1
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wendong Y, Xingxing Y, Xianze X, Qiaomei F, Yujun S, Shanshan Z, Zheng S, Hairu X. Nanoformulation-assisted microneedle transdermal drug delivery system: An innovative platform enhancing rheumatoid arthritis treatment. Biomed Pharmacother 2024; 178:117219. [PMID: 39084080 DOI: 10.1016/j.biopha.2024.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
A transdermal delivery system offers high bioavailability and favorable patient adherence, constituting an optimal approach for localized administration in rheumatoid arthritis (RA) treatment. However, the stratum corneum (SC) impedes the delivery efficiency of conventional transdermal drug delivery systems. Microneedles (MNs) can temporarily create micropores within the SC, enabling drug distribution via bypassing this barrier and enhancing transdermal delivery effectiveness. Notably, MNs provide a painless method of drug delivery through the skin and may directly modulate inflammation in immune cells by delivering drugs via the lymphatic system during transdermal administration. However, the MN delivery system is not suitable for drugs with low water solubility and stability. Additionally, major concerns exist regarding the safety of using MN delivery for highly cytotoxic drugs, given that it could result in high local drug concentration at the delivery site. While MNs exhibit some degree of targeted delivery to the immune and inflammatory environment, their targeting efficiency remains suboptimal. Nanoformulations have the potential to significantly address the limitations of MNs in RA treatment by improving drug targeting, solubility, stability, and biocompatibility. Therefore, this review provides a concise overview of the advantages, disadvantages, and mechanisms of different types of MNs for RA treatment. It specifically focuses on the application and advantages of combining nanoformulation with MNs for RA treatment and summarizes the current trends in the development of nanoformulations combined with MNs in the field of RA treatment, offering theoretical support for future advancements and clinical applications.
Collapse
Affiliation(s)
- Yao Wendong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Yan Xingxing
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Xie Xianze
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Fan Qiaomei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Shan Yujun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhou Shanshan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shi Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xu Hairu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China.
| |
Collapse
|
3
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
4
|
Chen J, Cai X, Zhang W, Zhu D, Ruan Z, Jin N. Fabrication of Antibacterial Sponge Microneedles for Sampling Skin Interstitial Fluid. Pharmaceutics 2023; 15:1730. [PMID: 37376179 DOI: 10.3390/pharmaceutics15061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) have recently garnered extensive interest concerning direct interstitial fluid (ISF) extraction or their integration into medical devices for continuous biomarker monitoring, owing to their advantages of painlessness, minimal invasiveness, and ease of use. However, micropores created by MN insertion may provide pathways for bacterial infiltration into the skin, causing local or systemic infection, especially with long-term in situ monitoring. To address this, we developed a novel antibacterial sponge MNs (SMNs@PDA-AgNPs) by depositing silver nanoparticles (AgNPs) on polydopamine (PDA)-coated SMNs. The physicochemical properties of SMNs@PDA-AgNPs were characterized regarding morphology, composition, mechanical strength, and liquid absorption capacity. The antibacterial effects were evaluated and optimized through agar diffusion assays in vitro. Wound healing and bacterial inhibition were further examined in vivo during MN application. Finally, the ISF sampling ability and biosafety of SMNs@PDA-AgNPs were assessed in vivo. The results demonstrate that antibacterial SMNs enable direct ISF extraction while preventing infection risks. SMNs@PDA-AgNPs could potentially be used for direct sampling or combined with medical devices for real-time diagnosis and management of chronic diseases.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Wenqin Zhang
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Danhong Zhu
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Nan Jin
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| |
Collapse
|
5
|
Flatebo C, Conkright WR, Beckner ME, Batchelor RH, Kippin TE, Heikenfeld J, Plaxco KW. Efforts toward the continuous monitoring of molecular markers of performance. J Sci Med Sport 2023; 26 Suppl 1:S46-S53. [PMID: 36841706 DOI: 10.1016/j.jsams.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Technologies supporting the continuous, real-time measurement of blood oxygen saturation and plasma glucose levels have improved our ability to monitor performance status. Our ability to monitor other molecular markers of performance, however, including the hormones known to indicate overtraining and general health, has lagged. That is, although a number of other molecular markers of performance status have been identified, we have struggled to develop viable technologies supporting their real-time monitoring in the body. Here we review biosensor approaches that may support such measurements, as well as the molecules potentially of greatest interest to monitor. DESIGN Narrative literature review. METHOD Literature review. RESULTS Significant effort has been made to harness the specificity, affinity, and generalizability of biomolecular recognition in a platform technology supporting continuous in vivo molecular measurements. Most biosensor approaches, however, are either not generalizable to most targets, or fail when challenged in the complex environments found in vivo. Electrochemical aptamer-based sensors, in contrast, are the first technology to simultaneously achieve both of these critical attributes. In an effort to illustrate the potential of this platform technology, we both critically review the literature describing it and briefly survey some of the molecular performance markers we believe will prove advantageous to monitor using it. CONCLUSIONS Electrochemical aptamer-based sensors may be the first truly generalizable technology for monitoring specific molecules in situ in the body and how adaptation of the platform to subcutaneous microneedles will enable the real-time monitoring of performance markers via a wearable, minimally invasive device.
Collapse
Affiliation(s)
- Charlotte Flatebo
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, USA
| | | | | | | | - Tod E Kippin
- Neuroscience Research Institute, Department of Psychological and Brain Sciences, University of California Santa Barbara, USA
| | - Jason Heikenfeld
- Biomedical, Electrical, and Chemical Engineering, Director Novel Devices Laboratory, University of Cincinnati, USA
| | - Kevin W Plaxco
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, USA; Department of Chemistry and Biochemistry, Biological Engineering Graduate Program, University of California Santa Barbara, USA.
| |
Collapse
|
6
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
7
|
Kaur M, Nagpal M, Aggarwal G. Nanotechnology for Targeted Drug Delivery to Treat Osteoporosis. Curr Drug Targets 2023; 24:2-12. [PMID: 36200208 DOI: 10.2174/1389450123666221004124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Bone diseases such as rheumatoid arthritis, Paget's disease, and osteoporosis cause mortality and mobility limits. Nanomedicine and nano delivery systems have been utilised to deliver active drug moiety to the precisely targeted site in a controlled manner, and it serves as a means of diagnostic tools. The utilisation of nanomedicine is expanding vigorously for assured targeting and efficient drug delivery. Nanotechnology offers various advantages, such as site-specific targeting, precise drug release kinetics, and improved bone mineral density. Recent medications available for osteoporosis are not viable due to the adverse effects associated with them and low patient compliance. There is an urgent need to develop biocompatible and appropriate drug delivery nanocarriers such as nanoparticles, liposomes, hydrogels, dendrimers, micelles, mesoporous particles, etc. These carriers enhance drug delivery and therapeutic effectiveness in bone tissues. The use of nanotechnology is also associated with toxicity. This article presents the review of various reports on nanocarrier systems and biologics for the treatment of osteoporosis. It aims to provide researchers with a clue for inventing a new drug delivery system with site-specific targeting for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
8
|
Tai M, Zhang C, Ma Y, Yang J, Mai Z, Li C, Leng G. Acne and its post-inflammatory hyperpigmentation treatment by applying anti-acne dissolving microneedle patches. J Cosmet Dermatol 2022; 21:6913-6919. [PMID: 36059276 DOI: 10.1111/jocd.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acne is a significant problem in young people. At present, most acne treatment products are topically applied cosmetics, whose efficacy is limited by the stratum corneum. The dissolving microneedle technique can effectively deliver drug molecules into the body. In this study, dissolving microneedles containing anti-acne ingredients were tested for human efficacy and safety. METHODS We conducted a 28-day clinical efficacy and safety trial on 30 individuals with visible facial acne. During the trial, anti-acne microneedle (AA-DMN) patches were applied to designated skin areas once daily for 28 consecutive days. Skin pigmentation was measured using a Courage + Khazaka skin melanin and hemoglobin test probe Mexameter MX18. Acne volume was measured using a Canfieldsci skin rapid optical imaging system PRIMOS. In addition, skin irritation was evaluated via self-report and dermatologist's examination. RESULTS The AA-DMN patches showed good efficacy including improvement of skin pigmentation and reduced acne volume. Acne volume was reduced by 12.34% after 3 days of patch use and further reduced by 10.01% after 7 continuous days of use. After 28 days of treatment, skin melanin decreased by 5.88% and heme decreased by 7.83%. No adverse reactions were observed in any of the participants. CONCLUSIONS Anti-acne microneedle patches showed an excellent effect in reducing acne and post-inflammatory hyperpigmentation (PIH), without adverse skin reactions. The novel AA-DMN patch is a safe and effective anti-acne treatment.
Collapse
Affiliation(s)
- Meiling Tai
- Infinitus (China) Company Ltd, Jiangmen, China
| | - Chenggong Zhang
- Organic Functional Materials and Applied Technology Institute, SuZhou, China
| | - Yonghao Ma
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Jian Yang
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | | | - Chengguo Li
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Gang Leng
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| |
Collapse
|
9
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
10
|
Lu X, Sun Y, Han M, Chen D, Wang A, Sun K. Silk fibroin double-layer microneedles for the encapsulation and controlled release of triptorelin. Int J Pharm 2021; 613:121433. [PMID: 34968682 DOI: 10.1016/j.ijpharm.2021.121433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
A double-layer silk fibroin microneedles (SF-MNs) was proposed for the transdermal delivery of triptorelin. Two-step pouring and centrifugation were employed to prepare SF-MNs. Triptorelin was wrapped in MNs in the form of microcrystals with a size of ∼1 μm. β-sheet nanocrystals (the secondary structure of silk fibroin) were adjusted in content by methanol-vapor treatment to manipulate the characteristics of SF-MNs prepared with two concentrations of silk fibroin. The mechanical strength of MNs was measured and analyzed in proportion to the β-sheet content. The triptorelin in MNs could be released sustainedly in phosphate-buffered saline for 168 h, and the release amount decreased with increasing β-sheet content. The Ritger-Peppas equation was employed to fit the release data. A linear decreasing relationship was observed between the diffusion coefficient and increased β-sheet content. After administration to rats, SF-MNs exhibited long-term testosterone inhibition and maintained castration levels for ≥7 d. Manipulable mechanical properties and release behavior combined with biocompatibility and biodegradability render SF-MNs as viable long-term transdermal delivery devices for triptorelin.
Collapse
Affiliation(s)
- Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co., Ltd., Yantai 264670, China
| | - Meishan Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
11
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Kim GG, Jang HM, Park SB, So JS, Kim SW. Synthesis of Zr-89-Labeled Folic Acid-Conjugated Silica (SiO 2) Microwire as a Tumor Diagnostics Carrier for Positron Emission Tomography. MATERIALS 2021; 14:ma14123226. [PMID: 34207994 PMCID: PMC8230661 DOI: 10.3390/ma14123226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
This study evaluated the in vivo behavior and accumulation of silica particles in the form of wires, which were actively studied as drug carriers along with spheres, using positron emission tomography (PET). Wire-shaped silicon dioxide (SiO2) was synthesized at micro-size, using anodic aluminum oxide (AAO), a template, and folic acid (FA), which specifically binds folate receptors (FR) which are overexpressed in many cancers, and which was bound to the wire’s surface to confirm its possible use as a cancer diagnostic agent. In addition, for evaluation using PET, the positron-emitting nuclide 89Zr (t1/2 = 3.3 days) was directly bonded to the hydroxyl group (-OH) on the particle surface. The diameter and shape of the synthesized silica microwires (SMWs) were confirmed using SEM and TEM, the chemical bonding of FA was confirmed through FT–IR and NMR, and the labeling of 89Zr was measured by means of radio-thin-layer chromatography (TLC) measurement. Folic acid-conjugated SMWs (FA-SMWs) were found to have a low receptor-mediated uptake in cell internalization evaluation, but in PET studies, FA-SMWs stayed longer at the tumor site. In conclusion, we successfully synthesized a homogeneous silica microwire for drug delivery, we confirmed that the FA-conjugated sample remains at the tumor site for a relatively longer time, and we have reported the characteristic in vivo behavior of 89Zr-FA-SMWs.
Collapse
Affiliation(s)
- Gun Gyun Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (G.G.K.); (H.M.J.)
| | - Hye Min Jang
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (G.G.K.); (H.M.J.)
| | - Sung Bum Park
- Department of Safety Engineering, Dongguk University, Gyeongju 38066, Korea;
| | - Jae-Seon So
- Department of Medical Biotechnology, Dongguk University, Gyeongju 38066, Korea
- Correspondence: (J.-S.S.); (S.W.K.); Tel.: +82-54-770-2491 (J.-S.S.); +82-54-770-2216 (S.W.K.)
| | - Sang Wook Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (G.G.K.); (H.M.J.)
- Correspondence: (J.-S.S.); (S.W.K.); Tel.: +82-54-770-2491 (J.-S.S.); +82-54-770-2216 (S.W.K.)
| |
Collapse
|
13
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS, Park TH. Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19α-Based Fusion Protein. Adv Biol (Weinh) 2021; 5:e2000176. [PMID: 33724733 PMCID: PMC7996635 DOI: 10.1002/adbi.202000176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Keun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jina Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - G Kate Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Ornell KJ, Chiu B, Coburn JM. Development of a dinutuximab delivery system using silk foams for GD2 targeted neuroblastoma cell death. J Biomed Mater Res A 2020; 109:1393-1405. [PMID: 33252182 DOI: 10.1002/jbm.a.37131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 11/05/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is associated with poor survival in high risk patients. Recently, dinutuximab (DNX) has emerged as an effective immunotherapy to treat patients with high risk neuroblastoma. DNX works through the induction of cell lysis via complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC). However, one third of patients who undergo DNX treatment exhibit tumor relapse and the therapy is dose limited by side effects such as severe pain. To overcome delivery challenges of DNX, including large size and dose limiting side effects, we fabricated a delivery system capable of sustained local delivery of bioactive DNX utilizing silk fibroin. We evaluated the impact of silk properties (MW, crystallinity, and concentration) on release properties and confirmed the bioactivity of the release product. Additionally, we observed that the effectiveness of CDC induction by DNX could be correlated to the GD2 expression level of the target cells, with both the intravenous DNX formulation and the released DNX. Collectively, these data highlights a strategy to overcome delivery challenges and potentially improve therapeutic efficacy in cells expressing heterogenous levels of GD2.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Bill Chiu
- Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Surgery, Division of Pediatric Surgery, Stanford University, Stanford, California, USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Ullah A, Choi HJ, Jang M, An S, Kim GM. Smart Microneedles with Porous Polymer Layer for Glucose-Responsive Insulin Delivery. Pharmaceutics 2020; 12:E606. [PMID: 32629825 PMCID: PMC7407179 DOI: 10.3390/pharmaceutics12070606] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
A closed-loop system imitating the function of pancreatic cells, connected to microneedles (MNs) that automatically "release" insulin in response to the blood glucose (BG) levels would be highly satisfactory for improving the quality of life and health for diabetes patients. This paper describes an easy, fast and simple technique of coating a porous polymer layer on stainless steel (SS) MNs that release insulin in a glucose-responsive fashion. It was fabricated by sealing insulin, sodium bicarbonate (a pH-sensitive element [NaHCOз]) and glucose oxidase (glucose-specific enzymes [GOx]) into the pores of a porous polymer coating. Glucose can passively diffuse into the pores and become oxidized to gluconic acid by GOx, thereby causing a decrease in local pH. The subsequent reaction of protons with NaHCOз forms carbon dioxide (CO2) which creates pressure inside the pores, thereby rupturing the thin polymer film and releasing the encapsulated insulin. Field emission scanning electron microscopy (FE-SEM) images displayed that upon the exposure of MNs to glucose-free phosphate buffer saline (PBS) with pH 7.4, the pores of the porous MNs were closed, while in MNs exposed to a hyperglycemic glucose level, the pores were opened and the thin film burst. These MNs demonstrated both in vitro (in porcine skin and PBS) and in vivo (in diabetic rats) glucose-mediated insulin release under hyperglycemic conditions with rapid responsiveness. This study validated that the release of insulin from porous MNs was effectively correlated with glucose concentration.
Collapse
Affiliation(s)
- Asad Ullah
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea; (A.U.); (H.J.C.)
| | - Hye Jin Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea; (A.U.); (H.J.C.)
| | - Mijin Jang
- Daegu Gyeongbuk Medical Innovation Foundation, Laboratory Animal Center, Daegu 41061, Korea; (M.J.); (S.A.)
| | - Sanghyun An
- Daegu Gyeongbuk Medical Innovation Foundation, Laboratory Animal Center, Daegu 41061, Korea; (M.J.); (S.A.)
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea; (A.U.); (H.J.C.)
| |
Collapse
|
17
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
18
|
Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng 2020; 43:1339-1357. [PMID: 32193755 DOI: 10.1007/s00449-020-02330-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
The development of nanoparticle-based drugs has provided many opportunities to diagnose, treat and cure challenging diseases. Through the manipulation of size, morphology, surface modification, surface characteristics, and materials used, a variety of nanostructures can be developed into smart systems, encasing therapeutic and imaging agents with stealth properties. These nanostructures can deliver drugs to specific tissues or sites and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug-related toxicity and increases the patient's compliance with less frequent dosing. Nanotechnology employing nanostructures as a tool has provided advances in the diagnostic testing of diseases and cure. This technology has proven beneficial in the treatment of cancer, AIDS, and many other diseases. This review article highlights the recent advances in nanostructures and nanotechnology for drug delivery, nanomedicine and cures.
Collapse
|
19
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
20
|
Zhu DD, Wang XL, Zhang XP, Ma JJ, Kong DL, Zhang MM, Guo XD, Wang C. A Dissolvable Microneedle Formulation of Bordetella pertussis Subunit Vaccine: Translational Development and Immunological Evaluation in Mice. ACS APPLIED BIO MATERIALS 2019; 2:5053-5061. [DOI: 10.1021/acsabm.9b00730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao Li Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jing Jing Ma
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - De Ling Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Ming Ming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
22
|
Peyraud N, Zehrung D, Jarrahian C, Frivold C, Orubu T, Giersing B. Potential use of microarray patches for vaccine delivery in low- and middle- income countries. Vaccine 2019; 37:4427-4434. [PMID: 31262587 DOI: 10.1016/j.vaccine.2019.03.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Microarray patches (MAPs), also referred to as microneedle patches, are a novel methodology that have the potential to overcome barriers to vaccine delivery in low- and middle-income countries (LMICs), and transform the way that vaccines are delivered within immunization programs. The World Health Organization's Initiative for Vaccine Research and its partners are working to understand how MAPs could ease vaccine delivery and increase equitable access to vaccines in LMICs. Global stakeholders have been engaged to evaluate technical, economic, and programmatic challenges; to validate assumptions where possible; and to propose areas of focus to facilitate future vaccine-MAP product development. This report summarizes those learnings.
Collapse
Affiliation(s)
- Nicolas Peyraud
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland; Médecins sans Frontières, rue de Lausanne 78, 2012 Geneva, Switzerland
| | | | | | | | - Toritse Orubu
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Birgitte Giersing
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland.
| |
Collapse
|
23
|
Cao J, Zhang N, Wang Z, Su J, Yang J, Han J, Zhao Y. Microneedle-Assisted Transdermal Delivery of Etanercept for Rheumatoid Arthritis Treatment. Pharmaceutics 2019; 11:E235. [PMID: 31096705 PMCID: PMC6572071 DOI: 10.3390/pharmaceutics11050235] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complicated autoimmune disease. The clinical applications of etanercept (EN), a TNF-α inhibitor, can efficiently halt the development of RA. EN is mainly administrated by subcutaneous injection, which may cause low compliance, side effects, and infection risk. In this study, a hyaluronic acid crosslinked microneedle system (MN) was constructed as the transdermal alternative to deliver EN. We describe the formulation, fabrication, characterization, and transdermal insertion study of MN. In vitro bioactivity of EN was conducted and analyzed by dynamic light scattering and circular dichroism spectrum. In vivo evaluation of MN was studied on adjuvant-induced arthritis mice. The MN possessed sufficient mechanical strength, good biocompatibility, little influence on the bioactivity of EN, and high anti-inflammatory efficacy. This work represents a successful example of delivering macromolecule therapeutic treatment by MN for RA treatment. The transdermal delivery of EN by MN offers a new treatment option for RA patients.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou 450001, China.
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Jingjing Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Jing Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Jiabing Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Wang Y, Deng L, Kang SM, Wang BZ. Universal influenza vaccines: from viruses to nanoparticles. Expert Rev Vaccines 2018; 17:967-976. [PMID: 30365905 DOI: 10.1080/14760584.2018.1541408] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The current seasonal influenza vaccine confers only limited protection due to waning antibodies or the antigenic shift and drift of major influenza surface antigens. A universal influenza vaccine which induces broad cross-protection against divergent influenza viruses with a comparable or better efficacy to seasonal influenza vaccines against matched strains will negate the need for an annual update of vaccine strains and protect against possible influenza pandemics. AREAS COVERED In this review, we summarize the recent progress in nanoparticle-based universal influenza vaccine development. We compared the most potent nanoparticle categories, focusing on how they encapsulate conserved influenza epitopes, stimulate the innate and adaptive immune systems, exhibit antigen depot effect, extend the period for antigen-processing and presentation, and exert an intrinsic adjuvant effect on inducing robust immune responses. EXPERT COMMENTARY The development of an effective universal influenza vaccine is an urgent task. Traditional influenza vaccine approaches are not sufficient for preventing recurrent epidemics or occasional pandemics. Nanoparticles are compatible with different immunogens and immune stimulators and can overcome the intrinsically low immunogenicity of conserved influenza virus antigens. We foresee that an affordable universal influenza vaccine will be available within ten years by integrating nanoparticles with other targeted delivery and controlled release technology.
Collapse
Affiliation(s)
- Ye Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Lei Deng
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Sang-Moo Kang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Bao-Zhong Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| |
Collapse
|
25
|
Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene. Future Sci OA 2018; 4:FSO275. [PMID: 29568564 PMCID: PMC5859341 DOI: 10.4155/fsoa-2017-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
The contemporary Anthropocene is characterized by rapidly evolving complex global challenges to planetary health vis-a-vis sustainable development, yet innovation is constrained under the prevailing precautionary regime that regulates technological change. Small-molecule xenobiotic drugs are amenable to efficient large-scale industrial synthesis; but their pharmacokinetics, pharmacodynamics, interactions and ultimate ecological impact are difficult to predict, raising concerns over initial testing and environmental contamination. Antibodies and similar agents can serve as antidotes and drug buffers or vehicles to address patient safety and decrease dosing requirements. More generally, peptidic agents including synthetic peptide-based constructs exemplified by vaccines can be used together with or instead of nonpeptidic xenobiotics, thus enabling advances in planetary health based on principles of green chemistry from manufacturing through final disposition. Radical change in the role of humans as planetary custodians is necessary for the long-term well-being of all life. Drugs currently in use and under development tend to be foreign substances whose effects on both body and environment are difficult to predict. Antibodies and related molecules can lessen the safety hazards posed by said drugs, in part by decreasing the requirement for drug intake. More generally, proteins and peptides can be produced and used (notably as vaccine components) in line with green (i.e., eco-friendly) chemistry to better address health needs, alongside or even in place of said drugs.
Collapse
|
26
|
Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 2018; 127:106-118. [PMID: 29408182 PMCID: PMC6020694 DOI: 10.1016/j.addr.2018.01.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
The intrinsic properties of therapeutic proteins generally present a major impediment for transdermal delivery, including their relatively large molecule size and susceptibility to degradation. One solution is to utilize microneedles (MNs), which are capable of painlessly traversing the stratum corneum and directly translocating protein drugs into the systematic circulation. MNs can be designed to incorporate appropriate structural materials as well as therapeutics or formulations with tailored physicochemical properties. This platform technique has been applied to deliver drugs both locally and systemically in applications ranging from vaccination to diabetes and cancer therapy. This review surveys the current design and use of polymeric MNs for transdermal protein delivery. The clinical potential and future translation of MNs are also discussed.
Collapse
Affiliation(s)
- Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Abstract
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Collapse
Affiliation(s)
- Derfogail Delcassian
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Anaesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,c Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Asha K Patel
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Abel B Cortinas
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Robert Langer
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,f Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , MA , USA.,g Media Lab , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
28
|
Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM, Ur Rehman A, Ud Din F. Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery. NANOSCALE RESEARCH LETTERS 2017; 12:500. [PMID: 28819800 PMCID: PMC5560318 DOI: 10.1186/s11671-017-2249-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/26/2017] [Indexed: 05/31/2023]
Abstract
Science and technology have always been the vitals of human's struggle, utilized exclusively for the development of novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging, particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the recent advancements in this field need to be understood for a better today and a more prosperous future.
Collapse
Affiliation(s)
- Maria Mir
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Saba Ishtiaq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Samreen Rabia
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Maryam Khatoon
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
29
|
Xie X, Pascual C, Lieu C, Oh S, Wang J, Zou B, Xie J, Li Z, Xie J, Yeomans DC, Wu MX, Xie XS. Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS NANO 2017; 11:395-406. [PMID: 28001346 PMCID: PMC6348003 DOI: 10.1021/acsnano.6b06104] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neuropathic pain caused by nerve injury is debilitating and difficult to treat. Current systemic pharmacological therapeutics for neuropathic pain produce limited pain relief and have undesirable side effects, while current local anesthetics tend to nonspecifically block both sensory and motor functions. Calcitonin gene related peptide (CGRP), a neuropeptide released from sensory nerve endings, appears to play a significant role in chronic neuropathic pain. In this study, an analgesic microneedle (AMN) patch was developed using dissolvable microneedles to transdermally deliver selective CGRP antagonist peptide in a painless manner for the treatment of localized neuropathic pain. Local analgesic effects were evaluated in rats by testing behavioral pain sensitivity in response to thermal and mechanical stimuli using neuropathic pain models such as spared-nerve injury and diabetic neuropathy pain, as well as neurogenic inflammatory pain model induced by ultraviolet B (UVB) radiation. Unlike several conventional therapies, the AMN patches produced effective analgesia on neuropathic pain without disturbing the normal nociception and motor function of the rat, resulting from the high specificity of the delivered peptide against CGRP receptors. The AMN patches did not cause skin irritation or systemic side effects. These results demonstrate that dissolvable microneedle patches delivering CGRP antagonist peptide provide an effective, safe, and simple approach to mitigate neuropathic pain with significant advantages over current treatments.
Collapse
Affiliation(s)
- Xi Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- School of Electronics and Information Technology; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
- Corresponding Authors:
| | - Conrado Pascual
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Christopher Lieu
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Seajin Oh
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Ji Wang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Bende Zou
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Julian Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Zhaohui Li
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - James Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - David C. Yeomans
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Mei X. Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Xinmin Simon Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
30
|
Durney AR, Frenette LC, Hodvedt EC, Krauss TD, Mukaibo H. Fabrication of Tapered Microtube Arrays and Their Application as a Microalgal Injection Platform. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34198-34208. [PMID: 27998153 DOI: 10.1021/acsami.6b11062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A template-synthesis method that enables fabrication of tapered microtube arrays is reported. Track-etched poly(ethylene terephthalate) membranes are used as the template, with closed-tipped conical pores having length and base diameter of 6.27 ± 0.28 and 1.21 ± 0.05 μm, respectively. A conductive layer of Pt is deposited by atomic layer deposition (ALD) to enable the successive electrodeposition of Ni. By decreasing the Pt precursor pulse duration from 10 to 1 s during the ALD step, the heights of the microtubes are controlled from the maximal full length (∼6 μm) to only a fraction (1-2 μm) of the template pore. Using a pulsed-current electrodeposition (PCD) method, a smooth and uniform Ni deposit is achieved with a thickness that can be controlled as a function of the PCD cycle. The microtubes' lumen is confirmed to stay open even after 2000 cycles of Ni PCD. A potential application of the prepared array as a microinjection platform is demonstrated via successful injection of 10 nm sized CdZnS/ZnS core/shell quantum dots into Chlamydomonas reinhardtii microalgae cells with intact cell walls. The direct delivery method demonstrated in this paper offers novel opportunities for extending the growing interest in array-based microinjection platform to microalgal systems.
Collapse
Affiliation(s)
- Andrew R Durney
- Department of Chemical Engineering, and ‡Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Leah C Frenette
- Department of Chemical Engineering, and ‡Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Elizabeth C Hodvedt
- Department of Chemical Engineering, and ‡Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemical Engineering, and ‡Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Hitomi Mukaibo
- Department of Chemical Engineering, and ‡Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|
31
|
Wu JH, Li B, Wu MX. Laser-induced capillary leakage for blood biomarker detection and vaccine delivery via the skin. JOURNAL OF BIOPHOTONICS 2016; 9:676-682. [PMID: 26776718 PMCID: PMC4929029 DOI: 10.1002/jbio.201500226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/06/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Circulation system is the center for coordination and communication of all organs in our body. Examination of any change in its analytes or delivery of therapeutic drugs into the system consists of important medical practice in today's medicine. Two recent studies prove that brief illumination of skin with a low powered laser, at wavelengths preferentially absorbed by hemoglobin, increases the amount of circulating biomarkers in the epidermis and upper dermis by more than 1,000-fold. When probe-coated microneedle arrays are applied into laser-treated skin, plasma blood biomarkers can be reliably, accurately, and sufficiently quantified in 15∼30 min assays, with a maximal detection in one hr in a manner independent of penetration depth or a molecular mass of the biomarker. Moreover, the laser treatment permits a high efficient delivery of radiation-attenuated malarial sporozoites (RAS) into the circulation, leading to robust immunity against malaria infections, whereas similar immunization at sham-treated skin elicits poor immune responses. Thus this technology can potentially instruct designs of small, portable devices for onsite, in mobile clinics, or at home for point-of-care diagnosis and drug/vaccine delivery via the skin. Laser-induced capillary leakage (a) to induce extravasation of circualing molecules only (b) or facilitate entry of attenuated malaria sporozoites into the capillary (c). Skin illumination with a laser preferably absorbed by hemoglobin causes dilation of the capillary beneath the skin. The extravasated molecules can be sufficiently measured in the skin or guide sporozoites to enter the vessel.
Collapse
Affiliation(s)
- Jeffrey H Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA
| | - Bo Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Application of chemical biology in target identification and drug discovery. Arch Pharm Res 2015; 38:1642-50. [PMID: 26242900 DOI: 10.1007/s12272-015-0643-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.
Collapse
|
33
|
Larrañeta E, Lutton REM, Brady AJ, Vicente‐Pérez EM, Woolfson AD, Thakur RRS, Donnelly RF. Microwave-Assisted Preparation of Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery Applications. MACROMOLECULAR MATERIALS AND ENGINEERING 2015; 300:586-595. [PMID: 27346983 PMCID: PMC4862021 DOI: 10.1002/mame.201500016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/23/2015] [Indexed: 05/06/2023]
Abstract
1A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000-1500 cm-1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000-3500 μg of caffeine after 24 h.
Collapse
Affiliation(s)
- Eneko Larrañeta
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Rebecca E. M. Lutton
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Aaron J. Brady
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Eva M. Vicente‐Pérez
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - A. David Woolfson
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Raghu Raj Singh Thakur
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Ryan F. Donnelly
- Chair in Pharmaceutical TechnologySchool of PharmacyQueens University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| |
Collapse
|
34
|
Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015; 33:4712-8. [PMID: 25770786 DOI: 10.1016/j.vaccine.2015.02.074] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/16/2022]
Abstract
Very high vaccination coverage is required to eliminate measles, but achieving high coverage can be constrained by the logistical challenges associated with subcutaneous injection. To simplify the logistics of vaccine delivery, a patch containing micron-scale polymeric needles was formulated to encapsulate the standard dose of measles vaccine (1000 TCID₅₀) and the immunogenicity of the microneedle patch was compared with subcutaneous injection in rhesus macaques. The microneedle patch was administered without reconstitution with diluent, dissolved in skin within 10 min, and caused only mild, transient skin erythema. Both groups of rhesus macaques generated neutralizing antibody responses to measles that were consistent with protection and the neutralizing antibody titers were equivalent. In addition, the microneedle patches maintained an acceptable level of potency after storage at elevated temperature suggesting improved thermostability compared to standard lyophilized vaccine. In conclusion, a measles microneedle patch vaccine was immunogenic in non-human primates, and this approach offers a promising delivery method that could help increase vaccination coverage.
Collapse
Affiliation(s)
- Chris Edens
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Marcus L Collins
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James L Goodson
- Center for Global Health, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Paul A Rota
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Mark R Prausnitz
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Karmen Cheung
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
36
|
Fractional Thermolysis by Bipolar Radiofrequency Facilitates Cutaneous Delivery of Peptide and siRNA with Minor Loss of Barrier Function. Pharm Res 2014; 32:1704-13. [DOI: 10.1007/s11095-014-1568-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/29/2014] [Indexed: 12/17/2022]
|
37
|
Donnelly RF, McCrudden MTC, Zaid Alkilani A, Larrañeta E, McAlister E, Courtenay AJ, Kearney MC, Singh TRR, McCarthy HO, Kett VL, Caffarel-Salvador E, Al-Zahrani S, Woolfson AD. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014; 9:e111547. [PMID: 25360806 PMCID: PMC4216095 DOI: 10.1371/journal.pone.0111547] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.
Collapse
Affiliation(s)
- Ryan F. Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | | | - Ahlam Zaid Alkilani
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
- School of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | - Aaron J. Courtenay
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | - Mary-Carmel Kearney
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | | | - Helen O. McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | - Victoria L. Kett
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | | | - Sharifa Al-Zahrani
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| | - A. David Woolfson
- School of Pharmacy, Queen's University Belfast, Belfast, Co. Antrim, United Kingdom
| |
Collapse
|
38
|
A proposed model membrane and test method for microneedle insertion studies. Int J Pharm 2014; 472:65-73. [PMID: 24877757 PMCID: PMC4111867 DOI: 10.1016/j.ijpharm.2014.05.042] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/26/2014] [Indexed: 11/22/2022]
Abstract
A commercial polymeric film (Parafilm M®, a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M® (PF) and also into excised neonatal porcine skin. Parafilm M® was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M®, in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.
Collapse
|
39
|
Transdermal delivery of proteins using a combination of iontophoresis and microporation. Ther Deliv 2014; 5:525-36. [DOI: 10.4155/tde.14.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study aimed to investigate transdermal delivery of proteins using combination of microporation and iontophoresis (ITP). Materials & methods & results: Delivery of model protein, Alexa Fluor 555 bovine serum albumin conjugate (AF-BSA) using ITP alone, microneedle (MN) alone, and ITP plus MN combination was assessed using confocal microscopy. Compared to MN alone, combination of MN plus ITP significantly increased skin's penetration depth of AF-BSA (300 vs 110 μm) and achieved lateral distribution of the model protein. Average fluorescence intensity quantified around each microchannel was 23.7-fold (8.2-fold, in vivo) higher for combination treatment compared with MN alone, in vitro. After 1 h in vitro permeation study, the unlabeled BSA amount delivered across skin was found to be 0, 1.4, 0.63 and 14 μg by passive, MN alone, ITP alone and ITP plus MN combination delivery, respectively.
Collapse
|