1
|
Hardin KR, Penas AB, Joubert S, Ye C, Myers KR, Zheng JQ. A Critical Role for the Fascin Family of Actin Bundling Proteins in Axon Development, Brain Wiring and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639554. [PMID: 40027761 PMCID: PMC11870622 DOI: 10.1101/2025.02.21.639554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Actin-based cell motility drives many neurodevelopmental events including guided axonal growth. Fascin is a major family of F-actin bundling proteins, but its role in axon development in vivo and brain wiring remains unclear. Here, we report that fascin is required for axon development, brain wiring and function. We show that fascin is enriched in the motile filopodia of axonal growth cones and its inhibition impairs axonal extension and branching of hippocampal neurons in culture. We next provide evidence that fascin is essential for axon development and brain wiring in vivo using Drosophila melanogaster as a model. Drosophila expresses a single ortholog of mammalian fascin called Singed (SN), which is expressed in the mushroom body (MB) of the central nervous system. Loss of SN causes severe MB disruption, marked by α- and β-lobe defects indicative of altered axonal guidance. SN-null flies also exhibit defective sensorimotor behaviors as assessed by the negative geotaxis assay. MB-specific expression of SN in SN-null flies rescues MB structure and sensorimotor deficits, indicating that SN functions autonomously in MB neurons. Together, our data from primary neuronal culture and in vivo models highlight a critical role for fascin in brain development and function. Highlights Fascin regulates axon growth and branching of hippocampal neurons in culture. Singed, a Drosophila fascin ortholog, is enriched in mushroom body (MB) axons. Singed loss causes axon guidance defects and sensorimotor issues in flies.MB-specific Singed re-expression rescues MB structure and behavior in flies.
Collapse
|
2
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
3
|
Antioch I, Larnaudie S, Lafon I, Devaud JM, Rampon C, Jeanson R. Adult brain neurogenesis does not account for behavioral differences between solitary and social bees. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104737. [PMID: 39672536 DOI: 10.1016/j.jinsphys.2024.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
In many taxa, increasing attention is being paid to how group living shapes the expression of brain plasticity and behavioural flexibility. In eusocial insects, the lifelong commitment of workers and queens to a reproductive or non-reproductive caste is accompanied by a loss of behavioural totipotency, and often, by the expression of a limited behavioural repertoire in workers due to their specialisation. On the other hand, individuals of solitary species have a broader behavioural repertoire as they have to perform all the tasks themselves. This raises the question of whether solitary and social insects differ in their levels of brain plasticity. One mechanism found in both invertebrates and vertebrates to contribute to brain plasticity is adult neurogenesis. It is a mechanism by which adult-born neurons are generated, differentiated and functionally integrated in the brain circuits during adulthood. In this study, we compared the solitary bee Osmia bicornis and the eusocial bee Apis mellifera. We focused on the mushroom bodies which are higher-order integration centres in the insect brain. Based on their known behavioural repertoire, our prediction was that both solitary and social bees would exhibit neurogenesis in the brain until the pupal stage, but that this capacity would persist only in adult solitary bees. However, our results do not validate this prediction, as they indicate that no cells are produced in the mushroom bodies or other areas of the adult solitary bee brain.
Collapse
Affiliation(s)
- Iulia Antioch
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sarah Larnaudie
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Isabelle Lafon
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Jean-Marc Devaud
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
4
|
Jernigan CM, Mammen LCC, Brown RD, Sheehan MJ. Paper wasps: A model clade for social cognition. Curr Opin Neurobiol 2024; 89:102928. [PMID: 39454467 PMCID: PMC11611606 DOI: 10.1016/j.conb.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Paper wasps are a highly intelligent group of socially flexible insects with complex lives and variation in social structures. They engage in sophisticated communication within their small societies using olfaction, vibration, and even visual signals of quality or individual identity in some species. Here we describe the social biology of paper wasps as well as the impressive visual and cognitive abilities seen in this group. We summarize the recent discoveries about where and how social information is processed in the wasp brain and highlight the potential of this clade to further our understanding of the neural underpinnings of complex social cognition, its development, and its evolution.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Lorenz C C Mammen
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ronald D Brown
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Fahrbach SE. Gamma-aminobutyric acid in the honey bee mushroom bodies - is inhibition the wellspring of plasticity? CURRENT OPINION IN INSECT SCIENCE 2024; 66:101278. [PMID: 39369905 DOI: 10.1016/j.cois.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Structural plasticity is the hallmark of the protocerebral mushroom bodies of adult insects. This plasticity is especially well studied in social hymenopterans. In adult worker honey bees, phenomena such as increased neuropil volume, increased dendritic branching, and changes in the details of synaptic microcircuitry are associated with both the onset of foraging and the accumulation of foraging experience. Prior models of the drivers of these changes have focused on differences between the sensory environment of the hive and the world outside the hive, leading to enhanced excitatory (cholinergic) inputs to the intrinsic neurons of the mushroom bodies (Kenyon cells). This article proposes experimental and bioinformatics-based approaches for the exploration of a role for changes in the inhibitory (GABAergic) innervation of the mushroom bodies as a driver of sensitive periods for structural plasticity in the honey bee brain.
Collapse
Affiliation(s)
- Susan E Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
6
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
7
|
Rosa ME, Oliveira RS, de Faria Barbosa R, Hyslop S, Dal Belo CA. Recent advances on the influence of fipronil on insect behavior. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101251. [PMID: 39147324 DOI: 10.1016/j.cois.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Fipronil, a pesticide widely used to control agricultural and household insect pests, blocks insect GABAA and glutamate (GluCl) ionotropic receptors, resulting in uncontrolled hyperexcitation and paralysis that eventually leads to death. The use of fipronil is controversial because unintentional exposure to this compound may contribute to the ongoing global decline of insect pollinator populations. Although the sublethal effects of fipronil have been linked to aberrant behavior and impaired olfactory learning in insects, the precise mechanisms involved in these responses remain unclear. In this article, we highlight recent studies that have investigated the interaction among different pathways involved in the ability of fipronil to modulate insect behavior, with particular emphasis on the role of GABAergic neurotransmission in fine-tuning the integration of sensorial responses and insect behavior. Recent findings suggest that fipronil can also cause functional alterations that affect synaptic organization and the availability of metal ions in the brain.
Collapse
Affiliation(s)
- Maria E Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Centro Interdisciplinar de Pesquisas em Biotecnologia (CIPBiotec), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, Rua Aluízio Barros Macedo, S/N, BR 290, Km 423, 97307-020, São Gabriel, RS, Brazil
| | - Raquel S Oliveira
- Departamento de Medicina Translacional (Área de Farmacologia), Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Renata de Faria Barbosa
- Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua General Newton Estilac Leal, 932, Pestana, 06190-170, Osasco, SP, Brazil
| | - Stephen Hyslop
- Departamento de Medicina Translacional (Área de Farmacologia), Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Cháriston A Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Centro Interdisciplinar de Pesquisas em Biotecnologia (CIPBiotec), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, Rua Aluízio Barros Macedo, S/N, BR 290, Km 423, 97307-020, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBtox), Universidade Federal de Santa Maria (UFSM), Centro de Ciências Naturais e Exatas, Prédio 18, Cidade Universitária, Bairro Camobi, 97105-900, Santa Maria, RS, Brazil; Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua General Newton Estilac Leal, 932, Pestana, 06190-170, Osasco, SP, Brazil.
| |
Collapse
|
8
|
Di Noi A, Caliani I, D'Agostino A, Cai G, Romi M, Campani T, Ferrante F, Baracchi D, Casini S. Assessing the effects of a commercial fungicide and an herbicide, alone and in combination, on Apis mellifera: Insights from biomarkers and cognitive analysis. CHEMOSPHERE 2024; 359:142307. [PMID: 38734252 DOI: 10.1016/j.chemosphere.2024.142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Agrochemicals play a vital role in protecting crops and enhancing agricultural production by reducing threats from pests, pathogens and weeds. The toxicological status of honey bees can be influenced by a number of factors, including pesticides. While extensive research has focused on the lethal and sublethal effects of insecticides on individual bees and colonies, it is important to recognise that fungicides and herbicides can also affect bees' health. Unfortunately, in the field, honey bees are exposed to mixtures of compounds rather than single substances. This study aimed to evaluate the effects of a commercial fungicide and a commercial herbicide, both individually and in combination, on honey bees. Mortality assays, biomarkers and learning and memory tests were performed, and the results were integrated to assess the toxicological status of honey bees. Neurotoxicity (acetylcholinesterase and carboxylesterase activities), detoxification and metabolic processes (glutathione S-transferase and alkaline phosphatase activities), immune system function (lysozyme activity and haemocytes count) and genotoxicity biomarkers (Nuclear Abnormalities assay) were assessed. The fungicide Sakura® was found to activate detoxification enzymes and affect alkaline phosphatase activity. The herbicide Elegant 2FD and the combination of both pesticides showed neurotoxic effects and induced detoxification processes. Exposure to the herbicide/fungicide mixture impaired learning and memory in honey bees. This study represents a significant advance in understanding the toxicological effects of commonly used commercial pesticides in agriculture and contributes to the development of effective strategies to mitigate their adverse effects on non-target insects.
Collapse
Affiliation(s)
- Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy.
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco 7, 53100 Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Federico Ferrante
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 6, Viterbo, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| |
Collapse
|
9
|
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. Learn Mem 2024; 31:a053997. [PMID: 38862177 PMCID: PMC11199950 DOI: 10.1101/lm.053997.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
Collapse
Affiliation(s)
- Büşra Çoban
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bart Geurten
- Department of Zoology, Otago University, Dunedin 9016, New Zealand
| | - David Vasmer
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Yogesh Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Idan Alyagor
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | - Annekathrin Widmann
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Menzel R, Rybak J. Insights from the past: the work of Hans von Alten on the evolution of brain structure, ecological adaptation, and cognition in hymenopteran species. Learn Mem 2024; 31:a053922. [PMID: 38862163 PMCID: PMC11199940 DOI: 10.1101/lm.053922.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
In his treatise on arthropod brains, Hans von Alten (1910) focuses on a specific functional group of insects-the flying Hymenoptera-which exhibit a spectrum of lifestyles ranging from solitary to social. His work presents a distinctive comparative neuro-anatomical approach rooted in an eco-evolutionary and eco-behavioral background. We regard his publication as an exceptionally valuable source of information and seek to inspire the research community dedicated to the study of the insect brain to explore its insights further, even after more than 110 years. We have translated and annotated his work, expecting it to engage researchers not just with its remarkable drawings but also with its substantive content and exemplary research strategy. The present text is designed to complement von Alten's publication, situating it within the temporal context of nineteenth-century and early twentieth-century studies, and to draw connections to contemporary perspectives, especially concerning a central brain structure: the mushroom body.
Collapse
Affiliation(s)
- Randolf Menzel
- Department of Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
11
|
Young FJ, Alcalde Anton A, Melo-Flórez L, Couto A, Foley J, Monllor M, McMillan WO, Montgomery SH. Enhanced long-term memory and increased mushroom body plasticity in Heliconius butterflies. iScience 2024; 27:108949. [PMID: 38357666 PMCID: PMC10864207 DOI: 10.1016/j.isci.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Heliconius butterflies exhibit expanded mushroom bodies, a key brain region for learning and memory in insects, and a novel foraging strategy unique among Lepidoptera - traplining for pollen. We tested visual long-term memory across six Heliconius and outgroup Heliconiini species. Heliconius species exhibited greater fidelity to learned colors after eight days without reinforcement, with further evidence of recall at 13 days. We also measured the plastic response of the mushroom body calyces over this time period, finding substantial post-eclosion expansion and synaptic pruning in the calyx of Heliconius erato, but not in the outgroup Heliconiini Dryas iulia. In Heliconius erato, visual associative learning experience specifically was associated with a greater retention of synapses and recall accuracy was positively correlated with synapse number. These results suggest that increases in the size of specific brain regions and changes in their plastic response to experience may coevolve to support novel behaviors.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Amaia Alcalde Anton
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - Antoine Couto
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jessica Foley
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | | | - Stephen H. Montgomery
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Ustaoglu P, McQuarrie DWJ, Rochet A, Dix TC, Haussmann IU, Arnold R, Devaud JM, Soller M. Memory consolidation in honey bees is enhanced by down-regulation of Down syndrome cell adhesion molecule and changes its alternative splicing. Front Mol Neurosci 2024; 16:1322808. [PMID: 38264345 PMCID: PMC10803435 DOI: 10.3389/fnmol.2023.1322808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Down syndrome cell adhesion molecule (Dscam) gene encodes a cell adhesion molecule required for neuronal wiring. A remarkable feature of arthropod Dscam is massive alternative splicing generating thousands of different isoforms from three variable clusters of alternative exons. Dscam expression and diversity arising from alternative splicing have been studied during development, but whether they exert functions in adult brains has not been determined. Here, using honey bees, we find that Dscam expression is critically linked to memory retention as reducing expression by RNAi enhances memory after reward learning in adult worker honey bees. Moreover, alternative splicing of Dscam is altered in all three variable clusters after learning. Since identical Dscam isoforms engage in homophilic interactions, these results suggest a mechanism to alter inclusion of variable exons during memory consolidation to modify neuronal connections for memory retention.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - David W. J. McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Anthony Rochet
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
| | - Thomas C. Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Irmgard U. Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
- College of Medical and Dental Sciences, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Manfredini F, Wurm Y, Sumner S, Leadbeater E. Transcriptomic responses to location learning by honeybee dancers are partly mirrored in the brains of dance-followers. Proc Biol Sci 2023; 290:20232274. [PMID: 38113935 PMCID: PMC10730293 DOI: 10.1098/rspb.2023.2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.
Collapse
Affiliation(s)
- Fabio Manfredini
- Present address: School of Biological Sciences, University of Aberdeen, AB24 3UL Aberdeen, UK
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| | - Yannick Wurm
- School of Biological & Behavioural Sciences, Queen Mary University of London, E1 4NS London, UK
- Digital Environment Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Seirian Sumner
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| |
Collapse
|
14
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
15
|
Kraft N, Muenz TS, Reinhard S, Werner C, Sauer M, Groh C, Rössler W. Expansion microscopy in honeybee brains for high-resolution neuroanatomical analyses in social insects. Cell Tissue Res 2023; 393:489-506. [PMID: 37421435 PMCID: PMC10484815 DOI: 10.1007/s00441-023-03803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
The diffraction limit of light microscopy poses a problem that is frequently faced in structural analyses of social insect brains. With the introduction of expansion microscopy (ExM), a tool became available to overcome this limitation by isotropic physical expansion of preserved specimens. Our analyses focus on synaptic microcircuits (microglomeruli, MG) in the mushroom body (MB) of social insects, high-order brain centers for sensory integration, learning, and memory. MG undergo significant structural reorganizations with age, sensory experience, and during long-term memory formation. However, the changes in subcellular architecture involved in this plasticity have only partially been accessed yet. Using the western honeybee Apis mellifera as an experimental model, we established ExM for the first time in a social insect species and applied it to investigate plasticity in synaptic microcircuits within MG of the MB calyces. Using combinations of antibody staining and neuronal tracing, we demonstrate that this technique enables quantitative and qualitative analyses of structural neuronal plasticity at high resolution in a social insect brain.
Collapse
Affiliation(s)
- Nadine Kraft
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany.
| | - Thomas S Muenz
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| |
Collapse
|
16
|
Couto A, Young FJ, Atzeni D, Marty S, Melo-Flórez L, Hebberecht L, Monllor M, Neal C, Cicconardi F, McMillan WO, Montgomery SH. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat Commun 2023; 14:4024. [PMID: 37419890 PMCID: PMC10328955 DOI: 10.1038/s41467-023-39618-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
Changes in the abundance and diversity of neural cell types, and their connectivity, shape brain composition and provide the substrate for behavioral evolution. Although investment in sensory brain regions is understood to be largely driven by the relative ecological importance of particular sensory modalities, how selective pressures impact the elaboration of integrative brain centers has been more difficult to pinpoint. Here, we provide evidence of extensive, mosaic expansion of an integration brain center among closely related species, which is not explained by changes in sites of primary sensory input. By building new datasets of neural traits among a tribe of diverse Neotropical butterflies, the Heliconiini, we detected several major evolutionary expansions of the mushroom bodies, central brain structures pivotal for insect learning and memory. The genus Heliconius, which exhibits a unique dietary innovation, pollen-feeding, and derived foraging behaviors reliant on spatial memory, shows the most extreme enlargement. This expansion is primarily associated with increased visual processing areas and coincides with increased precision of visual processing, and enhanced long term memory. These results demonstrate that selection for behavioral innovation and enhanced cognitive ability occurred through expansion and localized specialization in integrative brain centers.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fletcher J Young
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Daniele Atzeni
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Simon Marty
- Department of Zoology, University of Cambridge, Cambridge, UK
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | - Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris Neal
- Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Smithsonian Tropical Research Institute, Gamboa, Panama.
| |
Collapse
|
17
|
Yu JX, Hui YM, Xue JA, Qu JB, Ling SQ, Wang W, Zeng XN, Liu JL. Formation characteristics of long-term memory in Bactrocera dorsalis. INSECT SCIENCE 2023; 30:829-843. [PMID: 36151856 DOI: 10.1111/1744-7917.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Studies on insects have contributed significantly to a better understanding of learning and memory, which is a necessary cognitive capability for all animals. Although the formation of memory has been studied in some model insects, more evidence is required to clarify the characteristics of memory formation, especially long-term memory (LTM), which is important for reliably storing information. Here, we explored this question by examining Bactrocera dorsalis, an agricultural pest with excellent learning abilities. Using the classical conditioning paradigm of the olfactory proboscis extension reflex (PER), we found that paired conditioning with multiple trials (>3) spaced with an intertrial interval (≥10 min) resulted in stable memory that lasted for at least 3 d. Furthermore, even a single conditioning trial was sufficient for the formation of a 2-d memory. With the injection of protein inhibitors, protein-synthesis-dependent memory was confirmed to start 4 h after training, and its dependence on translation and transcription differed. Moreover, the results revealed that the dependence of memory on protein translation exhibited a time-window effect (4-6 h). Our findings provide an integrated view of LTM in insects, suggesting common mechanisms in LTM formation that play a key role in the biological basis of memory.
Collapse
Affiliation(s)
- Jin-Xin Yu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yan-Min Hui
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jun-Ao Xue
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jia-Bao Qu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Si-Quan Ling
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection, and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Wei Wang
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Nian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jia-Li Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Kaila L, Antinoja A, Toivonen M, Jalli M, Loukola OJ. Oral exposure to thiacloprid-based pesticide (Calypso SC480) causes physical poisoning symptoms and impairs the cognitive abilities of bumble bees. BMC Ecol Evol 2023; 23:9. [PMID: 37020270 PMCID: PMC10077645 DOI: 10.1186/s12862-023-02111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Pesticides are identified as one of the major reasons for the global pollinator decline. However, the sublethal effects of pesticide residue levels found in pollen and nectar on pollinators have been studied little. The aim of our research was to study whether oral exposure to the thiacloprid levels found in pollen and nectar affect the learning and long-term memory of bumble bees. We tested the effects of two exposure levels of thiacloprid-based pesticide (Calypso SC480) on buff-tailed bumble bee (Bombus terrestris) in laboratory utilizing a learning performance and memory tasks designed to be difficult enough to reveal large variations across the individuals. RESULTS The lower exposure level of the thiacloprid-based pesticide impaired the bees' learning performance but not long-term memory compared to the untreated controls. The higher exposure level caused severe acute symptoms, due to which we were not able to test the learning and memory. CONCLUSIONS Our results show that oral exposure to a thiacloprid-based pesticide, calculated based on residue levels found in pollen and nectar, not only causes sublethal effects but also acute lethal effects on bumble bees. Our study underlines an urgent demand for better understanding of pesticide residues in the environment, and of the effects of those residue levels on pollinators. These findings fill the gap in the existing knowledge and help the scientific community and policymakers to enhance the sustainable use of pesticides.
Collapse
Affiliation(s)
- Lotta Kaila
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Antinoja
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biology Centre of the Czech Academy of Sciences, Inst of Entomology, and Univ. of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Marjaana Toivonen
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Marja Jalli
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biodiversity Unit, University of Oulu, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| |
Collapse
|
19
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Rössler W, Grob R, Fleischmann PN. The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01600-y. [DOI: 10.1007/s00359-022-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
AbstractEfficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Collapse
|
21
|
Lipophorin receptors regulate mushroom body development and complex behaviors in Drosophila. BMC Biol 2022; 20:198. [PMID: 36071487 PMCID: PMC9454125 DOI: 10.1186/s12915-022-01393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.
Collapse
|
22
|
Dvořáček J, Kodrík D. Drug effect and addiction research with insects - From Drosophila to collective reward in honeybees. Neurosci Biobehav Rev 2022; 140:104816. [PMID: 35940307 DOI: 10.1016/j.neubiorev.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| |
Collapse
|
23
|
Siviter H, Muth F. Exposure to the novel insecticide flupyradifurone impairs bumblebee feeding motivation, learning, and memory retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119575. [PMID: 35691445 DOI: 10.1016/j.envpol.2022.119575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Bees are vital pollinators of crops and wildflowers and as such, wild bee declines threaten food security and functioning ecosystems. One driver of bee declines is the use of systemic insecticides, such as commonly used neonicotinoids. However, rising pest resistance to neonicotinoids, and restrictions on their use in the EU, has increased the demand for replacement insecticides to control crop pests. Flupyradifurone is a novel systemic insecticide that is thought to be relatively 'bee safe' although it can be present in the nectar and pollen of bee-attractive crops. Bumblebees rely on learning to forage efficiently, and thus detriments to learning performance may have downstream consequences on their ability to forage. While neonicotinoids negatively influence bumblebee learning and memory, whether this is also the case for their replacements is unclear. Here, we exposed bumblebees (Bombus impatiens) to an acute, field-realistic dose of flupyradifurone before training them to learn either an olfactory or colour association. We found that flupyradifurone impaired bumblebees' learning and memory performance in both olfactory and visual modalities. Flupyradifurone-treated bees were also less motivated to feed. Given the similarity between the detriments to cognition found here and those previously reported for neonicotinoids, this implies that these insecticides may have similar sub-lethal effects on bees. Restrictions on neonicotinoid use are therefore unlikely to benefit bees if novel insecticides like flupyradifurone are used as an alternative, highlighting that current agrochemical risk assessments are not protecting bees from the unwanted consequences of pesticide use. Sub-lethal assessments on non-Apis bees should be made mandatory in agrochemical regulation to ensure that novel insecticides are indeed 'bee safe'.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA.
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
| |
Collapse
|
24
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Baudier KM, Bennett MM, Barrett M, Cossio FJ, Wu RD, O'Donnell S, Pavlic TP, Fewell JH. Soldier neural architecture is temporarily modality-specialized but poorly predicted by repertoire size in the stingless bee Tetragonisca angustula. J Comp Neurol 2021; 530:672-682. [PMID: 34773646 DOI: 10.1002/cne.25273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Individual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age sub-specialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than non-soldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding). As soldiers aged into the less visually demanding task of standing guarding this difference disappeared. Neural investment was otherwise similar across all colony members. Despite having larger task repertoires, soldiers had similar absolute brain size and smaller relative brain size compared to other workers, meaning that lifetime task repertoire size was a poor predictor of brain size. Both high behavioral specialization in stable environmental conditions and reassignment across task groups during a crisis occur in T. angustula. The differences in neurobiology we report here are consistent with these specialized but flexible defense strategies. This work broadens our understanding of how neurobiology mediates age and morphological task specialization in highly cooperative societies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlin M Baudier
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA.,School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Meghan M Bennett
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | - Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Frank J Cossio
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Robert D Wu
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Theodore P Pavlic
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA.,School of Complex Adaptive Systems, Arizona State University, Tempe, AZ, USA
| | - Jennifer H Fewell
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
26
|
Ustaoglu P, Gill JK, Doubovetzky N, Haussmann IU, Dix TC, Arnold R, Devaud JM, Soller M. Dynamically expressed single ELAV/Hu orthologue elavl2 of bees is required for learning and memory. Commun Biol 2021; 4:1234. [PMID: 34711922 PMCID: PMC8553928 DOI: 10.1038/s42003-021-02763-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in gene expression are a hallmark of learning and memory consolidation. Little is known about how alternative mRNA processing, particularly abundant in neuron-specific genes, contributes to these processes. Prototype RNA binding proteins of the neuronally expressed ELAV/Hu family are candidates for roles in learning and memory, but their capacity to cross-regulate and take over each other's functions complicate substantiation of such links. Honey bees Apis mellifera have only one elav/Hu family gene elavl2, that has functionally diversified by increasing alternative splicing including an evolutionary conserved microexon. RNAi knockdown demonstrates that ELAVL2 is required for learning and memory in bees. ELAVL2 is dynamically expressed with altered alternative splicing and subcellular localization in mushroom bodies, but not in other brain regions. Expression and alternative splicing of elavl2 change during memory consolidation illustrating an alternative mRNA processing program as part of a local gene expression response underlying memory consolidation.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jatinder Kaur Gill
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicolas Doubovetzky
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
27
|
Finke V, Baracchi D, Giurfa M, Scheiner R, Avarguès-Weber A. Evidence of cognitive specialization in an insect: proficiency is maintained across elemental and higher-order visual learning but not between sensory modalities in honey bees. J Exp Biol 2021; 224:273769. [PMID: 34664669 DOI: 10.1242/jeb.242470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022]
Abstract
Individuals differing in their cognitive abilities and foraging strategies may confer a valuable benefit to their social groups as variability may help responding flexibly in scenarios with different resource availability. Individual learning proficiency may either be absolute or vary with the complexity or the nature of the problem considered. Determining if learning abilities correlate between tasks of different complexity or between sensory modalities has a high interest for research on brain modularity and task-dependent specialisation of neural circuits. The honeybee Apis mellifera constitutes an attractive model to address this question due to its capacity to successfully learn a large range of tasks in various sensory domains. Here we studied whether the performance of individual bees in a simple visual discrimination task (a discrimination between two visual shapes) is stable over time and correlates with their capacity to solve either a higher-order visual task (a conceptual discrimination based on spatial relations between objects) or an elemental olfactory task (a discrimination between two odorants). We found that individual learning proficiency within a given task was maintained over time and that some individuals performed consistently better than others within the visual modality, thus showing consistent aptitude across visual tasks of different complexity. By contrast, performance in the elemental visual-learning task did not predict performance in the equivalent elemental olfactory task. Overall, our results suggest the existence of cognitive specialisation within the hive, which may contribute to ecological social success.
Collapse
Affiliation(s)
- Valerie Finke
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Biozentrum, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Baracchi
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.,Institut Universitaire de France, Paris, France
| | - Ricarda Scheiner
- Biozentrum, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
28
|
Gold AR, Glanzman DL. The central importance of nuclear mechanisms in the storage of memory. Biochem Biophys Res Commun 2021; 564:103-113. [PMID: 34020774 DOI: 10.1016/j.bbrc.2021.04.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
The neurobiological nature of the memory trace (engram) remains controversial. The most widely accepted hypothesis at present is that long-term memory is stored as stable, learning-induced changes in synaptic connections. This hypothesis, the synaptic plasticity hypothesis of memory, is supported by extensive experimental data gathered from over 50 years of research. Nonetheless, there are important mnemonic phenomena that the synaptic plasticity hypothesis cannot, or cannot readily, account for. Furthermore, recent work indicates that epigenetic and genomic mechanisms play heretofore underappreciated roles in memory. Here, we critically assess the evidence that supports the synaptic plasticity hypothesis and discuss alternative non-synaptic, nuclear mechanisms of memory storage, including DNA methylation and retrotransposition. We argue that long-term encoding of memory is mediated by nuclear processes; synaptic plasticity, by contrast, represents a means of relatively temporary memory storage. In addition, we propose that memories are evaluated for their mnemonic significance during an initial period of synaptic storage; if assessed as sufficiently important, the memories then undergo nuclear encoding.
Collapse
Affiliation(s)
- Adam R Gold
- Behavioral Neuroscience Program, Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David L Glanzman
- Department of Integrative Biology & Physiology, UCLA College, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Hurd PJ, Grübel K, Wojciechowski M, Maleszka R, Rössler W. Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining. Sci Rep 2021; 11:6852. [PMID: 33767244 PMCID: PMC7994413 DOI: 10.1038/s41598-021-86078-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.
Collapse
Affiliation(s)
- Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marek Wojciechowski
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
30
|
Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Rep 2021; 34:108871. [PMID: 33730583 DOI: 10.1016/j.celrep.2021.108871] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.
Collapse
Affiliation(s)
| | - Luigi Prisco
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Philipp Ranft
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - J Scott Lauritzen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - André Fiala
- Molecular Neurobiology of Behaviour, University of Göttingen, 37077 Göttingen, Germany
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
31
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
32
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
33
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
34
|
Eriksson M, Janz N, Nylin S, Carlsson MA. Structural plasticity of olfactory neuropils in relation to insect diapause. Ecol Evol 2020; 10:14423-14434. [PMID: 33391725 PMCID: PMC7771155 DOI: 10.1002/ece3.7046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season.We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life-period of adult Polygonia c-album butterflies.Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period.The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus-poor conditions, we find it likely that investments into these brain regions rely on experience-expectant processes before diapause and experience-dependent processes after diapause conditions are broken.As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade-off between dormancy survival and reproductive fitness.
Collapse
Affiliation(s)
| | - Niklas Janz
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
35
|
Aponte-Santiago NA, Ormerod KG, Akbergenova Y, Littleton JT. Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. J Neurosci 2020; 40:6270-6288. [PMID: 32631939 PMCID: PMC7424871 DOI: 10.1523/jneurosci.0925-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Structural and functional plasticity induced by neuronal competition is a common feature of developing nervous systems. However, the rules governing how postsynaptic cells differentiate between presynaptic inputs are unclear. In this study, we characterized synaptic interactions following manipulations of tonic Ib or phasic Is glutamatergic motoneurons that coinnervate postsynaptic muscles of male or female Drosophila melanogaster larvae. After identifying drivers for each neuronal subtype, we performed ablation or genetic manipulations to alter neuronal activity and examined the effects on synaptic innervation and function at neuromuscular junctions. Ablation of either Ib or Is resulted in decreased muscle response, with some functional compensation occurring in the Ib input when Is was missing. In contrast, the Is terminal failed to show functional or structural changes following loss of the coinnervating Ib input. Decreasing the activity of the Ib or Is neuron with tetanus toxin light chain resulted in structural changes in muscle innervation. Decreased Ib activity resulted in reduced active zone (AZ) number and decreased postsynaptic subsynaptic reticulum volume, with the emergence of filopodial-like protrusions from synaptic boutons of the Ib input. Decreased Is activity did not induce structural changes at its own synapses, but the coinnervating Ib motoneuron increased the number of synaptic boutons and AZs it formed. These findings indicate that tonic Ib and phasic Is motoneurons respond independently to changes in activity, with either functional or structural alterations in the Ib neuron occurring following ablation or reduced activity of the coinnervating Is input, respectively.SIGNIFICANCE STATEMENT Both invertebrate and vertebrate nervous systems display synaptic plasticity in response to behavioral experiences, indicating that underlying mechanisms emerged early in evolution. How specific neuronal classes innervating the same postsynaptic target display distinct types of plasticity is unclear. Here, we examined whether Drosophila tonic Ib and phasic Is motoneurons display competitive or cooperative interactions during innervation of the same muscle, or compensatory changes when the output of one motoneuron is altered. We established a system to differentially manipulate the motoneurons and examined the effects of cell type-specific changes to one of the inputs. Our findings indicate Ib and Is motoneurons respond differently to activity mismatch or loss of the coinnervating input, with the Ib subclass responding robustly compared with Is motoneurons.
Collapse
Affiliation(s)
- Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
36
|
Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol 2020; 529:501-523. [PMID: 32484921 DOI: 10.1002/cne.24960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The hypothesis of a common origin for high-order memory centers in bilateral animals presents the question of how different brain structures, such as the vertebrate hippocampus and the arthropod mushroom bodies, are both structurally and functionally comparable. Obtaining evidence to support the hypothesis that crustaceans possess structures equivalent to the mushroom bodies that play a role in associative memories has proved challenging. Structural evidence supports that the hemiellipsoid bodies of hermit crabs, crayfish and lobsters, spiny lobsters, and shrimps are homologous to insect mushroom bodies. Although a preliminary description and functional evidence supporting such homology in true crabs (Brachyura) has recently been shown, other authors consider the identification of a possible mushroom body homolog in Brachyura as problematic. Here we present morphological and immunohistochemical data in Neohelice granulata supporting that crabs possess well-developed hemiellipsoid bodies that are resolved as mushroom bodies-like structures. Neohelice exhibits a peduncle-like tract, from which processes project into proximal and distal domains with different neuronal specializations. The proximal domains exhibit spines and en passant-like processes and are proposed here as regions mainly receiving inputs. The distal domains exhibit a "trauben"-like compartmentalized structure with bulky terminal specializations and are proposed here as output regions. In addition, we found microglomeruli-like complexes, adult neurogenesis, aminergic innervation, and elevated expression of proteins necessary for memory processes. Finally, in vivo calcium imaging suggests that, as in insect mushroom bodies, the output regions exhibit stimulus-specific activity. Our results support the shared organization of memory centers across crustaceans and insects.
Collapse
Affiliation(s)
- Francisco Javier Maza
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Julieta Sztarker
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Cozzarin
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Maria Grazia Lepore
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Delorenzi
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
37
|
Smith DB, Arce AN, Ramos Rodrigues A, Bischoff PH, Burris D, Ahmed F, Gill RJ. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc Biol Sci 2020; 287:20192442. [PMID: 32126960 DOI: 10.1098/rspb.2019.2442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction.
Collapse
Affiliation(s)
- Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Philipp H Bischoff
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daisy Burris
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Farah Ahmed
- Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
38
|
Yilmaz A, Grübel K, Spaethe J, Rössler W. Distributed plasticity in ant visual pathways following colour learning. Proc Biol Sci 2020; 286:20182813. [PMID: 30963920 DOI: 10.1098/rspb.2018.2813] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colour processing at early stages of visual pathways is a topic of intensive study both in vertebrate and invertebrate species. However, it is still unclear how colour learning and memory formation affects an insect brain in the peripheral processing stages and high-order integration centres, and whether associative colour experiences are reflected in plasticity of underlying neuronal circuits. To address this issue, we used Camponotus blandus ants as their proven colour learning and memory capabilities, precisely controllable age and experience, and already known central visual pathways offer unique access to analyse plasticity in neuronal circuits for colour vision in a miniature brain. The potential involvement of distinct neuropils-optic lobes (OLs), mushroom body (MB) input (collar) and output (vertical lobe), anterior optic tubercle (AOTU) and central complex (CX)-in associative colour experiences was assessed by quantification of volumetric and synaptic changes (MB collar) directly after colour conditioning and, 3 days later, after the establishment of long-term memory (LTM). To account for potential effects of non-associative light exposure, we compared neuronal changes in the brain of colour-naive foragers with those of foragers that had been exposed to light in a non-associative way. The results clearly show that the OLs, AOTU, and CX respond with plastic changes after colour learning and LTM formation. This suggests a complex neuronal network for colour learning and memory formation involving multiple brain levels. Such a colour-processing network probably represents an efficient design promoting fast and accurate behavioural decisions during orientation and navigation.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Kornelia Grübel
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Johannes Spaethe
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Wolfgang Rössler
- Department of Behavioural Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| |
Collapse
|
39
|
Groh C, Rössler W. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee. INSECTS 2020; 11:insects11010043. [PMID: 31936165 PMCID: PMC7023465 DOI: 10.3390/insects11010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/18/2023]
Abstract
Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.
Collapse
|
40
|
Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH. Experience-dependent tuning of early olfactory processing in the adult honey bee, Apis mellifera. ACTA ACUST UNITED AC 2020; 223:jeb.206748. [PMID: 31767739 DOI: 10.1242/jeb.206748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Experience-dependent plasticity in the central nervous system allows an animal to adapt its responses to stimuli over different time scales. In this study, we explored the impacts of adult foraging experience on early olfactory processing by comparing naturally foraging honey bees, Apis mellifera, with those that experienced a chronic reduction in adult foraging experience. We placed age-matched sets of sister honey bees into two different olfactory conditions, in which animals were allowed to forage ad libitum In one condition, we restricted foraging experience by placing honey bees in a tent in which both sucrose and pollen resources were associated with a single odor. In the second condition, honey bees were allowed to forage freely and therefore encounter a diversity of naturally occurring resource-associated olfactory experiences. We found that honey bees with restricted foraging experiences had altered antennal lobe development. We measured the glomerular responses to odors using calcium imaging in the antennal lobe, and found that natural olfactory experience also enhanced the inter-individual variation in glomerular response profiles to odors. Additionally, we found that honey bees with adult restricted foraging experience did not distinguish relevant components of an odor mixture in a behavioral assay as did their freely foraging siblings. This study highlights the impacts of individual experience on early olfactory processing at multiple levels.
Collapse
Affiliation(s)
| | - Rachael Halby
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Irina Sinakevitch
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
41
|
Cabirol A, Haase A. Automated quantification of synaptic boutons reveals their 3D distribution in the honey bee mushroom body. Sci Rep 2019; 9:19322. [PMID: 31852957 PMCID: PMC6920473 DOI: 10.1038/s41598-019-55974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023] Open
Abstract
Synaptic boutons are highly plastic structures undergoing experience-dependent changes in their number, volume, and shape. Their plasticity has been intensively studied in the insect mushroom bodies by manually counting the number of boutons in small regions of interest and extrapolating this number to the volume of the mushroom body neuropil. Here we extend this analysis to the synaptic bouton distribution within a larger subregion of the mushroom body olfactory neuropil of honey bees (Apis mellifera). This required the development of an automated method combining two-photon imaging with advanced image post-processing and multiple threshold segmentation. The method was first validated in subregions of the mushroom body olfactory and visual neuropils. Further analyses in the olfactory neuropil suggested that previous studies overestimated the number of synaptic boutons. As a reason for that, we identified boundaries effects in the small volume samples. The application of the automated analysis to larger volumes of the mushroom body olfactory neuropil revealed a corrected average density of synaptic boutons and, for the first time, their 3D spatial distribution. This distribution exhibited a considerable heterogeneity. This additional information on the synaptic bouton distribution provides the basis for future studies on brain development, symmetry, and plasticity.
Collapse
Affiliation(s)
- Amélie Cabirol
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy. .,Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
42
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
43
|
Gadenne C, Groh C, Grübel K, Joschinski J, Krauss J, Krieger J, Rössler W, Anton S. Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 52:100883. [PMID: 31568972 DOI: 10.1016/j.asd.2019.100883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.
Collapse
Affiliation(s)
- Christophe Gadenne
- UMR IGEPP INRA/Agrocampus Ouest/Université Rennes 1, Agrocampus Ouest, 2 rue le Nôtre, 49045 Angers, France
| | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Joschinski
- Animal Ecology and Tropical Biology (Zoology III), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Krauss
- Animal Ecology and Tropical Biology (Zoology III), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jakob Krieger
- Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, 17489 Greifswald, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sylvia Anton
- UMR IGEPP INRA/Agrocampus Ouest/Université Rennes 1, Agrocampus Ouest, 2 rue le Nôtre, 49045 Angers, France.
| |
Collapse
|
44
|
Eriksson M, Nylin S, Carlsson MA. Insect brain plasticity: effects of olfactory input on neuropil size. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190875. [PMID: 31598254 PMCID: PMC6731737 DOI: 10.1098/rsos.190875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect brains are known to express a high degree of experience-dependent structural plasticity. One brain structure in particular, the mushroom body (MB), has been attended to in numerous studies as it is implicated in complex cognitive processes such as olfactory learning and memory. It is, however, poorly understood to what extent sensory input per se affects the plasticity of the mushroom bodies. By performing unilateral blocking of olfactory input on immobilized butterflies, we were able to measure the effect of passive sensory input on the volumes of antennal lobes (ALs) and MB calyces. We showed that the primary and secondary olfactory neuropils respond in different ways to olfactory input. ALs show absolute experience-dependency and increase in volume only if receiving direct olfactory input from ipsilateral antennae, while MB calyx volumes were unaffected by the treatment and instead show absolute age-dependency in this regard. We therefore propose that cognitive processes related to behavioural expressions are needed in order for the calyx to show experience-dependent volumetric expansions. Our results indicate that such experience-dependent volumetric expansions of calyces observed in other studies may have been caused by cognitive processes rather than by sensory input, bringing some causative clarity to a complex neural phenomenon.
Collapse
|
45
|
Jeanson R. Within-individual behavioural variability and division of labour in social insects. ACTA ACUST UNITED AC 2019; 222:222/10/jeb190868. [PMID: 31127006 DOI: 10.1242/jeb.190868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Division of labour, whereby individuals divide the workload in a group, is a recurrent property of social living. The current conceptual framework for division of labour in social insects is provided by the response-threshold model. This model posits that the differences between individuals (i.e. between-individual variability) in responsiveness to task-associated stimuli is a key feature for task specialisation. The consistency of individual behaviours (i.e. within-individual variability) in task performance represents an additional but little-considered component driving robust patterns of division of labour. On the one hand, the presence of workers with a high level of within-individual variability presumably allows colonies to rapidly adapt to external fluctuations. On the other hand, a reduced degree of within-individual variability promotes a stricter specialisation in task performance, thereby limiting the costs of task switching. The ideal balance between flexibility and canalisation probably varies depending on the developmental stage of the colony to satisfy its changing needs. Here, I introduce the main sources of within-individual variability in behaviours in social insects and I review neural correlates accompanying the changes in behavioural flexibility. I propose the hypothesis that the positive scaling between group size and the intensity of task specialisation, a relationship consistently reported both within and between taxa, may rely on reduced within-individual variability via self-organised processes linked to the quality of brood care. Overall, I emphasise the need for a more comprehensive characterisation of the response dynamics of individuals to better understand the mechanisms shaping division of labour in social insects.
Collapse
Affiliation(s)
- Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 9, France
| |
Collapse
|
46
|
Kraft N, Spaethe J, Rössler W, Groh C. Neuronal Plasticity in the Mushroom-Body Calyx of Bumble Bee Workers During Early Adult Development. Dev Neurobiol 2019; 79:287-302. [PMID: 30963700 DOI: 10.1002/dneu.22678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Division of labor among workers is a key feature of social insects and frequently characterized by an age-related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size-related rather than an age-related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole-mount brains of age-marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three-dimensional image analyses. Dark-reared bumble bee workers showed an early age-related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN-bouton density during the first three days of adult life. A 12:12 h light-dark cycle did not affect structural organization of the MB calyces compared to dark-reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.
Collapse
Affiliation(s)
- Nadine Kraft
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biozentrum, Würzburg, 97074, Germany
| |
Collapse
|
47
|
Gordon DG, Zelaya A, Arganda-Carreras I, Arganda S, Traniello JFA. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLoS One 2019; 14:e0213618. [PMID: 30917163 PMCID: PMC6436684 DOI: 10.1371/journal.pone.0213618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Strongly polyphenic social insects provide excellent models to examine the neurobiological basis of division of labor. Turtle ants, Cephalotes varians, have distinct minor worker, soldier, and reproductive (gyne/queen) morphologies associated with their behavioral profiles: small-bodied task-generalist minors lack the phragmotic shield-shaped heads of soldiers, which are specialized to block and guard the nest entrance. Gynes found new colonies and during early stages of colony growth overlap behaviorally with soldiers. Here we describe patterns of brain structure and synaptic organization associated with division of labor in C. varians minor workers, soldiers, and gynes. We quantified brain volumes, determined scaling relationships among brain regions, and quantified the density and size of microglomeruli, synaptic complexes in the mushroom body calyxes important to higher-order processing abilities that may underpin behavioral performance. We found that brain volume was significantly larger in gynes; minor workers and soldiers had similar brain sizes. Consistent with their larger behavioral repertoire, minors had disproportionately larger mushroom bodies than soldiers and gynes. Soldiers and gynes had larger optic lobes, which may be important for flight and navigation in gynes, but serve different functions in soldiers. Microglomeruli were larger and less dense in minor workers; soldiers and gynes did not differ. Correspondence in brain structure despite differences in soldiers and gyne behavior may reflect developmental integration, suggesting that neurobiological metrics not only advance our understanding of brain evolution in social insects, but may also help resolve questions of the origin of novel castes.
Collapse
Affiliation(s)
- Darcy Greer Gordon
- Department of Biology, Boston University, Boston, MA, United States of America
- * E-mail:
| | - Alejandra Zelaya
- Department of Biology, Boston University, Boston, MA, United States of America
| | - Ignacio Arganda-Carreras
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Sara Arganda
- Department of Biology, Boston University, Boston, MA, United States of America
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States of America
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States of America
| |
Collapse
|
48
|
Tavares DA, Roat TC, Silva-Zacarin ECM, Nocelli RCF, Malaspina O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:523-528. [PMID: 30476814 DOI: 10.1016/j.ecoenv.2018.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Thiamethoxam (TMX) is a neurotoxic insecticide widely used for insect pest control. TMX and other neonicotinoids are reported to be potential causes of honey bee decline. Due to its systematic action, TMX may be recovered in pollen, bee bread, nectar, and honey, which make bees likely to be exposed to contaminated diet. In this study, we used immunolabeling to demonstrate that sublethal concentrations of TMX decrease the protein levels of synapsin in the mushroom bodies (MBs) and the antennal lobes (ALs) of pupae and newly emerged worker bees that were exposed through the food to TMX during the larval phase. A decrease in the synapsin level was observed in the MBs of pupae previously exposed to 0.001 and 1.44 ng/µL and in newly emerged bees previously exposed to 1.44 ng/µL and no changes were observed in the optical lobes (OLs). In the ALs, the decrease was observed in pupae and newly emerged bees exposed to 1.44 ng/µL. Because the MBs and ALs are brain structures involved in stimuli reception, learning, and memory consolidation and because synapsin is important for the regulation of neurotransmitter release, we hypothesize that exposure to sublethal concentrations of TMX during the larval stage may cause neurophysiological disorders in honey bees.
Collapse
Affiliation(s)
- Daiana Antonia Tavares
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil.
| | - Thaisa Cristina Roat
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Departamento de Biologia, Laboratório de Ecotoxicologia e Biomarcadores em Animais (LEBA), Campus Sorocaba, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos (UFSCar), Departamento de Ciências da Natureza Matemática e Educação, Centro de Ciências Agrárias Campus Araras, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP), Centro de Estudos de Insetos Sociais (CEIS), Instituto de Biociências, Campus Rio Claro, SP, Brazil
| |
Collapse
|
49
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
50
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|