1
|
Kamali MJ, Salehi M, Fath MK. Advancing personalized immunotherapy for melanoma: Integrating immunoinformatics in multi-epitope vaccine development, neoantigen identification via NGS, and immune simulation evaluation. Comput Biol Med 2025; 188:109885. [PMID: 40010174 DOI: 10.1016/j.compbiomed.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The use of cancer vaccines represents a promising avenue in cancer immunotherapy. Advances in next-generation sequencing (NGS) technology, coupled with the development of sophisticated analysis tools, have enabled the identification of somatic mutations by comparing genetic sequences between normal and tumor samples. Tumor neoantigens, derived from these mutations, have emerged as potential candidates for therapeutic cancer vaccines. In this study, raw NGS data from two melanoma patients (NCI_3903 and NCI_3998) were analyzed using publicly available SRA datasets from NCBI to identify patient-specific neoantigens. A comprehensive pipeline was employed to select candidate peptides based on their antigenicity, immunogenicity, physicochemical properties, and toxicity profiles. These validated epitopes were utilized to design multi-epitope chimeric vaccines tailored to each patient. Peptide linkers were employed to connect the epitopes, ensuring optimal vaccine structure and function. The two-dimensional (2D) and three-dimensional (3D) structures of the chimeric vaccines were predicted and refined to ensure structural stability and immunogenicity. Furthermore, molecular docking simulations were conducted to evaluate the binding interactions between the vaccine chimeras and the HLA class I receptors, confirming their potential to elicit a robust immune response. This work highlights a personalized approach to cancer vaccine development, demonstrating the feasibility of utilizing neoantigen-based immunoinformatics pipelines to design patient-specific therapeutic vaccines for melanoma.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
| |
Collapse
|
2
|
Li J, Xu J, Liu Y, Chen L, Yu L, Xiao X, Wang Q. Factors influencing antibody response after COVID-19 recombinant protein vaccination in adults: A cross-sectional observational study, in Chongqing, China. Hum Vaccin Immunother 2024; 20:2389602. [PMID: 39171541 PMCID: PMC11346555 DOI: 10.1080/21645515.2024.2389602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The factors affecting the antibody responses to the ZF2001 vaccine remain unknown. To address this, we conducted a cross-sectional serological study in the real world. Adults with no prior SARS-CoV-2 infection history and received three doses of ZF2001 vaccine were invited to our study in the early stages of the COVID-19 epidemic in Chongqing between 7 April 2021 and 17 November 2021. A questionnaire survey was conducted to obtain demographic characteristics, health information, and the frequency of lifestyles at the time of enrollment. A total of 266 eligible subjects aged 18 to 86 years, with a median age of 56.00 (IQR: 34-66) participated. 68.80% of them were female. Hypertension (13.16%) and diabetes (6.02%) were common comorbidities. Serum samples were collected at one month after the third dose of ZF2001 vaccination, and serological testing was conducted using the Pseudovirus-Based Neutralization Assay. The chi-square test was employed to compare seropositivity rates, and the Mann-Whitney U test or the Kruskal-Wallis test was used to analyze the neutralizing antibodies level in stratified groups. Subsequently, univariate and multivariate linear regression analyses were conducted to identify the influencing factors. We observed that seropositivity rates was 76.32%, with 95% confidence interval (95%CI) 70.85%-81.03%, and geometric mean titer (GMT) was 120.26, with 95%CI 100.38-144.08. Age, diabetes, and frequently of alcohol were negative associations with antibody response (β = -0.2021, 95% CI: -0.2507 to -0.1535, β = -0.2873, 95% CI: -0.5590 to -0.0155, β = -0.2082, 95% CI: -0.3419 to-0.0746, P < 0.0001, P = 0.0384, P = 0.0024). Conversely, the -interval between 1 and 2 dose and frequently of tea were positive associations with antibody response (β = 0.1369, 95% CI: 0.0463 to 0.2275, β = 0.0830, 95% CI: 0.0106 to 0.1554, P = 0.0032, P = 0.0247). Overall, the ZF2001 vaccine-induced antibody response was influenced by a multifactor that may provide a reference for the development of personalized antigen vaccines and vaccination strategies in the future.
Collapse
Affiliation(s)
- Jianqiao Li
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Jiawei Xu
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yu Liu
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Lei Chen
- Expand Program on Immunization, Yuzhong District Center for Disease Control and Prevention, Chongqing, China
| | - Linling Yu
- Expand Program on Immunization, Yubei District Center for Disease Control and Prevention, Chongqing, China
| | - Xiao Xiao
- Expand Program on Immunization, Jiulongpo District Center for Disease Control and Prevention, Chongqing, China
| | - Qing Wang
- Expand Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| |
Collapse
|
3
|
Xie J, Mothe B, Alcalde Herraiz M, Li C, Xu Y, Jödicke AM, Gao Y, Wang Y, Feng S, Wei J, Chen Z, Hong S, Wu Y, Su B, Zheng X, Cohet C, Ali R, Wareham N, Alhambra DP. Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes. Nat Commun 2024; 15:4031. [PMID: 38740772 DOI: 10.1038/s41467-024-48339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.
Collapse
Affiliation(s)
- Junqing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Beatriz Mothe
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marta Alcalde Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Annika M Jödicke
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Yaqing Gao
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Yunhe Wang
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Zhuoyao Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yeda Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Catherine Cohet
- Real-World Evidence Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Noord-Holland, The Netherlands
| | - Raghib Ali
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nick Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Daniel Prieto Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Ghosh A, Larrondo-Petrie MM, Pavlovic M. Revolutionizing Vaccine Development for COVID-19: A Review of AI-Based Approaches. INFORMATION 2023; 14:665. [DOI: 10.3390/info14120665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The evolvement of COVID-19 vaccines is rapidly being revolutionized using artificial intelligence-based technologies. Small compounds, peptides, and epitopes are collected to develop new therapeutics. These substances can also guide artificial intelligence-based modeling, screening, or creation. Machine learning techniques are used to leverage pre-existing data for COVID-19 drug detection and vaccine advancement, while artificial intelligence-based models are used for these purposes. Models based on artificial intelligence are used to evaluate and recognize the best candidate targets for future therapeutic development. Artificial intelligence-based strategies can be used to address issues with the safety and efficacy of COVID-19 vaccine candidates, as well as issues with manufacturing, storage, and logistics. Because antigenic peptides are effective at eliciting immune responses, artificial intelligence algorithms can assist in identifying the most promising COVID-19 vaccine candidates. Following COVID-19 vaccination, the first phase of the vaccine-induced immune response occurs when major histocompatibility complex (MHC) class II molecules (typically bind peptides of 12–25 amino acids) recognize antigenic peptides. Therefore, AI-based models are used to identify the best COVID-19 vaccine candidates and ensure the efficacy and safety of vaccine-induced immune responses. This study explores the use of artificial intelligence-based approaches to address logistics, manufacturing, storage, safety, and effectiveness issues associated with several COVID-19 vaccine candidates. Additionally, we will evaluate potential targets for next-generation treatments and examine the role that artificial intelligence-based models can play in identifying the most promising COVID-19 vaccine candidates, while also considering the effectiveness of antigenic peptides in triggering immune responses. The aim of this project is to gain insights into how artificial intelligence-based approaches could revolutionize the development of COVID-19 vaccines and how they can be leveraged to address challenges associated with vaccine development. In this work, we highlight potential barriers and solutions and focus on recent improvements in using artificial intelligence to produce COVID-19 drugs and vaccines, as well as the prospects for intelligent training in COVID-19 treatment discovery.
Collapse
Affiliation(s)
- Aritra Ghosh
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maria M. Larrondo-Petrie
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
6
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Lott N, Gebhard CE, Bengs S, Haider A, Kuster GM, Regitz-Zagrosek V, Gebhard C. Sex hormones in SARS-CoV-2 susceptibility: key players or confounders? Nat Rev Endocrinol 2023; 19:217-231. [PMID: 36494595 PMCID: PMC9734735 DOI: 10.1038/s41574-022-00780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.
Collapse
Affiliation(s)
- Nicola Lott
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Gabriela M Kuster
- Department of Cardiology and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Cardiology, Inselspital Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
8
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Trivanović D, Peršurić Ž, Agaj A, Jakopović M, Samaržija M, Bitar L, Pavelić K. The Interplay of Lung Cancer, COVID-19, and Vaccines. Int J Mol Sci 2022; 23:15067. [PMID: 36499394 PMCID: PMC9738445 DOI: 10.3390/ijms232315067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with cancer are more susceptible to a higher risk of coronavirus infection and its severe complications than the general population. In addition, these patients were not included in the pivotal clinical trials for COVID-19 vaccines. Therefore, considerable uncertainty remains regarding the management of cancer patients during the COVID-19 pandemic and the safety of COVID-19 vaccinations in cancer patients. In this review, we summarize the current knowledge generated from the beginning of the COVID-19 pandemic on the vulnerability of cancer patients to the coronavirus disease, as well as the effectiveness of COVID-19 vaccines in this population. We also discuss the available data on the effects of anticancer treatment with immune checkpoint inhibitors on the immune responses to SARS-CoV-2 in cancer patients. Special attention in this review will be given to patients with lung cancer, as such patients are at an increased risk for severe effects from COVID-19.
Collapse
Affiliation(s)
- Dragan Trivanović
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52100 Pula, Croatia
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Marko Jakopović
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Miroslav Samaržija
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Lela Bitar
- Department for Respiratory Diseases Jordanovac, KBC Zagreb-Jordanovac Clinic for Lung Diseases, 10000 Zagreb, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| |
Collapse
|
10
|
Hijazi R, Gesser-Edelsburg A, Feder-Bubis P, Mesch GS. Hesitant and anti-vaccination groups: A qualitative study on their perceptions and attitudes regarding vaccinations and their reluctance to participate in academic research- an example during a measles outbreak among a group of Jewish parents in Israel. Front Public Health 2022; 10:1012822. [PMID: 36438238 PMCID: PMC9682119 DOI: 10.3389/fpubh.2022.1012822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background Vaccination is widespread in Western countries and, overall, there is a high vaccination rate. However, immunization is still an enduring challenge. In recent years, the number of parents who choose to delay or refuse vaccines has risen. Objectives (1) to identify the perceptions and attitudes of hesitant and anti-vaccination parents regarding vaccination in general, and vaccinating their children in particular and; (2) to describe the responses of potential participants to the request to participate in academic research regarding their perceptions and attitudes on the subject of vaccines. Methods The research employs the qualitative hermeneutic phenomenological method using two research tools: (1) in-depth interviews with 7 hesitant and 11 anti-vaccination Jewish parents in Israel; and (2) the researchers' field notes from this study process, which describe the responses of 32 potential participants to the request to participate in this academic research. Results The main findings indicate that while most of the interviewees admit to the efficacy of vaccines in preventing diseases, they oppose the way in which vaccines are promoted-based on providing partial information and disregarding parents' concerns and questions. Therefore, they demand transparency about the efficacy and safety of vaccines. The findings also point to a paradoxical finding. On the one hand, these groups claim that health organizations do not understand their position, referring to them as "science-deniers", even though they are not. On the other hand, these parents choose to refrain from participating in scientific studies and voicing their opinions, thereby perpetuating the situation of being misunderstood. Conclusion Hesitant and anti-vaccination groups express mistrust in academic institutions and health organizations. Therefore, an effective dialogue that would include hesitant and anti-vaccination groups, the academy, and health organizations may contribute to a better understanding of the barriers that prevent these groups from getting vaccinated or vaccinating their children and promote public health.
Collapse
Affiliation(s)
- Rana Hijazi
- School of Public Health, University of Haifa, Haifa, Israel,*Correspondence: Rana Hijazi
| | - Anat Gesser-Edelsburg
- Head of the Health Promotion Program and Head of the Health and Risk Communication Lab, School of Public Health, University of Haifa, Haifa, Israel
| | - Paula Feder-Bubis
- Department of Health Policy and Management, Faculty of Health Sciences and Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
11
|
Sunita, Singh Y, Beamer G, Sun X, Shukla P. Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Crit Rev Biotechnol 2022; 42:532-547. [PMID: 34641752 PMCID: PMC11208086 DOI: 10.1080/07388551.2021.1951649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Tuberculosis (TB) is one of the most prevalent diseases worldwide. The currently available Bacillus Calmette-Guérin vaccine is not sufficient in protecting against pulmonary TB. Although many vaccines have been evaluated in clinical trials, but none of them yet has proven to be more successful. Thus, new strategies are urgently needed to design more effective TB vaccines. The emergence of new technologies will undoubtedly accelerate the process of vaccine development. This review summarizes the potential and validated applications of emerging technologies, including: systems biology (genomics, proteomics, and transcriptomics), genetic engineering, and other computational tools to discover and develop novel vaccines against TB. It also discussed that the significant implementation of these approaches will play crucial roles in the development of novel vaccines to cure and control TB.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, College of Medicine (COM), University of South Florida, Tampa, FL, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Brooks BD, Beland A, Aguero G, Taylor N, Towne FD. Moving beyond Titers. Vaccines (Basel) 2022; 10:vaccines10050683. [PMID: 35632439 PMCID: PMC9144832 DOI: 10.3390/vaccines10050683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccination to prevent and even eliminate disease is amongst the greatest achievements of modern medicine. Opportunities remain in vaccine development to improve protection across the whole population. A next step in vaccine development is the detailed molecular characterization of individual humoral immune responses against a pathogen, especially the rapidly evolving pathogens. New technologies such as sequencing the immune repertoire in response to disease, immunogenomics/vaccinomics, particularly the individual HLA variants, and high-throughput epitope characterization offer new insights into disease protection. Here, we highlight the emerging technologies that could be used to identify variation within the human population, facilitate vaccine discovery, improve vaccine safety and efficacy, and identify mechanisms of generating immunological memory. In today’s vaccine-hesitant climate, these techniques used individually or especially together have the potential to improve vaccine effectiveness and safety and thus vaccine uptake rates. We highlight the importance of using these techniques in combination to understand the humoral immune response as a whole after vaccination to move beyond neutralizing titers as the standard for immunogenicity and vaccine efficacy, especially in clinical trials.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58103, USA
- Correspondence: ; Tel.: +1-(435)-222-1304
| | - Alexander Beland
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Gabriel Aguero
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Nicholas Taylor
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Francina D. Towne
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| |
Collapse
|
13
|
Farshbafnadi M, Kamali Zonouzi S, Sabahi M, Dolatshahi M, Aarabi MH. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp Gerontol 2021; 154:111507. [PMID: 34352287 PMCID: PMC8329427 DOI: 10.1016/j.exger.2021.111507] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in late 2019 has been associated with a high rate of mortality and morbidity. It has been determined that the old population are not only at an increased risk for affliction with COVID-19 infection, but also atypical presentations, severe forms of the disease, and mortality are more common in this population. A plethora of mechanisms and risk factors contribute to the higher risk of infection in the old population. For instance, aging is associated with an increment in the expression of Angiotensin-Converting Enzyme-2 (ACE-2), the receptor for SARS-CoV-2 spike protein, which precipitates replication of the virus in the old population. On the other hand, immune dysregulation and changes in gut microbiota as a result of aging can contribute to the cytokine storm, one of the main indicators of disease severity. Decrement in sex steroids, especially in women, as well as growth hormone, both of which have crucial roles in immune regulation, is a key contributor to disease severity in old age. Senescence-associated oxidative stress and mitochondrial dysfunction in both pneumocytes and immune cells contribute to the severity of infection in an exacerbative manner. In addition, lifestyle-associated factors such as nutrition and physical activity, which are compromised in old age, are known as important factors in COVID-19 infection. Aging-associated comorbidities, especially cardiovascular diseases and diabetes mellitus, also put older adults at an increased risk of complications, and disease severity.
Collapse
Affiliation(s)
| | - Sara Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Padova Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
14
|
Adam L, Rosenbaum P, Bonduelle O, Combadière B. Strategies for Immunomonitoring after Vaccination and during Infection. Vaccines (Basel) 2021; 9:365. [PMID: 33918841 PMCID: PMC8070333 DOI: 10.3390/vaccines9040365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Immunomonitoring is the study of an individual's immune responses over the course of vaccination or infection. In the infectious context, exploring the innate and adaptive immune responses will help to investigate their contribution to viral control or toxicity. After vaccination, immunomonitoring of the correlate(s) and surrogate(s) of protection is a major asset for measuring vaccine immune efficacy. Conventional immunomonitoring methods include antibody-based technologies that are easy to use. However, promising sensitive high-throughput technologies allowed the emergence of holistic approaches. This raises the question of data integration methods and tools. These approaches allow us to increase our knowledge on immune mechanisms as well as the identification of key effectors of the immune response. However, the depiction of relevant findings requires a well-rounded consideration beforehand about the hypotheses, conception, organization and objectives of the immunomonitoring. Therefore, well-standardized and comprehensive studies fuel insight to design more efficient, rationale-based vaccines and therapeutics to fight against infectious diseases. Hence, we will illustrate this review with examples of the immunomonitoring approaches used during vaccination and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | - Behazine Combadière
- Inserm, Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, 75013 Paris, France; (L.A.); (P.R.); (O.B.)
| |
Collapse
|
15
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
16
|
Xie J, Zi W, Li Z, He Y. Ontology-based Precision Vaccinology for Deep Mechanism Understanding and Precision Vaccine Development. Curr Pharm Des 2021; 27:900-910. [PMID: 33238868 PMCID: PMC12067353 DOI: 10.2174/1381612826666201125112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Vaccination is one of the most important innovations in human history. It has also become a hot research area in a new application - the development of new vaccines against non-infectious diseases such as cancers. However, effective and safe vaccines still do not exist for many diseases, and where vaccines exist, their protective immune mechanisms are often unclear. Although licensed vaccines are generally safe, various adverse events, and sometimes severe adverse events, still exist for a small population. Precision medicine tailors medical intervention to the personal characteristics of individual patients or sub-populations of individuals with similar immunity-related characteristics. Precision vaccinology is a new strategy that applies precision medicine to the development, administration, and post-administration analysis of vaccines. Several conditions contribute to make this the right time to embark on the development of precision vaccinology. First, the increased level of research in vaccinology has generated voluminous "big data" repositories of vaccinology data. Secondly, new technologies such as multi-omics and immunoinformatics bring new methods for investigating vaccines and immunology. Finally, the advent of AI and machine learning software now makes possible the marriage of Big Data to the development of new vaccines in ways not possible before. However, something is missing in this marriage, and that is a common language that facilitates the correlation, analysis, and reporting nomenclature for the field of vaccinology. Solving this bioinformatics problem is the domain of applied biomedical ontology. Ontology in the informatics field is human- and machine-interpretable representation of entities and the relations among entities in a specific domain. The Vaccine Ontology (VO) and Ontology of Vaccine Adverse Events (OVAE) have been developed to support the standard representation of vaccines, vaccine components, vaccinations, host responses, and vaccine adverse events. Many other biomedical ontologies have also been developed and can be applied in vaccine research. Here, we review the current status of precision vaccinology and how ontological development will enhance this field, and propose an ontology-based precision vaccinology strategy to support precision vaccine research and development.
Collapse
Affiliation(s)
- Jiangan Xie
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Wenrui Zi
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Development of Microbiology and Immunology, Center of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Bartsch SM, Mitgang EA, Geller G, Cox SN, O'Shea KJ, Boyce A, Siegmund SS, Kahn J, Lee BY. What If the Influenza Vaccine Did Not Offer Such Variable Protection? J Infect Dis 2020; 222:1138-1144. [PMID: 32386323 DOI: 10.1093/infdis/jiaa240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The protection that an influenza vaccine offers can vary significantly from person to person due to differences in immune systems, body types, and other factors. The question, then, is what is the value of efforts to reduce this variability such as making vaccines more personalized and tailored to individuals. METHODS We developed a compartment model of the United States to simulate different influenza seasons and the impact of reducing the variability in responses to the influenza vaccine across the population. RESULTS Going from a vaccine that varied in efficacy (0-30%) to one that had a uniform 30% efficacy for everyone averted 16.0-31.2 million cases, $1.9-$3.6 billion in direct medical costs, and $16.1-$42.7 billion in productivity losses. Going from 0-50% in efficacy to just 50% for everyone averted 27.7-38.6 million cases, $3.3-$4.6 billion in direct medical costs, and $28.8-$57.4 billion in productivity losses. Going from 0-70% to 70% averted 33.6-54.1 million cases, $4.0-$6.5 billion in direct medical costs, and $44.8-$64.7 billion in productivity losses. CONCLUSIONS This study quantifies for policy makers, funders, and vaccine developers and manufacturers the potential impact of efforts to reduce variability in the protection that influenza vaccines offer (eg, developing vaccines that are more personalized to different individual factors).
Collapse
Affiliation(s)
- Sarah M Bartsch
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| | - Elizabeth A Mitgang
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| | - Gail Geller
- Johns Hopkins Berman Institute of Bioethics, Baltimore, Maryland, USA
| | - Sarah N Cox
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| | - Kelly J O'Shea
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| | - Angie Boyce
- Johns Hopkins Berman Institute of Bioethics, Baltimore, Maryland, USA
| | - Sheryl S Siegmund
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| | - Jeffrey Kahn
- Johns Hopkins Berman Institute of Bioethics, Baltimore, Maryland, USA
| | - Bruce Y Lee
- Public Health Informatics, Computational, and Operations Research, CUNY Graduate School of Public Health & Health Policy, New York City, New York, USA
| |
Collapse
|
18
|
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ 2020; 11:29. [PMID: 32450906 PMCID: PMC7247289 DOI: 10.1186/s13293-020-00304-9] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. CONTENT The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. CONCLUSION The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.
Collapse
Affiliation(s)
- Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Vera Regitz-Zagrosek
- University of Zurich, Zurich, Switzerland
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Hannelore K Neuhauser
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Piot P, Larson HJ, O'Brien KL, N'kengasong J, Ng E, Sow S, Kampmann B. Immunization: vital progress, unfinished agenda. Nature 2019; 575:119-129. [PMID: 31695203 DOI: 10.1038/s41586-019-1656-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023]
Abstract
Vaccination against infectious diseases has changed the future of the human species, saving millions of lives every year, both children and adults, and providing major benefits to society as a whole. Here we show, however, that national and sub-national coverage of vaccination varies greatly and major unmet needs persist. Although scientific progress opens exciting perspectives in terms of new vaccines, the pathway from discovery to sustainable implementation can be long and difficult, from the financing, development and licensing to programme implementation and public acceptance. Immunization is one of the best investments in health and should remain a priority for research, industry, public health and society.
Collapse
Affiliation(s)
- Peter Piot
- Office of the Director, Vaccine Centre and Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK.
| | - Heidi J Larson
- Office of the Director, Vaccine Centre and Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK.,Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.,Centre for the Evaluation of Vaccination (CEV), University of Antwerp, Antwerp, Belgium
| | - Katherine L O'Brien
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - John N'kengasong
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Edmond Ng
- Office of the Director, Vaccine Centre and Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK
| | - Samba Sow
- Center for Vaccine Development, Bamako, Mali
| | - Beate Kampmann
- Office of the Director, Vaccine Centre and Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK.,MRC Unit The Gambia at the LSHTM, Banjul, The Gambia
| |
Collapse
|
20
|
Bae JM. Introduction of Vaccinomics to Develop Personalized Vaccines in Light of Changes in the Usage of Hantaan Virus Vaccine (Hantavax®) in Korea. J Prev Med Public Health 2019; 52:277-280. [PMID: 31588696 PMCID: PMC6780290 DOI: 10.3961/jpmph.19.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023] Open
Abstract
The Ministry of Food and Drug Safety of Korea made an official announcement in March 2018 that the total number of inoculations of Hantaan virus vaccine (Hantavax®) would change from 3 to 4. Some aspects of this decision remain controversial. Based on the characteristics of Hantaan virus (HTNV) and its role in the pathogenesis of hemorrhagic fever with renal syndrome, it might be difficult to develop an effective and safe HTNV vaccine through the isolate-inactivate-inject paradigm. With the development of high-throughput ‘omics’ technologies in the 21st century, vaccinomics has been introduced. While the goal of vaccinomics is to develop equations to describe and predict the immune response, it could also serve as a tool for developing new vaccine candidates and individualized approaches to vaccinology. Thus, the possibility of applying the innovative field of vaccinomics to develop a more effective and safer HTNV vaccine should be considered.
Collapse
Affiliation(s)
- Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
21
|
Seroprevalence and durability of rubella virus antibodies in a highly immunized population. Vaccine 2019; 37:3876-3882. [PMID: 31126859 DOI: 10.1016/j.vaccine.2019.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the administration of the measles-mumps-rubella (MMR) vaccine has been widespread in the United States for decades, gaps in vaccine coverage still persist for various reasons. The maintenance of herd immunity against rubella virus (RV) is important to controlling the spread and resurgence of rubella and congenital rubella syndrome. METHODS In this study, we sought to assess the seroprevalence of RV-specific antibodies in an adult population from a defined geographic area in Olmsted County, MN, and the surrounding municipalities, with relatively high vaccine coverage and no documented evidence of circulating RV in the past 24 years. Rubella-specific IgG antibodies were measured by ELISA in a large set of serum samples (n = 1393) obtained from the Mayo Clinic Biobank. This cohort was 80.2% female and ranged from 20 to 44 years of age. RESULTS In total, 97.8% of subjects were seropositive for rubella-specific IgG antibodies, with a median titer of 40.56 IU/mL, suggesting a high degree of immunization; however, 2.2% of subjects were found to be seronegative. Interestingly, 25.1% of subjects were seropositive but had titers lower than 25 IU/mL, indicating either a population of low responders or individuals that could potentially be at risk of waning immunity. No significant associations or differences were found between RV-specific titers and demographic variables such as age, sex, or body mass index (BMI). CONCLUSIONS A high rate of seropositivity for rubella was found among this young adult cohort, but a significant percent of the cohort had lower titers that may indicate poor initial vaccine response and potential risk if their antibody titers decline.
Collapse
|
22
|
Fink K. Can We Improve Vaccine Efficacy by Targeting T and B Cell Repertoire Convergence? Front Immunol 2019; 10:110. [PMID: 30814993 PMCID: PMC6381292 DOI: 10.3389/fimmu.2019.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/15/2019] [Indexed: 01/31/2023] Open
Abstract
Traditional vaccine development builds on the assumption that healthy individuals have virtually unlimited antigen recognition repertoires of receptors in B cells and T cells [the B cell receptor (BCR) and TCR respectively]. However, there are indications that there are "holes" in the breadth of repertoire diversity, where no or few B or T cell are able to bind to a given antigen. Repertoire diversity may in these cases be a limiting factor for vaccine efficacy. Assuming that it is possible to predict which B and T cell receptors will respond to a given immunogen, vaccine strategies could be optimized and personalized. In addition, vaccine testing could be simplified if we could predict responses through sequencing BCR and TCRs. Bulk sequencing has shown putatively specific converging sequences after infection or vaccination. However, only single cell technologies have made it possible to capture the sequence of both heavy and light chains of a BCR or the alpha and beta chains the TCR. This has enabled the cloning of receptors and the functional validation of a predicted specificity. This review summarizes recent evidence of converging sequences in infectious diseases. Current and potential future applications of single cell technology in immune repertoire analysis are then discussed. Finally, possible short- and long- term implications for vaccine research are highlighted.
Collapse
Affiliation(s)
- Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
23
|
Abstract
With the rise in novel infectious agents and disease pandemics, a new era of vaccine discovery is necessary. To address this, the new field of immunomics is described, which is synergistically powered by integrating bioinformatics methodologies with technological advances in biology and high-throughput instrumentation. By incorporating biological data from immunology and molecular biology with current genomics and proteomics, immunomics is geared to deliver an insight into immune function, optimal stimulation of immune responses and precise mapping and rational selection of immune targets that cover antigenic diversity. These efforts are expected to contribute towards the development of new generation of vaccines, tailored to both the genetic make-up of the human population and of the pathogen. Vaccine technologies are also being explored for prevention or control of non-communicable diseases.
Collapse
|
24
|
Fischinger S, Boudreau CM, Butler AL, Streeck H, Alter G. Sex differences in vaccine-induced humoral immunity. Semin Immunopathol 2018; 41:239-249. [PMID: 30547182 PMCID: PMC6373179 DOI: 10.1007/s00281-018-0726-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmunity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral immunity, key to long-term pathogen-specific protection.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA.,Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Audrey L Butler
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Ferlito C, Biselli R, Mariotti S, von Hunolstein C, Teloni R, Ralli L, Pinto A, Pisani G, Tirelli V, Biondo MI, Salerno G, Andreasi Bassi L, Lulli P, Autore A, Scagliusi A, Tomao E, Germano V, Picchianti Diamanti A, Caporuscio S, Milanetti F, Salemi S, Nisini R, D'Amelio R. Tetanus-diphtheria vaccination in adults: the long-term persistence of antibodies is not dependent on polyclonal B-cell activation and the defective response to diphtheria toxoid re-vaccination is associated to HLADRB1∗01. Vaccine 2018; 36:6718-6725. [PMID: 30269918 DOI: 10.1016/j.vaccine.2018.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Cellular and humoral immune responses to tetanus-diphtheria vaccine (Td) were assessed in human leukocyte antigen (HLA)-typed Italian military personnel who received multiple concomitant vaccines. Td-specific antibodies and T-lymphocytes were measured in individuals with one (group-1) and more than one (group-2) Td boosters. A third group (group-3), who received several vaccines, but not Td, was studied to verify the hypothesis of the polyclonal B-cell activation as mechanism for antibody persistence. The antibody response to Td toxoids was higher in group-1, who showed lower baseline antibody levels, than in group-2 subjects. The antibody response to tetanus was higher than to diphtheria toxoid in both groups. No correlation between antibody and cellular response, and no interference in the response to Td by co-administration of different vaccines were observed. HLA-DRB1∗01 allele was detected at significant higher frequency in subjects unable to double the baseline anti-diphtheria antibody levels after the vaccination. Anti-tetanus and diphtheria antibodies half-lives were assessed and the long-lasting persistence above the threshold for protection (0.1 IU/ml) was estimated in over 65 and 20 years, respectively. No significant increase of anti-diphtheria antibodies was observed in consequence of polyclonal B-cell activation. This study emphasizes the duration of Td vaccination-induced seroprotection, suggesting that re-vaccination should probably be performed at intervals longer than 10 years. No reciprocal interference by concomitantly administered vaccines has been observed. HLA-DRB1∗01 allele was significantly associated with anti-diphtheria defective response. Finally, this study does not confirm that anti-diphtheria antibody levels are maintained by polyclonal B-cell activation. Clinical trial registry: The study was registered with NCT01807780.
Collapse
Affiliation(s)
- Claudia Ferlito
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Roberto Biselli
- Aeronautica Militare Italiana, Comando Logistico, Servizio Sanitario, Roma, Italy
| | - Sabrina Mariotti
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | | | - Raffaela Teloni
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | - Luisa Ralli
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | - Antonella Pinto
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | - Giulio Pisani
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | - Valentina Tirelli
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy
| | - Michela Ileen Biondo
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Gerardo Salerno
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Livia Andreasi Bassi
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Patrizia Lulli
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Alberto Autore
- Aeronautica Militare Italiana, Comando Logistico, Centro Sperimentale di Volo, Pratica di Mare, Italy
| | - Alessandro Scagliusi
- Aeronautica Militare Italiana, Comando Logistico, Centro Sperimentale di Volo, Pratica di Mare, Italy
| | - Enrico Tomao
- Aeronautica Militare Italiana, Capo del Corpo Sanitario, Roma, Italy
| | - Valentina Germano
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Andrea Picchianti Diamanti
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Sara Caporuscio
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Francesca Milanetti
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Simonetta Salemi
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| | - Roberto Nisini
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Roma, Italy.
| | - Raffaele D'Amelio
- Sapienza Università di Roma, Dipartimento di Medicina Clinica e Molecolare, A.O. Sant'Andrea, Roma, Italy
| |
Collapse
|
26
|
RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun 2018; 9:3919. [PMID: 30254248 PMCID: PMC6156571 DOI: 10.1038/s41467-018-06405-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
In addition to genomic mutations, RNA editing is another major mechanism creating sequence variations in proteins by introducing nucleotide changes in mRNA sequences. Deregulated RNA editing contributes to different types of human diseases, including cancers. Here we report that peptides generated as a consequence of RNA editing are indeed naturally presented by human leukocyte antigen (HLA) molecules. We provide evidence that effector CD8+ T cells specific for edited peptides derived from cyclin I are present in human tumours and attack tumour cells that are presenting these epitopes. We show that subpopulations of cancer patients have increased peptide levels and that levels of edited RNA correlate with peptide copy numbers. These findings demonstrate that RNA editing extends the classes of HLA presented self-antigens and that these antigens can be recognised by the immune system. RNA editing is a biological process that creates sequence variation. Here the authors show that peptides generated as a consequence of RNA editing are naturally presented by human leukocyte antigen (HLA) and serve as antigens to elicit anti-tumour immune responses.
Collapse
|
27
|
Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 2018; 8:e1512329. [PMID: 30546947 PMCID: PMC6287790 DOI: 10.1080/2162402x.2018.1512329] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple immunotherapeutics have been approved for cancer patients, however advanced solid tumors are frequently refractory to treatment. We evaluated the safety and immunogenicity of a vaccination approach with multimodal oncolytic potential in non-human primates (NHP) (Macaca fascicularis). Primates received a replication-deficient adenoviral prime, boosted by the oncolytic Maraba MG1 rhabdovirus. Both vectors expressed the human MAGE-A3. No severe adverse events were observed. Boosting with MG1-MAGEA3 induced an expansion of hMAGE-A3-specific CD4+ and CD8+ T-cells with the latter peaking at remarkable levels and persisting for several months. T-cells reacting against epitopes fully conserved between simian and human MAGE-A3 were identified. Humoral immunity was demonstrated by the detection of circulating MAGE-A3 antibodies. These preclinical data establish the capacity for the Ad:MG1 vaccination to engage multiple effector immune cell populations without causing significant toxicity in outbred NHPs. Clinical investigations utilizing this program for the treatment of MAGE-A3-positive solid malignancies are underway (NCT02285816, NCT02879760).
Collapse
Affiliation(s)
- Jonathan G Pol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sergio A Acuna
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Beta Yadollahi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Nan Tang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | | | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Badru Moloo
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Sandra LaFrance
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Carole Evelegh
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Galina Denisova
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Robin Parsons
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jamie Millar
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gautier Stoll
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités/Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Jonathan L Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada.,Ottawa Health Research Institute, Ottawa, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J 2017; 8:295-311. [PMID: 29021840 PMCID: PMC5607155 DOI: 10.1007/s13167-017-0101-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, including multiple sclerosis and type 1 diabetes mellitus, affect about 5% of the worldwide population. In the last decade, reports have accumulated on various autoimmune disorders, such as idiopathic thrombocytopenia purpura, myopericarditis, primary ovarian failure, and systemic lupus erythematosus (SLE), following vaccination. In this review, we discuss the possible underlying mechanisms of autoimmune reactions following vaccinations and review cases of autoimmune diseases that have been correlated with vaccination. Molecular mimicry and bystander activation are reported as possible mechanisms by which vaccines can cause autoimmune reactions. The individuals who might be susceptible to develop these reactions could be especially not only those with previous post-vaccination phenomena and those with allergies but also in individuals who are prone to develop autoimmune diseases, such as those with a family history of autoimmunity or with known autoantibodies, and the genetic predisposed individuals. Further research is encouraged into the direct associations between vaccines and autoimmune conditions, and the biological mechanisms behind them.
Collapse
Affiliation(s)
- Maria Vadalà
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| | - Dimitri Poddighe
- Department of Pediatrics, ASST Melegnano e Martesana, Milano, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, Medical School, Surgical Clinic, University of Modena and Reggio Emilia, Modena, Italy
- Network of the Second Opinion, Modena, MO Italy
| |
Collapse
|
29
|
Isidoro-García M, Sánchez-Martín A, García-Sánchez A, Sanz C, García-Berrocal B, Dávila I. Pharmacogenetics and the treatment of asthma. Pharmacogenomics 2017; 18:1271-1280. [PMID: 28776467 DOI: 10.2217/pgs-2017-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterogeneity defines both the natural history of asthma as well as patient's response to treatment. Pharmacogenomics contribute to understand the genetic basis of drug response and thus to define new therapeutic targets or molecular biomarkers to evaluate treatment effectiveness. This review is initially focused on different genes so far involved in the pharmacological response to asthma treatment. Specific considerations regarding allergic asthma, the pharmacogenetics aspects of polypharmacy and the application of pharmacogenomics in new drugs in asthma will also be addressed. Finally, future perspectives related to epigenetic regulatory elements and the potential impact of systems biology in pharmacogenetics of asthma will be considered.
Collapse
Affiliation(s)
- María Isidoro-García
- Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Almudena Sánchez-Martín
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Pharmacy, Faculty of Medicine, University Hospital of Salamanca, Salamanca, Spain
| | - Asunción García-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Microbiology & Genetics, Faculty of Biology, University of Salamanca, Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain
| | - Ignacio Dávila
- Institute for Biomedical Research of Salamanca (IBSAL), Allergy Department, Salamanca, Spain.,Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Spain.,Department of Allergy, Faculty of Medicine, University Hospital of Salamanca, Salmanaca, Spain
| |
Collapse
|
30
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Wagman G. Sasang Medical Perspectives on Viral Immunity: A Discussion of Intrinsic, Constitutionally Related Factors in Disease Onset and Resistance. J Acupunct Meridian Stud 2017; 10:1-4. [PMID: 28254096 DOI: 10.1016/j.jams.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022] Open
Abstract
There remain more questions than answers regarding the manifestation of certain diseases, such as Ebola, in some otherwise healthy individuals but not in others. Sasang medicine offers a possible clue to solving this mystery by introducing a constitutionally based, intrinsic approach to determining disease susceptibility. The Sasang constitution is identified by a detailed examination of inherent physiological and psychological traits that are likely, but not yet, to be associated with specific genetic patterns. Hence, it is anticipated that after further examination, the Sasang model will contribute to the advancement of medical research and treatment by establishing genetically traceable psychological and physiological traits that contribute to, or offer protection against, various diseases. To progress along this journey, additional research involving Sasang-based organ-associated emotions and inherent emotional/physiological inclinations is warranted. This study presents an argument in favor of additionally examining constitutionally specific disease components related to viral epidemiology.
Collapse
Affiliation(s)
- Gary Wagman
- The American Institute of Korean Traditional Medicine, West Linn, OR, USA.
| |
Collapse
|
32
|
Fink AL, Klein SL. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiology (Bethesda) 2016; 30:408-16. [PMID: 26525340 DOI: 10.1152/physiol.00035.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly.
Collapse
Affiliation(s)
- Ashley L Fink
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
33
|
Voigt EA, Ovsyannikova IG, Haralambieva IH, Kennedy RB, Larrabee BR, Schaid DJ, Poland GA. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination. Vaccine 2016; 34:4913-4919. [PMID: 27591105 DOI: 10.1016/j.vaccine.2016.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022]
Abstract
In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds.
Collapse
Affiliation(s)
- Emily A Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
McKinney BA, Lareau C, Oberg AL, Kennedy RB, Ovsyannikova IG, Poland GA. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS One 2016; 11:e0158016. [PMID: 27513748 PMCID: PMC4981436 DOI: 10.1371/journal.pone.0158016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine.
Collapse
Affiliation(s)
- Brett A. McKinney
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Caleb Lareau
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
35
|
Flanagan KL, Plebanski M. Sex-differential heterologous (non-specific) effects of vaccines: an emerging public health issue that needs to be understood and exploited. Expert Rev Vaccines 2016; 16:5-13. [DOI: 10.1080/14760584.2016.1203260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katie L. Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
| | - Magdalena Plebanski
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
- Monash Institute of Medical Engineering, Monash University, Prahran, Australia
| |
Collapse
|
36
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
37
|
Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016; 17:116-125. [PMID: 27039875 PMCID: PMC4902778 DOI: 10.1016/j.coviro.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
The epidemiology of deaths due to vaccine-preventable diseases has been significantly and positively altered through the use of vaccines. Despite this, significant challenges remain in vaccine development and use in the third millennium. Both new (Ebola, Chikungunya, Zika, and West Nile) and re-emerging diseases (measles, mumps, and influenza) require the development of new or next-generation vaccines. The global aging of the population, and accumulating numbers of immunocompromised persons, will require new vaccine and adjuvant development to protect large segments of the population. After vaccine development, significant challenges remain globally in the cost and efficient use and acceptance of vaccines by the public. This article raises issues in these two areas and suggests a way forward that will benefit current and future generations.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Caroline M Poland
- Taylor University Counseling Center, Taylor University, Upland, IN 46989, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
39
|
Georgopoulos AP, James LM, Mahan MY, Joseph J, Georgopoulos A, Engdahl BE. Reduced Human Leukocyte Antigen (HLA) Protection in Gulf War Illness (GWI). EBioMedicine 2015; 3:79-85. [PMID: 26870819 PMCID: PMC4739436 DOI: 10.1016/j.ebiom.2015.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022] Open
Abstract
Background Gulf War Illness (GWI) is a disease of unknown etiology with symptoms suggesting the involvement of an immune process. Here we tested the hypothesis that Human Leukocyte Antigen (HLA) composition might differ between veterans with and without GWI. Methods We identified 144 unique alleles of Class I and II HLA genes in 82 veterans (66 with and 16 without GWI). We tested the hypothesis that a subset of HLA alleles may classify veterans in their respective group using a stepwise linear discriminant analysis. In addition, each participant rated symptom severity in 6 domains according to established GWI criteria, and an overall symptom severity was calculated. Findings We found 6 Class II alleles that classified participants 84.1% correctly (13/16 control and 56/66 GWI). The number of copies of the 6 alleles was significantly higher in the control group, suggesting a protective role. This was supported by a significant negative dependence of overall symptom severity on the number of allele copies, such that symptom severity was lower in participants with larger numbers of allele copies. Interpretation These results indicate a reduced HLA protection (i.e. genetic susceptibility) in veterans with GWI. Funding University of Minnesota and U.S. Department of Veterans Affairs. Differences in Human Leukocyte Antigen distinguished veterans with Gulf War Illness (GWI) from healthy Gulf War era veterans. Veterans with GWI show genetic susceptibility which is associated with increased severity of hallmark symptoms of GWI.
A large number of Gulf War veterans suffer from diffuse and debilitating symptoms that resemble altered immune functioning. This study evaluated whether the Human Leukocyte Antigen (HLA) gene, which is central to immune functioning, differs between veterans with GWI and unaffected Gulf War veterans. The findings highlight robust differences in HLA composition between the two groups and suggest that veterans with GWI are characterized by genetic susceptibility that confers risk for typical GWI symptoms. These findings provide compelling genetic evidence of immune dysfunction in GWI.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lisa M James
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret Y Mahan
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jasmine Joseph
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angeliki Georgopoulos
- Metabolic Service, Department of Medicine, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Brian E Engdahl
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Troy JD, Hill HR, Ewell MG, Frey SE. Sex difference in immune response to vaccination: A participant-level meta-analysis of randomized trials of IMVAMUNE smallpox vaccine. Vaccine 2015; 33:5425-5431. [PMID: 26319063 PMCID: PMC4581981 DOI: 10.1016/j.vaccine.2015.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Previous research shows immune response to vaccination differs by sex but this has not been explored for IMVAMUNE, a replication-deficient smallpox vaccine developed in response to the potential for bioterrorism using smallpox. METHODS We conducted a participant-level meta-analysis (N=275, 136 men, 139 women) of 3 randomized trials of IMVAMUNE conducted at 13 centers in the US through a federally-funded extramural research program. Studies were eligible for inclusion if they tested the standard dose (1×10(8)TCID₅₀/mL on Days 0 and 28) of liquid formulation IMVAMUNE, were completed at the time of our search, and enrolled healthy vaccinia-naïve participants. Models of the peak log₂ ELISA and PRNT titers post-second vaccination were constructed for each study with sex as a covariate. Results from these models were combined into random effects meta-analyses of the sex difference in response to IMVAMUNE. We then compared this approach with fixed effects models using the combined participant level data. RESULTS In each study the mean peak log₂ ELISA titer was higher in men than women but no single study demonstrated a statistically significant difference. Combination of the adjusted study-specific estimates into the random effects model showed a higher mean peak log₂-titer in men compared with women (absolute difference [men-women]: 0.32, 95% CI: 0.02-0.60). Fixed effects models controlling for study showed a similar result (log₂ ELISA titer, men-women: 0.34, 95% CI: 0.04-0.63). This equates to a geometric mean peak titer that is approximately 27% higher in men than women (95% CI: 3-55%). Peak log₂ PRNT titers were also higher (although not significantly) in men (men-women: 0.14, 95% CI: -0.30 to 0.58). CONCLUSION Our results show statistically significant differences in response to IMVAMUNE comparing healthy, vaccinia-naïve men with women and suggest that sex should be considered in further development and deployment of IMVAMUNE and other MVA-based vaccines.
Collapse
Affiliation(s)
- Jesse D Troy
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Heather R Hill
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Marian G Ewell
- The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville, MD 20850, United States.
| | - Sharon E Frey
- Saint Louis University School of Medicine, Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Bld., Saint Louis, MO 63104, United States.
| |
Collapse
|
41
|
Abstract
Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections.
Collapse
Affiliation(s)
- Catherine Laughlin
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Amanda Schleif
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Carole A Heilman
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
42
|
Vaishnav N, Gupta A, Paul S, John GJ. Overview of computational vaccinology: vaccine development through information technology. J Appl Genet 2015; 56:381-91. [PMID: 25534541 DOI: 10.1007/s13353-014-0265-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022]
Abstract
Pathogenic organisms, causes of various infectious diseases, possess a rich repository of antigenic proteins that engender an immune response in a host. These types of diseases are usually treated with the use of pharmaceuticals; unfortunately, many of these also have a potential to induce fatal side effects, especially allergic responses in the diseased host. In addition, many pathogens evolve (by selective survival) single or multi-drug resistance (MDR). Therefore, a means to prevent the host from becoming susceptible to the pathogen from the onset, rather than trying to devise pharmacologic protocols to treat an ongoing infection, are increasingly seen as desirable to reduce the incidence of infectious diseases altogether. To this end, cost-effective development and use of "safe" vaccines is key. This paper provides an overview on the new and expanding area of computational vaccinology and a brief background on pathogen antigenicity, identification of pathogen-specific antigens, and screening of candidate antigens using various tools and databases developed in the recent past.
Collapse
Affiliation(s)
- Nishita Vaishnav
- Department of Bioinformatics, Christ College, Rajkot, Gujarat, India
| | | | | | | |
Collapse
|
43
|
Oberg AL, McKinney BA, Schaid DJ, Pankratz VS, Kennedy RB, Poland GA. Lessons learned in the analysis of high-dimensional data in vaccinomics. Vaccine 2015; 33:5262-70. [PMID: 25957070 DOI: 10.1016/j.vaccine.2015.04.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The field of vaccinology is increasingly moving toward the generation, analysis, and modeling of extremely large and complex high-dimensional datasets. We have used data such as these in the development and advancement of the field of vaccinomics to enable prediction of vaccine responses and to develop new vaccine candidates. However, the application of systems biology to what has been termed "big data," or "high-dimensional data," is not without significant challenges-chief among them a paucity of gold standard analysis and modeling paradigms with which to interpret the data. In this article, we relate some of the lessons we have learned over the last decade of working with high-dimensional, high-throughput data as applied to the field of vaccinomics. The value of such efforts, however, is ultimately to better understand the immune mechanisms by which protective and non-protective responses to vaccines are generated, and to use this information to support a personalized vaccinology approach in creating better, and safer, vaccines for the public health.
Collapse
Affiliation(s)
- Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Brett A McKinney
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - V Shane Pankratz
- UNM Health Sciences Library & Informatics Center, Division of Nephrology, University of New Mexico, Albuquerque, NM, USA
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
45
|
Pellegrino P, Falvella FS, Cheli S, Perrotta C, Clementi E, Radice S. The role of Toll-like receptor 4 polymorphisms in vaccine immune response. THE PHARMACOGENOMICS JOURNAL 2015; 16:96-101. [PMID: 25823688 DOI: 10.1038/tpj.2015.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that are deputed to recognise a range of molecular structures in pathogens. One of the most studied members of this family is the TLR4, which is essential for the signalling of lipopolysaccharide. The gene encoding for TLR4 is highly polymorphic and this genetic variability may explain in part the interindividual variability observed in several clinical setting, including the response to vaccination. Herein, we review and systematise the available scientific evidence about the effect of TLR4 polymorphisms on vaccine response, including approved prophylactic, new therapeutic cancer vaccines and recently approved vaccine adjuvants. Data reviewed in this analysis indicate that TLR4 polymorphisms significantly affect vaccine response. If these results are confirmed by further analyses, the use of these genetic biomarkers may become a useful tool to tailor vaccination in specific subsets of patients.
Collapse
Affiliation(s)
- P Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| | - F S Falvella
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| | - S Cheli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| | - C Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| | - E Clementi
- Scientific Institute, IRCCS E. Medea, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, Consiglio Nazionale delle Ricerche Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| | - S Radice
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco", Università di Milano, Milan, Italy
| |
Collapse
|
46
|
Garman L, Vineyard AJ, Crowe SR, Harley JB, Spooner CE, Collins LC, Nelson MR, Engler RJM, James JA. Humoral responses to independent vaccinations are correlated in healthy boosted adults. Vaccine 2014; 32:5624-31. [PMID: 25140930 PMCID: PMC4323156 DOI: 10.1016/j.vaccine.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. METHODS Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. RESULTS Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). CONCLUSIONS Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
Collapse
Affiliation(s)
- Lori Garman
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA
| | - Amanda J Vineyard
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - Sherry R Crowe
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | | | - Limone C Collins
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Michael R Nelson
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Renata J M Engler
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Departments of Medicine and Pathology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
47
|
Pellegrino P, Clementi E, Radice S. Re: "Postelimination transmission of measles in the US". Am J Epidemiol 2014; 180:452. [PMID: 25063814 DOI: 10.1093/aje/kwu193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paolo Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco," Università di Milano, Milan, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco," Università di Milano, Milan, Italy Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sonia Radice
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, University Hospital "Luigi Sacco," Università di Milano, Milan, Italy
| |
Collapse
|
48
|
He Y. Ontology-supported research on vaccine efficacy, safety and integrative biological networks. Expert Rev Vaccines 2014; 13:825-41. [PMID: 24909153 DOI: 10.1586/14760584.2014.923762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Petrizzo A, Tagliamonte M, Tornesello M, Buonaguro FM, Buonaguro L. Systems vaccinology for cancer vaccine development. Expert Rev Vaccines 2014; 13:711-719. [PMID: 24766452 DOI: 10.1586/14760584.2014.913484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Results of therapeutic vaccines for established chronic infections or cancers are still unsatisfactory. The only therapeutic cancer vaccine approved for clinical use is the sipuleucel-T, for the treatment of metastatic prostate cancer, which induces a limited 4-month improvement in the overall survival of vaccinated patients compared to controls. This represents a remarkable advancement in the cancer immunotherapy field, although the clinical outcome of cancer vaccines needs to be substantially improved. To this aim, a multipronged strategy is required, including the evaluation of mechanisms underlying the effective elicitation of immune responses by cancer vaccines. The recent development of new technologies and computational tools allows the comprehensive and quantitative analysis of the interactions between all of the components of innate and adaptive immunity over time. Here we review the potentiality of systems biology in providing novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
50
|
Ovsyannikova IG, Pankratz VS, Larrabee BR, Jacobson RM, Poland GA. HLA genotypes and rubella vaccine immune response: additional evidence. Vaccine 2014; 32:4206-13. [PMID: 24837503 DOI: 10.1016/j.vaccine.2014.04.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Recent population-based studies have demonstrated the genetic heritability of rubella vaccine response and assessed that the HLA system may explain about 20% of the inter-individual variance in humoral immune response to this vaccine. Our earlier studies compared HLA allelic associations with rubella vaccine-specific antibodies between two smaller cohorts of healthy Rochester, MN, children (346 and 396 subjects) after two doses of rubella-containing vaccine. This study found that specific HLA alleles were consistently associated with rubella-specific antibody titers (B*27:05, DPA1*02:01, and DPB1*04:01 alleles). The current study examined HLA associations in an independent larger cohort of 1012 healthy San Diego, CA, subjects (age 19-40 years) after rubella vaccine in order to replicate our previous findings in the Rochester subjects. Two HLA associations of comparable magnitudes were consistently observed between B*27:05 (median NT50 Rochester cohort 48.9, p=0.067; San Diego cohort 54.8, p=0.047) and DPB1*04:01 (median NT50 Rochester cohort 61.6, p<0.001; San Diego cohort 70.8, p=0.084) alleles and rubella virus-neutralizing antibody titers. Additional HLA alleles resulted in consistent effects on IL-6 production in both cohorts, but did not meet criteria for statistical significance. Our data suggest these HLA alleles play a role in rubella vaccine-induced immunity and provide the basis for future studies that may explain the mechanism(s) by which these HLA polymorphisms affect immune responses to rubella vaccine.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert M Jacobson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|