1
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Tew DJ, Hebert JM, Schmier BJ. Discovery and properties of a monoclonal antibody targeting 8-oxoA, an oxidized adenine lesion in DNA and RNA. Redox Biol 2023; 62:102658. [PMID: 36989571 PMCID: PMC10074937 DOI: 10.1016/j.redox.2023.102658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
8-oxoA, a major oxidation product of adenosine, is a mispairing, mutagenic lesion that arises in DNA and RNA when •OH radicals or one-electron oxidants attack the C8 adenine atom or polymerases misincorporate 8-oxo(d)ATP. The danger of 8-oxoA is underscored by the existence of dedicated cellular repair machinery that explicitly excise it from DNA, the attenuation of translation induced by 8-oxoA-mRNA or damaged ribosomes, and its potency as a TLR7 agonist. Here we present the discovery, purification, and biochemical characterization of a new mouse IgGk1 monoclonal antibody (6E4) that specifically targets 8-oxoA. Utilizing an AchE-based competitive ELISA assay, we demonstrate the selectivity of 6E4 for 8-oxoA over a plethora of canonical and chemically modified nucleosides including 8-oxoG, A, m6A, 2-oxoA, and 5-hoU. We further show the ability of 6E4 to exclusively recognize 8-oxoA in nucleoside triphosphates (8-oxoATP) and DNA/RNA oligonucleotides containing a single 8-oxoA. 6E4 also binds 8-oxoA in duplex DNA/RNA antigens where the lesion is either paired correctly or base mismatched. Our findings define the 8-oxoAde nucleobase as the critical epitope and indicate mAb 6E4 is ideally suited for a broad range of immunological applications in nucleic acid detection and quality control.
Collapse
|
3
|
Wang YZ, Zhao YQ, Wang YM, Zhao WH, Wang P, Chi CF, Wang B. Antioxidant peptides from Antarctic Krill (Euphausia superba) hydrolysate: Preparation, identification and cytoprotection on H2O2-induced oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104701] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
4
|
Persike DS, Al-Kass SY. Challenges of post-traumatic stress disorder (PTSD) in Iraq: biochemical network and methodologies. A brief review. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2020-0037/hmbci-2020-0037.xml. [PMID: 33155990 DOI: 10.1515/hmbci-2020-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 11/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a multifaceted syndrome due to its complex pathophysiology. Signals of illness include alterations in genes, proteins, cells, tissues, and organism-level physiological modifications. Specificity of sensitivity to PTSD suggests that response to trauma depend on gender and type of adverse event being experienced. Individuals diagnosed with PTSD represent a heterogeneous group, as evidenced by differences in symptoms, course, and response to treatment. It is clear that the biochemical mechanisms involved in PTSD need to be elucidated to identify specific biomarkers. A brief review of the recent literature in Pubmed was made to explore the major biochemical mechanisms involved in PTSD and the methodologies applied in the assessment of the disease. PTSD shows pre-exposure vulnerability factors in addition to trauma-induced alterations. The disease was found to be associated with dysfunctions of the hypothalamic-pituitary-adrenal axis (HPA) and hypothalamus-pituitary-thyroid axis. Sympathetic nervous system (SNS) activity play a role in PTSD by releasing norepinephrine and epinephrine. Cortisol release from the adrenal cortex amplifies the SNS response. Cortisol levels in PTSD patients, especially women, are later reduced by a negative feedback mechanism which contributes to neuroendocrine alterations and promotes structural changes in the brain leading to PTSD. Gender differences in normal HPA responsiveness may be due to an increased vulnerability in women to PTSD. Serotonin and dopamine levels were found to be abnormal in the presence of PTSD. Mechanisms such as the induction of neuroinflammation and alterations of mitochondrial energy processing were also associated with PTSD.
Collapse
Affiliation(s)
- Daniele Suzete Persike
- Department of Medicinal Chemistry, College of Pharmacy, University of Dohuk, Kurdistan Region, Iraq
| | - Suad Yousif Al-Kass
- Department of Medicinal Chemistry, College of Pharmacy, University of Dohuk, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Qin Y, Zhang Q, Liu Y. Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Res Bull 2019; 156:15-24. [PMID: 31843561 DOI: 10.1016/j.brainresbull.2019.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia-reperfusion (IR) has attracted wide attention as a serious clinical problem. So far, the field has accumulated a large amount of scientific research literature. To clarify the temporal and spatial distribution characteristics of research resources, knowledge bases and research focuses, a visual analysis was performed on 5814 articles cited in the WoS databases from 2004 to 2019. This analysis was based on bibliometrics and mapping knowledge domain (MKD) analysis with VOSviewer, and CiteSpace 5.4.R4. The results can be elaborated from four aspects. First, the volume of publications in this area is on the rise. Second, the United States and China are the active regions. The USA is the central region of cerebral ischemia-reperfusion research. Third, the knowledge bases of IR have focused on five major areas of "Suitable small-animal models", "A framework with further study", "Molecular signaling targets by oxidative stress", "Finding new potential targets for therapy" and "Protective effect of multiple transient ischemia". Fourth, the research focuses consist of three representative areas: "Oxidative stress closelyd with cerebral ischemia-reperfusion", "Neuronal apoptosis and neuronal protection", and "Neuroprotective effect of the blood-brain barrier".
Collapse
Affiliation(s)
- Yi Qin
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qing Zhang
- No.4 Hospital Beijing University of Chinese Medicine, Zaozhuang, Shandong 277000
| | - Yaru Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
7
|
Tsai YR, Tweedie D, Navas-Enamorado I, Scerba MT, Chang CF, Lai JH, Wu JCC, Chen YH, Kang SJ, Hoffer BJ, de Cabo R, Greig NH, Chiang YH, Chen KY. Pomalidomide Reduces Ischemic Brain Injury in Rodents. Cell Transplant 2019; 28:439-450. [PMID: 31094216 PMCID: PMC6628558 DOI: 10.1177/0963689719850078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of death and severe disability worldwide. After cerebral
ischemia, inflammation plays a central role in the development of permanent neurological
damage. Reactive oxygen species (ROS) are involved in the mechanism of post-ischemic
inflammation. The activation of several inflammatory enzymes produces ROS, which
subsequently suppress mitochondrial activity, leading to further tissue damage.
Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent.
Prior cellular studies demonstrate that POM can mitigate oxidative stress and lower levels
of pro-inflammatory cytokines, particularly TNF-α, which plays a prominent role in
ischemic stroke-induced brain damage and functional deficits. To evaluate the potential
value of POM in cerebral ischemia, POM was initially administered to transgenic mice
chronically over-expressing TNF-α surfactant protein (SP)-C promoter (SP-C/TNF-α mice) to
assess whether systemically administered drug could lower systemic TNF-α level. POM
significantly lowered serum levels of TNF-α and IL-5. Pharmacokinetic studies were then
undertaken in mice to evaluate brain POM levels following systemic drug administration.
POM possessed a brain/plasma concentration ratio of 0.71. Finally, rats were subjected to
transient middle cerebral artery occlusion (MCAo) for 60 min, and subsequently treated
with POM 30 min thereafter to evaluate action on cerebral ischemia. POM reduced the
cerebral infarct volume in MCAo-challenged rats and improved motor activity, as evaluated
by the elevated body swing test. POM’s neuroprotective actions on ischemic injury
represent a potential therapeutic approach for ischemic brain damage and related
disorders, and warrant further evaluation.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - David Tweedie
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ignacio Navas-Enamorado
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Cheng-Fu Chang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,4 Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Jing-Huei Lai
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - John Chung-Che Wu
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Yen-Hua Chen
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - Shuo-Jhen Kang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Barry J Hoffer
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,7 Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Rafael de Cabo
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yung-Hsiao Chiang
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Kai-Yun Chen
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| |
Collapse
|
8
|
Zhao XY, Lu MH, Yuan DJ, Xu DE, Yao PP, Ji WL, Chen H, Liu WL, Yan CX, Xia YY, Li S, Tao J, Ma QH. Mitochondrial Dysfunction in Neural Injury. Front Neurosci 2019; 13:30. [PMID: 30778282 PMCID: PMC6369908 DOI: 10.3389/fnins.2019.00030] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the double membrane organelles providing most of the energy for cells. In addition, mitochondria also play essential roles in various cellular biological processes such as calcium signaling, apoptosis, ROS generation, cell growth, and cell cycle. Mitochondrial dysfunction is observed in various neurological disorders which harbor acute and chronic neural injury such as neurodegenerative diseases and ischemia, hypoxia-induced brain injury. In this review, we describe how mitochondrial dysfunction contributes to the pathogenesis of neurological disorders which manifest chronic or acute neural injury.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Hong Lu
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Juan Yuan
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - De-En Xu
- Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Pei-Pei Yao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Li Ji
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chen
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Long Liu
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen-Xiao Yan
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Yuan Xia
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jin Tao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
10
|
Tsai YR, Chang CF, Lai JH, Wu JCC, Chen YH, Kang SJ, Hoffer BJ, Tweedie D, Luo W, Greig NH, Chiang YH, Chen KY. Pomalidomide Ameliorates H₂O₂-Induced Oxidative Stress Injury and Cell Death in Rat Primary Cortical Neuronal Cultures by Inducing Anti-Oxidative and Anti-Apoptosis Effects. Int J Mol Sci 2018; 19:ijms19103252. [PMID: 30347766 PMCID: PMC6213994 DOI: 10.3390/ijms19103252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Due to its high oxygen demand and abundance of peroxidation-susceptible lipid cells, the brain is particularly vulnerable to oxidative stress. Induced by a redox state imbalance involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system, oxidative stress plays a central role in a common pathophysiology that underpins neuronal cell death in acute neurological disorders epitomized by stroke and chronic ones such as Alzheimer’s disease. After cerebral ischemia, for example, inflammation bears a key responsibility in the development of permanent neurological damage. ROS are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Using H2O2-treated rat primary cortical neuronal cultures, we found POM displayed neuroprotective effects against oxidative stress and cell death that associated with changes in the nuclear factor erythroid derived 2/superoxide dismutase 2/catalase signaling pathway. POM also suppressed nuclear factor kappa-light-chain-enhancer (NF-κB) levels and significantly mitigated cortical neuronal apoptosis by regulating Bax, Cytochrome c and Poly (ADP-ribose) polymerase. In summary, POM exerted neuroprotective effects via its anti-oxidative and anti-inflammatory actions against H2O2-induced injury. POM consequently represents a potential therapeutic agent against brain damage and related disorders and warrants further evaluation.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
| | - Cheng-Fu Chang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei 11556, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jing-Huei Lai
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - John Chung-Che Wu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Yen-Hua Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shuo-Jhen Kang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Barry J Hoffer
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA.
| | - Yung-Hsiao Chiang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
11
|
Wang Q, Xu L, Chen P, Xu Z, Qiu J, Ge J, Yu K, Zhuang J. Brca1 Is Upregulated by 5-Aza-CdR and Promotes DNA Repair and Cell Survival, and Inhibits Neurite Outgrowth in Rat Retinal Neurons. Int J Mol Sci 2018; 19:ijms19041214. [PMID: 29673145 PMCID: PMC5979323 DOI: 10.3390/ijms19041214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Previous studies have reported that Brca1 acts as a “hinge” in the development of the central nervous system (CNS). However, the precise role of Brca1 in rat retinal neurons remains unclear. Here, we found that Brca1 is developmentally downregulated and silenced in adult retina. Brca1 was upregulated in rat primary retinal neurons by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment. Moreover, the upregulation of Brca1 by both 5-Aza-CdR and transgenic Brca1 promoted genomic stability and improved cell viability following exposure to ionizing radiation (IR). Furthermore, transgenic Brca1 significantly inhibited neurite outgrowth of retinal neurons, which implicates that Brca1 silencing promotes cell differentiation and determines neuronal morphology. Taken together, our results reveal a biological function of Brca1 in retinal development.
Collapse
Affiliation(s)
- Qiyun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lijun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Zhuojun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
12
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
13
|
Erol-Demirbilek M, Kilic N, Komurcu HF. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background: Thioredoxin reductase (TrxR), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.
Methods: Sprague-Dawley rats divided into three groups. Rats in control group were not subjected to any of treatments and their brains were removed under anesthesia. Middle cerebral arters were exposed but not occluded for the sham-operated rats. Animals were subjected to permanent middle cerebral arter occlusion (MCAO) in MCAO-operated group. The rats were decapitated at 16 hours (h), 48 h and 96 h after sham operation and focal cerebral ischemia. TrxR activities, EGF and TNF-α levels were measured in ischemic and non-ischemic hemispheres for all groups.
Results: In group MCAO, TrxR activities were significantly low at 48 h in ischemic hemisphere in comparison to control. After the 48 h, a remarkable increase was observed at 96 h. EGF and TNF-α levels were substantially high at 96 h in group MCAO of ischemic brain.
Conclusion: TrxR activity was reduced by oxidative stress which was formed by ischemia. EGF levels increased to exhibit neurotrophic and neuroprotective effects. After ischemia, TNF-α levels increased as a response to the tissue damage. Further studies with a higher number of experimental subjects and shorter or longer periods such as from first 30 minutes up to 3 months may be more informative to show the time-dependent variations in TrxR, EGF and TNF-α in cerebral ischemic injury.
Collapse
Affiliation(s)
- Melike Erol-Demirbilek
- Department of Medical Biochemistry, Medical Faculty, Gazi University, 06500 Besevler, Ankara, Turkey Turkey
- Biotechnology Research Center, The Ministry of Food, Agriculture and Livestock, Field Crops Research Institute, Istanbul Yolu 5.km, Yenimahalle, Ankara, Turkey
| | - Nedret Kilic
- Department of Medical Biochemistry, Medical Faculty, Gazi University, 06500 Besevler, Ankara, Turkey
| | - Hatice Ferhan Komurcu
- Department of Neurology, Ankara Ataturk Training and Research Hospital, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
14
|
The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015; 128:537-58. [PMID: 25671777 DOI: 10.1042/cs20140491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
Collapse
|
15
|
Lee JC, Kim IH, Park JH, Ahn JH, Cho JH, Cho GS, Tae HJ, Chen BH, Yan BC, Yoo KY, Choi JH, Lee CH, Hwang IK, Cho JH, Kwon YG, Kim YM, Won MH. Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radic Biol Med 2015; 79:78-90. [PMID: 25483558 DOI: 10.1016/j.freeradbiomed.2014.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic injury by activating specific mechanisms. In this study, we tested the hypothesis that IPC attenuates postischemic neuronal death via heme oxygenase-1 (HO-1). Animals used in this study were randomly assigned to 4 groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group and IPC+ischemia-operated group. IPC was induced by subjecting gerbils to 2min of ischemia followed by 1 day of recovery. A significant loss of neurons was observed in pyramidal neurons of the hippocampal CA1 region (CA1) in the ischemia-operated groups at 5 days postischemia. In the IPC+ischemia-operated groups, CA1 pyramidal neurons were well protected. The level of HO-1 protein and its activity increased significantly in the CA1 of the IPC+sham-operated group, and the level and activity was maintained in all the time after ischemia-reperfusion compared with the ischemia-operated groups. HO-1 immunoreactivity was induced in the CA1 pyramidal neurons in both IPC+sham-operated- and IPC+ischemia-operated groups. We also found that levels or immunoreactivities of superoxide anion, 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal were significantly decreased in the CA1 of both IPC+sham-operated- and IPC+ischemia-operated groups. Whereas, treatment with zinc protoporphyrin IX (a HO-1 inhibitor) into the IPC+ischemia-operated groups did not preserve the IPC-mediated increase of HO-1 and lost beneficial effects of IPC by inhibiting ischemia-induced DNA damage and lipid peroxidation. In brief, IPC protects CA1 pyramidal neurons from ischemic injury by upregulating HO-1, and we suggest that the enhancement of HO-1 expression by IPC may be a legitimate strategy for a therapeutic intervention of cerebral ischemic damage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine & Medical College, Yangzhou University, Yangzhou 225-001, China
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
16
|
Zhang S, Zhang Y, Jiang S, Liu Y, Huang L, Zhang T, Lu G, Gong K, Ji X, Shao G. The effect of hypoxia preconditioning on DNA methyltransferase and PP1γ in hippocampus of hypoxia preconditioned mice. High Alt Med Biol 2014; 15:483-90. [PMID: 25531462 DOI: 10.1089/ham.2014.1042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that hypoxia preconditioning can increase hypoxic tolerance by changing the expressions of some genes in the brain. DNA methylation is important for regulating gene expression and is catalyzed by DNA methyltransferase (DNMT), an enzyme that is abundant in the brain. However, the impact of hypoxia preconditioning on DNA methylation remains unknown. In the current study, mice were randomly divided into three groups: blank control group with no exposure to hypoxia (H0), the hypoxia control group exposed to hypoxia once (H1), and the hypoxia preconditioning group exposed to 4 runs of hypoxia (H4). The mRNA and protein levels of three kinds of DNMTs and the activity of total DMNT were measured. Protein phosphatase 1(PP1)γ, which critically regulates neuroprotective pathways in brain, was measured in mRNA and protein activity and promoter methylation. DNMT1 was unchanged in H1 and H4, while DNMT3A and DNMT3B were decreased in H4. The mRNA and protein levels of PP1γ were decreased in H4. However, there was no detectable change in the level of DNA methylation of the promoter of PP1γ (-321 bp to 95 bp). These findings suggest that DNA methylation may have a role in hypoxia neuroprotection, and the change of PP1γ, which did not depend on the change of its promoter (-321 bp to 95bp) DNA methylation, may be involved in neuroprotection.
Collapse
Affiliation(s)
- Shu Zhang
- 1 Biomedicine Research Center and Basic Medical College, The First Affiliated Hospital of BaoTou Medical College , Inner Mongolia, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel) 2014; 3:472-501. [PMID: 26785066 PMCID: PMC4665418 DOI: 10.3390/antiox3030472] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Collapse
|
18
|
Ma Z, Wei Q, Dong G, Huo Y, Dong Z. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1088-96. [PMID: 24726884 PMCID: PMC4038345 DOI: 10.1016/j.bbadis.2014.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.
Collapse
Affiliation(s)
- Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
20
|
Liu Y, Nakamura T, Toyoshima T, Lu F, Sumitani K, Shinomiya A, Keep RF, Yamamoto T, Tamiya T, Itano T. Ameliorative effects of yokukansan on behavioral deficits in a gerbil model of global cerebral ischemia. Brain Res 2013; 1543:300-7. [PMID: 24269335 DOI: 10.1016/j.brainres.2013.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/25/2013] [Accepted: 11/14/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to investigate the neuroprotective effects of yokukansan, a traditional Kampo medicine, on the behavioral dysfunction induced by cerebral ischemia/reperfusion injury in gerbils. Gerbils were treated with yokukasan by oral gavage for 30 days, once per day, until the day before induction of ischemia, which was induced by occluding the bilateral common carotid artery for 5 min. The effects of yokukansan (50, 100 and 300 mg/kg) were examined by measuring neuronal damage and behavioral deficits (locomotor activity, 8-arm radial maze task). The anti-inflammatory and anti-oxidant properties of yokukansan were also examined. Administration of yokukansan at 300 mg/kg significantly reduced hippocampal neuronal death after brain ischemia, inhibited the ischemia-induced inflammatory response and DNA oxidative damage. Yokukansan also reduced ischemia-induced locomotor hyperactivity and improved memory impairment. These findings suggest that yokukansan can inhibit the inflammatory response, oxidative damage and subsequent neuronal death induced by cerebral ischemia/reperfusion injury, and also can contribute to improvement in neurological deficits following such injury.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan
| | - Takehiro Nakamura
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan.
| | - Tetsuhiko Toyoshima
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan
| | - Feng Lu
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan
| | - Kazunori Sumitani
- Department of Medical Education, Kagawa University Faculty of Medicine, Miki, Japan
| | - Aya Shinomiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | - Richad F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Tohru Yamamoto
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | - Toshifumi Itano
- Department of Neurobiology, Kagawa University Faculty of Medicine, Miki, Japan
| |
Collapse
|
21
|
Abstract
The pathogenesis of acute brain ischemia (ABI) is highly complex and involves multiple mechanisms including free radical generation. Imbalance between the cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. Oxidative stress is one of the mechanisms contributing to neuronal damage, potentially induced through the ABI. Through interactions with a large number of molecules, reactive oxygen species may irreversibly destroy or alter the function of the cellular lipids, proteins, and nucleic acids and initiate cell signaling pathways after cerebral ischemia. Future investigations should focus on the understanding of oxidative stress mechanisms and neuroprotection in order to discover new treatment targets.
Collapse
Affiliation(s)
- Djordje Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Resanovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Englander EW. DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair (Amst) 2013; 12:685-90. [PMID: 23684797 DOI: 10.1016/j.dnarep.2013.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the absence of blood brain barrier (BBB) the DNA of peripheral nervous system (PNS) neurons is exposed to a broader spectrum of endogenous and exogenous threats compared to that of the central nervous system (CNS). Hence, while CNS and PNS neurons cope with many similar challenges inherent to their high oxygen consumption and vigorous metabolism, PNS neurons are also exposed to circulating toxins and inflammatory mediators due to relative permeability of PNS blood nerve barrier (BNB). Consequently, genomes of PNS neurons incur greater damage and the question awaiting investigation is whether specialized repair mechanisms for maintenance of DNA integrity have evolved to meet the additional needs of PNS neurons. Here, I review data showing how PNS neurons manage collateral DNA damage incurred in the course of different anti-cancer treatments designed to block DNA replication in proliferating tumor cells. Importantly, while PNS neurotoxicity and concomitant chemotherapy-induced peripheral neuropathy (CIPN) are among major dose limiting barriers in achieving therapy goals, CIPN is partially reversible during post-treatment nerve recovery. Clearly, cell recovery necessitates mobilization of the DNA damage response and underscores the need for systematic investigation of the scope of DNA repair capacities in the PNS to help predict post-treatment risks to recovering neurons.
Collapse
Affiliation(s)
- Ella W Englander
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
23
|
Tamiya S, Yoshida Y, Harada S, Nakamoto K, Tokuyama S. Establishment of a central post-stroke pain model using global cerebral ischaemic mice. J Pharm Pharmacol 2012; 65:615-20. [DOI: 10.1111/jphp.12007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/16/2012] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
Stroke is the leading cause of disability in the world. Central post-stroke pain (CPSP), an intractable secondary disease, is a serious problem that occurs following cerebral stroke. However, the detailed mechanisms underlying CPSP and standard treatments for it are not well established. Therefore, we examined the nociceptive threshold and alterations in the current stimulus threshold of primary afferent neurons in bilateral carotid artery occlusion (BCAO) mice.
Methods
Male ddY mice were subjected to 30 min of BCAO. The development of mechanical and thermal hyperalgesia and changes in current stimulus threshold in the hind paws were measured after BCAO using the von Frey test, plantar test and a Neurometer, respectively.
Key findings
The threshold for mechanical and thermal hyperalgesia in both hind paws was significantly decreased on day 3 after BCAO as compared with pre-BCAO treatment. Furthermore, the sensitivity of C and Aβ fibres (at stimulation of 5 and 2000 Hz, respectively) was increased on day 3 after BCAO as compared with pre-BCAO treatment, while that of Aδ fibres was not altered.
Conclusions
Our data show the development of bilateral hyperalgesia in this model. Potentially, C and Aβ fibre-specific hypersensitization after stroke may have contributed to these symptoms.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, Kobe, Japan
| | - Yuki Yoshida
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, Kobe, Japan
| | - Shinichi Harada
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, Kobe, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, Kobe, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, Kobe, Japan
| |
Collapse
|
24
|
Singh S, Englander EW. Nuclear depletion of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is an indicator of energy disruption in neurons. Free Radic Biol Med 2012; 53:1782-90. [PMID: 22841870 PMCID: PMC3487712 DOI: 10.1016/j.freeradbiomed.2012.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries.
Collapse
Affiliation(s)
- Shilpee Singh
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | |
Collapse
|
25
|
Effects of transient cerebral ischemia on the expression of DNA methyltransferase 1 in the gerbil hippocampal CA1 region. Neurochem Res 2012; 38:74-81. [PMID: 22987057 DOI: 10.1007/s11064-012-0890-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/20/2012] [Accepted: 09/10/2012] [Indexed: 12/25/2022]
Abstract
DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia-reperfusion (I-R), NeuN-positive ((+)) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)(+) cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.
Collapse
|
26
|
Abstract
Global cerebral ischemia and reperfusion (I/R) often result in high mortality. Free radicals have been reported to play an important role in global cerebral I/R, and therefore, reduction of these might improve the outcome. Here, we investigated the effect of hydrogen gas (H2) (a strong free radical scavenger) on the survival rate of mice following global cerebral I/R. We further examined the histopathological outcome and also the brain water content (as a possible determinant of mortality). Male C57BL/6J mice were subjected to global cerebral I/R by means of 45-min bilateral common carotid artery occlusion (BCCAO). A total of 160 mice were divided into three groups: sham surgery (sham group), BCCAO without H2 (BCCAO group), and BCCAO treated with 1.3% H2 (BCCAO + H2 group). We observed that H2 treatment significantly (P = 0.0232) improved the 7-day survival rate of mice, from 8.3% (BCCAO group, n = 12) to 50% (BCCAO + H2 group, n = 10). Histopathological analysis revealed that H2 treatment significantly attenuated neuronal injury and autophagy in the hippocampal cornu ammonis 1 sector and also brain edema, after 24 h of reperfusion. The beneficial effects of H2 treatment on brain injury were associated with significantly lower levels of oxidative stress markers (8-hydroxy-2'-deoxyguanosine and malondialdehyde) in the brain tissue. Thus, we believe that H2 may be an effective treatment for global cerebral I/R.
Collapse
|
27
|
Prasad SS, Russell M, Nowakowska M, Williams A, Yauk C. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection. J Mol Neurosci 2012; 47:322-39. [PMID: 22467039 DOI: 10.1007/s12031-012-9751-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/08/2012] [Indexed: 12/16/2022]
Abstract
Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways plays a role in the neuroprotection. A high degree of similarity in the pathways associated with the differentially expressed genes in the pre- and post-conditioning treatments suggests that similar molecular mechanisms may mediate their neuroprotective effects.
Collapse
Affiliation(s)
- Shiv S Prasad
- Genomics Laboratories, Biologics and Genetic Therapies Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | | | | | | | | |
Collapse
|
28
|
Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 2012; 133:157-68. [PMID: 22313689 DOI: 10.1016/j.mad.2012.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS), generated endogenously during respiration or exogenously by genotoxic agents, induce oxidized bases and single-strand breaks (SSBs) in DNA that are repaired via the base excision/SSB repair (BER/SSBR) pathway in both the nucleus and mitochondria. Tightly regulated BER/SSBR with multiple sub-pathways is highly complex, and is linked to the replication and transcription. The repair-initiating DNA glycosylases (DGs) or AP-endonuclease (APE1) control the sub-pathway by stably interacting with downstream proteins usually via their common interacting domain (CID). A nonconserved CID with disordered structure usually located at one of the termini includes the sequences for covalent modifications and/or organelle targeting. While the DGs are individually dispensable, the SSBR-initiating APE1 and polynucleotide kinase 3' phosphatase (PNKP) are essential. BER/SSBR of mammalian nuclear and mitochondrial genomes share the same early enzymes. Accumulation of oxidative damage in nuclear and mitochondrial genomes has been implicated in aging and various neurological disorders. While defects in BER/SSBR proteins have been linked to hereditary neurodegenerative diseases, our recent studies implicated transition metal-induced inhibition of NEIL family DGs in sporadic diseases. This review focuses on the recent advances in repair of oxidatively damages in mammalian genomes and their linkage to aging and neurological disorders.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | | | | | | | |
Collapse
|
29
|
Xanthos T, Chatzigeorgiou M, Johnson EO, Chalkias A. Magnetically targeted drug delivery during cardiopulmonary resuscitation and the post-resuscitation period. Resuscitation 2012; 83:803-5. [PMID: 22289681 DOI: 10.1016/j.resuscitation.2012.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/22/2011] [Accepted: 01/08/2012] [Indexed: 12/27/2022]
Abstract
Treatment with pharmacological agents is frequently required during cardiopulmonary resuscitation efforts and almost always during the post-resuscitation period. However, the lack of scientific evidence, the potent side effects and the association of resuscitation drugs with poor outcome act as a disincentive for their use. The use of magnetic nanoparticles in medicine has great potential. Magnetically targeted drug delivery may be an ideal method of pharmaceutical treatment during the resuscitation efforts and post-resuscitation period. In addition, there is evidence that magnetic nanotechnology may be used in the detection of post-cardiac arrest brain injury. In the light of poor survival of cardiac arrest victims, research in cardiopulmonary resuscitation should focus on this promising technology as soon as possible.
Collapse
Affiliation(s)
- Theodoros Xanthos
- National and Kapodistrian University of Athens, Medical School, Department of Anatomy, Athens, Greece
| | | | | | | |
Collapse
|
30
|
Liu CH, Ren JQ, You Z, Yang J, Liu CM, Uppal R, Liu PK. Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J 2011; 26:1652-62. [PMID: 22198388 DOI: 10.1096/fj.11-199547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The presence of pericytes in brain regions undergoing repair is evident of the recruitment of bone marrow-derived multipotent regenerative cells to the neurovascular unit during angiogenesis. At present, post mortem sampling is the only way to identify them. Therefore, such cell typing is inadequate for preserving neural progenitor cells for any meaningful stem cell therapy. We aimed to target cerebral pericytes in vivo using dual gene transcript-targeted MRI (GT-tMRI) in male C57black6 mice after a 60-min bilateral carotid artery occlusion (BCAO). We attached superparamagnetic iron oxide nanoparticles (SPIONs) to phosphorothioate-modified micro-DNA that targets actin or nestin mRNA. Because BCAO compromises the blood-brain barrier (BBB) and induces expression of α-smooth muscle (αSM)-actin and nestin antigens by pericytes in new vessels, we delivered pericyte-specific magnetic resonance contrast agents (SPION-actin or SPION-nestin at 4 mg Fe/kg) by i.p. injection to C57black6 mice that had experienced BCAO. We demonstrated that the surge in cerebral iron content by inductively coupled plasma-mass spectrometry matched the increase in the frequency of relaxivity. We also found that SPION-nestin was colocalized in αSM- actin- and nestin-expressing pericytes in BCAO-treated C57black6 or transgenic mice [B6.Cg-Tg(CAG-mRFP1) 1F1Hadj/J, expressing red fluorescent protein by actin promoter]. We identified pericytes in the repair patch in living brains after BCAO with a voxel size of 0.03 mm(3). The presence of electron-dense nanoparticles in vascular pericytes in the region of BBB injury led us to draw the conclusion that GT-tMRI can noninvasively reveal neural progenitor cells during vascularization.
Collapse
Affiliation(s)
- Christina H Liu
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc Natl Acad Sci U S A 2011; 108:18802-7. [PMID: 22065741 DOI: 10.1073/pnas.1106880108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.
Collapse
|
32
|
Dalen ML, Alme TN, Bjørås M, Munkeby BH, Rootwelt T, Saugstad OD. Reduced expression of DNA glycosylases in post-hypoxic newborn pigs undergoing therapeutic hypothermia. Brain Res 2010; 1363:198-205. [PMID: 20883672 DOI: 10.1016/j.brainres.2010.09.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Supplementary oxygen during resuscitation of the asphyxiated newborn is associated with increased generation of reactive oxygen species and oxidative stress. It is suspected that hyperoxic reoxygenation may cause increased damage to DNA, resulting in replication errors, and cell death or potential fixation of mutations if unrepaired. Therapeutic hypothermia may attenuate the development of brain damage after asphyxia, but it is not known how post-hypoxic hyperoxia and hypothermia affect accumulation of DNA-damage and DNA repair. Anaesthetised newborn pigs were randomised to control (n=6) or severe global hypoxia (n=46). After 20min of reoxygenation with either room air or 100% O(2), followed by 6.5h of normothermia (deep rectal temperature 39°C) or total body cooling (35°C), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine) in brain, liver and urine, and transcription of DNA repair glycosylases (NEIL1, NEIL3, and OGG1) in brain and liver were measured. Hypoxic pigs displayed increased urinary 8-oxodG levels: mean (SD) 8-oxodG/creatinine was 3.55 (1.46) vs. control 2.02 (0.53), p<0.05, but levels were not affected by hyperoxia or hypothermia. Accumulation of 8-oxodG in the brain and liver did not differ across groups. Post-hypoxic transcription of DNA glycosylases was down-regulated by hypothermia: OGG1 in hippocampus and liver (p<0.01); NEIL1 in hippocampus (p<0.01), cortex and striatum (p<0.05) and liver (p<0.001); and NEIL3 in hippocampus (p<0.01) and cerebellum (p<0.001). Hyperoxia did not affect transcription of glycosylases in the brain. We confirm increased oxidative stress after hypoxia. DNA repair glycosylases were down-regulated by hypothermia but with no effect on accumulation of oxidative damage in genomic DNA.
Collapse
Affiliation(s)
- Marit Lunde Dalen
- Department of Paediatric Research, University of Oslo, Oslo University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
33
|
Okabe N, Nakamura T, Toyoshima T, Miyamoto O, Lu F, Itano T. Eicosapentaenoic acid prevents memory impairment after ischemia by inhibiting inflammatory response and oxidative damage. J Stroke Cerebrovasc Dis 2010; 20:188-95. [PMID: 20621517 DOI: 10.1016/j.jstrokecerebrovasdis.2009.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/14/2009] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that the generation of reactive oxygen species and an excessive inflammatory reaction are involved in the progression of neural damage following brain ischemia. In this study, we focused on the anti-inflammatory and antioxidant properties of eicosapentaenoic acid (EPA). Gerbils were treated intraperitoneally with 500 mg/kg of EPA ethyl for 4 weeks until the day of forebrain ischemia, which was induced by occluding the bilateral common carotid artery for 5 minutes. In the first part of the 2-part experiment, the effect of EPA treatment was evaluated using hematoxylin and eosin staining and deoxynucleotidyl transferase-mediated dUTP nick-end labeling as a marker of cell death (n=3 per group). The inflammatory reaction was evaluated using anti-Iba1 immunohistochemistry, a marker of microglial activation (n=3 per group), and detection of 8-hydroxyl-2'-deoxyguanosine, a marker of oxidative DNA damage (n=4 per group). In the second part of the experiment, the effect of EPA treatment on memory function was examined using an 8-arm radial maze (n=6 per group). EPA treatment significantly inhibited DNA oxidative damage (P < .05) and accumulation of Iba1-positive cells in the CA1 area at 12 and 72 hours after the induction of ischemia, and also decreased apoptotic neurons and neuronal death (P < .001) at 72 hours after ischemia. EPA treatment also significantly improved memory function (P < .05). These findings suggest that EPA inhibits the inflammatory reaction and oxidative damage occurring after ischemic brain injury, and also may contribute to the prevention of neural damage and memory impairment following such injury.
Collapse
Affiliation(s)
- Naohiko Okabe
- Department of Neurobiology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, Jeong YG, Lee YL, Kim YM, Kwon YG, Won MH. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 2009; 87:2126-37. [DOI: 10.1002/jnr.22030] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 2009; 111:483-95. [PMID: 19446389 DOI: 10.1016/j.clineuro.2009.04.001] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 01/24/2023]
Abstract
There is an urgent need for improved diagnostics and therapeutics for acute ischemic stroke. This is the focus of numerous research projects involving in vitro studies, animal models and clinical trials, all of which are based on current knowledge of disease mechanisms underlying acute focal cerebral ischemia. Insight in the chain of events occurring during acute ischemic injury is essential for understanding current and future diagnostic and therapeutic approaches. In this review, we summarize the actual knowledge on the pathophysiology of acute ischemic stroke. We focus on the ischemic cascade, which is a complex series of neurochemical processes that are unleashed by transient or permanent focal cerebral ischemia and involves cellular bioenergetic failure, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, hemostatic activation, post-ischemic inflammation and finally cell death of neurons, glial and endothelial cells.
Collapse
Affiliation(s)
- R Brouns
- Department of Neurology and Memory Clinic, Middelheim General Hospital, Antwerp, Belgium
| | | |
Collapse
|
36
|
He KY, Yang SZ, Shen DH, Zhang LM, Lu SD, Sun FY. Excision repair cross-complementing 1 expression protects against ischemic injury following middle cerebral artery occlusion in the rat brain. Gene Ther 2009; 16:840-8. [PMID: 19440222 DOI: 10.1038/gt.2009.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To study the effects of excision repair cross-complementing 1 (ERCC1) on the pathophysiological process of brain ischemia, we examined the changes in ERCC1 expression, as well as the functional significance of ERCC1 in the rat brain following middle cerebral artery occlusion (MCAO). The results were as follows: (1) ERCC1 immunopositive cells were widely distributed in various brain regions. ERCC1 expression was localized to the nuclei of neurons and astrocytes. (2) ERCC1 expression, as determined by western blot, increased at 3 days, remaining until 14 days, in the ipsilateral cortex and striatum following MCAO. Immunohistochemical analysis demonstrated that ischemia induced increased ERCC1 expression within the periinfarct core, with increasingly less expression toward the core. (3) Knockdown of ERCC1 expression by intraventricular injection of antisense plasmids increased DNA damage and infarct volume in the ischemic brain. (4) ERCC1 overproduction, by injection of expression plasmids, significantly reduced infarct volume and the accumulation of DNA-damaged neurons. Taken together, these results indicate that both endogenous ERCC1 and exogenous ERCC1 have an important neuroprotective function in the brain. In addition, administration of ERCC1 to the brain could prove to be a successful strategy for neuronal protection against ischemic injury.
Collapse
Affiliation(s)
- K-Y He
- Department of Neurobiology, Institute of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Kim HW, Cho KJ, Park SC, Kim HJ, Kim GW. The adenoviral vector-mediated increase in apurinic/apyrimidinic endonuclease inhibits the induction of neuronal cell death after transient ischemic stroke in mice. Brain Res 2009; 1274:1-10. [PMID: 19374886 DOI: 10.1016/j.brainres.2009.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/31/2022]
Abstract
Despite the correlation between changes in the levels of apurinic/apyrimidinic endonuclease and ischemic neuronal damage, no studies have addressed the question of whether increased APE/Ref-1 can prevent ischemic neuronal cell death in vivo. Using an adenoviral vector, we investigated whether increased APE/Ref-1 can inhibit the loss of APE/Ref-1 and thereby prevent oxidative DNA damage after transient focal cerebral ischemia. Mice were subjected to intraluminal suture occlusion of the middle cerebral artery for 1 h, followed by reperfusion. Pre-ischemic treatment of the adenoviral vector was introduced intracerebrally. An adenoviral vector harboring the entire APE/Ref-1 gene sequence or a control virus without the APE/Ref-1 sequence was introduced 3 days before ischemia/reperfusion (I/R). The reduction of APE/Ref-1 occurred before DNA fragmentation, which was shown by temporal and spatial analysis. Increased APE/Ref-1 significantly decreased DNA damage and infarct volume after I/R. In conclusion, increased APE/Ref-1 enhanced DNA repair and inhibited the induction of ischemic oxidative DNA damage and cerebral infarction after I/R.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Neurology and Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
STETLER RANNE, ZHANG FENG, LIU COLLIN, CHEN JUN. Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2009; 92:171-95. [PMID: 18790275 PMCID: PMC2710312 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - FENG ZHANG
- University of Pittsburgh, Pittsburgh, PA, USA
| | - COLLIN LIU
- University of Pittsburgh, Pittsburgh, PA, USA
| | - JUN CHEN
- University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Dizdaroglu M, Kirkali G, Jaruga P. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects. Free Radic Biol Med 2008; 45:1610-21. [PMID: 18692130 DOI: 10.1016/j.freeradbiomed.2008.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/26/2008] [Accepted: 07/08/2008] [Indexed: 01/01/2023]
Abstract
Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines that have been investigated in the past 50 years. Our goal is to emphasize the importance of these neglected lesions in many biological and disease processes.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
40
|
Matsuda S, Umeda M, Kato H, Araki T. Glial damage after transient focal cerebral ischemia in rats. J Mol Neurosci 2008; 38:220-6. [PMID: 19051061 DOI: 10.1007/s12031-008-9165-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/17/2008] [Indexed: 11/27/2022]
Abstract
We investigated the immunohistochemical changes of 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity as a marker of DNA damage and single-strand DNA (ssDNA) immunoreactivity as a marker of apoptosis in the striatum from 1 up to 15 days after 90 min of focal cerebral ischemia caused by middle cerebral artery occlusion in rats. In the present study, marked loss of MAP2 immunostaining was observed in the ipsilateral striatum 3 days after focal cerebral ischemia. A significant increase in the number of ssDNA-immunoreactive apoptotic neurons was observed in the ipsilateral striatum 1 and 3 days after focal cerebral ischemia. In contrast, a significant increase in densities of 8-OHdG-immunopositive cells was observed in the ipsilateral striatum from 3 up to 15 days after focal cerebral ischemia. Our double-labeled immunochemical study showed that 8-OHdG immunoreactivity was observed in both isolectin B(4)-positive microglia and glial fibrillary acidic protein-immunopositive astrocytes in the ipsilateral striatum 7 days after focal cerebral ischemia. These results suggest that focal cerebral ischemia can cause a marked increase in the number of microglia and astrocytes with oxidative DNA damage in the ipsilateral striatum. Furthermore, our results show that most microglia and astrocytes in the ipsilateral striatum after focal cerebral ischemia may not die by apoptosis. Thus, our findings provide novel evidence that focal cerebral ischemia can cause oxidative DNA damage in most microglia and astrocytes.
Collapse
Affiliation(s)
- Shunsuke Matsuda
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505, Japan
| | | | | | | |
Collapse
|
41
|
Wei W, Englander EW. DNA polymerase beta-catalyzed-PCNA independent long patch base excision repair synthesis: a mechanism for repair of oxidatively damaged DNA ends in post-mitotic brain. J Neurochem 2008; 107:734-44. [PMID: 18752643 PMCID: PMC2967482 DOI: 10.1111/j.1471-4159.2008.05644.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative DNA damage incidental to normal respiratory metabolism poses a particular threat to genomes of highly metabolic-long lived cells. We show that post-mitotic brain has capacity to repair oxidatively damaged DNA ends, which are targets of the long patch (LP) base excision repair (BER) subpathway. LP-BER relies, in part, on proteins associated with DNA replication, including proliferating cell nuclear antigen and is inherent to proliferating cells. Nonetheless, repair products are generated with brain extracts, albeit at slow rates, in the case of 5'-DNA ends modeled with tetrahydrofuran (THF). THF at this position is refractory to DNA polymerase beta 5'-deoxyribose 5-phosphate lyase activity and drives repair into the LP-BER subpathway. Comparison of repair of 5'-THF-blocked termini in the post-mitotic rat brain and proliferative intestinal mucosa, revealed that in mucosa, resolution of damaged 5'-termini is accompanied by formation of larger repair products. In contrast, adducts targeted by the single nucleotide BER are proficiently repaired with both extracts. Our findings reveal mechanistic differences in BER processes selective for the brain versus proliferative tissues. The differences highlight the physiological relevance of the recently proposed 'Hit and Run' mechanism of alternating cleavage/synthesis steps, in the proliferating cell nuclear antigen-independent LP-BER process.
Collapse
Affiliation(s)
- Wei Wei
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555-1220, USA
| | | |
Collapse
|
42
|
Hwang IK, Yoo KY, Suh HW, Kim YS, Kwon DY, Kwon YG, Yoo JH, Won MH. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia. J Neurosci Res 2008; 86:2003-15. [PMID: 18335523 DOI: 10.1002/jnr.21647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nazam Ansari M, Bhandari U, Islam F, Tripathi CD. Evaluation of antioxidant and neuroprotective effect of ethanolic extract of Embelia ribes Burm in focal cerebral ischemia/reperfusion-induced oxidative stress in rats. Fundam Clin Pharmacol 2008; 22:305-14. [PMID: 18485149 DOI: 10.1111/j.1472-8206.2008.00580.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antioxidants have been the focus of studies for developing neuroprotective agents to be used in the therapy for stroke, which is an acute and progressive neurodegenerative disorder and is the second leading cause of death throughout the world. In fact, many herbal antioxidants have been developed in in vitro and in vivo experiments and some of these have been tested in clinical studies of stroke. Embelia ribes have been reported to have antioxidant and antidiabetic effects. In addition to these effects, this study was designed to investigate the neuroprotective effect of ethanolic extract of E. ribes Burm fruits on middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in rats. Male Wistar albino rats were fed ethanolic E. ribes extract (100 and 200 mg/kg body weight; p.o.) for 30 days. After 30 days of feeding, all animals were anaesthetized with chloral hydrate (400 mg/kg, i.p.). The right middle cerebral artery was occluded with a 4-0 suture for 2 h. The suture was removed after 2 h to allow reperfusion injury. Ischemia followed by reperfusion in ischemic group rats significantly (P < 0.001) reduced the grip strength activity and non-enzymatic (reduced glutathione, GSH) and enzymatic [glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)] antioxidant levels in hippocampus and frontal cortex compared to sham-operated rats. Further, serum lactate dehydrogenase (LDH) and thiobarbituric acid reactive substance (TBARS) levels in hippocampus and frontal cortex were significantly increased in ischemic group compared to sham-operated rats. Furthermore, ethanolic E. ribes extracts pretreatment significantly (P < 0.001) increased the grip strength activity, and GSH, GPx, GR and GST levels in hippocampus and frontal cortex with significant decrease in LDH levels in serum and TBARS levels in hippocampus and frontal cortex compared to MCAO + vehicle group rats. The data from this study suggest that chronic treatment with ethanolic E. ribes extract enhances the antioxidant defense against MCAO- induced focal cerebral ischemia in rats and exhibits neuroprotective activity.
Collapse
Affiliation(s)
- M Nazam Ansari
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | | | | | | |
Collapse
|
44
|
Abstract
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling nonneuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
45
|
Liu CH, You Z, Ren J, Kim YR, Eikermann-Haerter K, Liu PK. Noninvasive delivery of gene targeting probes to live brains for transcription MRI. FASEB J 2008; 22:1193-203. [PMID: 18029447 PMCID: PMC2648863 DOI: 10.1096/fj.07-9557com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aimed to test the feasibility of detecting gliosis in living brains when the blood-brain barrier (BBB) is disrupted. We designed a novel magnetic resonance (MR) probe that contains superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility contrast agent) linked to a short DNA sequence complementary to the cerebral mRNA of glial fibrillary acidic protein (GFAP) found in glia and astrocytes. As a control, we also used a sequence complementary to the mRNA of beta-actin. Our objectives are to demonstrate that this new probe, SPION-gfap, could be delivered to the brain when administered by eyedrop solution to the conjunctival sac. We induced BBB leakage by puncture wound, global cerebral ischemia, and cortical spreading depression in C57BL6 mice; 1 day after probe delivery we acquired T2* MR images and R2* (R2* = 1/T2*) maps using a transcription MRI technique in live mice. We found that the SPION-gfap probe reported foci with elevated signal in subtraction R2* maps and that these foci matched areas identified as having extensive glial network (gliosis) in postmortem immunohistochemistry. Similarly, animals administered the control probe exhibited foci of R2* elevation that matched beta-actin-expressing endothelia in the vascular wall. We conclude that our modular MR probe, delivered in an eyedrop solution, effectively reports gliosis associated with acute neurological disorders in living animals. As BBB leakage is often observed in acute neurological disorders, this study also served to validate noninvasive delivery of MR probes to the brains of live animals after acute neurological disorders.
Collapse
Affiliation(s)
- Christina H. Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Gene Transcript Targeting and Repair Laboratory, Division of Neuroradiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zerong You
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - JiaQian Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Young R. Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Katharina Eikermann-Haerter
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Philip K. Liu
- Gene Transcript Targeting and Repair Laboratory, Division of Neuroradiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
46
|
Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007; 1181:83-92. [DOI: 10.1016/j.brainres.2007.08.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/17/2007] [Accepted: 08/25/2007] [Indexed: 12/20/2022]
|
47
|
Liu CH, Huang S, Cui J, Kim YR, Farrar CT, Moskowitz MA, Rosen BR, Liu PK. MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J 2007; 21:3004-15. [PMID: 17478745 PMCID: PMC2657320 DOI: 10.1096/fj.07-8203com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this research was to validate transcription magnetic resonance (MR) imaging (MRI) for gene transcript targeting in acute neurological disorders in live subjects. We delivered three MR probe variants with superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility agent) linked to a phosphorothioate-modified oligodeoxynucleotide (sODN) complementary to c-fos mRNA (SPION-cfos) or beta-actin mRNA (SPION-beta-actin) and to sODN with random sequence (SPION-Ran). Each probe (1 microg Fe in 2 microl) was delivered via intracerebroventricular infusion to the left cerebral ventricle of male C57Black6 mice. We demonstrated SPION retention, measured as decreased T2* signal or increased R2* value (R2* = 1/T2*). Animals that received the SPION-beta-actin probe exhibited the highest R2* values, followed (in descending order) by SPION-cfos and SPION-Ran. SPION-cfos retention was localized in brain regions where SPION-cfos was present and where hybrids of SPION-cfos and its target c-fos mRNA were detected by in situ reverse transcription PCR. In animals that experienced cerebral ischemia, SPION-cfos retention was significantly increased in locations where c-fos mRNA increased in response to the ischemic insult; these elevations were not observed for SPION-beta-actin and SPION-Ran. This study should enable MR detection of mRNA alteration in disease models of the central nervous system.
Collapse
Affiliation(s)
- Christina H. Liu
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Shuning Huang
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Techonology Cambridge, Massachusetts, USA
| | - Jiankun Cui
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
| | - Young R. Kim
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christian T. Farrar
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael A. Moskowitz
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bruce R. Rosen
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Philip K. Liu
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
48
|
Liu CH, Huang S, Kim YR, Rosen BR, Liu PK. Forebrain ischemia-reperfusion simulating cardiac arrest in mice induces edema and DNA fragmentation in the brain. Mol Imaging 2007; 6:156-70. [PMID: 17532882 PMCID: PMC2644455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Brain injury affects one-third of persons who survive after heart attack, even with restoration of spontaneous circulation by cardiopulmonary resuscitation. We studied brain injury resulting from transient bilateral carotid artery occlusion (BCAO) and reperfusion by simulating heart attack and restoration of circulation, respectively, in live C57Black6 mice. This model is known to induce neuronal death in the hippocampus, striatum, and cortex. We report the appearance of edema after transient BCAO of 60 minutes and 1 day of reperfusion. Hyperintensity in diffusion-weighted magnetic resonance imaging (MRI) was detectable in the striatum, thalamus, and cortex but not in the hippocampus. To determine whether damage to the hippocampus can be detected in live animals, we infused a T(2) susceptibility magnetic resonance contrast agent (superparamagnetic iron oxide nanoparticles [SPIONs]) that was linked to single-stranded deoxyribonucleic acid (DNA) complementary in sequence to c-fos messenger ribonucleic acid (SPION-cfos); we acquired in vivo T(2)*-weighted MRI 3 days later. SPION retention was measured as T(2)* (milliseconds) signal reduction or R(2)* value (s(-1)) elevation. We found that animals treated with 60-minute BCAO and 7-day reperfusion exhibited significantly less SPION retention in the hippocampus and cortex than sham-operated animals. These findings suggest that brain injury induced by cardiac arrest can be detected in live animals.
Collapse
Affiliation(s)
- Christina H Liu
- A.A. Martinos Center for Biomedical Imaging Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
49
|
Liu CH, Huang S, Kim YR, Rosen BR, Liu PK. Forebrain Ischemia-Reperfusion Simulating Cardiac Arrest in Mice Induces Edema and DNA Fragmentation in the Brain. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christina H. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Shuning Huang
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Young R. Kim
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Bruce R. Rosen
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Philip K. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
50
|
Chen L, Lee HM, Greeley GH, Englander EW. Accumulation of oxidatively generated DNA damage in the brain: a mechanism of neurotoxicity. Free Radic Biol Med 2007; 42:385-93. [PMID: 17210451 PMCID: PMC2049091 DOI: 10.1016/j.freeradbiomed.2006.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Unrepaired or erroneously repaired DNA lesions drive genomic instability and contribute to cellular and organ decline. Since delayed neuropathologies are common in survivors of smoke inhalation injuries, we asked whether the integrity of brain DNA might be compromised by acute exposure to combustion smoke. Although many studies demonstrate that the brain is equipped to repair oxidatively damaged DNA, to date, the capacity for accurate DNA repair under conditions of disrupted oxygenation and oxidative stress has not been defined. We show that DNA adducts detectable by their ability to block PCR amplification form in the rat hippocampus after acute exposure to smoke. To identify the different types of adducts and to dissect their temporal formation and repair profiles in vivo in the brain, we used DNA-modifying enzymes to convert specific adducts into strand breaks prior to PCR amplification. Using this strategy, we detected formation of oxidative DNA adducts early on after smoke inhalation, while mismatched bases emerged at the later recovery times, potentially due to an erroneous DNA repair process. Erroneous repair can be mutagenic and because the initial smoke-induced oxidative damage to DNA is extensive, compromised fidelity of DNA repair may underlie neurotoxicity and contribute to delayed death of hippocampal neurons.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Surgery, University of Texas Medical Branch
- Shriners Hospitals for Children, Galveston, Texas
| | - Heung M Lee
- Department of Surgery, University of Texas Medical Branch
- Shriners Hospitals for Children, Galveston, Texas
| | | | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch
- Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|