkan ED, Zhu MX, White FJ, Cooper DC. Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nat Neurosci 2009; 12:190-9. [PMID: 19169252 PMCID: PMC2727588 DOI: 10.1038/nn.2245] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022]
Abstract
The intrinsic properties of neurons that enable them to maintain depolarized, persistently activated states in the absence of sustained input are poorly understood. In short-term memory tasks, individual prefrontal cortical (PFC) neurons can maintain persistent action potential output during delay periods between informative cues and behavioral responses. Dopamine and drugs of abuse alter PFC function and working memory, possibly by modulating intrinsic neuronal properties. Here we used patch-clamp recording of layer 5 PFC pyramidal neurons to identify a postsynaptic depolarization that was evoked by action potential bursts and mediated by metabotropic glutamate receptor 5 (mGluR5). This depolarization occurred in the absence of recurrent synaptic activity and was reduced by a dopamine D1 receptor (D1R) protein kinase A pathway. After behavioral sensitization to cocaine, the depolarization was substantially diminished and D1R modulation was lost. We propose that burst-evoked intrinsic depolarization is a form of short-term cellular memory that is modulated by dopamine and cocaine experience.
Collapse
Affiliation(s)
- Kyriaki Sidiropoulou
- Department of Neuroscience, Rosalind Franklin University of Health and Science/Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wurtz RH. Neuronal mechanisms of visual stability. Vision Res 2008; 48:2070-89. [PMID: 18513781 PMCID: PMC2556215 DOI: 10.1016/j.visres.2008.03.021] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Human vision is stable and continuous in spite of the incessant interruptions produced by saccadic eye movements. These rapid eye movements serve vision by directing the high resolution fovea rapidly from one part of the visual scene to another. They should detract from vision because they generate two major problems: displacement of the retinal image with each saccade and blurring of the image during the saccade. This review considers the substantial advances in understanding the neuronal mechanisms underlying this visual stability derived primarily from neuronal recording and inactivation studies in the monkey, an excellent model for systems in the human brain. For the first problem, saccadic displacement, two neuronal candidates are salient. First are the neurons in frontal and parietal cortex with shifting receptive fields that provide anticipatory activity with each saccade and are driven by a corollary discharge. These could provide the mechanism for a retinotopic hypothesis of visual stability and possibly for a transsaccadic memory hypothesis, The second neuronal mechanism is provided by neurons whose visual response is modulated by eye position (gain field neurons) or are largely independent of eye position (real position neurons), and these neurons could provide the basis for a spatiotopic hypothesis. For the second problem, saccadic suppression, visual masking and corollary discharge are well established mechanisms, and possible neuronal correlates have been identified for each.
Collapse
Affiliation(s)
- Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bldg. 49, RM 2A50, Bethesda, MD 20892-4435, USA.
| |
Collapse
|
31
|
Cassanello CR, Ferrera VP. Computing vector differences using a gain field-like mechanism in monkey frontal eye field. J Physiol 2007; 582:647-64. [PMID: 17510192 PMCID: PMC2075335 DOI: 10.1113/jphysiol.2007.128801] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/12/2007] [Indexed: 11/08/2022] Open
Abstract
Signals related to eye position are essential for visual perception and eye movements, and are powerful modulators of sensory responses in many regions of the visual and oculomotor systems. We show that visual and pre-saccadic responses of frontal eye field (FEF) neurons are modulated by initial eye position in a way suggestive of a multiplicative mechanism (gain field). Furthermore the slope of the eye position sensitivity tends to be negatively correlated with preferred retinal position across the population. A model with Gaussian visual receptive fields and linear-rectified eye position gain fields accounts for a large portion of the variance in the recorded data. Using physiologically derived parameters, this model is able to subtract the gaze shift from the vector representing the retinal location of the target. This computation might be used to maintain a memory of target location in space during ongoing eye movements. This updated spatial memory can be read directly from the locus of the peak of activity across the retinotopic map of FEF and it is the result of a vector subtraction between retinal target location when flashed and subsequent eye displacement in the dark.
Collapse
Affiliation(s)
- Carlos R Cassanello
- Center for Neurobiology and Behavior, Department of Psychiatry, Columbia University, 1051 Riverside Drive, Kolb Annex 504, New York, NY 10032, USA.
| | | |
Collapse
|
32
|
Ichihara-Takeda S, Funahashi S. Activity of primate orbitofrontal and dorsolateral prefrontal neurons: task-related activity during an oculomotor delayed-response task. Exp Brain Res 2007; 181:409-25. [PMID: 17443317 DOI: 10.1007/s00221-007-0941-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
The orbitofrontal cortex (OFC) has strong reciprocal connections to the dorsolateral prefrontal cortex (DLPFC), which is known to participate in spatial working memory processes. However, it is not known whether or not the OFC also participates in spatial working memory and whether the OFC and DLPFC contribute equally to this process. To address these issues, we collected single-neuron activity from both areas while a monkey performed an oculomotor delayed-response task, and compared the characteristics of task-related activities between the OFC and DLPFC. All of the task-related activities observed in the DLPFC were also observed in the OFC. However, the proportion and response characteristics of task-related activities were different between the two areas. While most delay-period activity observed in the DLPFC was directionally selective and showed tonic sustained activation, most delay-period activity observed in the OFC was omni-directional and showed gradually increasing activity. Reward-period activity was predominant among task-related activities in the OFC. The proportion of neurons showing reward-period activity was significantly higher in the OFC than in the DLPFC. These results suggest that, although both the OFC and DLPFC participate in spatial working memory processes, the OFC is related more to the expectation and the detection of reward delivery, while the DLPFC is related more to the temporary maintenance of spatial information and its processing.
Collapse
Affiliation(s)
- Satoe Ichihara-Takeda
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
33
|
Takeda K, Funahashi S. Relationship between prefrontal task-related activity and information flow during spatial working memory performance. Cortex 2007; 43:38-52. [PMID: 17334206 DOI: 10.1016/s0010-9452(08)70444-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While monkeys performed spatial working memory tasks, cue- (C), delay- (D), and response-period (R) activities or their combinations (CD, CR, DR, CDR) were observed in prefrontal neurons. In the present study, we tried to understand information flow during spatial working memory performances and how each task-related neuron contributed to this process. We first characterized each neuron based on which task-related activity was exhibited and which information (cue location or saccade direction) each task-related activity represented, then classified these neurons into 9 groups (C, Dcue, Dsac, CDcue, DcueRcue, DsacRsac, DcueRsac, CDcueRcue and CDcueRsac). Preferred directions were similar between cue- and delay-period activities in CDcue, CDcueRcue, and CDcueRsac, indicating that the directional selectivity of delay-period activity is affected by the directional selectivity of cue-period activity, all of which represented visual information. Preferred directions were also similar between delay- and response-period activities in DcueRcue, CDcueRcue, and DsacRsac, indicating that the directional selectivity of delay-period activity affects the directional selectivity of response-period activity in these neurons. By the comparison of temporal profiles of delay-period activity among these groups, we found (1) cue-period activity could affect directional selectivity of delay-period activity of CDcue and CDcueRcue, (2) cue-period activity of C, CDcue, and CDcueRcue might contribute to the initiation and the maintenance of delay-period activity of CDcue, CDcueRcue, Dcue, and DcueRcue, and (3) saccade-related activity of DsacRsac could be affected by delay-period activity of Dsac and DsacRsac. These results suggest that the combination of task-related activities, the information represented by each activity, and the temporal profile of delay-period activity are important factors to consider information flow and processing and integration of the information in the prefrontal cortex during spatial working memory processes.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
34
|
Zikopoulos B, Barbas H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci 2006; 26:7348-61. [PMID: 16837581 PMCID: PMC6674204 DOI: 10.1523/jneurosci.5511-05.2006] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inhibitory thalamic reticular nucleus (TRN) intercepts and modulates all corticothalamic and thalamocortical communications. Previous studies showed that projections from sensory and motor cortices originate in layer VI and terminate as small boutons in central and caudal TRN. Here we show that prefrontal projections to TRN in rhesus monkeys have a different topographic organization and mode of termination. Prefrontal cortices projected mainly to the anterior TRN, at sites connected with the mediodorsal, ventral anterior, and anterior medial thalamic nuclei. However, projections from areas 46, 13, and 9 terminated widely in TRN and colocalized caudally with projections from temporal auditory, visual, and polymodal association cortices. Population analysis and serial EM reconstruction revealed two distinct classes of corticoreticular terminals synapsing with GABA/parvalbumin-positive dendritic shafts of TRN neurons. Most labeled boutons from prefrontal axons were small, but a second class of large boutons was also prominent. This is in contrast to the homogeneous small TRN terminations from sensory cortices noted previously and in the present study, which are thought to arise exclusively from layer VI. The two bouton types were often observed on the same axon, suggesting that both prefrontal layers V and VI could project to TRN. The dual mode of termination suggests a more complex role of prefrontal input in the functional regulation of TRN and gating of thalamic output back to the cortex. The targeting of sensory tiers of TRN by specific prefrontal areas may underlie attentional regulation for the selection of relevant sensory signals and suppression of distractors.
Collapse
|
35
|
Jha AP, Ranucci MB, Giuliani NR. Organization of mnemonic and response operations within prefrontal cortex. Brain Res 2006; 1097:133-41. [PMID: 16796996 DOI: 10.1016/j.brainres.2006.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 11/23/2022]
Abstract
There is mounting evidence that prefrontal cortex (PFC) is activated during mnemonic operations such as working memory maintenance and also during response-related operations. In the current study, we examine the neural organization of mnemonic and response operations with respect to each other within PFC. Stimulus-evoked and sustained functional MRI activity was recorded during performance of a mental calculation task. The presence or absence of mnemonic and response demands was manipulated in a 2 x 2 factorial design with conditions requiring: (1) memory encoding and maintenance (M+); (2) response selection and execution (R+); (3) encoding, maintenance, and response execution (M+R+); (4) neither mnemonic nor response-related processes (M-R-). The first step of the analyses identified PFC voxels exhibiting differential activity during (M+) vs. (R+) trials. Within these voxels, we then examined activity during multiple phases of (M+R+) trials. Greater stimulus-evoked and sustained activity was observed within the anterior extent of dorsolateral prefrontal cortex (BA 46) during R+ vs. M+ trials. In contrast, greater activity was observed in the posterior extent of dorsolateral PFC during M+ vs. R+ trials. Importantly, both regions were activated during (M+R+) trials. Activity levels during all of these conditions exceeded levels observed during (M-R-) control trials. These results suggest that integrative functions of PFC that allow past information to guide future actions may emerge from communication between discrete subregions supporting mnemonic and response operations.
Collapse
Affiliation(s)
- Amishi P Jha
- Center for Cognitive Neuroscience and Department of Psychology, University of Pennsylvania, 3401 Walnut Rm 302C, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
36
|
Funahashi S. Prefrontal cortex and working memory processes. Neuroscience 2006; 139:251-61. [PMID: 16325345 DOI: 10.1016/j.neuroscience.2005.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/30/2005] [Accepted: 07/12/2005] [Indexed: 11/17/2022]
Abstract
Working memory is a mechanism for short-term active maintenance of information as well as for processing maintained information. The dorsolateral prefrontal cortex has been known to participate in working memory. The analysis of task-related dorsolateral prefrontal cortex activity while monkeys performed a variety of working memory tasks revealed that delay-period activity is a neural correlate of a mechanism for temporary active maintenance of information, because this activity persisted throughout the delay period, showed selectivity to a particular visual feature, and was related to correct behavioral performances. Information processing can be considered as a change of the information represented by a population of neural activities during the progress of the trial. Using population vectors calculated by a population of task-related dorsolateral prefrontal cortex activities, we demonstrated the temporal change of information represented by a population of dorsolateral prefrontal cortex activities during performances of spatial working memory tasks. Cross-correlation analysis using spike firings of simultaneously isolated pairs of neurons reveals widespread functional interactions among neighboring neurons, especially neurons having delay-period activity, and their dynamic modulation depending on the context of the trial. Functional interactions among neurons and their dynamic modulation could be a mechanism of information processing in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- S Funahashi
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
37
|
Gaab N, Gaser C, Schlaug G. Improvement-related functional plasticity following pitch memory training. Neuroimage 2006; 31:255-63. [PMID: 16427320 DOI: 10.1016/j.neuroimage.2005.11.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 10/20/2005] [Accepted: 11/18/2005] [Indexed: 11/27/2022] Open
Abstract
Functional activation patterns of an auditory working memory task were examined prior to and after 5 days of training (1 h/day). A control group with no training was scanned twice at the same intervals to assess test-retest effects. Based on behavioral improvement scores, the training group (n = 14) was divided into "Strong-Learners (SL)" and "Weak-Learners (WL)". No significant functional or structural brain differences were seen between the SL and WL groups prior to training. Imaging contrasts comparing post- with pre-training sessions showed a significant signal increase in the left Heschl's gyrus (HG) as well as in the left posterior superior temporal and supramarginal gyrus for the SL group, while the WL group showed significant signal increases in the left HG and anterior insular cortex as well as in a lingual-orbitofrontal-parahippocampal network. The test-retest analysis in the control group revealed only minimal signal increases in a right dorsolateral prefrontal region. A random effects analysis comparing the SL group with the WL group using the post- and pre-training contrast images showed increased activation only in the left supramarginal gyrus but not in HG. The importance of HG in pitch discrimination has been established in previous studies. The pitch memory component differentiated our task from a straight pitch discrimination task. It is most likely that the activation of the SMG reflects its importance in the short-term storage of auditory material, and it was this activation that best differentiated between subjects' levels of performance.
Collapse
Affiliation(s)
- Nadine Gaab
- Department of Neurology, Neuroimaging Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
38
|
Funahashi S, Takeda K, Watanabe Y. Neural mechanisms of spatial working memory: contributions of the dorsolateral prefrontal cortex and the thalamic mediodorsal nucleus. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2005; 4:409-20. [PMID: 15849887 DOI: 10.3758/cabn.4.4.409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsolateral prefrontal cortex (DLPFC) has been known to play an important role in working memory. Neurophysiological studies have revealed that delay period activity observed in the DLPFC is a neural correlate of the temporary storage mechanism for information and that this activity represents either retrospective or prospective information, although the majority represents retrospective information. However, the DLPFC is not the only brain area related to working memory. The analysis of neural activity in the thalamic mediodorsal (MD) nucleus reveals that the MD also participates in working memory. Although similar task-related activities were observed in the MD, the directional bias of these activities and the proportion of presaccadic activity are different between the MD and the DLPFC. These results indicate that, although the MD participates in working memory, the way it participates in this process is different between these two areas, in that the MD participates more in motor control aspects than the DLPFC does.
Collapse
Affiliation(s)
- Shintaro Funahashi
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
39
|
Lee H, Simpson GV, Logothetis NK, Rainer G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 2005; 45:147-56. [PMID: 15629709 DOI: 10.1016/j.neuron.2004.12.025] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/28/2004] [Accepted: 11/22/2004] [Indexed: 10/26/2022]
Abstract
Working memory has been linked to elevated single neuron discharge in monkeys and to oscillatory changes in the human EEG, but the relation between these effects has remained largely unexplored. We addressed this question by measuring local field potentials and single unit activity simultaneously from multiple electrodes placed in extrastriate visual cortex while monkeys were performing a working memory task. We describe a significant enhancement in theta band energy during the delay period. Theta oscillations had a systematic effect on single neuron activity, with neurons emitting more action potentials near their preferred angle of each theta cycle. Sample-selective delay activity was enhanced if only action potentials emitted near the preferred theta angle were considered. Our results suggest that extrastriate visual cortex is involved in short-term maintenance of information and that theta oscillations provide a mechanism for structuring the recurrent interaction between neurons in different brain regions that underlie working memory.
Collapse
Affiliation(s)
- Han Lee
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
Callu D, Giannopulu I, Escolano S, Cusin F, Jacquier-Roux M, Dellatolas G. Smooth pursuit eye movements are associated with phonological awareness in preschool children. Brain Cogn 2005; 58:217-25. [PMID: 15919554 DOI: 10.1016/j.bandc.2004.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/25/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022]
Abstract
Phonological awareness is strongly related to reading ability, but reports are more conflicting concerning the association of high level oculomotor skills with reading. Here, we show that phonological awareness is specifically associated with the ability to perform smooth pursuit eye movements in preschool children. Two large independent samples of preschool children (n=838 and n=732) aged 5-6.4 years, without history of neurological disorder, were examined by school medical doctors for visual and oculomotor problems. Nineteen percent of the children in the first sample and 14% in the second failed at the clinical evaluation of smooth pursuit eye movements, and 17 and 15%, respectively, presented another visual or oculomotor problem. Ten short cognitive tests were performed by the same children. Visual and oculomotor problems other than a failure on smooth pursuit were not consistently related to the cognitive tasks, with one exception, the visual recognition of letters. Children who failed at smooth pursuit obtained lower scores at a number of cognitive tasks, and especially phonological awareness tasks and copy of visually presented trajectories. Poor working memory and/or failure of anticipation during the tracking of a visual or auditory stimulus related to frontal cortex immaturity may explain these associations in preschool children.
Collapse
Affiliation(s)
- D Callu
- INSERM U.472, Epidemiology et Biostatistics, Villejuif, France
| | | | | | | | | | | |
Collapse
|
41
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1140] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
42
|
Abstract
Working-memory tasks often lead to elevated delay-period discharge rates in cortical neurons. When this altered neuronal discharge rate, called delay activity, shows stimulus specificity, it is a good candidate for a neuronal mechanism of working memory. If the delay activity is indeed the carrier of memory, then experimental manipulation during the delay period that disrupts delay activity should also disrupt behavioral performance. We tested this hypothesis in two macaque monkeys with a delayed matching-to-sample task (delay time: 8 or 10 s) in which only two visual images were used. In each trial, one of the images was randomly chosen as the sample. In control trials (without disruptive stimulation), the monkeys performed at the level of 74.3% correct recognition. Three electrical stimulation levels (mild: a 0.25-s train of electrical pulses; medium: 1-s train; strong: 4 s), delivered to the hippocampal formation or to the orbito-frontal and inferotemporal cortices during delay period, decreased the performance to 71.4, 66.8, and 58.0% respectively (all are significantly less than control performance, P < 0.05 for mild stimulation and P < 0.0001 for other stimulation levels). Three hundred and thirty-four cells were recorded from inferotemporal (211 cells) and prefrontal (123 cells) cortices. Significant ( P < 0.05) stimulus-specific delay activity was found in about one-third of recorded cells. For these cells in control trials, the mean difference in delay-period spike rates between preferred and nonpreferred images was 26%. The electrical stimulation reduced this difference to 20% (not a statistically significant reduction) in trials with mild stimulation, to 14% ( P < 0.05) with medium stimulation, and just to 4% ( P < 0.0005) with strong stimulation. These results, that increasing electrical stimulation reduced neuronal selectivity and at the same time reduced behavioral performance, directly support the hypothesis that delay activity is the carrier of memory through the delay period.
Collapse
Affiliation(s)
- Stanislaw Sobotka
- Department of Neurobiology and Anatomy, Box 603, University of Rochester Medical Center, 601 Elmwood Ave., Rochester NY 14642, USA.
| | | | | |
Collapse
|
43
|
Hannesson DK, Vacca G, Howland JG, Phillips AG. Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behav Brain Res 2004; 153:273-85. [PMID: 15219729 DOI: 10.1016/j.bbr.2003.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 12/05/2003] [Accepted: 12/06/2003] [Indexed: 10/26/2022]
Abstract
The present study describes two novel tasks relying on spontaneous patterns of exploration in a radial-arm maze that can be used to assess spatial recognition memory and spatial temporal order memory (i.e. memory for the order in which places have been visited) in the rat. In the recognition memory task, rats were permitted to freely explore two arms in the maze on a first trial and one 'familiar' arm and one novelly located arm on a second trial 105 min later. In the temporal order memory task, rats were permitted to explore two arms in the maze on a first trial, two novel arms on a second trial 60 min later, and one 'older familiar' arm and one 'more recent familiar' arm on a third trial 45 min later. Using these tasks, we found that rats direct greater exploration at a novel than a familiar arm location, thus showing long-term spatial recognition memory, and at an older familiar arm than a more recent familiar arm, thus showing long-term spatial temporal order memory. Lidocaine inactivation of the mPFC prior to the final trial in each task disrupted performance on the temporal order but not the recognition memory task, thereby demonstrating a role for the mPFC in the retrieval and/or use of temporal order information but not in spatial memory per se. These findings highlight the specific involvement of the rat mPFC in temporal order memory and have important implications for a broader understanding of mPFC function.
Collapse
Affiliation(s)
- D K Hannesson
- Department of Psychology, University of Regina, Regina, Sask., Canada S4S 0A2
| | | | | | | |
Collapse
|
44
|
Watanabe Y, Funahashi S. Neuronal Activity Throughout the Primate Mediodorsal Nucleus of the Thalamus During Oculomotor Delayed-Responses. I. Cue-, Delay-, and Response-Period Activity. J Neurophysiol 2004; 92:1738-55. [PMID: 15140911 DOI: 10.1152/jn.00994.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamic mediodorsal nucleus (MD) has strong reciprocal connections with the dorsolateral prefrontal cortex (DLPFC), suggesting that the MD, like the DLPFC, participates in higher cognitive functions. To examine MD's participation in cognitive functions, we analyzed the characteristics of task-related activities sampled homogeneously from the MD while two monkeys performed a spatial working memory task using oculomotor responses. Of 141 task-related MD neurons, 26, 53, and 84% exhibited cue-, delay-, and response-period activity, respectively. Most of cue- and response-period activities showed phasic excitation, and most of delay-period activity showed tonic sustained activation. Among neurons with response-period activity, 74% exhibited presaccadic activity. Most cue-period, delay-period, and presaccadic activities were directional, whereas most postsaccadic activity was omni-directional. A significant contralateral bias in the best directions was present in cue-period and presaccadic activity. However, such bias was not present in delay-period activity, although most neurons had a best direction toward the contralateral visual field. We compared these characteristics with those observed in DLPFC neurons. Response-period activity was more frequently observed in the MD (84%) than in the DLPFC (56%). The directional selectivity and bias of task-related activities and the ratios of pre- and postsaccadic activities were different between MD and DLPFC. These results indicate that the MD participates in higher cognitive functions such as spatial working memory. However, the manner in which these two structures participate in these processes differs, in that the MD participates more in motor control aspects compared with the DLPFC.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Dept. of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
45
|
Watanabe Y, Funahashi S. Neuronal Activity Throughout the Primate Mediodorsal Nucleus of the Thalamus During Oculomotor Delayed-Responses. II. Activity Encoding Visual Versus Motor Signal. J Neurophysiol 2004; 92:1756-69. [PMID: 15140912 DOI: 10.1152/jn.00995.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We collected single-neuron activity from the mediodorsal (MD) nucleus of the thalamus, examined the information that was represented by task-related activity during performance of a spatial working memory task, and compared the present results with those obtained in the dorsolateral prefrontal cortex (DLPFC). We used two oculomotor delayed-response (ODR) tasks. In the ordinary ODR task, monkeys were required to make a memory-guided saccade to the location where a visual cue had been presented 3 s previously, whereas in the rotatory ODR task, they were required to make a memory-guided saccade 90° clockwise from the cue direction. By comparing the best directions of the same task-related activity between the two tasks, we could determine whether this activity represented the cue location or the saccade direction. All cue-period activity represented the cue location. In contrast, 56% of delay-period activity represented the cue location and 41% represented the saccade direction. Almost all response-period activity represented the saccade direction. These results indicate that task-related MD activity represents either visual or motor information, suggesting that the MD participates in sensory-to-motor information processing. However, a greater proportion of delay- and response-period activities represented the saccade direction in the MD than in the DLPFC, indicating that more MD neurons participate in prospective information processing than DLPFC neurons. These results suggest that although functional interactions between the MD and DLPFC are crucial to cognitive functions such as working memory, there is a difference in how the MD and DLPFC participate in these functions.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Dept. of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
46
|
Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA. Maturation of Cognitive Processes From Late Childhood to Adulthood. Child Dev 2004; 75:1357-72. [PMID: 15369519 DOI: 10.1111/j.1467-8624.2004.00745.x] [Citation(s) in RCA: 768] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To characterize cognitive maturation through adolescence, processing speed, voluntary response suppression, and spatial working memory were measured in 8- to 30-year-old (N = 245) healthy participants using oculomotor tasks. Development progressed with a steep initial improvement in performance followed by stabilization in adolescence. Adult-level mature performance began at approximately 15, 14, and 19 years of age for processing speed, response inhibition, and working memory, respectively. Although processes developed independently, processing speed influenced the development of working memory whereas the development of response suppression and working memory were interdependent. These results indicate that processing speed, voluntary response suppression, and working memory mature through late childhood and into adolescence. How brain maturation specific to adolescence may support cognitive maturation is discussed.
Collapse
Affiliation(s)
- Beatriz Luna
- Laboratory of Neurocognitive Development, Department of Psychiatry, University of Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
47
|
Xiang JZ, Brown MW. Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Neuron 2004; 42:817-29. [PMID: 15182720 DOI: 10.1016/j.neuron.2004.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 03/05/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
Much evidence indicates that prefrontal cortex plays an important role in long-term recognition memory processes. Here, we report primate prefrontal neuronal responses carrying information necessary for long-term visual recognition memory. The responses of many neurons signaled stimulus familiarity even when the period over which stimuli had to be remembered extended to 24 hr. Such responses occurred frequently in ventromedial, orbitofrontal, and anterior cingulate but not dorsolateral prefrontal cortex. Prefrontal information processing, as indicated by the response latencies, started after that in inferior temporal cortex and might be related to retrieval processes, as responses were typically larger for familiar than for novel stimuli.
Collapse
Affiliation(s)
- Jian-Zhong Xiang
- University of Bristol and MRC Centre for Synaptic Plasticity, Department of Anatomy, Medical School, University Walk, Bristol, BS8 1TD, United Kingdom
| | | |
Collapse
|
48
|
Horwitz GD, Batista AP, Newsome WT. Representation of an Abstract Perceptual Decision in Macaque Superior Colliculus. J Neurophysiol 2004; 91:2281-96. [PMID: 14711971 DOI: 10.1152/jn.00872.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded from neurons in the intermediate and deep layers of the superior colliculus (SC) while monkeys performed a novel direction discrimination task. In contrast to the task we used previously, the new version required the monkey to dissociate perceptual judgments from preparation to execute specific operant saccades. The monkey discriminated between 2 opposed directions of motion in a random-dot motion stimulus and was required to maintain the decision in memory throughout a delay period before the target of the required operant saccade was revealed. We hypothesized that perceptual decisions made in this paradigm would be represented in an “abstract” or “categorical” form within the brain, probably in the frontal cortex, and that decision-related neural activity would be eliminated from spatially organized preoculomotor structures such as the SC. To our surprise, however, a small population of neurons in the intermediate and deep layers of the SC fired in a choice-specific manner early in the trial well before the monkey could plan the operant saccade. Furthermore, the representation of the decision during the delay period appeared to be spatial: the active region in the SC map corresponded to the region of space toward which the perceptually discriminated stimulus motion flowed. Electrical microstimulation experiments suggested that these decision-related SC signals were not merely related to covert saccade planning. We conclude that monkeys may employ, in part, a spatially referenced mnemonic strategy for representing perceptual decisions, even when an abstract, categorical representation might appear more likely a priori.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
49
|
Passingham D, Sakai K. The prefrontal cortex and working memory: physiology and brain imaging. Curr Opin Neurobiol 2004; 14:163-8. [PMID: 15082320 DOI: 10.1016/j.conb.2004.03.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sustained activity has been recorded in the prefrontal cortex during working memory tasks. First, we compare the anatomical distribution of this activity in humans and monkeys. Then, we show that it reflects many factors, maintenance of the items presented, preparation for the response, transformation of the items during the delay, task rules and task goals. Finally, we point out that sustained activity has also been recorded in other areas, such as the parietal cortex. We suggest that the key to prefrontal cortex lies not in the maintenance of sensory information but in the prospective use of that information for behaviour.
Collapse
Affiliation(s)
- Dick Passingham
- Department of Experimental Psychology, University of Oxford, United Kingdom.
| | | |
Collapse
|
50
|
Druzgal TJ, D'Esposito M. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. J Cogn Neurosci 2003; 15:771-84. [PMID: 14511531 DOI: 10.1162/089892903322370708] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Collapse
|