1
|
Mohammed AS, Uversky VN. Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. BIOLOGY 2022; 11:1704. [PMID: 36552214 PMCID: PMC9775155 DOI: 10.3390/biology11121704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Proteomic analysis revealed the preservation of many proteins in the Heslington brain (which is at least 2600-year-old brain tissue uncovered within the skull excavated in 2008 from a pit in Heslington, Yorkshire, England). Five of these proteins-"main proteins": heavy, medium, and light neurofilament proteins (NFH, NFM, and NFL), glial fibrillary acidic protein (GFAP), and myelin basic (MBP) protein-are engaged in the formation of non-amyloid protein aggregates, such as intermediate filaments and myelin sheath. We used a wide spectrum of bioinformatics tools to evaluate the prevalence of functional disorder in several related sets of proteins, such as the main proteins and their 44 interactors, all other proteins identified in the Heslington brain, as well as the entire human proteome (20,317 manually curated proteins), and 10,611 brain proteins. These analyses revealed that all five main proteins, half of their interactors and almost one third of the Heslington brain proteins are expected to be mostly disordered. Furthermore, most of the remaining Heslington brain proteins are expected to contain sizable levels of disorder. This is contrary to the expected substantial (if not complete) elimination of the disordered proteins from the Heslington brain. Therefore, it seems that the intrinsic disorder of NFH, NFM, NFL, GFAP, and MBP, their interactors, and many other proteins might play a crucial role in preserving the Heslington brain by forming tightly folded brain protein aggregates, in which different parts are glued together via the disorder-to-order transitions.
Collapse
Affiliation(s)
- Aaron S. Mohammed
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. VITAMINS AND HORMONES 2016; 101:215-38. [PMID: 27125744 DOI: 10.1016/bs.vh.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe what has been learned about Klotho and its potential functions in the brain. Klotho is localized in the choroid plexus and, to a lesser extent, in hippocampal neurons. Cognitive decline is a common issue in human aging affecting over 50% of the population. This cognitive decline can also be seen in animal models such as the Rhesus monkey. A long-term study undertaken by our lab demonstrated that normal brain aging in rhesus monkeys and other animal models is associated with a significant downregulation of Klotho expression. This observation substantiates data from other laboratories that have reported that loss of Klotho accelerates the development of aging-like phenotypes, including cognitive deficits, whereas Klotho overexpression extends life span and enhances cognition in mice and humans. Klotho is a type 1 transmembrane pleiotropic protein predominantly expressed in kidney and brain and shed by ADAM 10 and 17 into the blood and cerebral spinal fluid, respectively. While the renal functions of Klotho are well known, its roles in the brain remain to be fully elucidated. We recently demonstrated that Klotho protects hippocampal neurons from amyloid and glutamate toxicity via the activation of an antioxidant enzymatic system suggesting Klotho is a neuroprotective protein. Furthermore, Klotho is necessary for oligodendrocyte maturation and myelin integrity. Through its diverse roles in the brain, Klotho has become a new therapeutic target for neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases like multiple sclerosis. Discovery of small molecule Klotho enhancers may lead to novel treatments for these incurable disorders.
Collapse
Affiliation(s)
- C R Abraham
- Boston University School of Medicine, Boston, MA, United States.
| | - P C Mullen
- Boston University School of Medicine, Boston, MA, United States
| | - T Tucker-Zhou
- Boston University School of Medicine, Boston, MA, United States
| | - C D Chen
- Boston University School of Medicine, Boston, MA, United States
| | - E Zeldich
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ, Ceballos-Diaz C, Robertson J, Golde TE, Giasson BI. Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol 2014; 127:645-65. [PMID: 24659240 DOI: 10.1007/s00401-014-1268-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 02/02/2023]
Abstract
In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that, with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS, there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.
Collapse
|
4
|
Abstract
No animal model to date perfectly replicates Parkinson's disease (PD) etiopathogenesis, and the anatomical organization of the nigrostriatal system differs considerably between species. Human postmortem material therefore remains the gold standard for both formulating hypotheses for subsequent testing in in vitro and in vivo PD models and verifying hypotheses derived from experimental PD models with regard to their validity in the human disease. This article focuses on recent and relevant fields in which human postmortem work has generated significant impact in our understanding of PD. These fields include Lewy body formation, regional vulnerability of dopaminergic neurons, oxidative/nitrative cellular stress, inflammation, apoptosis, infectious and environmental agents, and nondopaminergic lesions.
Collapse
Affiliation(s)
- Andreas Hartmann
- Fédération de Neurologie, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
5
|
Abstract
Cerebellar Purkinje cells (PCs), the sole output neurons in the cerebellar cortex, play an important role in the cerebellar circuit. PCs appear to be rather sensitive to aging, exhibiting significant changes in both morphology and function during senescence. This article reviews such changes during the normal aging process, including a decrease in the quantity of cells, atrophy in the soma, retraction in the dendritic arborizations, degeneration in the subcellular organelles, a decline in synapse density, disorder in the neurotransmitter system, and alterations in electrophysiological properties. Although these deteriorative changes occur during aging, compensatory mechanisms exist to counteract the impairments in the aging PCs. The possible neural mechanisms underlying these changes and potential preventive treatments are discussed.
Collapse
|
6
|
Tong M, Longato L, de la Monte SM. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 2010; 10:4. [PMID: 20302640 PMCID: PMC3161394 DOI: 10.1186/1472-6823-10-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 03/19/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. HYPOTHESIS Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. METHODS Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA) by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD) or low fat (5%; LFD) chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF) deficiency and resistance in the context of neurodegeneration. RESULTS HFD +/- NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT), which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD +/- NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3beta (reflecting increased GSK-3beta activity), glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. CONCLUSIONS Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of ceramides and probably other toxic lipids in brain.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Rhode Island Hospital, 55 Claverick Street, Providence, RI 02903, USA
- Warren Alpert Medical School of Brown University, Box G, 97 Waterman Street, Providence, RI 02912, USA
| | - Lisa Longato
- Liver Research Center, Rhode Island Hospital, 55 Claverick Street, Providence, RI 02903, USA
- Pathobiology Program, Brown University, Box G, 222 Richmond Street, Providence, RI 02903, USA
| | - Suzanne M de la Monte
- Department of Pathology (Neuropathology), Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
- Department of Neurology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
- Liver Research Center, Rhode Island Hospital, 55 Claverick Street, Providence, RI 02903, USA
- Pathobiology Program, Brown University, Box G, 222 Richmond Street, Providence, RI 02903, USA
- Warren Alpert Medical School of Brown University, Box G, 97 Waterman Street, Providence, RI 02912, USA
| |
Collapse
|
7
|
Liem RKH, Messing A. Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest 2009; 119:1814-24. [PMID: 19587456 DOI: 10.1172/jci38003] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intermediate filaments (IFs) are abundant structures found in most eukaryotic cells, including those in the nervous system. In the CNS, the primary components of neuronal IFs are alpha-internexin and the neurofilament triplet proteins. In the peripheral nervous system, a fifth neuronal IF protein known as peripherin is also present. IFs in astrocytes are primarily composed of glial fibrillary acidic protein (GFAP), although vimentin is also expressed in immature astrocytes and some mature astrocytes. In this Review, we focus on the IFs of glial cells (primarily GFAP) and neurons as well as their relationship to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
8
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
9
|
Abstract
Rapidly emerging concepts about the pathobiology and defining phenotypes of two major classes of neurodegenerative disease known as tauopathies and synucleinopathies are bringing these diseases into shaper focus. Significantly, recent research has substantially advanced understanding of these neurodegenerative disorders thereby providing fresh opportunities for the development of transgenic (TG) mouse models. Since the availability of such animal models will accelerate efforts to discover more effective therapies, we review the current status of efforts to generate informative TG mouse models for tauopathies and synucleinopathies and other neurodegenerative disorders characterized by prominent filamentous brain lesions.
Collapse
Affiliation(s)
- J Q Trojanowski
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia 19104-4283, USA.
| | | |
Collapse
|
10
|
Pathophysiology: biochemistry of Parkinson's disease. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Dubois M, Strazielle C, Julien JP, Lalonde R. Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2. Effects on motor functions and spatial orientation. J Neurosci Res 2005; 80:751-8. [PMID: 15884021 DOI: 10.1002/jnr.20493] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice with a null mutation of the Nefl gene were compared with normal controls in tests of motor activity, equilibrium, and spatial orientation. Despite a normal capacity to ambulate, NFL -/- mice had fewer rears in an open field, crossed fewer segments on stationary beams, and fell more frequently when suspended on a horizontal bar. In addition, the distance swum before reaching the escape platform was greater in NFL -/- mice than in controls during acquisition of place learning in the Morris water maze at the start of training. The motor impairments were linearly correlated with increased cytochrome oxidase activity seen in cerebellum and brainstem. These results indicate that, as early as 6 months, depletion of the NFL protein is sufficient to cause mild sensorimotor dysfunctions and spatial deficits, but without overt signs of paresis.
Collapse
Affiliation(s)
- M Dubois
- Faculté des Sciences, Université de Rouen, UPRES PSY.CO EA 1780, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
12
|
Dubois M, Lalonde R, Julien JP, Strazielle C. Mice with the deleted neurofilament of low-molecular-weight (Nefl) gene: 1. Effects on regional brain metabolism. J Neurosci Res 2005; 80:741-50. [PMID: 15742362 DOI: 10.1002/jnr.20449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal intermediate filaments consist of the NFL subunit linked with NFM and NFH, and their alterations have been proposed as a pathogenesic cause in motor neuron diseases. Depletion of the Nefl gene in mice mimicks the reduced NFL mRNA levels seen in amyotrophic lateral sclerosis and causes perikaryal accumulation of neurofilament proteins and axonal hypotrophy in motoneurons. NFL -/- mice were evaluated for regional brain metabolism by means of quantitative histochemical estimation of cytochrome oxidase (COx) activity. The NFL null mice displayed enzymatic activity alterations in numerous hindbrain regions, mainly the cerebellum, connected regions of the brainstem (red nucleus, vestibular nuclei, and reticular formation), and cranial nerve nuclei. All of the affected regions presented elevated COx activity, except for the Purkinje cells of the cerebellum and the magnocellular red nucleus, where enzymatic activity was lower. NFL-disrupted mice displayed functional alterations in brainstem sensorimotor regions affected in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M Dubois
- Faculté des Sciences, UPRES PSY.CO EA 1780, Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
13
|
Beaulieu JM, Nguyen MD, Julien JP. Late onset of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 2004; 147:531-44. [PMID: 15132161 PMCID: PMC2151189 DOI: 10.1083/jcb.147.3.531] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| | - Minh Dang Nguyen
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| | - Jean-Pierre Julien
- Centre for Research in Neurosciences, McGill University, The Montréal General Hospital Research Institute, Montréal, Québec, H3G 1A4, Canada
| |
Collapse
|
14
|
Fasani F, Bocquet A, Robert P, Peterson A, Eyer J. The amount of neurofilaments aggregated in the cell body is controlled by their increased sensitivity to trypsin-like proteases. J Cell Sci 2004; 117:861-9. [PMID: 14762113 DOI: 10.1242/jcs.00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofilaments are synthesised and assembled in neuronal cell bodies, transported along axons and degraded at the synapse. However, in several pathological situations they aggregate in cell bodies or axons. To investigate their turnover when separated from their normal site of degradation, we used a previously described transgenic model characterised by perikaryal retention of neurofilaments, and compared the basic features of both neurofilament synthesis and degradation with that observed in normal mice. Despite the massive perikaryal aggregates, neurofilament transcript levels were found to be unchanged, whereas the total accumulation of neurofilament proteins was markedly reduced. Neurofilaments isolated from transgenic samples are more sensitive to both trypsin and α-chymotrypsin mediated proteolysis. Consistent with their greater in vitro sensitivity, trypsin immunolabeling of cell bodies was stronger in transgenic mice. These results show a novel mechanism to regulate the amount of neurofilaments when they abnormally aggregate.
Collapse
Affiliation(s)
- F Fasani
- Laboratoire Neurobiologie and Transgenese, UPRES-EA 3143, INSERM, 4 rue Larrey, bâtiment Montéclair, CHU 49033 Angers CEDEX, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
Current knowledge regarding the pathophysiology of cerebral ischemia and brain trauma indicates that similar mechanisms contribute to loss of cellular integrity and tissue destruction. Mechanisms of cell damage include excitotoxicity, oxidative stress, free radical production, apoptosis and inflammation. Genetic and gender factors have also been shown to be important mediators of pathomechanisms present in both injury settings. However, the fact that these injuries arise from different types of primary insults leads to diverse cellular vulnerability patterns as well as a spectrum of injury processes. Blunt head trauma produces shear forces that result in primary membrane damage to neuronal cell bodies, white matter structures and vascular beds as well as secondary injury mechanisms. Severe cerebral ischemic insults lead to metabolic stress, ionic perturbations, and a complex cascade of biochemical and molecular events ultimately causing neuronal death. Similarities in the pathogenesis of these cerebral injuries may indicate that therapeutic strategies protective following ischemia may also be beneficial after trauma. This review summarizes and contrasts injury mechanisms after ischemia and trauma and discusses neuroprotective strategies that target both types of injuries.
Collapse
Affiliation(s)
- Helen M Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Medical School, FL 33101, USA
| | | |
Collapse
|
16
|
Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen JT, Riess O, Schöls L. Mutation analysis of the neurofilament M gene in Parkinson's disease. Neurosci Lett 2004; 351:125-9. [PMID: 14583397 DOI: 10.1016/s0304-3940(03)00903-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofilament M, a major component of Lewy bodies, represents an interesting candidate in the pathogenesis of Parkinson's disease (PD). We performed detailed mutation analyses of the NF-M gene in 322 familial and sporadic PD patients. Two polymorphisms (Ala475Thr and Gly697Arg) occurred at similar frequencies in PD patients and controls. A Pro725Gln substitution and a deletion of valine in position 829 were identified in two PD patients. These substitutions affect residues of the NF-M protein that are highly conserved among different species. None of our patients carried the Gly336Ser substitution, which has been described in familial PD. Our results argue against a major role of NF-M in PD. However, rare variants of the NF-M gene may act as susceptibility factors for PD and functional analyses of the identified variations are warranted to decipher possible mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Rejko Krüger
- Department of Neurology, Neurodegeneration Laboratory, University of Tübingen, Hoppe-Seyler-Strasse 3, D-72076, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liem RKH, Leung CL. Neuronal intermediate filament overexpression and neurodegeneration in transgenic mice. Exp Neurol 2004; 184:3-8. [PMID: 14637070 DOI: 10.1016/s0014-4886(03)00291-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ronald K H Liem
- Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
18
|
Lalonde R, Strazielle C. Neurobehavioral characteristics of mice with modified intermediate filament genes. Rev Neurosci 2003; 14:369-85. [PMID: 14640321 DOI: 10.1515/revneuro.2003.14.4.369] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intermediate proteins comprise cytoskeletal elements that preserve the shape and structure of neurons. These proteins have been proposed to be involved in the onset and progression of amyotrophic lateral sclerosis (ALS), mainly characterized by motoneuron atrophy and paresis. In support of this hypothesis are the findings that genetically modified mice for intermediate filaments successfully mimic certain neuropathological aspects of ALS, such as reduced axonal caliber and retarded conduction speed in peripheral nerves, although often without leading to paresis. Nevertheless, even in those models with no overt phenotype, the involvement of intermediate proteins in motor function is underlined by the deficits in tests of balance and equilibrium revealed in mice containing transgenes for neurofilament of heavy molecular weight (NFH), alpha-internexin, peripherin, and vimentin. In addition, spatial learning was impaired in transgenic mice expressing transgenes for NFH and NFM, similar to the memory deficits reported in patients with ALS.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM, Rouen, France.
| | | |
Collapse
|
19
|
Mori F, Piao YS, Hayashi S, Fujiwara H, Hasegawa M, Yoshimoto M, Iwatsubo T, Takahashi H, Wakabayashi K. Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol 2003; 62:812-9. [PMID: 14503637 DOI: 10.1093/jnen/62.8.812] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein has an important role in the pathogenesis of Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), comprising a new disease concept, that of alpha-synucleinopathies. Cerebellar degeneration with Purkinje cell depletion is present in the majority of MSA cases. By contrast, cerebellar pathology has not been demonstrated unequivocally in either PD or DLB. Recent immunohistochemical studies using anti-alpha-synuclein antibodies have shown that LB-type degeneration in PD and DLB is more widespread than previously recognized. To determine whether cerebellar Purkinje cells might be involved in alpha-synuclein pathology, we carried out immunohistochemical examinations of the cerebella of patients with PD (n = 10), DLB (n = 7), MSA (n = 10), Alzheimer disease and other tauopathies (n = 9), and age-matched control subjects (n = 10), using antibodies specific for alpha-synuclein. Although no abnormal accumulation of alpha-synuclein was noted in the Purkinje cell somata, numerous alpha-synuclein-positive, round inclusions were found in the cerebellar white matter in all the patients with PD and DLB. Immunohistochemical and ultrastructural examinations revealed that the majority of these inclusions was located in the Purkinje cell axons and consisted of granulo-filamentous structures. No such inclusions were observed in MSA, tauopathies, or controls. These findings indicate that Purkinje cells are also the victims of a-synuclein pathology in PD and DLB, but not in MSA.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lalonde R, Eyer J, Wunderle V, Strazielle C. Characterization of NFH-LacZ transgenic mice with the SHIRPA primary screening battery and tests of motor coordination, exploratory activity, and spatial learning. Behav Processes 2003; 63:9-19. [PMID: 12763264 DOI: 10.1016/s0376-6357(03)00013-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NFH-LacZ transgenic mice express a fusion protein between a truncated form of the endogenous neurofilament of heavy molecular weight and the complete E. coli beta-galactosidase. NFH-LacZ transgenic mice could be distinguished from controls in the SHIRPA neurological battery by the appearance of action tremor and hindlimb clasping and a lower body weight. Despite normal exploratory activity and spatial learning, NFH-LacZ transgenic mice were deficient in stationary beam, coat-hanger, and rotorod tests of motor coordination. These results are concordant with neuropathological findings in spinal motoneurons and the cerebellum and indicate that despite the absence of paralysis, these transgenic mice may serve as an experimental model of the early stage of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- R Lalonde
- Faculté de Médecine et de Pharmacie, Université de Rouen, INSERM EMI 9906, IFRNP, Bâtiment de Recherche, Cedex 76183, Rouen, France
| | | | | | | |
Collapse
|
21
|
Riederer IM, Robert P, Porchet R, Eyer J, Riederer BM. Selective changes in the neurofilament and microtubule cytoskeleton of NF-H/LacZ mice. J Neurosci Res 2003; 71:196-207. [PMID: 12503082 DOI: 10.1002/jnr.10485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study focused mainly on changes in the microtubule cytoskeleton in a transgenic mouse where beta-galactosidase fused to a truncated neurofilament subunit led to a decrease in neurofilament triplet protein expression and a loss in neurofilament assembly and abolished transport into neuronal processes in spinal cord and brain. Although all neurofilament subunits accumulated in neuronal cell bodies, our data suggest an increased solubility of all three subunits, rather than increased precipitation, and point to a perturbed filament assembly. In addition, reduced neurofilament phosphorylation may favor an increased filament degradation. The function of microtubules seemed largely unaffected, in that tubulin and microtubule-associated proteins (MAP) expression and their distribution were largely unchanged in transgenic animals. MAP1A was the only MAP with a reduced signal in spinal cord tissue, and differences in immunostaining in various brain regions corroborate a relationship between MAP1A and neurofilaments.
Collapse
Affiliation(s)
- Irène M Riederer
- Institut de Biologie Cellulaire et de Morphologie, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Strazielle C, Dubois M, Eyer J, Lalonde R. NFH-LacZ transgenic mice: regional brain activity of cytochrome oxidase. Exp Neurol 2002; 177:521-30. [PMID: 12429197 DOI: 10.1006/exnr.2002.7972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the NFH-LacZ fusion protein in transgenic mice causes an early accumulation of neurofilament proteins in the cell bodies of neurons, as well as a reduction of motor neuron axonal caliber and Purkinje cell number in the cerebellum. Young (3 month old) and older (12-20 months) NFH-LacZ transgenic mice were compared to normal controls for regional brain metabolism, as assessed by cytochrome oxidase (CO) activity. Irrespective of age, CO activity was reduced in three cerebellar-related regions of NFH-LacZ transgenic mice: (1) the lateral reticular nucleus, (2) the parvicellular red nucleus, and (3) the superior colliculus, possibly as a secondary consequence of cerebellar Purkinje cell histopathology. Aged NFH-LacZ mice had lower CO activity relative to either age-matched controls or young transgenic mice in the following regions: the motor nucleus of the vagus nerve, the trapezoid nucleus, the subiculum, the motor cortex, the superior olive, and the lateral dorsal thalamus. These results indicate regional and age-selective deficits of brain metabolism in a transgenic model with neurofilament maldistribution.
Collapse
Affiliation(s)
- C Strazielle
- Université de Rouen, Faculté des Sciences, Laboratoire de Neurobiologie de l'Apprentissage, UPRES PSY.CO-EA 1780, 76821, Mont-Saint-Aignan Cedex, France.
| | | | | | | |
Collapse
|
23
|
Dubois M, Strazielle C, Eyer J, Lalonde R. Sensorimotor functions in transgenic mice expressing the neurofilament/heavy-LacZ fusion protein on two genetic backgrounds. Neuroscience 2002; 112:447-54. [PMID: 12044462 DOI: 10.1016/s0306-4522(02)00076-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NFH-LacZ transgenic mice are characterized by expression of a non-endogenous fusion protein between a truncated form of mouse NFH (neurofilament of heavy molecular weight) and the complete Escherichia coli beta-galactosidase protein. These transgenic mice were compared to their respective controls on two background strains (C3H and FVB) in several sensorimotor tests. NFH-LacZ mice were deficient in tests requiring balance and equilibrium in a manner generally independent of genetic background. In particular, NFH-LacZ mice fell more quickly than controls from two stationary beams and had fewer rears in an open-field. The transgenic mice were also impaired during the initial trials of sensorimotor learning on the rotorod. We conclude that despite the absence of overt signs of sensorimotor weakness in their home cage, the disruption of the NFH gene, causing neurofilament accumulations in the cell body and diminished axonal calibers of motoneurons, is sufficient to cause motor deficits that resemble the early stages of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M Dubois
- Université de Rouen, Faculté des Sciences, UPRES PSY.CO-1780, Laboratoire de Neurobiologie de l'Apprentissage, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
24
|
Hsich G, Sena-Esteves M, Breakefield XO. Critical issues in gene therapy for neurologic disease. Hum Gene Ther 2002; 13:579-604. [PMID: 11916483 DOI: 10.1089/10430340252837198] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene therapy for the nervous system is a newly emerging field with special issues related to modes of delivery, potential toxicity, and realistic expectations for treatment of this vital and highly complex tissue. This review focuses on the potential for gene delivery to the brain, as well as possible risks and benefits of these procedures. This includes discussion of appropriate vectors, such as adeno-associated virus, lentivirus, gutless adenovirus, and herpes simplex virus hybrid amplicons, and cell vehicles, such as neuroprogenitor cells. Routes of delivery for focal and global diseases are enumerated, including use of migratory cells, facilitation of vascular delivery across the blood-brain barrier, cerebrospinal fluid delivery, and convection injection. Attention is given to examples of diseases falling into different etiologic types: metabolic deficiency states, including Canavan disease and lysosomal storage disorders; and degenerative conditions, including Parkinson's disease and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gary Hsich
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
25
|
Shepherd CE, McCann H, Thiel E, Halliday GM. Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurobiol Dis 2002; 9:249-57. [PMID: 11895376 DOI: 10.1006/nbdi.2001.0469] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cortical neurons thought to be selectively affected in dementia with Lewy bodies (DLB) are those containing nonphosphorylated 200-kDa neurofilament (NF) protein. As these neurons are largely spared in Alzheimer's disease (AD), DLB and AD may impact on different cortical neuronal populations. The present study quantifies the NF-containing neurons in frontal and temporal cortex of 8 AD, 8 DLB, and 8 control cases. Formalin-fixed paraffin-embedded tissue was immunohistochemically stained with antibodies against nonphosphorylated and phosphorylated NF. Immunoreactive neurons were quantified by areal fraction analysis and corrected for cortical volume. As expected, nonphosphorylated and phosphorylated NF accumulated in the pathological hallmarks of AD and DLB. However, rather than a decrease in NF-containing neurons, a doubling of this population was observed in DLB, compared with AD and controls. This increased number of cortical NF-containing neurons reveal novel widespread cortical changes, beyond those explained by Lewy body formation, that are specific for DLB.
Collapse
Affiliation(s)
- Claire E Shepherd
- Prince of Wales Medical Research Institute, University of New South Wales, Barker Street, Randwick, Sydney 2031, Australia
| | | | | | | |
Collapse
|
26
|
Longhi L, Saatman KE, Raghupathi R, Laurer HL, Lenzlinger PM, Riess P, Neugebauer E, Trojanowski JQ, Lee VM, Grady MS, Graham DI, McIntosh TK. A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury. J Cereb Blood Flow Metab 2001; 21:1241-58. [PMID: 11702040 DOI: 10.1097/00004647-200111000-00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms underlying secondary cell death after traumatic brain injury (TBI) are poorly understood. Animal models of TBI recapitulate many clinical and pathologic aspects of human head injury, and the development of genetically engineered animals has offered the opportunity to investigate the specific molecular and cellular mechanisms associated with cell dysfunction and death after TBI, allowing for the evaluation of specific cause-effect relations and mechanistic hypotheses. This article represents a compendium of the current literature using genetically engineered mice in studies designed to better understand the posttraumatic inflammatory response, the mechanisms underlying DNA damage, repair, and cell death, and the link between TBI and neurodegenerative diseases.
Collapse
Affiliation(s)
- L Longhi
- Department of Neurosurgery, University of Pennsylvania and Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Trojanowski JQ, Lee VMY. Parkinson's disease and related neurodegenerative synucleinopathies linked to progressive accumulations of synuclein aggregates in brain. Parkinsonism Relat Disord 2001; 7:247-251. [PMID: 11331194 DOI: 10.1016/s1353-8020(00)00065-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and the classic clinical-neuropathological features of PD have been well established, including many aspects of the morphology and distribution the filamentous hallmark intraneuronal inclusions of PD known as Lewy bodies (LBs). Nonetheless, the mechanisms underlying brain degeneration in PD are unknown, while only partially effective symptomatic treatments for PD are available, and there are no known therepeutic interventions that are able to prevent PD or block or retard the progression of this relentless disorder. However, dramatic new insights into pathobiology of PD have emerged recently with recognition that alpha-synuclein abnormalities play a role in the onset and/or progression of PD. Moreover, continuing advances in this new research arena provide fresh research opportunities to advance understanding of PD, and these novel breakthroughs will accelerate discovery of more effective therapies for PD.
Collapse
Affiliation(s)
- J Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, HUP, Maloney Building, 3rd Floor, 19104-4283, Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Robert P, Peterson AC, Eyer J. Neurofilament cytoskeleton disruption does not modify accumulation of trophic factor mRNA. J Neurosci Res 2001; 64:487-92. [PMID: 11391703 DOI: 10.1002/jnr.1100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously we described a transgenic mouse model in which neurofilaments are sequestered in neuronal cell bodies and withheld from the axonal compartment. This model and other transgenic models with disrupted neurofilaments are used widely to investigate the role of the neurofilament cytoskeleton in normal neurons and in inherited or acquired diseases. To interpret such studies, it is important to establish whether the maldistribution of neurofilaments has major secondary consequences on the cell biology of the affected neurons. Notably, multiple perturbations of the nervous system simultaneously affect both the neuronal cytoskeleton and neurotrophin expression. To determine whether the expression of neurotrophic factors or their receptors is perturbed by a primary disruption in neurofilaments, we compared the accumulated mRNA levels for ciliary neuroptrophic factor (CNTF), nerve growth factor, neurotrophin 3, and the alpha CNTF receptor in mature transgenic mice and their littermate controls. Consistently with the prolonged survival of neurons expressing atypical or abnormally distributed neurofilaments, no obvious changes were observed for any of the mRNA species examined.
Collapse
Affiliation(s)
- P Robert
- Laboratoire de Neurobiologie et Transgénèse, UPRES-EA3143, INSERM E9928, Centre Hospitalier Universitaire, 49033 Angers, France
| | | | | |
Collapse
|
29
|
Julien JP, Beaulieu JM. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J Neurol Sci 2000; 180:7-14. [PMID: 11090858 DOI: 10.1016/s0022-510x(00)00422-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeletal abnormalities have been reported in cases of amyotrophic lateral sclerosis (ALS) including abnormal inclusions containing neurofilaments (NFs) and/or peripherin, reduced mRNA levels for the NF light (NF-L) protein and mutations in the NF heavy (NF-H) gene. Recently, transgenic mouse approaches have been used to address whether cytoskeletal changes may contribute to motor neuron disease. Mice lacking one of the three NF subunits are viable and do not develop motor neuron disease. Nonetheless, mice with null mutations for NF-L or for both NF-M and NF-H genes developed severe atrophy of ventral and dorsal root axons. The atrophic process is associated with hind limb paralysis during aging in mice deficient for both NF-M and NF-H proteins. The overexpression in mice of transgenes coding for wild-type or mutant NF proteins can provoke abnormal NF accumulations, axonal atrophy and sometimes motor dysfunction. However, the perikaryal NF accumulations are generally well tolerated by motor neurons and, except for expression of a mutant NF-L transgene, they did not provoke massive motor neuron death. Increasing the levels of perikaryal NF proteins may even confer protection in motor neuron disease caused by ALS-linked mutations in the superoxide dismutase (SOD1). In contrast, the overexpression of wild-type peripherin, a type of IF gene upregulated by inflammatory cytokines, provoked the formation of toxic IF inclusions with the high-molecular-weight NF proteins resulting in the death of motor neurons during aging. These results together with the detection of peripherin inclusions at early stage of disease in mice expressing mutant SOD1 suggest that IF inclusions containing peripherin may play a contributory role in ALS pathogenesis.
Collapse
Affiliation(s)
- J P Julien
- Centre for Research in Neurosciences, McGill University, The Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
30
|
Galvin JE, Nakamura M, McIntosh TK, Saatman KE, Sampathu D, Raghupathi R, Lee VM, Trojanowski JQ. Neurofilament-rich intraneuronal inclusions exacerbate neurodegenerative sequelae of brain trauma in NFH/LacZ transgenic mice. Exp Neurol 2000; 165:77-89. [PMID: 10964487 DOI: 10.1006/exnr.2000.7461] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several neurodegenerative disorders are characterized by filamentous inclusions in neurons that selectively degenerate. The role these inclusions play in neuron degeneration is unclear, but this issue can be investigated experimentally in relevant animal models. The NFH/LacZ transgenic (TG) mice overexpress the high-molecular-weight neurofilament (NF) subunit (NFH) fused to beta-galactosidase, and these hybrid proteins aggregate into NF-rich, filamentous neuronal cytoplasmic inclusions (NCIs) that have been implicated in the progressive, age-dependent degeneration in subsets of affected neurons. Thus, these TG mice recapitulate some of the key pathology of neurodegenerative disorders with intraneuronal inclusions. To determine if the NCIs compromise neuron survival following traumatic brain injury (TBI), 3- to 6-month old TG and wild-type (WT) mice were subjected to TBI or sham injury. At 2 weeks post-TBI, the TG group showed increased TUNEL staining and activated caspase-3 immunoreactivity in cells of cerebral cortex, adjacent white matter, and hippocampus underlying the injury site, relative to control mice, but this labeling decreased at 4 weeks and was minimal thereafter. Compared to control mice, by 8 weeks postinjury, the TG mice showed a marked decrease in neuron density and increased gliosis in the hippocampal dentate gyrus and CA3 region as well as in the lateral thalamus, while the few remaining CA3 neurons exhibited cytoskeletal alterations, decreased synaptic protein immunoreactivity, and dissolution of NCIs. The more profound long-term neurodegenerative sequelae of TBI in the NFH/LacZ mice compared to WT mice suggest that the presence of intraneuronal inclusions may impair the recovery and long-term viability of injured neurons.
Collapse
Affiliation(s)
- J E Galvin
- Department of Neurology, MCP Hahnemann University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Couillard-Després S, Meier J, Julien JP. Extra axonal neurofilaments do not exacerbate disease caused by mutant Cu,Zn superoxide dismutase. Neurobiol Dis 2000; 7:462-70. [PMID: 10964615 DOI: 10.1006/nbdi.2000.0296] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A recent report by T. L. Williamson et al. (1998, Proc. Natl. Acad. Sci. USA 95, 9631-9636) showed that disease caused by expression of mutant Cu,Zn superoxide dismutase (SOD1) in mice was slowed down by disruption of the neurofilament light (NF-L) gene. This led to the conclusion that decreasing the axonal amount of neurofilaments reduces the vulnerability of motor neurons to toxicity mediated by mutant SOD1. We report here that, unexpectedly, overexpression of human NF-L proteins resulting in extra axonal neurofilaments does not shorten the life span of transgenic mice expressing a mutant SOD1 (SOD1(G37R)). Microscopic examination of spinal cord and ventral roots even shows modest protective effects of NF-L overexpression. These results suggest that axonal neurofilaments are not an exacerbating factor in motor neuron disease mediated by mutant SOD1 and that perikaryal neurofilaments may even have beneficial effects.
Collapse
Affiliation(s)
- S Couillard-Després
- Centre for Research in Neuroscience, McGill University, Montréal, Québec, H3G 1A4, Canada
| | | | | |
Collapse
|
32
|
Beaulieu JM, Jacomy H, Julien JP. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J Neurosci 2000; 20:5321-8. [PMID: 10884316 PMCID: PMC6772336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Revised: 04/27/2000] [Accepted: 04/29/2000] [Indexed: 02/16/2023] Open
Abstract
Protein aggregates containing intermediate filaments (IFs) are a hallmark of degenerating spinal motor neurons in amyotrophic lateral sclerosis (ALS). Recently, we reported that a deficiency in neurofilament light subunit (NF-L), a phenomenon associated with ALS, promoted the formation of IF inclusions with ensuing motor neuron death in transgenic mice overproducing peripherin, a type III IF protein detected in axonal inclusions of ALS patients. To further assess the role of NF-L in the formation of abnormal IF inclusions, we generated transgenic mice overexpressing human neurofilament heavy subunits (hNF-H) in a context of targeted disruption of the NF-L gene (hH;L-/- mice). The hH;L-/- mice exhibited motor dysfunction, and they developed nonfilamentous protein aggregates containing NF-H and peripherin proteins in the perikarya of spinal motor neurons. However, the perikaryal protein aggregates in the hH;L-/- mice did not provoke motor neuron death, unlike toxic IF inclusions induced by peripherin overexpression in NF-L null mice (Per;L-/- mice). Our results indicate that different types of IF protein aggregates with distinct properties may occur in a context of NF-L deficiency and that an axonal localization of such aggregates may be an important factor of toxicity.
Collapse
Affiliation(s)
- J M Beaulieu
- Centre for Research in Neurosciences, McGill University, The Montreal General Hospital Research Institute, Montreal, Quebec, Canada H3G 1A4
| | | | | |
Collapse
|
33
|
Nagai Y, Onodera O, Strittmatter WJ, Burke JR. Polyglutamine domain proteins with expanded repeats bind neurofilament, altering the neurofilament network. Ann N Y Acad Sci 2000; 893:192-202. [PMID: 10672238 DOI: 10.1111/j.1749-6632.1999.tb07826.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins with expanded polyglutamine (polyQ) repeats cause eight inherited neurodegenerative diseases. Nuclear and cytoplasmic polyQ protein is a common feature of these diseases, but its role in cell death remains debatable. Since the neuronal intermediate filament network is composed of neurofilament (NF) and NF abnormalities occur in neurodegenerative diseases, we examined whether pathologic-length polyQ domain proteins interact with NF. We expressed polyQ-green fluorescent fusion proteins (GFP) in a neuroblast cell line, TR1. Pathologic-length polyQ-GFP fusion proteins form large cytoplasmic aggregates surrounded by neurofilament. Immunoisolation of pathologic-length polyQ proteins co-isolated 68 kD NF protein demonstrating molecular interaction. These observations suggest that polyQ interaction with NF is important in the pathogenesis of the polyglutamine repeat diseases.
Collapse
Affiliation(s)
- Y Nagai
- Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
34
|
Nakamura M, Saatman KE, Galvin JE, Scherbel U, Raghupathi R, Trojanowski JQ, McIntosh TK. Increased vulnerability of NFH-LacZ transgenic mouse to traumatic brain injury-induced behavioral deficits and cortical damage. J Cereb Blood Flow Metab 1999; 19:762-70. [PMID: 10413031 DOI: 10.1097/00004647-199907000-00006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The authors evaluated the neurobehavioral and neuropathologic sequelae after traumatic brain injury (TBI) in transgenic (TG) mice expressing truncated high molecular weight neurofilament (NF) protein fused to beta-galactosidase (NFH-LacZ), which develop Lewy body-like NF-rich inclusions throughout the CNS. TG mice and their wild-type (WT) littermates were subjected to controlled cortical impact brain injury (TG, n = 19; WT, n = 17) or served as uninjured controls (TG, n = 11; WT, n = 11). During a 3-week period, mice were evaluated with an array of neuromotor function tests including neuroscore, beam balance, and both fast and slow acceleration rotarod. Brain-injured WT and TG mice showed significant motor dysfunction until 15 days and 21 days post-injury, respectively (P<.025). Compared with brain-injured WT mice, brain-injured TG mice had significantly greater motor dysfunction as assessed by neuroscore (P<.01) up to and including 15 days post-injury. Similarly, brain-injured TG mice performed significantly worse than brain-injured WT mice on slow acceleration rotarod at 2, 8, and 15 days post-injury (P<.05), and beam balance over 2 weeks post-injury (P<.01). Histopathologic analysis showed significantly greater tissue loss in the injured hemisphere in TG mice at 4 weeks post-injury (P<.01). Together these data show that NFH-LacZ TG mice are more behaviorally and histologically vulnerable to TBI than WT mice, suggesting that the presence of NF-rich inclusions may exacerbate neuromotor dysfunction and cell death after TBI.
Collapse
Affiliation(s)
- M Nakamura
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, Philadelphia 19104-6316, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ching GY, Chien CL, Flores R, Liem RK. Overexpression of alpha-internexin causes abnormal neurofilamentous accumulations and motor coordination deficits in transgenic mice. J Neurosci 1999; 19:2974-86. [PMID: 10191315 PMCID: PMC6782284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
alpha-Internexin is the first neuronal intermediate filament (IF) protein expressed in postmitotic neurons of the developing nervous system. In the adult, its expression is restricted to mature neurons in the CNS. To study the potential role of alpha-internexin in neurodegeneration, we have generated transgenic mice that overexpress rat alpha-internexin. The total levels of alpha-internexin expressed in the hemizygous and homozygous transgenic mice were approximately 2 and approximately 3 times the normal level, respectively. Overexpression of alpha-internexin resulted in the formation of cerebellar torpedoes as early as 1 month of age. These torpedoes are abnormal swellings of Purkinje cell axons that are usually seen in neurodegenerative diseases involving the cerebellum. EM studies showed accumulations of high levels of IFs and abnormal organelles in the torpedoes and soma of Purkinje cells, as well as in the large pyramidal neurons of the neocortex and in the ventral anterior and posteromedial nuclei of the thalamus. Behavioral tests demonstrate that these mice have a deficit in motor coordination as early as 3 months of age, consistent with the morphological neuronal changes. Our data further demonstrate that the neurofilamentous inclusions also lead to progressive loss of neurons in the aged transgenic mice. The motor coordination deficit and the loss of neurons are transgene dosage-dependent. These data yield direct evidence that high levels of misaccumulated neuronal IFs lead to neuronal dysfunction, progressive neurodegeneration, and ultimate loss of neurons. Moreover, the degrees of neuronal dysfunction and degeneration are proportional to the levels of misaccumulated neuronal IFs.
Collapse
Affiliation(s)
- G Y Ching
- Departments of Pathology and Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
36
|
Nagai Y, Onodera O, Chun J, Strittmatter WJ, Burke JR. Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Exp Neurol 1999; 155:195-203. [PMID: 10072295 DOI: 10.1006/exnr.1998.6991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight inherited neurodegenerative diseases are caused by genes with expanded CAG repeats coding for polyglutamine domains in the disease-producing proteins. The mechanism by which this expanded polyglutamine domain causes neurodegenerative disease is unknown, but nuclear and cytoplasmic polyglutamine protein aggregation is a common feature. In transfected COS7 cells, expanded polyglutamine proteins aggregate and disrupt the vimentin intermediate filament network. Since neurons have an intermediate filament network composed of neurofilament (NF) and NF abnormalities occur in neurodegenerative diseases, we examined whether pathologic-length polyglutamine domain proteins also interact with NF. We expressed varying lengths polyglutamine-green fluorescent protein fusion proteins in a neuroblast cell line, TR1. Pathologic-length polyglutamine-GFP fusion proteins formed large cytoplasmic aggregates surrounded by neurofilament. Immunoisolation of pathologic-length polyglutamine proteins coisolated 68-kDa NF protein demonstrating molecular interaction. These observations suggest that polyglutamine interaction with NF is important in the pathogenesis of the polyglutamine repeat diseases.
Collapse
Affiliation(s)
- Y Nagai
- Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Nee LE, O'Connell B, Pollen DA, St George-Hyslop P, Ghetti B, Nochlin D, Bird TD, Cairns NJ, Lee VM, Iwatsubo T, Trojanowski JQ. Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1365-70. [PMID: 9811326 PMCID: PMC1853391 DOI: 10.1016/s0002-9440(10)65722-7] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/1998] [Indexed: 10/18/2022]
Abstract
Missense mutations in the alpha-synuclein gene cause familial Parkinson's disease (PD), and alpha-synuclein is a major component of Lewy bodies (LBs) in sporadic PD, dementia with LBs (DLB), and the LB variant of Alzheimer's disease (AD). To determine whether alpha-synuclein is a component of LBs in familial AD (FAD) patients with known mutations in presenilin (n = 65) or amyloid precursor protein (n = 9) genes, studies were conducted with antibodies to alpha-, beta-, and gamma-synuclein. LBs were detected with alpha- but not beta- or gamma-synuclein antibodies in 22% of FAD brains, and alpha-synuclein-positive LBs were most numerous in amygdala where some LBs co-localized with tau-positive neurofibrillary tangles. As 12 (63%) of 19 FAD amygdala samples contained alpha-synuclein-positive LBs, these inclusions may be more common in FAD brains than previously reported. Furthermore, alpha-synuclein antibodies decorated LB filaments by immunoelectron microscopy, and Western blots revealed that the solubility of alpha-synuclein was reduced compared with control brains. The presence of alpha-synuclein-positive LBs was not associated with any specific FAD mutation. These studies suggest that insoluble alpha-synuclein aggregates into filaments that form LBs in many FAD patients, and we speculate that these inclusions may compromise the function and/or viability of affected neurons in the FAD brain.
Collapse
Affiliation(s)
- C F Lippa
- Department of Neurology, Allegheny University of the Health Sciences MCP Division, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Julien JP, Couillard-Després S, Meier J. Transgenic mice in the study of ALS: the role of neurofilaments. Brain Pathol 1998; 8:759-69. [PMID: 9804382 PMCID: PMC8098559 DOI: 10.1111/j.1750-3639.1998.tb00199.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder of multiple etiologies that affects primarily motor neurons in the brain and spinal cord. Abnormal accumulations of neurofilaments (NFs) in motor neurons and a down-regulation of mRNA for the NF light subunit (NF-L) are associated with ALS, but it remains unclear to what extent these NF perturbations contribute to human disease. Transgenic mouse studies demonstrated that overexpression of normal and mutant NF proteins can sometimes provoke a motor neuronopathy characterized by the presence of abnormal NF accumulations resembling those found in ALS. Remarkably, the motor neuronopathy in transgenic mice overexpressing human NF heavy (NF-H) subunits was rescued by the co-expression of a human NF-L transgene at levels that restored a correct stoichiometry of NF-L to NF-H subunits. Transgenic approaches have also been used to investigate the role of NFs in disease caused by Cu/Zn superoxide dismutase (SOD1) mutations, which is responsible for approximately 2% cases of ALS. Studies with transgenic mice expressing low levels of a fusion NF-H/lacZ protein, in which NFs are withheld from the axonal compartment, suggested that axonal NFs are not toxic intermediates required for SOD1-mediated disease. On the contrary, overexpression of human NF-H proteins was found to confer an effective protection against mutant SOD1 toxicity in transgenic mice, a phenomenon that may be due to the ability of NF proteins to chelate calcium. In conclusion, transgenic studies showed that disorganized NFs can sometimes have noxious effects resulting in neuronopathy. However, in the context of motor neuron disease caused by mutant SOD1, there is emerging evidence that NF proteins rather play a protective role.
Collapse
Affiliation(s)
- J P Julien
- Centre for Research in Neuroscience, McGill University, The Montreal General Hospital Research Institute, Québec, Canada.
| | | | | |
Collapse
|
39
|
Morrison BM, Morrison JH, Gordon JW. Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(199809/10)282:1/2<32::aid-jez7>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998; 44:415-22. [PMID: 9749615 DOI: 10.1002/ana.410440324] [Citation(s) in RCA: 517] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently, alpha-synuclein was shown to be a structural component of the filaments in Lewy bodies (LBs) of Parkinson's disease (PD), dementia with LBs (DLB) as well as the LB variant of Alzheimer's disease, and this suggests that alpha-synuclein could play a mechanistic role in the pathogenesis of these disorders. To determine whether alpha-synuclein is a building block of inclusions in other neurodegenerative movement disorders, we examined brains from patients with multiple system atrophy (MSA) and detected alpha-synuclein, but not beta- or gamma-synuclein, in glial cytoplasmic inclusions (GCIs) throughout the MSA brain. In MSA white matter, alpha-synuclein-positive GCIs were restricted to oligodendrocytes, and alpha-synuclein was localized to the filaments in GCIs by immunoelectron microscopy. Finally, we demonstrated that insoluble alpha-synuclein accumulated selectively in MSA white matter with alpha-synuclein-positive GCIs. Taken together with evidence that LBs contain insoluble alpha-synuclein, our data suggest that a reduction in the solubility of alpha-synuclein may induce this protein to form filaments that aggregate into cytoplasmic inclusions, which contribute to the dysfunction or death of glial cells as well as neurons in neurodegenerative disorders with different phenotypes.
Collapse
Affiliation(s)
- P H Tu
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Miranda SR, Erlich S, Friedrich VL, Haskins ME, Gatt S, Schuchman EH. Biochemical, pathological, and clinical response to transplantation of normal bone marrow cells into acid sphingomyelinase-deficient mice. Transplantation 1998; 65:884-92. [PMID: 9565090 DOI: 10.1097/00007890-199804150-00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acid sphingomyelinase knock-out (ASMKO) mice are a model of types A and B Niemann-Pick disease. In the present study, we evaluated whether bone marrow transplantation (BMT) carried out on newborn ASMKO mice could prevent or alter the Niemann-Pick disease phenotype. METHODS Previous work from our laboratory had shown that ASMKO mice were highly susceptible to irradiation-induced death. Therefore, we preconditioned 1-day-old ASMKO (n=35) mice with a "sublethal" dose of 200 cGy of total body irradiation before BMT. The transplantation effects were then analyzed by biochemical, pathological, and clinical approaches. RESULTS Engraftment ranging from 7% to 100% was achieved in 97% of the transplanted animals. Growth of the engrafted animals was improved, and their survival was increased (from a mean of 5 months to 9 months). The onset of ataxia also was delayed in most of the engrafted animals. In accordance with these observations, biochemical and pathological analysis revealed significant changes in the transplanted group as compared with nontransplanted animals. Lipid storage was reduced in several organs, and there was evidence of histologic improvement seen throughout the reticuloendothelial system, even in animals that were engrafted as low as 14%. In the central nervous system, lipid storage also was reduced, and the Purkinje cells, which are almost absent in ASMKO mice, were present in certain areas of the transplanted animals cerebella. CONCLUSIONS These results demonstrated that BMT could alter the pathologic phenotype in ASMKO mice, but that this procedure alone was not sufficient to elicit a complete therapeutic effect.
Collapse
Affiliation(s)
- S R Miranda
- Department of Human Genetics and Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
42
|
Eyer J, Cleveland DW, Wong PC, Peterson AC. Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 1998; 391:584-7. [PMID: 9468135 DOI: 10.1038/35378] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurofilaments are a major component of the axonal cytoskeleton and their abnormal accumulation is a prominent feature of the cytopathology encountered in several neurodegenerative diseases. Thus, an attractive and widely held model of pathogenesis involves the participation of disrupted neurofilaments as a common toxic intermediate. Here, in direct contrast to this hypothesis, we show that two neurodegenerative disease models in the mouse, dystonia musculorum (dt) and a superoxide dismutase 1 (SOD1)-mediated form of human motor neuron disease (amyotrophic lateral sclerosis, ALS), progress with little or no abatement on a transgenic background in which neurofilaments are withheld from the axonal compartment. By specifically excluding a necessary role for axonal neurofilaments, our observations redefine the components of the pathogenic pathway leading to axon disruption in these two degenerative diseases.
Collapse
Affiliation(s)
- J Eyer
- INSERM CJF 97-08 and University of Angers, CHU, France
| | | | | | | |
Collapse
|
43
|
Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee VM. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 1997; 139:1307-15. [PMID: 9382875 PMCID: PMC2140205 DOI: 10.1083/jcb.139.5.1307] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mice engineered to express a transgene encoding a human Cu/Zn superoxide dismutase (SOD1) with a Gly93 --> Ala (G93A) mutation found in patients who succumb to familial amyotrophic lateral sclerosis (FALS) develop a rapidly progressive and fatal motor neuron disease (MND) similar to amyotrophic lateral sclerosis (ALS). Hallmark ALS lesions such as fragmentation of the Golgi apparatus and neurofilament (NF)-rich inclusions in surviving spinal cord motor neurons as well as the selective degeneration of this population of neurons were also observed in these animals. Since the mechanism whereby mutations in SOD1 lead to MND remains enigmatic, we asked whether NF inclusions in motor neurons compromise axonal transport during the onset and progression of MND in a line of mice that contained approximately 30% fewer copies of the transgene than the original G93A (Gurney et al., 1994). The onset of MND was delayed in these mice compared to the original G93A mice, but they developed the same neuropathologic abnormalities seen in the original G93A mice, albeit at a later time point with fewer vacuoles and more NF inclusions. Quantitative Western blot analyses showed a progressive decrease in the level of NF proteins in the L5 ventral roots of G93A mice and a concomitant reduction in axon caliber with the onset of motor weakness. By approximately 200 d, both fast and slow axonal transports were impaired in the ventral roots of these mice coincidental with the appearance of NF inclusions and vacuoles in the axons and perikarya of vulnerable motor neurons. This is the first demonstration of impaired axonal transport in a mouse model of ALS, and we infer that similar impairments occur in authentic ALS. Based on the temporal correlation of these impairments with the onset of motor weakness and the appearance of NF inclusions and vacuoles in vulnerable motor neurons, the latter lesions may be the proximal cause of motor neuron dysfunction and degeneration in the G93A mice and in FALS patients with SOD1 mutations.
Collapse
Affiliation(s)
- B Zhang
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
44
|
Galvin JE, Lee VM, Baba M, Mann DM, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ. Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 1997; 42:595-603. [PMID: 9382471 DOI: 10.1002/ana.410420410] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lewy bodies (LBs) are filamentous intraneuronal inclusions that are hallmark lesions of Parkinson's disease, and LBs have been shown, by immunohistochemistry, to contain cytoskeletal as well as other cellular proteins. Similar LBs also occur in the cortical neurons of a subset of patients with Alzheimer's disease (AD), and cortical LBs are the predominant or sole lesions in the brains of patients with an AD-like dementia known as diffuse Lewy-body disease (DLBD). To gain insight into the biochemical composition of LBs, we generated monoclonal antibodies (mAbs) to LBs purified from the brains of patients with DLBD. Here, we describe three of these new mAbs (LB48, LB202, and LB204) that stained LBs by immunohistochemistry and recognized the medium molecular mass neurofilament (NF) protein in western blots. These results support the hypothesis that NF subunits are integral components of LBs. Continued efforts to clarify the composition of LBs are likely to lead to novel strategies for the antemortem diagnosis of LB disorders as well as to insight into the role LBs play in the degeneration of affected neurons in these disorders.
Collapse
Affiliation(s)
- J E Galvin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|