1
|
Manrique-Suárez V, Mangui Catota BA, Camacho Casanova F, Jara Mendoza NA, Contreras Vera MA, Maura Pérez R, Reyes López F, Toledo Alonso R, Castro Henriquez PI, Sánchez Ramos O. Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB. J Drug Target 2025; 33:546-555. [PMID: 39618311 DOI: 10.1080/1061186x.2024.2434908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 02/25/2025]
Abstract
Effective drug delivery to the central nervous system (CNS) remains a challenge due to the blood-brain barrier (BBB). Macromolecules such as proteins and peptides are unable to cross BBB and have poor therapeutic efficacy due to little or no drug distribution. A promising alternative is the conjugation of a drug to a shuttle molecule that can reach the CNS via receptor-mediated transcytosis (RMT). Several receptors have been described for RMT, such as low-density lipoprotein receptor-related protein 1 (LRP1). We used phage display technology combined with an in vitro BBB model to identify LRP1 ligands. A single domain antibody (dAb) library was used to enrich for species that selectively bind to immobilised LRP1 ligand. We obtained a novel nanobody, dAb D11, that selectively binds to LRP1 receptor and mediates in vitro internalisation of phage particles in brain endothelial cells, with a dissociation constant Kd of 183.1 ± 85.8 nM. The high permeability of D11 was demonstrated by an in vivo biodistribution assay in mice. We discovered D11, the first LRP1 binding dAb with BBB permeability. Our findings will contribute to the development of RMT-based drugs for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Viana Manrique-Suárez
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Bryan A Mangui Catota
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Frank Camacho Casanova
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Nery A Jara Mendoza
- Pharmacology Department, School of Biological Sciences, Cellular Pharmacology Laboratory, University of Concepcion, Concepcion, Chile
| | - Maria A Contreras Vera
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Rafael Maura Pérez
- Pathophysiology Department, School of Biological Science, Biotechnology and Biopharmaceutical Laboratory, Universidad de Concepción, Concepcion, Chile
| | - Fátima Reyes López
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Roberto Toledo Alonso
- Pathophysiology Department, School of Biological Science, Biotechnology and Biopharmaceutical Laboratory, Universidad de Concepción, Concepcion, Chile
- Center of Biotechnology and Biomedicine Spa., Concepción, Chile
| | - Pablo Ignacio Castro Henriquez
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez Ramos
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
- Center of Biotechnology and Biomedicine Spa., Concepción, Chile
| |
Collapse
|
2
|
Ding Y, Jia L, Geng Q, Liu Y, Guo S, Zhao S, Kong Y, Jin Q, Xu G, Xu J. Screening and functional characterization of nanobodies targeting the transferrin receptor. Protein Expr Purif 2025; 231:106702. [PMID: 40089126 DOI: 10.1016/j.pep.2025.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
The transferrin receptor (TfR1) mediates the cellular uptake of iron and other molecules, playing a vital role in hematology and tumor growth. Nanobodies (NBs) targeting TfR1 offer promising therapeutic potential due to their small size, high specificity and stability. However, rapid identification of effective nanobodies remains challenging.In this study, the truncated extracellular fragment of human TfR1 was expressed in a prokaryotic system and purified. Immunized camelids provided a source for nanobody libraries, which were screened using phage display and high-throughput strategies to identify candidates with specific TfR1 binding.NB 2D7 with nanomolar-level dissociation constants (KD) were successfully identified.The analysis of Cell Counting Kit-8(CCK8) experiments indicates that the combined treatment of NB2D7 with FeCl3 can reduce the survival rate of LoVo cells.This research establishes an efficient platform for anti-TfR1 nanobody screening and highlights the therapeutic potential of these nanobodies in cancer treatment and iron metabolism disorders.
Collapse
Affiliation(s)
- Yuting Ding
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Jia
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qifubo Geng
- School of Information Engineering, Minzu University of China, Beijing, 100081, China
| | - Yan Liu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; College of Pharmacy, Henan University, Kaifeng, Henan, 475000, China
| | - Shaojue Guo
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuaiying Zhao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yingying Kong
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; College of Pharmacy, Henan University, Kaifeng, Henan, 475000, China
| | - Quanfang Jin
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201900, China.
| | - Guangxu Xu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 200233, China.
| | - Jianfeng Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Morrison JI, Metzendorf NG, Liu J, Hultqvist G. Serotransferrin enhances transferrin receptor-mediated brain uptake of antibodies. Drug Deliv Transl Res 2025:10.1007/s13346-025-01811-1. [PMID: 39971861 DOI: 10.1007/s13346-025-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
The propensity of antibody-based therapies to systemically enter the brain interstitium and ameliorate pathology associated with numerous neurological maladies is precluded by the presence of the blood-brain barrier (BBB). Through distinct mechanisms, the BBB has evolved to regulate transport of essential ions, minerals, certain peptides and cells between the blood and the brain, but very restrictive otherwise. Hijacking receptor-mediated transport pathways of the BBB has proved fruitful in developing "Trojan Horse" therapeutic approaches to deliver antibody-based therapies to the brain milieu. The transferrin receptor (TfR)-mediated transcytosis pathway (RMT) is one such example where large recombinant molecules have been designed to bind to the TfR, which in turn activates the RMT pathway, resulting in delivery across the BBB into the brain milieu. Based on these findings, we here investigated whether the addition of serotransferrin could trigger the endogenous TfR-mediated RMT pathway and hence be used to enhance the uptake of TfR binding antibodies. By using an in vitro model of a mouse BBB we could test whether co-administration of mouse serotransferrin with mouse and human-based monoclonal antibodies enhanced brain uptake. In all cases tested, no matter if the monoclonal antibodies were designed to bind the TfR in a monovalent, partially monovalent/bivalent or entirely bivalent fashion, with high or low affinity or avidity, the addition of mouse serotransferrin significantly improved transport across the artificial BBB. This was also true for TfR binding antibodies that on their own passes the BBB poorly. These results were subsequently confirmed using a human in vitro BBB model, along with human serotransferrin and human TfR-binding antibody. To corroborate the in vitro results further, we conducted two pilot in vivo brain uptake study in wildtype mice, by intravenously co-administering a monoclonal TfR-binding antibody in the presence or absence of mouse serotransferrin as a proof-of-concept. In a similar outcome to the in vitro studies, we observed a significant almost two-fold increase in uptake of two different TfR binding antibodies in the brain when it was co-administered with mouse serotransferrin. These findings show for the first time that serotransferrin supplementation can significantly improve the ability of TfR-binding antibodies to traverse the BBB, which provides a realistic therapeutic opportunity for improving the delivery of therapeutic antibodies to the brain.
Collapse
Affiliation(s)
| | | | - Jielu Liu
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden
| | - Greta Hultqvist
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden.
| |
Collapse
|
4
|
Lee H, Han JH, Jeong RG, Kang YJ, Choi BH, Kim SR, Cheon CK, Hur J, Lee SY. Oral trehalose improves histological and behavior symptoms of mucopolysaccharidosis type II in iduronate 2-sulfatase deficient mice. Sci Rep 2025; 15:4882. [PMID: 39929944 PMCID: PMC11811122 DOI: 10.1038/s41598-025-88362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is caused by a deficiency in iduronate-2-sulfatase (Ids), an enzyme that catabolizes glycosaminoglycan (GAG). Ids insufficiency results in the accumulation of GAG in various organs, ultimately resulting in multisystemic disease. Trehalose, a non-reducing disaccharide, has shown protective effects against various diseases. However, its potential utility through oral administration in MPS II has not yet been explored. In the present study, to investigate the efficacy of oral trehalose in Ids-knock-out (KO) mice, Ids-KO and wild type (WT) mice were treated with 2% trehalose dissolved in distilled water ad libitum for 24 weeks. Histological analysis revealed that almost all tissues from Ids-KO mice exhibited abnormal changes, including large vacuolization, inflammatory cell infiltration, and GAG deposition. However, oral administration of trehalose significantly suppressed GAG levels, vacuolization, inflammation and apoptosis in the spleen and brain. Additionally, oral trehalose considerably improved cognitive functions, such as short-term spatial learning and working memory, alongside limited improvements in walking capacity in Ids-KO mice. These results suggest that oral trehalose can reduce GAG accumulation, vacuolization and the number of apoptotic and inflammatory cells in pathological tissues including the brain, ultimately considerably improving spontaneous alteration behavior and could be a promising treatment option for MPS II.
Collapse
Affiliation(s)
- Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Roo Gam Jeong
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Yun Jeong Kang
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Byung Hyun Choi
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Seo Rin Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University Children's Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Soo Yong Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
5
|
Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P, Sottero B, Leonarduzzi G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment. Int J Mol Sci 2024; 25:13637. [PMID: 39769398 PMCID: PMC11727734 DOI: 10.3390/ijms252413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia. In addition to that, PCSK9 is also recognized to carry out diverse important activities in the brain, including control of neuronal differentiation, apoptosis, and, importantly, LDL receptors functionality. Moreover, PCSK9 appeared to be directly involved in some of the principal processes responsible for AD development, such as inflammation, oxidative stress, and Aβ deposition. On these bases, PCSK9 management might represent a promising approach for AD treatment. The purpose of this review is to elucidate the role of PCSK9, whether or not cholesterol-related, in AD pathogenesis and to give an updated overview of the most innovative therapeutic strategies developed so far to counteract the pleiotropic activities of both humoral and brain PCSK9, focusing in particular on their potentiality for AD management.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
- Division of Neurology Vand Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| |
Collapse
|
6
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Niazi SK, Magoola M. Transcytosis-Driven Treatment of Neurodegenerative Disorders by mRNA-Expressed Antibody-Transferrin Conjugates. Biomedicines 2024; 12:851. [PMID: 38672205 PMCID: PMC11048317 DOI: 10.3390/biomedicines12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The recent setbacks in the withdrawal and approval delays of antibody treatments of neurodegenerative disorders (NDs), attributed to their poor entry across the blood-brain barrier (BBB), emphasize the need to bring novel approaches to enhance the entry across the BBB. One such approach is conjugating the antibodies that bind brain proteins responsible for NDs with the transferrin molecule. This glycoprotein transports iron into cells, connecting with the transferrin receptors (TfRs), piggybacking an antibody-transferrin complex that can subsequently release the antibody in the brain or stay connected while letting the antibody bind. This process increases the concentration of antibodies in the brain, enhancing therapeutic efficacy with targeted delivery and minimum systemic side effects. Currently, this approach is experimented with using drug-transferring conjugates assembled in vitro. Still, a more efficient and safer alternative is to express the conjugate using mRNA technology, as detailed in this paper. This approach will expedite safer discoveries that can be made available at a much lower cost than the recombinant process with in vitro conjugation. Most importantly, the recommendations made in this paper may save the antibodies against the NDs that seem to be failing despite their regulatory approvals.
Collapse
|
8
|
Tremblay TL, Alata W, Slinn J, Baumann E, Delaney CE, Moreno M, Haqqani AS, Stanimirovic DB, Hill JJ. The proteome of the blood-brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture. Fluids Barriers CNS 2024; 21:23. [PMID: 38433215 PMCID: PMC10910681 DOI: 10.1186/s12987-024-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Wael Alata
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
- Biology Program, New York University Abu Dhabi, Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jacqueline Slinn
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Maria Moreno
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
9
|
Cummings J, Osse AML, Cammann D, Powell J, Chen J. Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer's Disease. BioDrugs 2024; 38:5-22. [PMID: 37955845 PMCID: PMC10789674 DOI: 10.1007/s40259-023-00633-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Two monoclonal antibodies (mAbs), aducanumab and lecanemab, have received accelerated approval from the US FDA for initiation of treatment in early Alzheimer's disease patients who have proven β-amyloid pathology (Aβ). One of these, lecanemab, has subsequently received full approval and other monoclonal antibodies are poised for positive review and approval. Anti-amyloid mAbs share the feature of producing a marked reduction in total brain Aβ revealed by amyloid positron emission tomography. Trials associated with slowing of cognitive decline have achieved a reduction in measurable plaque Aβ in the range of 15-25 centiloids; trials of agents that did not reach this threshold were not associated with cognitive benefit. mAbs have differences in terms of titration schedules, MRI monitoring schedules for amyloid-related imaging abnormalities (ARIA), and continuing versus interrupted therapy. The approximate 30% slowing of decline observed with mAbs is clinically meaningful in terms of extended cognitive integrity and delay of onset of the more severe dementia phases of Alzheimer's disease. Approval of these agents initiates a new era in Alzheimer's disease therapeutics with disease-modifying properties. Further advances are needed, i.e. greater efficacy, improved safety, enhanced convenience, and better understanding of ill-understood observations such as brain volume loss.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
- , 1380 Opal Valley Street, Henderson, NV, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jayde Powell
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
10
|
Tripathy RK, Anakha J, Pande AH. Towards development of biobetter: L-asparaginase a case study. Biochim Biophys Acta Gen Subj 2024; 1868:130499. [PMID: 37914146 DOI: 10.1016/j.bbagen.2023.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
11
|
Ronaldson PT, Williams EI, Betterton RD, Stanton JA, Nilles KL, Davis TP. CNS Drug Delivery in Stroke: Improving Therapeutic Translation From the Bench to the Bedside. Stroke 2024; 55:190-202. [PMID: 38134249 PMCID: PMC10752297 DOI: 10.1161/strokeaha.123.043764] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Erica I Williams
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Robert D Betterton
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Joshua A Stanton
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Kelsy L Nilles
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson
| |
Collapse
|
12
|
Imakiire A, Morimoto H, Suzuki H, Masuda T, Yoden E, Inoue A, Morioka H, Konaka T, Mori A, Shirasaka R, Kato R, Hirato T, Sonoda H, Minami K. Transferrin Receptor-Targeted Iduronate-2-sulfatase Penetrates the Blood-Retinal Barrier and Improves Retinopathy in Mucopolysaccharidosis II Mice. Mol Pharm 2023; 20:5901-5909. [PMID: 37860991 PMCID: PMC10630942 DOI: 10.1021/acs.molpharmaceut.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.
Collapse
Affiliation(s)
- Atsushi Imakiire
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideto Morimoto
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hidehiko Suzuki
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tomomi Masuda
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Eiji Yoden
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Asuka Inoue
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hiroki Morioka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Takashi Konaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ayaka Mori
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryoji Shirasaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryo Kato
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tohru Hirato
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hiroyuki Sonoda
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kohtaro Minami
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| |
Collapse
|
13
|
Spinello A, Lapenta F, De March M. The avidin-theophylline complex: A structural and computational study. Proteins 2023; 91:1437-1443. [PMID: 37318226 DOI: 10.1002/prot.26538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The interaction between avidin and its counterpart biotin is one of central importance in biology and has been reproposed and studied at length. However, the binding pocket of avidin is prone to promiscuous binding, able to accommodate even non-biotinylated ligands. Comprehending the factors that distinguish the extremely strong interaction with biotin to other ligands is an important step to fully picture the thermodynamics of these low-affinity complexes. Here, we present the complex between chicken white egg avidin and theophylline (TEP), the xanthine derivative used in the therapy of asthma. In the crystal structure, TEP lies in the biotin-binding pocket with the same orientation and planarity of the aromatic ring of 8-oxodeoxyguanosine. Indeed, its affinity for avidin measured by isothermal titration calorimetry is in the same μM range as those obtained for the previously characterized nucleoside derivatives. By the use of molecular dynamic simulations, we have investigated the most important intermolecular interactions occurring in the avidin-TEP binding pocket and compared them with those obtained for the avidin 8-oxodeoxyguanosine and avidin-biotin complexes. These results testify the capability of avidin to complex purely aromatic molecules.
Collapse
Affiliation(s)
- Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Fabio Lapenta
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
- Department of Chemical and Pharmacological Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
14
|
Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA. Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain. ACS NANO 2023; 17:13121-13136. [PMID: 37432926 PMCID: PMC10373654 DOI: 10.1021/acsnano.2c08275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
Collapse
Affiliation(s)
- Jia Nong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick M. Glassman
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Pharmaceutical Sciences, Temple University
School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Jacob W. Myerson
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Viviana Zuluaga-Ramirez
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Alba Rodriguez-Garcia
- Department
of Pathology and Laboratory Medicine, Ovarian Cancer Research Center,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Cellular Immunotherapies, Abramson Cancer Center, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin Mukalel
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R. Walsh
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco E. Zamora
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xijing Gong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y. Kiseleva
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H. Villa
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Fred Greineder
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Scott E. Kasner
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Division
of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
- Institute of Catalonia for Research and
Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute
for Bioscience and Biotechnology (IBBR), College Park, Maryland 20850, United States
| | - Yuri Persidsky
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jacob Samuel Brenner
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
16
|
Kida S, Koshimura Y, Yoden E, Yoshioka A, Morimoto H, Imakiire A, Tanaka N, Tanaka S, Mori A, Ito J, Inoue A, Yamamoto R, Minami K, Hirato T, Takahashi K, Sonoda H. Enzyme replacement with transferrin receptor-targeted α-L-iduronidase rescues brain pathology in mucopolysaccharidosis I mice. Mol Ther Methods Clin Dev 2023; 29:439-449. [PMID: 37251981 PMCID: PMC10220318 DOI: 10.1016/j.omtm.2023.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by dysfunction of α-L-iduronidase (IDUA), is characterized by the deposition of dermatan sulfate (DS) and heparan sulfate (HS) throughout the body, which causes several somatic and central nervous symptoms. Although enzyme-replacement therapy (ERT) is currently available to treat MPS I, it does not alleviate central nervous disorders, as it cannot penetrate the blood-brain barrier. Here we evaluate the brain delivery, efficacy, and safety of JR-171, a fusion protein comprising humanized anti-human transferrin receptor antibody Fab and IDUA, using monkeys and MPS I mice. Intravenously administered JR-171 was distributed in major organs, including the brain, and reduced DS and HS concentrations in the central nervous system and peripheral tissues. JR-171 exerted similar effects on peripheral disorders similar to conventional ERT and further reversed brain pathology in MPS I mice. We found that JR-171 improved spatial learning ability, which was seen to deteriorate in the vehicle-treated mice. Further, no safety concerns were noted in repeat-dose toxicity studies in monkeys. This study provides nonclinical evidence that JR-171 might potentially prevent and even improve disease conditions in patients with neuronopathic MPS I without serious safety concerns.
Collapse
Affiliation(s)
- Sachiho Kida
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Yuri Koshimura
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Eiji Yoden
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Aya Yoshioka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideto Morimoto
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Atsushi Imakiire
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Noboru Tanaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Satowa Tanaka
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ayaka Mori
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Jun Ito
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Asuka Inoue
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryuji Yamamoto
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kohtaro Minami
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tohru Hirato
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kenichi Takahashi
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hiroyuki Sonoda
- Research Division, JCR Pharmaceuticals, 1-5-4 Murotani, Nishi-ku, Kobe 651-2241, Japan
| |
Collapse
|
17
|
Gusarova VD, Smolov MA, Lyagoskin IV, Degterev MB, Rechetnik EV, Rodionov AV, Pantyushenko MS, Shukurov RR. Characterization of a HIR-Fab-IDS, Novel Iduronate 2-Sulfatase Fusion Protein for the Treatment of Neuropathic Mucopolysaccharidosis Type II (Hunter Syndrome). BioDrugs 2023; 37:375-395. [PMID: 37014547 DOI: 10.1007/s40259-023-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Mucopolysaccharidosis type II is a severe lysosomal storage disease caused by deficient activity of the enzyme iduronate-2-sulfatase. The only medicinal product approved by the US Food and Drug Administration for enzyme replacement therapy, recombinant iduronate-2-sulfatase (idursulfase, Elaprase®), is a large molecule that is not able to cross the blood-brain barrier and neutralize progressive damage of the central nervous system caused by the accumulation of glycosaminoglycans. Novel chimeric protein HIR-Fab-IDS is an anti-human insulin receptor Fab fragment fused to recombinant modified iduronate-2-sulfatase. This modification provides a highly selective interaction with the human insulin receptor, which leads to the HIR-Fab-IDS crossing the blood-brain barrier owing to internalization of the hybrid molecule by transcytosis into endothelial cells adjacent to the nervous system by the principle of a 'molecular Trojan horse'. OBJECTIVES In this work, the physicochemical and biological characterization of a blood-brain barrier-penetrating fusion protein, HIR-Fab-IDS, is carried out. HIR-Fab-IDS consists of an anti-human insulin receptor Fab fragment fused to recombinant iduronate-2-sulfatase. METHODS Comprehensive analytical characterization utilizing modern techniques (including surface plasmon resonance and mass spectrometry) was performed using preclinical and clinical batches of HIR-Fab-IDS. Critical quality parameters that determine the therapeutic effect of iduronate-2-sulfatase, as well as IDS enzymatic activity and in vitro cell uptake activity were evaluated in comparison with the marketed IDS product Elaprase® (IDS RP). In vivo efficiency of HIR-Fab-IDS in reversing mucopolysaccharidosis type II pathology in IDS-deficient mice was also investigated. The affinity of the chimeric molecule for the INSR was also determined by both an enzyme-linked immunosorbent assay and surface plasmon resonance. We also compared the distribution of 125I-radiolabeled HIR-Fab-IDS and IDS RP in the tissues and brain of cynomolgus monkeys after intravenous administration. RESULTS The HIR-Fab-IDS primary structure investigation showed no significant post-translational modifications that could affect IDS activity, except for the formylglycine content, which was significantly higher for HIR-Fab-IDS compared with that for IDS RP (~ 76.5 vs ~ 67.7%). Because of this fact, the specific enzyme activity of HIR-Fab-IDS was slightly higher than that of IDS RP (~ 2.73 × 106 U/μmol vs ~ 2.16 × 106 U/μmol). However, differences were found in the glycosylation patterns of the compared IDS products, causing a minor reduced in vitro cellular uptake of HIR-Fab-IDS by mucopolysaccharidosis type II fibroblasts compared with IDS RP (half-maximal effective concentration ~ 26.0 vs ~ 23.0 nM). The efficacy of HIR-Fab-IDS in IDS-deficient mice has demonstrated a statistically significant reduction in the level of glycosaminoglycans in the urine and tissues of the main organs to the level of healthy animals. The HIR-Fab-IDS has revealed high in vitro affinity for human and monkey insulin receptors, and the radioactively labeled product has been shown to penetrate to all parts of the brain and peripheral tissues after intravenous administration to cynomolgus monkeys. CONCLUSIONS These findings indicate that HIR-Fab-IDS, a novel iduronate-2-sulfatase fusion protein, is a promising candidate for the treatment of central nervous system manifestations in neurological mucopolysaccharidosis type II.
Collapse
Affiliation(s)
- Valentina D Gusarova
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia.
| | - Maxim A Smolov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Ivan V Lyagoskin
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Maksim B Degterev
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Elizaveta V Rechetnik
- Department of Scientific Expertise and Pharmacovigilance, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy district, Vladimir Region, 601125, Russia
| | - Alexander V Rodionov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Marina S Pantyushenko
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Rahim R Shukurov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| |
Collapse
|
18
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
19
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
20
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
21
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
de la Rosa A, Metzendorf NG, Morrison JI, Faresjö R, Rofo F, Petrovic A, O’Callaghan P, Syvänen S, Hultqvist G. Introducing or removing heparan sulfate binding sites does not alter brain uptake of the blood-brain barrier shuttle scFv8D3. Sci Rep 2022; 12:21479. [PMID: 36509864 PMCID: PMC9744743 DOI: 10.1038/s41598-022-25965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.
Collapse
Affiliation(s)
- Andrés de la Rosa
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jamie I. Morrison
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Rebecca Faresjö
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alex Petrovic
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Paul O’Callaghan
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
24
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
25
|
van den Broek SL, Shalgunov V, Herth MM. Transport of nanomedicines across the blood-brain barrier: Challenges and opportunities for imaging and therapy. BIOMATERIALS ADVANCES 2022; 141:213125. [PMID: 36182833 DOI: 10.1016/j.bioadv.2022.213125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) is a protective and semipermeable border of endothelial cells that prevents toxins and foreign bodies to enter and damage the brain. Unfortunately, the BBB also hampers the development of pharmaceuticals targeting receptors, enzymes, or other proteins that lie beyond this barrier. Especially large molecules, such as monoclonal antibodies (mAbs) or nanoparticles, are prevented to enter the brain. The limited passage of these molecules partly explains why nanomedicines - targeting brain diseases - have not made it into the clinic to a great extent. As nanomedicines can target a wide range of targets including protein isoforms and oligomers or potentially deliver cytotoxic drugs safely to their targets, a pathway to smuggle nanomedicines into the brain would allow to treat brain diseases that are currently considered 'undruggable'. In this review, strategies to transport nanomedicines over the BBB will be discussed. Their challenges and opportunities will be highlighted with respect to their use for molecular imaging or therapies. Several strategies have been explored for this thus far. For example, carrier-mediated and receptor-mediated transcytosis (RMT), techniques to disrupt the BBB, nasal drug delivery or administering nanomedicines directly into the brain have been explored. RMT has been the most widely and successfully explored strategy. Recent work on the use of focused ultrasound based BBB opening has shown great promise. For example, successful delivery of mAbs into the brain has been achieved, even in a clinical setting. As nanomedicines bear the potential to treat incurable brain diseases, drug delivery technologies that can deliver nanomedicines into the brain will play an essential role for future treatment options.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
27
|
Clarke E, Stocki P, Sinclair EH, Gauhar A, Fletcher EJR, Krawczun-Rygmaczewska A, Duty S, Walsh FS, Doherty P, Rutkowski JL. A Single Domain Shark Antibody Targeting the Transferrin Receptor 1 Delivers a TrkB Agonist Antibody to the Brain and Provides Full Neuroprotection in a Mouse Model of Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071335. [PMID: 35890231 PMCID: PMC9318160 DOI: 10.3390/pharmaceutics14071335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Single domain shark antibodies that bind to the transferrin receptor 1 (TfR1) on brain endothelial cells have been used to shuttle antibodies and other cargos across the blood brain barrier (BBB) to the brain. For these studies the TXB4 brain shuttle was fused to a TrkB neurotrophin receptor agonist antibody. The TXB4-TrkB fusion retained potent agonist activity at its cognate receptor and after systemic administration showed a 12-fold increase in brain levels over the unmodified antibody. Only the TXB4-TrkB antibody fusion was detected within the brain and localized to TrkB positive cells in the cortex and tyrosine hydroxylase (TH) positive dopaminergic neurons in the substantia nigra pars compacta (SNc), where it was associated with activated ERK1/2 signaling. When tested in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson’s disease (PD), TXB4-TrkB, but not the unmodified antibody, completely prevented the 6-OHDA induced death of TH positive neurons in the SNc. In conclusion, the fusion of the TXB4 brain shuttle allows a TrkB agonist antibody to reach neuroprotective concentrations in the brain parenchyma following systemic administration.
Collapse
Affiliation(s)
- Emily Clarke
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Pawel Stocki
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Elizabeth H. Sinclair
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Aziz Gauhar
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Edward J. R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Alicja Krawczun-Rygmaczewska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Frank S. Walsh
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
| | - Patrick Doherty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, Guy’s Campus, London SE1 1UL, UK; (E.C.); (E.J.R.F.); (A.K.-R.); (S.D.); (P.D.)
| | - Julia Lynn Rutkowski
- Ossianix, Inc., Gunnels Wood Rd., Stevenage SG1 2FX, UK; (P.S.); (E.H.S.); (A.G.); (F.S.W.)
- Correspondence: ; Tel.: +1-(610)-291-1724
| |
Collapse
|
28
|
Ruck T, Nimmerjahn F, Wiendl H, Lünemann JD. Next-generation antibody-based therapies in neurology. Brain 2022; 145:1229-1241. [PMID: 34928330 PMCID: PMC9630709 DOI: 10.1093/brain/awab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-based therapeutics are now standard in the treatment of neuroinflammatory diseases, and the spectrum of neurological diseases targeted by those approaches continues to grow. The efficacy of antibody-based drug platforms is largely determined by the specificity-conferring antigen-binding fragment (Fab) and the crystallizable fragment (Fc) driving antibody function. The latter provides specific instructions to the immune system by interacting with cellular Fc receptors and complement components. Extensive engineering efforts have enabled tuning of Fc functions to modulate effector functions and to prolong or reduce antibody serum half-lives. Technologies that improve bioavailability of antibody-based treatment platforms within the CNS parenchyma are being developed and could invigorate drug discovery for a number of brain diseases for which current therapeutic options are limited. These powerful approaches are currently being tested in clinical trials or have been successfully translated into the clinic. Here, we review recent developments in the design and implementation of antibody-based treatment modalities in neurological diseases.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
29
|
Lajoie JM, Katt ME, Waters EA, Herrin BR, Shusta EV. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep 2022; 12:6044. [PMID: 35411012 PMCID: PMC9001667 DOI: 10.1038/s41598-022-09962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs). Lamprey were immunized with murine brain microvessel plasma membranes, and the resultant repertoire cloned into the yeast surface display system. The library was screened via a unique workflow that identified 16 VLR clones that target extracellular epitopes of in vivo-relevant BBB membrane proteins. Of these, three lead VLR candidates, VLR-Fc-11, VLR-Fc-30, and VLR-Fc-46 selectively target the brain vasculature and traffic within brain microvascular endothelial cells after intravenous administration in mice, with VLR-Fc-30 being confirmed as trafficking into the brain parenchyma. Epitope characterization indicates that the VLRs, in part, recognize sialylated glycostructures. These promising new targeting molecules have the potential for brain targeting and drug delivery with improved brain vascular specificity.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
30
|
Arguello A, Mahon CS, Calvert ME, Chan D, Dugas JC, Pizzo ME, Thomsen ER, Chau R, Damo LA, Duque J, Fang M, Giese T, Kim DJ, Liang N, Nguyen HN, Solanoy H, Tsogtbaatar B, Ullman JC, Wang J, Dennis MS, Diaz D, Gunasekaran K, Henne KR, Lewcock JW, Sanchez PE, Troyer MD, Harris JM, Scearce-Levie K, Shan L, Watts RJ, Thorne RG, Henry AG, Kariolis MS. Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. J Exp Med 2022; 219:213038. [PMID: 35226042 PMCID: PMC8932535 DOI: 10.1084/jem.20211057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Delivery of biotherapeutics across the blood–brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.
Collapse
Affiliation(s)
| | | | | | - Darren Chan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | - Roni Chau
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Joseph Duque
- Denali Therapeutics Inc., South San Francisco, CA
| | - Meng Fang
- Denali Therapeutics Inc., South San Francisco, CA
| | - Tina Giese
- Denali Therapeutics Inc., South San Francisco, CA
| | - Do Jin Kim
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | - Junhua Wang
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Dolores Diaz
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | | | | | - Lu Shan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Robert G. Thorne
- Denali Therapeutics Inc., South San Francisco, CA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN
| | | | | |
Collapse
|
31
|
Natale V, Stadlmayr G, Benedetti F, Stadlbauer K, Rüker F, Wozniak-Knopp G. Trispecific antibodies produced from mAb 2 pairs by controlled Fab-arm exchange. Biol Chem 2022; 403:509-523. [PMID: 35089662 DOI: 10.1515/hsz-2021-0376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Bispecific antibodies and antibody fragments are therapeutics of growing importance. They are clinically applied for effector cell engagement, enhanced targeting selectivity, addressing of multiple cellular pathways and active transfer of certain activities into difficult-to-reach compartments. These functionalities could profit from a third antigen specificity. In this work we have employed symmetrical bispecific parental antibodies of mAb2 format, which feature a novel antigen binding site in the CH3 domains, and engineered them with a minimal number of point mutations to guide the formation of a controlled Fab-arm exchanged trispecific antibody at a high yield after reduction and re-oxidation. Two model antibodies, one reactive with EGFR, Her2 and VEGF, and one with Fab-arms binding to Ang2 and VEGF and an Fc fragment binding to VEGF, were prepared and examined for heterodimeric status, stability, antigen binding properties and biological activity. Resulting molecules were of good biophysical characteristics and retained antigen reactivity and biological activity of the parental mAb2 constructs.
Collapse
Affiliation(s)
- Veronica Natale
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Gerhard Stadlmayr
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Filippo Benedetti
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina Stadlbauer
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Florian Rüker
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Gordana Wozniak-Knopp
- Department of Biotechnology, Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
32
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
33
|
Lv C, Huang S, Wang Y, Hu Z, Zhao G, Ma C, Cao X. Chicoric acid encapsulated within ferritin inhibits tau phosphorylation by regulating AMPK and GluT1 signaling cascade. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Simonneau C, Duschmalé M, Gavrilov A, Brandenberg N, Hoehnel S, Ceroni C, Lassalle E, Kassianidou E, Knoetgen H, Niewoehner J, Villaseñor R. Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays. Fluids Barriers CNS 2021; 18:43. [PMID: 34544422 PMCID: PMC8454074 DOI: 10.1186/s12987-021-00276-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.
Collapse
Affiliation(s)
- Claire Simonneau
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Martina Duschmalé
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Alina Gavrilov
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Sylke Hoehnel
- SUN bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Camilla Ceroni
- SUN bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Evodie Lassalle
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Elena Kassianidou
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Hendrik Knoetgen
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities, Roche Innovation Center Munich, Munich, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities, Roche Innovation Center Munich, Munich, Germany
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Xia X, Zhou Y, Gao H. Prodrug strategy for enhanced therapy of central nervous system disease. Chem Commun (Camb) 2021; 57:8842-8855. [PMID: 34486590 DOI: 10.1039/d1cc02940a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) disease is one of the most notorious arch-criminals of human health across the world. Although considerable efforts have been devoted to promote the development of CNS drugs, ideal therapeutical effects are yet far from enough. The blood-brain barrier remains a major player that impedes the full potential of CNS therapeutical agents as it blocks the entry of CNS drugs into the brain. The past few decades have witnessed the upspring of prodrug strategies as a promising method to accelerate CNS drug development. The prodrug strategy with the ability to overcome the formidable blood-brain barrier enhances the delivery to the brain and hence improves the effects of the CNS therapeutics. In this Feature Article, we summarize the reported barriers and strategies for CNS therapeutics and spotlight prodrug design strategies to improve the efficiency of crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
36
|
Jin W, Wu Y, Chen N, Wang Q, Wang Y, Li Y, Li S, Han X, Yang E, Tong F, Wu J, Yuan X, Kang C. Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics 2021; 11:8197-8217. [PMID: 34373737 PMCID: PMC8344004 DOI: 10.7150/thno.58947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease, which leads to disability and death. Immunomodulatory therapies exert multiple remarkable protective effects during ischemic stroke. However, patients suffering from ischemic stroke do not benefit from immunomodulatory therapies due to the presence of the blood-brain barrier (BBB) and their off-target effects. Methods: We presented a delivery strategy to optimize immunomodulatory therapies by facilitating BBB penetration and selectively delivering intravenous immunoglobulin (IVIg) to ischemic regions using 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules, MPC-n(IVIg), synthesized using MPC monomers and ethylene glycol dimethyl acrylate (EGDMA) crosslinker via in situ polymerization. In vitro and in vivo experiments verify the effect and safety of MPC-n(IVIg). Results: MPC-n(IVIg) efficiently crosses the BBB and IVIg selectively accumulates in ischemic areas in a high-affinity choline transporter 1 (ChT1)-overexpression dependent manner via endothelial cells in ischemic areas. Moreover, earlier administration of MPC-n(IVIg) more efficiently deliver IVIg to ischemic areas. Furthermore, the early administration of low-dosage MPC-n(IVIg) decreases neurological deficits and mortality by suppressing stroke-induced inflammation in the middle cerebral artery occlusion model. Conclusion: Our findings indicate a promising strategy to efficiently deliver the therapeutics to the ischemic target brain tissue and lower the effective dose of therapeutic drugs for treating ischemic strokes.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yansheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China. Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
37
|
Olsman M, Sereti V, Mühlenpfordt M, Johnsen KB, Andresen TL, Urquhart AJ, Davies CDL. Focused Ultrasound and Microbubble Treatment Increases Delivery of Transferrin Receptor-Targeting Liposomes to the Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1343-1355. [PMID: 33608142 DOI: 10.1016/j.ultrasmedbio.2021.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle to treating several brain disorders. Focused ultrasound (FUS) in combination with intravascular microbubbles increases BBB permeability by opening tight junctions, creating endothelial cell openings, improving endocytosis and increasing transcytosis. Here we investigated whether combining FUS and microbubbles with transferrin receptor-targeting liposomes would result in enhanced delivery to the brain of post-natal rats compared with liposomes lacking the BBB-targeting moiety. For all animals, increased BBB permeability was observed after FUS treatment. A 40% increase in accumulation of transferrin receptor-targeting liposomes was observed in the FUS-treated hemisphere, whereas the isotype immunoglobulin G liposomes showed no increased accumulation. Confocal laser scanning microscopy of brain sections revealed that both types of liposomes were mainly observed in endothelial cells in the FUS-treated hemisphere. The results demonstrate that FUS and microbubble treatment combined with BBB-targeting liposomes could be a promising approach to enhance drug delivery to the brain.
Collapse
Affiliation(s)
- Marieke Olsman
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Viktoria Sereti
- Department of Health Technology, Technical University Denmark, Kongens Lyngby, Denmark
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kasper Bendix Johnsen
- Department of Health Technology, Technical University Denmark, Kongens Lyngby, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University Denmark, Kongens Lyngby, Denmark
| | - Andrew James Urquhart
- Department of Health Technology, Technical University Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
38
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
39
|
Desai AA, Smith MD, Zhang Y, Makowski EK, Gerson JE, Ionescu E, Starr CG, Zupancic JM, Moore SJ, Sutter AB, Ivanova MI, Murphy GG, Paulson HL, Tessier PM. Rational affinity maturation of anti-amyloid antibodies with high conformational and sequence specificity. J Biol Chem 2021; 296:100508. [PMID: 33675750 PMCID: PMC8081927 DOI: 10.1016/j.jbc.2021.100508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aβ fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aβ42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aβ antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aβ aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.
Collapse
Affiliation(s)
- Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew D Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Yulei Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily K Makowski
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia E Gerson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edward Ionescu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles G Starr
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer M Zupancic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Shannon J Moore
- Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra B Sutter
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Geoffrey G Murphy
- Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan, USA; Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA; Protein Folding Disease Initiative, University of Michigan, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
40
|
Froelich A, Osmałek T, Jadach B, Puri V, Michniak-Kohn B. Microemulsion-Based Media in Nose-to-Brain Drug Delivery. Pharmaceutics 2021; 13:201. [PMID: 33540856 PMCID: PMC7912993 DOI: 10.3390/pharmaceutics13020201] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. The most important advantage of this approach is the ability to avoid the blood-brain barrier surrounding the brain and blocking the entry of exogenous substances to the central nervous system. Moreover, selective brain targeting could possibly avoid peripheral side effects of pharmacotherapy. The challenges associated with nose-to-brain drug delivery are mostly due to the small volume of the nasal cavity and insufficient drug absorption from nasal mucosa. These issues could be minimized by using a properly designed drug carrier. Microemulsions as potential drug delivery systems offer good solubilizing properties and the ability to enhance drug permeation through biological membranes. The aim of this review is to summarize the current status of the research focused on microemulsion-based systems for nose-to-brain delivery with special attention to the most extensively investigated neurological and psychiatric conditions, such as neurodegenerative diseases, epilepsy, and schizophrenia.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Vinam Puri
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
41
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
42
|
Morimoto H, Kida S, Yoden E, Kinoshita M, Tanaka N, Yamamoto R, Koshimura Y, Takagi H, Takahashi K, Hirato T, Minami K, Sonoda H. Clearance of heparan sulfate in the brain prevents neurodegeneration and neurocognitive impairment in MPS II mice. Mol Ther 2021; 29:1853-1861. [PMID: 33508431 PMCID: PMC8116601 DOI: 10.1016/j.ymthe.2021.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/15/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Mucopolysaccharidosis II (MPS II), a lysosomal storage disease caused by mutations in iduronate-2-sulfatase (IDS), is characterized by a wide variety of somatic and neurologic symptoms. The currently approved intravenous enzyme replacement therapy with recombinant IDS (idursulfase) is ineffective for CNS manifestations due to its inability to cross the blood-brain barrier (BBB). Here, we demonstrate that the clearance of heparan sulfate (HS) deposited in the brain by a BBB-penetrable antibody-enzyme fusion protein prevents neurodegeneration and neurocognitive dysfunctions in MPS II mice. The fusion protein pabinafusp alfa was chronically administered intravenously to MPS II mice. The drug reduced HS and attenuated histopathological changes in the brain, as well as in peripheral tissues. The loss of spatial learning abilities was completely suppressed by pabinafusp alfa, but not by idursulfase, indicating an association between HS deposition in the brain, neurodegeneration, and CNS manifestations in these mice. Furthermore, HS concentrations in the brain and reduction thereof by pabinafusp alpha correlated with those in the cerebrospinal fluid (CSF). Thus, repeated intravenous administration of pabinafusp alfa to MPS II mice decreased HS deposition in the brain, leading to prevention of neurodegeneration and maintenance of neurocognitive function, which may be predicted from HS concentrations in CSF.
Collapse
Affiliation(s)
- Hideto Morimoto
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Sachiho Kida
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Eiji Yoden
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Masafumi Kinoshita
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Noboru Tanaka
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Ryuji Yamamoto
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Yuri Koshimura
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Haruna Takagi
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kenichi Takahashi
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Tohru Hirato
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Kohtaro Minami
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan.
| | - Hiroyuki Sonoda
- Research Division, JCR Pharmaceuticals, 2-2-9 Murotani, Nishi-ku, Kobe 651-2241, Japan.
| |
Collapse
|
43
|
Chang HY, Wu S, Li Y, Zhang W, Burrell M, Webster CI, Shah DK. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs 2021; 13:1874121. [PMID: 33499723 PMCID: PMC7849817 DOI: 10.1080/19420862.2021.1874121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-mediated transcytosis (RMT) is used to enhance the delivery of monoclonal antibodies (mAb) into the central nervous system (CNS). While the binding to endogenous receptors on the brain capillary endothelial cells (BCECs) may facilitate the uptake of mAbs in the brain, a strong affinity for the receptor may hinder the efficiency of transcytosis. To quantitatively investigate the effect of binding affinity on the pharmacokinetics (PK) of anti-transferrin receptor (TfR) mAbs in different regions of the rat brain, we conducted a microdialysis study to directly measure the concentration of free mAbs at different sites of interest. Our results confirmed that bivalent anti-TfR mAb with an optimal dissociation constant (KD) value (76 nM) among four affinity variants can have up to 10-fold higher transcytosed free mAb exposure in the brain interstitial fluid (bISF) compared to lower and higher affinity mAbs (5 and 174 nM). This bell-shaped relationship between KD values and the increased brain exposure of mAbs was also visible when using whole-brain PK data. However, we found that mAb concentrations in postvascular brain supernatant (obtained after capillary depletion) were almost always higher than the concentrations measured in bISF using microdialysis. We also observed that the increase in mAb area under the concentration curve in CSF compartments was less significant, which highlights the challenge in using CSF measurement as a surrogate for estimating the efficiency of RMT delivery. Our results also suggest that the determination of mAb concentrations in the brain using microdialysis may be necessary to accurately measure the PK of CNS-targeted antibodies at the site-of-actions in the brain.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Wanying Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Carl I. Webster
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
44
|
Nguyen TT, Vo TK, Vo GV. Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:183-198. [PMID: 33725354 DOI: 10.1007/978-3-030-55035-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, Vietnam
| | - Giau Van Vo
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si, South Korea. .,Department of Bionano Technology, Gachon University, Seongnam-si, South Korea. .,School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
45
|
Ren J, Jiang F, Wang M, Hu H, Zhang B, Chen L, Dai F. Increased cross-linking micelle retention in the brain of Alzheimer's disease mice by elevated asparagine endopeptidase protease responsive aggregation. Biomater Sci 2020; 8:6533-6544. [PMID: 33111725 DOI: 10.1039/d0bm01439g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current forms of medication for Alzheimer's disease (AD) provide a symptomatic benefit limited to those with early onset, but there is no single drug available for later stage patients. Given the recent failures of AD drugs in clinical trials, an intensive treatment strategy based on drug combination that is approved is attractive. At present, the greatest difficulty lies in the low accumulation of drugs in the brain. All hydrophilic drugs are limited by the physical and biochemical barriers within the blood-brain barrier and lipophilic drugs are often transported back into the blood by efflux pumps located in the blood-brain barrier. Here, we select elevated asparagine endopeptidase (AEP) as a target to trigger in situ cross-linking of small sized particles to form large sized drug clusters to block the efflux of the brain. Subsequently, responsive cross-linking micelles (RCMs) loaded with the acetylcholinesterase inhibitor, donepezil (DON), the microtubule therapeutic agent, Paclitaxel (PTX), and the glucose metabolism disorder regulator, insulin (INS) are investigated, with a focus on high levels of drug accumulation in the brain in AD. These smart multi-drug delivery RCMs provide a powerful system for AD treatment and can be adapted for other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
48
|
Gao Y, Zhu J, Lu H. Single domain antibody-based vectors in the delivery of biologics across the blood-brain barrier: a review. Drug Deliv Transl Res 2020; 11:1818-1828. [PMID: 33155179 DOI: 10.1007/s13346-020-00873-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Biologics are a promising and effective method for the treatment of central nervous system (CNS) diseases. The blood-brain barrier (BBB) is a natural barrier for the delivery of biologics into the brain, which decreases the effective concentration of drugs in the CNS. A range of strategies has been explored to transport biologics across the BBB endothelium, typically via receptor-mediated transcytosis (RMT), which involving molecules for endogenous BBB receptors to be fused with biologics. This review emphasized a category of novel alternative RMT-targeting vectors: single domain antibodies (sdAb). SdAbs are a unique category of antibodies derived from naturally occurring heavy-chain-only antibodies. Herein, we describe their properties, mechanisms, modifications, and translational perspectives for their ability to transmigrate across the BBB in vitro and in vivo in detail.
Collapse
Affiliation(s)
- Yang Gao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
49
|
Castellanos DM, Sun J, Yang J, Ou W, Zambon AC, Pardridge WM, Sumbria RK. Acute and Chronic Dosing of a High-Affinity Rat/Mouse Chimeric Transferrin Receptor Antibody in Mice. Pharmaceutics 2020; 12:pharmaceutics12090852. [PMID: 32911688 PMCID: PMC7558337 DOI: 10.3390/pharmaceutics12090852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive brain delivery of neurotherapeutics is challenging due to the blood-brain barrier. The revived interest in transferrin receptor antibodies (TfRMAbs) as brain drug-delivery vectors has revealed the effect of dosing regimen, valency, and affinity on brain uptake, TfR expression, and Fc-effector function side effects. These studies have primarily used monovalent TfRMAbs with a human constant region following acute intravenous dosing in mice. The effects of a high-affinity bivalent TfRMAb with a murine constant region, without a fusion partner, following extravascular dosing in mice are, however, not well characterized. Here we elucidate the plasma pharmacokinetics and safety of a high-affinity bivalent TfRMAb with a murine constant region following acute and chronic subcutaneous dosing in adult C57BL/6J male mice. Mice received a single (acute dosing) 3 mg/kg dose, or were treated for four weeks (chronic dosing). TfRMAb and control IgG1 significantly altered reticulocyte counts following acute and chronic dosing, while other hematologic parameters showed minimal change. Chronic TfRMAb dosing did not alter plasma- and brain-iron measurements, nor brain TfR levels, however, it significantly increased splenic-TfR and -iron. Plasma concentrations of TfRMAb were significantly lower in mice chronically treated with IgG1 or TfRMAb. Overall, no injection related reactions were observed in mice.
Collapse
Affiliation(s)
- Demi M. Castellanos
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (D.M.C.); (J.Y.)
| | - Weijun Ou
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | - Alexander C. Zambon
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
| | | | - Rachita K. Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (J.S.); (W.O.); (A.C.Z.)
- Department of Neurology, University of California, Irvine, CA 92868, USA
- Correspondence: ; Tel.: +1-(909)-607-0319; Fax: +1-(909)-607-9826
| |
Collapse
|
50
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|