1
|
Kaefer SL, Zhang L, Brookes S, Morrison RA, Voytik‐Harbin S, Halum S. Optimizing transport methods to preserve function of self-innervating muscle cells for laryngeal injection. Laryngoscope Investig Otolaryngol 2024; 9:e1259. [PMID: 39655095 PMCID: PMC11625686 DOI: 10.1002/lio2.1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 12/12/2024] Open
Abstract
Objectives Recently, our laboratory has discovered a self-innervating population of muscle cells, called motor endplate-expressing cells (MEEs). The cells innately release a wide variety of neurotrophic factors into the microenvironment promoting innervation when used as an injectable treatment. Unlike other stem cells, the therapeutic potential of MEEs is dependent on the cells' ability to maintain phenotypical cell surface proteins in particular motor endplates (MEPs). The goal of this study is to identify transport conditions that preserve MEE viability and self-innervating function. Methods Muscle progenitor cells (MPCs) of adult Yucatan pigs were cultured and induced to generate MEEs. Effects of short-term cryopreservation methods were studied on MPC and MEE stages. A minimally supplemented medium was investigated for suspension-mediated transport, and MEEs were loaded at a constant concentration (1 × 107 cells/mL) into plastic syringes. Samples were subjected to varying temperatures (4, 22, and 37°C) and durations (6, 18, 24, and 48 h), which was followed by statistical analysis of viability. Transport conditions maintaining viability acceptable for cellular therapy were examined for apoptosis rates and expression of desired myogenic, neurotrophic, neuromuscular junction, and angiogenic genes. Results Cryopreservation proved detrimental to our cell population. However, a minimally supplemented medium, theoretically safe for injection, was identified. Transport temperature and duration impacted cell viability, with warmer temperatures leading to faster death rates prior to the end of the study. Transport conditions did not appear to affect apoptotic rate. Any expression change of desirable genes fell within the acceptable range. Conclusions Transport state, medium, duration, and temperature must be considered during the transport of injectable muscle cells as they can affect cell viability and expression of integral genes. These described factors are integral in the planning of general cell transport and may prove equally important when the cell population utilized for laryngeal injection is derived from a patient's own initial muscle biopsy.
Collapse
Affiliation(s)
- Samuel L. Kaefer
- Indiana University School of Medicine (IUSM)IndianapolisIndianaUSA
| | - Lujuan Zhang
- Department of Otolaryngology‐Head and Neck SurgeryIUSMIndianapolisIndianaUSA
| | - Sarah Brookes
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Rachel A. Morrison
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Sherry Voytik‐Harbin
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Stacey Halum
- Indiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Department of Otolaryngology‐Head and Neck SurgeryIUSMIndianapolisIndianaUSA
- Department of Speech, Language, and Hearing SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Desiderio S, Schwaller F, Tartour K, Padmanabhan K, Lewin GR, Carroll P, Marmigere F. Touch receptor end-organ innervation and function require sensory neuron expression of the transcription factor Meis2. eLife 2024; 12:RP89287. [PMID: 38386003 PMCID: PMC10942617 DOI: 10.7554/elife.89287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.
Collapse
Affiliation(s)
- Simon Desiderio
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | - Frederick Schwaller
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | | | | | - Gary R Lewin
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | | |
Collapse
|
3
|
Runkel MT, Tarabishi A, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The role of sympathetic innervation in neonatal muscle growth and neuromuscular contractures. FEBS J 2023; 290:4877-4898. [PMID: 37462535 PMCID: PMC10592371 DOI: 10.1111/febs.16908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Neonatal brachial plexus injury (NBPI), a leading cause of pediatric upper limb paralysis, results in disabling and incurable muscle contractures that are driven by impaired longitudinal growth of denervated muscles. A rare form of NBPI, which maintains both afferent and sympathetic muscle innervation despite motor denervation, protects against contractures. We have previously ruled out a role for NRG/ErbB signaling, the predominant pathway governing antegrade afferent neuromuscular transmission, in modulating the formation of contractures. Our current study therefore investigated the contributions of sympathetic innervation of skeletal muscle in modulating NBPI-induced contractures. Through chemical sympathectomy and pharmacologic modification with a β2 -adrenergic agonist, we discovered that sympathetic innervation alone is neither required nor sufficient to modulate contracture formation in neonatal mice. Despite this, sympathetic innervation plays an intriguing sex-specific role in mediating neonatal muscle growth, as the cross-sectional area (CSA) and volume of normally innervated male muscles were diminished by ablation of sympathetic neurons and increased by β-adrenergic stimulation. Intriguingly, the robust alterations in CSA occurred with minimal changes to normal longitudinal muscle growth as determined by sarcomere length. Instead, β-adrenergic stimulation exacerbated sarcomere overstretch in denervated male muscles, indicating potentially discrete regulation of muscle width and length. Future investigations into the mechanistic underpinnings of these distinct aspects of muscle growth are thus essential for improving clinical outcomes in patients affected by muscle disorders in which both length and width are affected.
Collapse
Affiliation(s)
- Mason T. Runkel
- Department of Health Sciences, Butler University, Indianapolis, IN, USA
| | - Albaraa Tarabishi
- Department of Biochemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marianne E. Emmert
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
4
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Ménard M, Costechareyre C, Coelho-Aguiar JM, Jarrosson-Wuilleme L, Rama N, Blachier J, Kindbeiter K, Bozon M, Cabrera JR, Dupin E, Le Douarin N, Mehlen P, Tauszig-Delamasure S. The dependence receptor TrkC regulates the number of sensory neurons during DRG development. Dev Biol 2018; 442:249-261. [DOI: 10.1016/j.ydbio.2018.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 11/28/2022]
|
6
|
Anand S, Desai V, Alsmadi N, Kanneganti A, Nguyen DHT, Tran M, Patil L, Vasudevan S, Xu C, Hong Y, Cheng J, Keefer E, Romero-Ortega MI. Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Sci Rep 2017; 7:14323. [PMID: 29085079 PMCID: PMC5662603 DOI: 10.1038/s41598-017-14331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022] Open
Abstract
Neural interfaces are designed to decode motor intent and evoke sensory precepts in amputees. In peripheral nerves, recording movement intent is challenging because motor axons are only a small fraction compared to sensory fibers and are heterogeneously mixed particularly at proximal levels. We previously reported that pain and myelinated axons regenerating through a Y-shaped nerve guide with sealed ends, can be modulated by luminar release of nerve growth factor (NGF) and neurotrophin-3 (NT-3), respectively. Here, we evaluate the differential potency of NGF, glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), pleiotrophin (PTN), and NT-3 in asymmetrically guiding the regeneration of sensory and motor neurons. We report that, in the absence of distal target organs, molecular guidance cues can mediate the growth of electrically conductive fascicles with normal microanatomy. Compared to Y-tube compartments with bovine serum albumin (BSA), GDNF and NGF increased the motor and sensory axon content, respectively. In addition, the sensory to motor ratio was significantly increased by PTN (12.7:1) when compared to a BDNF + GDNF choice. The differential content of motor and sensory axons modulated by selective guidance cues may provide a strategy to better define axon types in peripheral nerve interfaces.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Vidhi Desai
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Dianna Huyen-Tram Nguyen
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Martin Tran
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Lokesh Patil
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Jonathan Cheng
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Edward Keefer
- Nerves Incorporated, P.O. Box 141295, Dallas, TX 75214, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
7
|
Liu Y, Kelamangalath L, Kim H, Han SB, Tang X, Zhai J, Hong JW, Lin S, Son YJ, Smith GM. NT-3 promotes proprioceptive axon regeneration when combined with activation of the mTor intrinsic growth pathway but not with reduction of myelin extrinsic inhibitors. Exp Neurol 2016; 283:73-84. [PMID: 27264357 DOI: 10.1016/j.expneurol.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
Although previous studies have identified several strategies to stimulate regeneration of CNS axons, extensive regeneration and functional recovery have remained a major challenge, particularly for large diameter myelinated axons. Within the CNS, myelin is thought to inhibit axon regeneration, while modulating activity of the mTOR pathway promotes regeneration of injured axons. In this study, we examined NT-3 mediated regeneration of sensory axons through the dorsal root entry zone in a triple knockout of myelin inhibitory proteins or after activation of mTOR using a constitutively active (ca) Rheb in DRG neurons to determine the influence of environmental inhibitory or activation of intrinsic growth pathways could enhance NT-3-mediate regeneration. Loss of myelin inhibitory proteins showed modest enhancement of sensory axon regeneration. In mTOR studies, we found a dramatic age related decrease in the mTOR activation as determined by phosphorylation of the downstream marker S6 ribosomal subunit. Expression of caRheb within adult DRG neurons in vitro increased S6 phosphorylation and doubled the overall length of neurite outgrowth, which was reversed in the presence of rapamycin. In adult female rats, combined expression of caRheb in DRG neurons and NT-3 within the spinal cord increased regeneration of sensory axons almost 3 fold when compared to NT-3 alone. Proprioceptive assessment using a grid runway indicates functionally significant regeneration of large-diameter myelinated sensory afferents. Our results indicate that caRheb-induced increase in mTOR activation enhances neurotrophin-3 induced regeneration of large-diameter myelinated axons.
Collapse
Affiliation(s)
- Yingpeng Liu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lakshmi Kelamangalath
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaoqing Tang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbin Zhai
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jee W Hong
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shen Lin
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci 2016; 16:472-81. [PMID: 26748820 DOI: 10.1002/mabi.201500367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Indexed: 11/10/2022]
Abstract
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
Collapse
Affiliation(s)
- Kayla Belanger
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Tony M Dinis
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Sami Taourirt
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Guillaume Vidal
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Christopher Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.,Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 55 Kneeland Street, Boston, MA, 02111, USA
| |
Collapse
|
9
|
Guy AT, Nagatsuka Y, Ooashi N, Inoue M, Nakata A, Greimel P, Inoue A, Nabetani T, Murayama A, Ohta K, Ito Y, Aoki J, Hirabayashi Y, Kamiguchi H. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. Science 2015; 349:974-7. [DOI: 10.1126/science.aab3516] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Vaughan SK, Kemp Z, Hatzipetros T, Vieira F, Valdez G. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations. J Comp Neurol 2015; 523:2477-94. [PMID: 26136049 DOI: 10.1002/cne.23848] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1(G93A) and TDP43(A315T) transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1(G93A) and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α-motor axons in SOD1(G93A) mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α-motor axons in TDP43(A315T) transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α-motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS-causing mutations, with pathological changes starting at their peripheral nerve endings.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA
| | - Zachary Kemp
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, USA
| | - Theo Hatzipetros
- ALS Therapy Development Institute, Cambridge, Massachusetts, 02139, USA
| | - Fernando Vieira
- ALS Therapy Development Institute, Cambridge, Massachusetts, 02139, USA
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
11
|
Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2015; 159:1626-39. [PMID: 25525880 DOI: 10.1016/j.cell.2014.11.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Isabel Vollenweider
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
12
|
SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39-53. [PMID: 23790753 DOI: 10.1016/j.neuron.2013.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.
Collapse
|
13
|
Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, Lawson SN. HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PLoS One 2012; 7:e50442. [PMID: 23236374 PMCID: PMC3517619 DOI: 10.1371/journal.pone.0050442] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022] Open
Abstract
Ih, which influences neuronal excitability, has recently been measured in vivo in sensory neuron subtypes in dorsal root ganglia (DRGs). However, expression levels of HCN (hyperpolarization-activated cyclic nucleotide-gated) channel proteins that underlie Ih were unknown. We therefore examined immunostaining of the most abundant isoforms in DRGs, HCN1 and HCN2 in these neuron subtypes. This immunostaining was cytoplasmic and membrane-associated (ring). Ring-staining for both isoforms was in neurofilament-rich A-fiber neurons, but not in small neurofilament-poor C-fiber neurons, although some C-neurons showed cytoplasmic HCN2 staining. We recorded intracellularly from DRG neurons in vivo, determined their sensory properties (nociceptive or low-threshold-mechanoreceptive, LTM) and conduction velocities (CVs). We then injected fluorescent dye enabling subsequent immunostaining. For each dye-injected neuron, ring- and cytoplasmic-immunointensities were determined relative to maximum ring-immunointensity. Both HCN1- and HCN2-ring-immunointensities were positively correlated with CV in both nociceptors and LTMs; they were high in Aβ-nociceptors and Aα/β-LTMs. High HCN1 and HCN2 levels in Aα/β-neurons may, via Ih, influence normal non-painful (e.g. touch and proprioceptive) sensations as well as nociception and pain. HCN2-, not HCN1-, ring-intensities were higher in muscle spindle afferents (MSAs) than in all other neurons. The previously reported very high Ih in MSAs may relate to their very high HCN2. In normal C-nociceptors, low HCN1 and HCN2 were consistent with their low/undetectable Ih. In some C-LTMs HCN2-intensities were higher than in C-nociceptors. Together, HCN1 and HCN2 expressions reflect previously reported Ih magnitudes and properties in neuronal subgroups, suggesting these isoforms underlie Ih in DRG neurons. Expression of both isoforms was NT3-dependent in cultured DRG neurons. HCN2-immunostaining in small neurons increased 1 day after cutaneous inflammation (CFA-induced) and recovered by 4 days. This could contribute to acute inflammatory pain. HCN2-immunostaining in large neurons decreased 4 days after CFA, when NT3 was decreased in the DRG. Thus HCN2-expression control differs between large and small neurons.
Collapse
Affiliation(s)
- Cristian Acosta
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Laiche Djouhri
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Al-Ahssa, Saudi Arabia
| | - Linlin Gao
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Roger Watkins
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Carol Berry
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Katherine Dempsey
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Sally N. Lawson
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
15
|
Wahlin KJ, Hackler L, Adler R, Zack DJ. Alternative splicing of neuroligin and its protein distribution in the outer plexiform layer of the chicken retina. J Comp Neurol 2011; 518:4938-62. [PMID: 21031560 DOI: 10.1002/cne.22499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although synaptogenesis within the retina is obviously essential for vision, mechanisms responsible for the initiation and maintenance of retinal synapses are poorly understood. In addition to its scientific interest, understanding retinal synapse formation is becoming clinically relevant with ongoing efforts to develop transplantation-based approaches for the treatment of retinal degenerative disease. To extend our understanding, we have focused on the chick model system and have studied the neuroligin family of neuronal adhesion factors that has been shown to participate in synapse assembly in the brain. We identified chicken orthologs of neuroligins 1, -3, and -4, but could find no evidence of neuroligin 2. We investigated temporal and spatial patterns of mRNA and protein expression during development using standard polymerase chain reaction (RT-PCR), quantitative PCR (QPCR), laser-capture microdissection (LCM), and confocal microscopy. At the mRNA level, neuroligins were detected at the earliest period tested, embryonic day (ED)5, which precedes the period of inner retina synaptogenesis. Significant alternative splicing was observed through development. While neuroligin gene products were generally detected in the inner retina, low levels of neuroligin 1 mRNA were also detected in the photoreceptor layer. Neuroligin 3 and -4 transcripts, on the other hand, were only detected in the inner retina. At retinal synapses neuroligin 1 protein was detected in the inner plexiform layer, but its highest levels were detected in the outer plexiform layer on the tips of horizontal cell dendrites. This work lays the groundwork for future studies on the functional roles of the neuroligins within the retina.
Collapse
Affiliation(s)
- Karl J Wahlin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
16
|
Courchesne SL, Pazyra-Murphy MF, Lee DJ, Segal RA. Neuromuscular junction defects in mice with mutation of dynein heavy chain 1. PLoS One 2011; 6:e16753. [PMID: 21346813 PMCID: PMC3035627 DOI: 10.1371/journal.pone.0016753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022] Open
Abstract
Disruptions in axonal transport have been implicated in a wide range of neurodegenerative diseases. Cramping 1 (Cra1/+) and Legs at odd angles (Loa/+) mice, with hypomorphic mutations in the dynein heavy chain 1 gene, which encodes the ATPase of the retrograde motor protein dynein, were originally reported to exhibit late onset motor neuron disease. Subsequent, conflicting reports suggested that sensory neuron disease without motor neuron loss underlies the phenotypes of Cra1/+ and Loa/+ mice. Here, we present behavioral and anatomical analyses of Cra1/+ mice. We demonstrate that Cra1/+ mice exhibit early onset, stable behavioral deficits, including abnormal hindlimb posturing and decreased grip strength. These deficits do not progress through 24 months of age. No significant loss of primary motor neurons or dorsal root ganglia sensory neurons was observed at ages where the mice exhibited clear symptomatology. Instead, there is a decrease in complexity of neuromuscular junctions. These results indicate that disruption of dynein function in Cra1/+ mice results in abnormal morphology of neuromuscular junctions. The time course of behavioral deficits, as well as the nature of the morphological defects in neuromuscular junctions, suggests that disruption of dynein function in Cra1/+ mice causes a developmental defect in synapse assembly or stabilization.
Collapse
Affiliation(s)
- Stephanie L. Courchesne
- Departments of Cancer Biology and Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria F. Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel J. Lee
- Departments of Cancer Biology and Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosalind A. Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials 2010; 31:4880-8. [PMID: 20346499 DOI: 10.1016/j.biomaterials.2010.02.055] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 01/08/2023]
Abstract
Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study, a serum-free culture system utilizing defined temporal growth factor application and a non-biological substrate resulted in the formation of robust NMJs. The system resulted in long-term survival of the co-culture and selective expression of neonatal myosin heavy chain, a marker of myotube maturation. NMJ formation was verified by colocalization of dense clusters of acetylcholine receptors visualized using alpha-bungarotoxin and synaptophysin containing vesicles present in motoneuron axonal terminals. This model will find applications in basic NMJ research and tissue engineering applications such as bio-hybrid device development for limb prosthesis and regenerative medicine as well as for high-throughput drug and toxin screening applications.
Collapse
|
18
|
George L, Kasemeier-Kulesa J, Nelson BR, Koyano-Nakagawa N, Lefcort F. Patterned assembly and neurogenesis in the chick dorsal root ganglion. J Comp Neurol 2010; 518:405-22. [PMID: 20017208 DOI: 10.1002/cne.22248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The birth of small-diameter TrkA+ neurons that mediate pain and thermoreception begins approximately 24 hours after the cessation of neural crest cell migration from progenitors residing in the nascent dorsal root ganglion. Although multiple geographically distinct progenitor pools have been proposed, this study is the first to comprehensively characterize the derivation of small-diameter neurons. In the developing chick embryo we identify novel patterns in neural crest cell migration and colonization that sculpt the incipient ganglion into a postmitotic neuronal core encapsulated by a layer of proliferative progenitor cells. Furthermore, we show that this outer progenitor layer is composed of three spatially, temporally, and molecularly distinct progenitor zones, two of which give rise to distinct populations of TrkA+ neurons.
Collapse
Affiliation(s)
- Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | | | |
Collapse
|
19
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials 2009; 30:5392-402. [PMID: 19625080 DOI: 10.1016/j.biomaterials.2009.05.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/25/2009] [Indexed: 01/17/2023]
Abstract
The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.
Collapse
Affiliation(s)
- Mainak Das
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Suite 402, Research Pavilion, 12424 Research Parkway, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
20
|
Das M, Rumsey JW, Bhargava N, Gregory C, Reidel L, Kang JF, Hickman JJ. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim 2009; 45:378-387. [PMID: 19430851 DOI: 10.1007/s11626-009-9192-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/13/2009] [Indexed: 01/12/2023]
Abstract
This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic addition of different growth factors as well as a nonbiological cell growth promoting substrate, N-1[3-(trimethoxysilyl) propyl] diethylenetriamine. Each growth factor in the medium was experimentally evaluated for its effect on myotube formation. The resulting myotubes were evaluated immunocytochemically using embryonic skeletal muscle, specifically the myosin heavy chain antibody. Based upon this analysis, we propose a new skeletal muscle differentiation protocol that reflects the roles of the various growth factors which promote robust myotube formation. Further observation noted that the proposed skeletal muscle differentiation technique also supported muscle-nerve coculture. Immunocytochemical evidence of nerve-muscle coculture has also been documented. Applications for this novel culture system include biocompatibility and skeletal muscle differentiation studies, understanding myopathies, neuromuscular disorders, and skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - John W Rumsey
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Neelima Bhargava
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Cassie Gregory
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Lisa Reidel
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jung Fong Kang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
21
|
Kitazawa A, Shimizu N. Characterization of neurons differentiated from mouse embryonic stem cells using conditioned medium of dorsal root ganglia. J Biosci Bioeng 2007; 104:257-62. [DOI: 10.1263/jbb.104.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/05/2007] [Indexed: 11/17/2022]
|
22
|
Kampmann E, Mey J. Retinoic acid enhances Erk phosphorylation in the chick retina. Neurosci Lett 2007; 426:18-22. [PMID: 17881122 DOI: 10.1016/j.neulet.2007.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
The transcriptional activator retinoic acid (RA) is a regulator of neural development and regeneration. Synergistic effects with brain-derived neurotrophic factor suggested that RA influences neurotrophin signaling. To test this hypothesis RA was administered systemically to E17 chick embryos, and retinas were prepared 12h and 24h later to measure mRNA or protein expression. While there was no significant influence on activation of Akt, CREB and STAT-3, RA-treatment caused elevated levels of Erk-phosphorylation, a kinase involved in Trk signaling. A small but significant increase in the expression of TrkB mRNA and protein was observed but no significant change in TrkA, TrkC and p75 expression.
Collapse
Affiliation(s)
- Eric Kampmann
- Institut für Biologie II, RWTH-Aachen, Kopernikusstrasse 16, D-52074 Aachen, Germany
| | | |
Collapse
|
23
|
Wang TH, Wang XY, Li XL, Chen HM, Wu LF. Effect of electroacupuncture on neurotrophin expression in cat spinal cord after partial dorsal rhizotomy. Neurochem Res 2007; 32:1415-22. [PMID: 17406982 DOI: 10.1007/s11064-007-9326-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 03/01/2007] [Indexed: 12/20/2022]
Abstract
Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1-L5 and L7-S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.
Collapse
Affiliation(s)
- Ting-Hua Wang
- Department of Histology and Neurobiology, College of Preclinical Forensic Medicine, Sichuan University, Chengdu, China.
| | | | | | | | | |
Collapse
|
24
|
Johansson M, Norrgård O, Forsgren S. Study of expression patterns and levels of neurotrophins and neurotrophin receptors in ulcerative colitis. Inflamm Bowel Dis 2007; 13:398-409. [PMID: 17206664 DOI: 10.1002/ibd.20072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neurotrophins may be involved in ulcerative colitis (UC). Yet, it is unclear whether if their effects should be blocked. METHODS In this study, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors were examined by immunohistochemistry, ELISA, and RT-PCR. RESULTS BDNF immunoreaction was detected in nerve structures in particular, and NGF immunoreaction was detected in lamina propria cells. Cellular NGF immunoreaction was generally observed to be higher in the mucosa of UC patients than in the controls. In addition, UC patients demonstrated significantly higher p75 immunoreaction (P = 0.010) in lamina propria cells. The controls expressed significantly higher BDNF immunoreaction in the nerve structures than did UC patients (P = 0.000). However, the UC group showed marked interindividual variation in expression of neurotrophins and neurotrophin receptors. This included variation at the mRNA level for NGF. Differences with the controls were most pronounced in UC specimens demonstrating great infiltration of inflammatory cells and marked tissue derangement. Corticosteroid treatment seemed to affect neurotrophin production in lamina propria cells but not in nerve structures. These observations demonstrate that up-regulation and down-regulation of neurotrophins occur in different structural components in response to the disease process. Massive inflammation seemed to be correlated with decreased neurotrophin immunoreaction in nerve structures, but there was a tendency toward increased neurotrophin production in lamina propria cells. CONCLUSIONS Our study shows that UC patients are not a uniform group in their expression of neurotrophins, a fact that should be considered when discussing therapeutic interventions.
Collapse
Affiliation(s)
- Malin Johansson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
25
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Jackson JG, Thayer SA. Mitochondrial modulation of Ca2+ -induced Ca2+ -release in rat sensory neurons. J Neurophysiol 2006; 96:1093-104. [PMID: 16760347 DOI: 10.1152/jn.00283.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.
Collapse
Affiliation(s)
- Joshua G Jackson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | |
Collapse
|
27
|
Marmigère F, Montelius A, Wegner M, Groner Y, Reichardt LF, Ernfors P. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat Neurosci 2006; 9:180-7. [PMID: 16429136 PMCID: PMC2703717 DOI: 10.1038/nn1631] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/12/2005] [Indexed: 01/27/2023]
Abstract
Neural crest cells (NCCs) can adopt different neuronal fates. In NCCs, neurogenin-2 promotes sensory specification but does not specify different subclasses of sensory neurons. Understanding the gene cascades that direct Trk gene activation may reveal mechanisms generating sensory diversity, because different Trks are expressed in different sensory neuron subpopulations. Here we show in chick and mouse that the Runt transcription factor Runx1 promotes axonal growth, is selectively expressed in neural crest-derived TrkA(+) sensory neurons and mediates TrkA transactivation in migratory NCCs. Inhibition of Runt activity depletes TrkA expression and leads to neuronal death. Moreover, Runx1 overexpression is incompatible with multipotency in the migratory neural crest but does not induce expression of pan-neuronal genes. Instead, Runx1-induced neuronal differentiation depends on an existing neurogenin2 proneural gene program. Our data show that Runx1 directs, in a context-dependent manner, key aspects of the establishment of the TrkA(+) nociceptive subclass of neurons.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Laboratory of Molecular Neurobiology, Karolinska Institute, MBB, Scheeles väg 1, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Chevrel G, Hohlfeld R, Sendtner M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 2006; 33:462-76. [PMID: 16228973 DOI: 10.1002/mus.20444] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of development, maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors not only modulates survival and function of innervating motoneurons and proprioceptive neurons but also development and differentiation of myoblasts and muscle fibers. Neurotrophins and neurotrophin receptors play a role in the coordination of muscle innervation and functional differentiation of neuromuscular junctions. However, neurotrophin receptors are also expressed in differentiating muscle cells, in particular at early developmental stages in myoblasts before they fuse. In adults with pathological conditions such as human degenerative and inflammatory muscle disorders, variations of neurotrophin expression are found, but the role of neurotrophins under such conditions is still not clear. The goal of this review is to provide a basis for a better understanding and future studies on the role of these factors under such pathological conditions and for treatment of human muscle diseases.
Collapse
Affiliation(s)
- Guillaume Chevrel
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
29
|
Salio C, Lossi L, Ferrini F, Merighi A. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci 2005; 22:1951-66. [PMID: 16262634 DOI: 10.1111/j.1460-9568.2005.04392.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) exerts its trophic effects by acting on the high-affinity specific receptor trkB. BDNF also modulates synaptic transmission in several areas of the CNS, including the spinal cord dorsal horn, where it acts as a pain modulator by yet incompletely understood mechanisms. Spinal neurons are the main source of trkB in lamina II (substantia gelatinosa). Expression of this receptor in dorsal root ganglion (DRG) cells has been a matter of debate, whereas a subpopulation of DRG neurons bears trkA receptors and contains BDNF. By the use of two different trkB antibodies we observed that 7.7% and 10.8% of DRG neurons co-expressed BDNF + trkB but not trkA, respectively, in rat and mouse. Ultrastructurally, full-length trkB (fl-trkB) receptors were present at somato-dendritic membranes of lamina II neurons (rat: 66.8%; mouse: 73.8%) and at axon terminals (rat: 33.2%; mouse: 26.2%). In both species, about 90% of these terminals were identified as primary afferent fibres (PAFs) considering their morphology and/or neuropeptide content. All fl-trkB-immunopositive C boutons in type Ib glomeruli were immunoreactive for BDNF and, at individual glomeruli and axo-dendritic synapses, fl-trkB receptors were located in a mutually exclusive fashion at pre- or postsynaptic membranes. Thus, only a small fraction of fl-trkB-immunoreactive dendrites were postsynaptic to BDNF-immunopositive PAFs. This is the first ultrastructural description of fl-trkB localization at synapses between first- and second-order sensory neurons in lamina II, and suggests that BDNF may be released by fl-trkB-immunopositive PAFs to modulate nociceptive input in this lamina of dorsal horn.
Collapse
Affiliation(s)
- Chiara Salio
- Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy
| | | | | | | |
Collapse
|
30
|
Taylor MD, Holdeman AS, Weltmer SG, Ryals JM, Wright DE. Modulation of muscle spindle innervation by neurotrophin-3 following nerve injury. Exp Neurol 2005; 191:211-22. [PMID: 15589528 DOI: 10.1016/j.expneurol.2004.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 09/20/2004] [Accepted: 09/23/2004] [Indexed: 11/23/2022]
Abstract
Muscle spindles monitor changes in muscle length and are innervated by groups Ia and II sensory axons as well as gamma motor axons. Ia sensory axons respond to neurotrophin-3 (NT-3), which plays an important role in sculpting proprioceptive development. Previously, transgenic mice were generated that overexpress NT-3 in muscle (mlc/NT-3 mice). These mice have alterations in proprioceptive elements due to the developmental actions of NT-3 and neuroprotective effects on Ia axons following nerve injury (Taylor, M.D., Vancura, R., Williams, J.M., Riekhof, J.T., Taylor, B.K., Wright, D.E., 2001. Overexpression of neurotrophin-3 in skeletal muscle alters normal and injury-induced limb control. Somatosens. Motor Res. 18 (4), 286-294.) Here, we investigated the actions of NT-3 on each class of injured axons innervating spindles and explored the mechanisms by which NT-3 acts. Immunohistochemical assessment of muscle spindle innervation following crush revealed that the degeneration of Ia axons innervating spindles in mlc/NT-3 mice was substantially reduced, and overall spindle innervation by group II and gamma fibers was greatly improved at later stages. Mlc/NT-3 mice also displayed a significant reduction in the expression of the injury-induced transcription factor ATF3 by retrogradely labeled muscle afferent neurons. The effects of transgenic NT-3 overexpression on spindle innervation could be mimicked if wild-type mice were treated intramuscularly with recombinant NT-3 prior to but not following injury, suggesting that NT-3's actions were due to preexposure to NT-3. This view was supported by in vitro experiments in which large DRG neurons from mlc/NT-3 mice grew significantly longer neurites than wild-type neurons. The results reveal that improved Ia-spindle interactions after injury may enhance spindle innervation by group II and gamma fibers. Finally, exposure of muscle afferent fibers to NT-3 prior to injury alters axonal responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael D Taylor
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
31
|
Genç B, Özdinler PH, Mendoza AE, Erzurumlu RS. A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol 2004; 2:e403. [PMID: 15550985 PMCID: PMC529315 DOI: 10.1371/journal.pbio.0020403] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 09/23/2004] [Indexed: 12/23/2022] Open
Abstract
Neurotrophin-3 (NT-3) is required for proprioceptive neuron survival. Deletion of the proapoptotic gene Bax in NT-3 knockout mice rescues these neurons and allows for examination of their axon growth in the absence of NT-3 signaling. TrkC-positive peripheral and central axons from dorsal root ganglia follow proper trajectories and arrive in close proximity to their targets but fail to innervate them. Peripherally, muscle spindles are absent and TrkC-positive axons do not enter their target muscles. Centrally, proprioceptive axons branch in ectopic regions of the spinal cord, even crossing the midline. In vitro assays reveal chemoattractant effects of NT-3 on dorsal root ganglion axons. Our results show that survival factor NT-3 acts as a short-distance axon guidance molecule for muscle sensory afferents as they approach their proper targets.
Collapse
Affiliation(s)
- Barış Genç
- 1Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LouisianaUnited States of America
| | - P. Hande Özdinler
- 1Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LouisianaUnited States of America
| | - April E Mendoza
- 1Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LouisianaUnited States of America
| | - Reha S Erzurumlu
- 1Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LouisianaUnited States of America
| |
Collapse
|
32
|
Nelson BR, Claes K, Todd V, Chaverra M, Lefcort F. NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev Biol 2004; 270:322-35. [PMID: 15183717 DOI: 10.1016/j.ydbio.2004.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
We previously identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a subtraction screen designed to identify molecules regulating sensory neurogenesis and differentiation in the chick dorsal root ganglion (DRG). Characterization of NELL2 expression during embryogenesis revealed that NELL2 was specifically expressed during the peak periods of both sensory and motor neuron differentiation, and within the neural crest was restricted to the sensory lineage. We now provide evidence for a function for NELL2 during neuronal development. We report here that NELL2 acts cell autonomously within CNS and PNS progenitors, in vivo, to promote their differentiation into neurons. Additionally, neuron-secreted NELL2 acts paracrinely to stimulate the mitogenesis of adjacent cells within the nascent DRG. These studies implicate dual functions for NELL2 in both the cell autonomous differentiation of neural progenitor cells while simultaneously exerting paracrine proliferative activity.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
33
|
Nielsen KM, Chaverra M, Hapner SJ, Nelson BR, Todd V, Zigmond RE, Lefcort F. PACAP promotes sensory neuron differentiation: blockade by neurotrophic factors. Mol Cell Neurosci 2004; 25:629-41. [PMID: 15080892 DOI: 10.1016/j.mcn.2003.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 01/18/2023] Open
Abstract
Developing neurons encounter a panoply of extracellular signals as they differentiate. A major goal is to identify these extrinsic cues and define the mechanisms by which neurons simultaneously integrate stimulation by multiple factors yet initiate one specific biological response. Factors that are known to exert potent activities in the developing nervous system include the NGF family of neurotrophic factors, ciliary neurotrophic factor (CNTF), and pituitary adenylate cyclase-activating peptide (PACAP). Here we demonstrate that PACAP promotes the differentiation of nascent dorsal root ganglion (DRG) neurons in that it increases both the number of neural-marker-positive cells and axonogenesis without affecting the proliferation of neural progenitor cells. This response is mediated through the PAC1 receptor and requires MAP kinase activation. Moreover, we find that, in the absence of exogenously added PACAP, blockade of the PAC1 receptor inhibits neuronal differentiation. These data coupled with our finding that both PACAP and the PAC1 receptor are expressed during the peak period of neuronal differentiation in the DRG suggest that PACAP functions in vivo to promote the differentiation of nascent sensory neurons. Interestingly, we also demonstrate that the neurotrophic factors NT-3 and CNTF completely block the PACAP-induced neuronal differentiation. This points to the intricate integration of cellular signals by nascent neurons and, to our knowledge, is the first evidence for neurotrophic factor abrogation of a pathway regulated by G-protein-coupled receptors (GPCRs).
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Chick Embryo
- Ciliary Neurotrophic Factor/pharmacology
- Cues
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neuropeptides/antagonists & inhibitors
- Neuropeptides/metabolism
- Neurotrophin 3/metabolism
- Neurotrophin 3/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/antagonists & inhibitors
- Receptors, Pituitary Hormone/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Katherine M Nielsen
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
González-Martínez T, Germanà GP, Monjil DF, Silos-Santiago I, de Carlos F, Germanà G, Cobo J, Vega JA. Absence of Meissner corpuscles in the digital pads of mice lacking functional TrkB. Brain Res 2004; 1002:120-8. [PMID: 14988041 DOI: 10.1016/j.brainres.2004.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/30/2022]
Abstract
The TrkB-expressing sensory neurons seem to be involved in touch and other discriminative sensibilities. Thus, several slowly and rapidly adapting cutaneous mechanoreceptors, as well as muscle spindles, are reduced or absent in the territory of the trigeminal nerve in functionally TrkB-deficient mice. Whether this also occurs in the cutaneous or muscular territories of dorsal root ganglia has not been analyzed. Here we used immunohistochemistry and transmission-electron microscopy to analyze the impact of a mutation in the gene coding for TrkB on Meissner and Pacinian corpuscles, and muscle spindles. The animals were studied at the post-natal days 15 and 25, because at this time all the mechanoreceptors examined are fully developed. Typical Meissner's corpuscles, displaying S-100 protein immunoreactivity, were found in the digital pads of wild-type and TrkB+/- mice whereas they were absent in the TrkB-/- animals. Regarding Pacinian corpuscles, the mutation in the trkB gene does not alter either the immunohistochemical or the ultrastructural characteristics. Finally, in muscle spindles the arrangement of the intrafusal muscle fibers and nerve fibers was unchanged in the mutated animals. Nevertheless, about 10% of muscle spindles showed increased number of the intrafusal cells (between 6 and 12) and were supplied by more than one large myelinic nerve fiber. The present results strongly suggest that TrkB-expressing sensory neurons in dorsal root ganglia, like those of the trigeminal ganglion, are responsible for the development and maintenance of several rapidly adapting cutaneous mechanoreceptors, i.e. Meissner's corpuscles.
Collapse
Affiliation(s)
- Tatiana González-Martínez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, C/ Julián Clavería, s/n, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Honig MG, Camilli SJ, Xue QS. Ectoderm removal prevents cutaneous nerve formation and perturbs sensory axon growth in the chick hindlimb. Dev Biol 2004; 266:27-42. [PMID: 14729476 DOI: 10.1016/j.ydbio.2003.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Target tissues are thought to provide important cues for growing axons, yet there is little direct evidence that they are essential for axonal pathfinding. Here we examined whether target ectoderm is necessary for the formation of cutaneous nerves, and for the normal growth and guidance of cutaneous axons as they first enter the limb plexus. To do this, we removed a patch of ectoderm from the chick hindlimb at various times during early axon outgrowth. We find there is a critical period when cutaneous nerve formation requires target ectoderm. When the ectoderm is absent during this time, axons progress into the limb more slowly and, although a few sensory axons occasionally diverge a short distance from the plexus, they do not form a discrete nerve that travels to the skin. A few days later, when the nerve pattern is mature, axons normally destined for the 'deprived' cutaneous nerve are not segregated appropriately within the plexus. Some cutaneous axons are instead misdirected along an inappropriate cutaneous nerve, while others have seemingly failed to reach their correct target, or a suitable alternative, and died. These results demonstrate that the target ectoderm is necessary for normal sensory axon growth and guidance in the hindlimb.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, The Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
36
|
Abstract
Neurotrophins are a family of growth factors critical for the development and functioning of the nervous system. Although originally identified as neuronal survival factors, neurotrophins elicit many biological effects, ranging from proliferation to synaptic modulation to axonal pathfinding. Recent data indicate that the nature of the signaling cascades activated by neurotrophins, and the biological responses that ensue, are specified not only by the ligand itself but also by the temporal pattern and spatial location of stimulation. Studies on neurotrophin signaling have revealed variations in the Ras/MAP kinase, PI3 kinase, and phospholipase C pathways, which transmit spatial and temporal information. The anatomy of neurons makes them particularly appropriate for studying how the location and tempo of stimulation determine the signal cascades that are activated by receptor tyrosine kinases such as the Trk receptors. These signaling variations may represent a general mechanism eliciting specificity in growth factor responses.
Collapse
Affiliation(s)
- Rosalind A Segal
- Departments of Neurobiology and Pediatric Oncology, Harvard Medical School and Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Avivi C, Goldstein RS. Differing patterns of neurotrophin-receptor expressing neurons allow distinction of the transient Frorieps' ganglia from normal DRG before morphological differences appear. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:49-59. [PMID: 14519493 DOI: 10.1016/s0165-3806(03)00212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Frorieps' ganglia are dorsal root ganglia (DRG) that form and then degenerate during normal embryonic development of amniotes. Their degeneration or survival has been shown to be modulated by modifying expression of Hox-family and other genes involved in pattern formation, and by the mesodermal microenvironment of the cranial somites in which they develop. In ovo application of the neurotrophin NGF partially rescues DRG2 from degeneration. To further examine the potential role of neurotrophins in the life cycle of Frorieps' DRG we have now quantified the numbers of neurons expressing neurotrophin receptors trkA and trkC in avian Frorieps' ganglia (DRG2) and normal cervical DRG (DRG5). We have found that the Frorieps' DRG are different from normal DRG in terms of the numbers of neurons expressing these receptors. trkC-expressing neurons are generally lacking in DRG2, this is the earliest (St 18, E2.5) described difference between DRG2 and normal DRG, preceding morphological differences between these ganglia that appear at St 20. The difference between DRG2 and DRG5 in terms of numbers of trkA-expressing neurons is evident only at later embryonic stages, where DRG2 contains a higher proportion of trkA neurons than normal cervical DRG. The few trkC+ neurons present late in DRG2 development are not concentrated in the VL portion of the ganglion, the zone where trkC+ neurons are generally found in normal DRG. We also find that DRG2 neurons are smaller than those of normal DRG, this is true for both trkA+ and trkC+ populations. These data together therefore suggest that the neurons that survive in the Frorieps' ganglia at later stages belong almost exclusively to the trkA-expressing DM class DRG neurons. We further find that the differences in the populations of trkA/trkC between DRG2 and DRG5 result from signals from the mesodermal microenvironment, since DRG arising in cranial somites transplanted caudally contain few trkC+ neurons and a higher proportion of trkA+ cells than contralateral controls.
Collapse
Affiliation(s)
- Camila Avivi
- Faculty of Life Sciences, Gonda Research Center, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | |
Collapse
|
38
|
Leu M, Bellmunt E, Schwander M, Fariñas I, Brenner HR, Müller U. Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development 2003; 130:2291-301. [PMID: 12702645 DOI: 10.1242/dev.00447] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuregulins and their Erbb receptors have been implicated in neuromuscular synapse formation by regulating gene expression in subsynaptic nuclei. To analyze the function of Erbb2 in this process, we have inactivated the Erbb2 gene in developing muscle fibers by Cre/Lox-mediated gene ablation. Neuromuscular synapses form in the mutant mice, but the synapses are less efficient and contain reduced levels of acetylcholine receptors. Surprisingly, the mutant mice also show proprioceptive defects caused by abnormal muscle spindle development. Sensory Ia afferent neurons establish initial contact with Erbb2-deficient myotubes. However, functional spindles never develop. Taken together, our data suggest that Erbb2 signaling regulates the formation of both neuromuscular synapses and muscle spindles.
Collapse
MESH Headings
- Actins/genetics
- Afferent Pathways/growth & development
- Animals
- Genes, erbB-2
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle Spindles/growth & development
- Muscle Spindles/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/physiology
- Promoter Regions, Genetic
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Signal Transduction
- Synaptic Transmission
Collapse
Affiliation(s)
- Marco Leu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 2003; 38:403-16. [PMID: 12741988 DOI: 10.1016/s0896-6273(03)00261-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To study the role of NT3 in directing axonal projections of proprioceptive dorsal root ganglion (DRG) neurons, NT3(-/-) mice were crossed with mice carrying a targeted deletion of the proapoptotic gene Bax. In Bax(-/-)/NT3(-/-) mice, NT3-dependent neurons survived and expressed the proprioceptive neuronal marker parvalbumin. Initial extension and collateralization of proprioceptive axons into the spinal cord occurred normally, but proprioceptive axons extended only as far as the intermediate spinal cord. This projection defect is similar to the defect in mice lacking the ETS transcription factor ER81. Few if any DRG neurons from Bax(-/-)/NT3(-/-) mice expressed ER81 protein. Expression of a NT3 transgene in muscle restored DRG ER81 expression in NT3(-/-) mice. Finally, addition of NT3 to DRG explant cultures resulted in induction of ER81 protein. Our data indicate that NT3 mediates the formation of proprioceptive afferent-motor neuron connections via regulation of ER81.
Collapse
MESH Headings
- Afferent Pathways/embryology
- Afferent Pathways/growth & development
- Afferent Pathways/metabolism
- Animals
- Animals, Newborn
- Body Patterning/genetics
- Cells, Cultured
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Female
- Fetus
- Ganglia, Spinal/embryology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental/genetics
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Male
- Mice
- Mice, Knockout
- Muscle Spindles/embryology
- Muscle Spindles/growth & development
- Muscle Spindles/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Neurotrophin 3/deficiency
- Neurotrophin 3/genetics
- Proprioception/physiology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-2
- Signal Transduction/genetics
- Spinal Cord/embryology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- bcl-2-Associated X Protein
Collapse
Affiliation(s)
- Tushar D Patel
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Agerman K, Hjerling-Leffler J, Blanchard MP, Scarfone E, Canlon B, Nosrat C, Ernfors P. BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 2003; 130:1479-91. [PMID: 12620975 DOI: 10.1242/dev.00378] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotrophins have multiple functions during peripheral nervous system development such as controlling neuronal survival, target innervation and synaptogenesis. Neurotrophin specificity has been attributed to the selective expression of the Trk tyrosine kinase receptors in different neuronal subpopulations. However, despite overlapping expression of TrkB and TrkC in many sensory ganglia, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) null mutant mice display selective losses in neuronal subpopulations. In the present study we have replaced the coding part of the BDNF gene in mice with that of NT3 (BDNF(NT3/NT3)) to analyse the specificity and selective roles of BDNF and NT3 during development. Analysis of BDNF(NT3/NT3) mice showed striking differences in the ability of NT3 to promote survival, short-range innervation and synaptogenesis in different sensory systems. In the cochlea, specificity is achieved by a tightly controlled spatial and temporal ligand expression. In the vestibular system TrkB or TrkC activation is sufficient to promote vestibular ganglion neuron survival, while TrkB activation is required to promote proper innervation and synaptogenesis. In the gustatory system, NT3 is unable to replace the actions of BDNF possibly because of a temporally selective expression of TrkB in taste neurons. We conclude that there is no general mechanism by which neurotrophin specificity is attained and that specificity is achieved by (i) a tightly controlled spatial and temporal expression of ligands, (ii) different Trk receptors playing distinct roles within the same neuronal subpopulation, or (iii) selective receptor expression in sensory neuron subpopulations.
Collapse
Affiliation(s)
- Karin Agerman
- Unit of Molecular Neurobiology, MBB, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen HH, Hippenmeyer S, Arber S, Frank E. Development of the monosynaptic stretch reflex circuit. Curr Opin Neurobiol 2003; 13:96-102. [PMID: 12593987 DOI: 10.1016/s0959-4388(03)00006-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Significant advances have been made during the past few years in our understanding of how the spinal monosynaptic reflex develops. Transcription factors in the Neurogenin, Runt, ETS, and LIM families control sequential steps of the specification of various subtypes of dorsal root ganglia sensory neurons. The initiation of muscle spindle differentiation requires neuregulin 1, derived from Ia afferent sensory neurons, and signaling through ErbB receptors in intrafusal muscle fibers. Several retrograde signals from the periphery are important for the establishment of late connectivity in the reflex circuit. Finally, neurotrophin 3 released from muscle spindles regulates the strength of sensory-motor connections within the spinal cord postnatally.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- Department of Neurobiology, University of Pittsburgh Medical School, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Previous studies in the chick embryo have shown that sensory neurons fail to innervate muscle in the absence of motor neurons. Instead, motor neuron deletion causes more sensory axons to project to the skin. We used this experimental paradigm to determine when sensory neurons are specified to become proprioceptive afferents. Experimental embryos were treated with either saline or exogenous neurotrophin-3 (NT-3) to promote the survival of proprioceptive afferents. In saline-treated embryos, motor neuron deletion caused an increase in sensory neuron apoptosis on the deleted side, an effect reversed by NT3. Motor neuron deletion also eliminated the sartorious muscle nerve, as previously reported. In NT3-treated embryos, this altered nerve pattern was accompanied by the enlargement of the adjacent cutaneous nerve. These embryos were further analyzed by using immunohistochemistry for trkC (a receptor for NT3) retrograde and transganglionic labeling. Our results show that, following motor neuron deletion, more trkC+ afferents project in cutaneous nerves on the deleted side of NT3-treated embryos. Transganglionic labeling demonstrated that at least some of these neurons made spinal projections that are typical of proprioceptive afferents. These results therefore indicate that the proprioceptive phenotype is specified prior to target innervation and that these neurons can retain their identity despite projecting to inappropriate (cutaneous) targets.
Collapse
Affiliation(s)
- Robert A Oakley
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | |
Collapse
|
43
|
Acosta CG, Fábrega AR, Mascó DH, López HS. A sensory neuron subpopulation with unique sequential survival dependence on nerve growth factor and basic fibroblast growth factor during development. J Neurosci 2001; 21:8873-85. [PMID: 11698599 PMCID: PMC6762266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
We characterized a subpopulation of dorsal root ganglion (DRG) sensory neurons that were previously identified as preferential targets of enkephalins. This group, termed P-neurons after their "pear" shape, sequentially required nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) for survival in vitro during different developmental stages. Embryonic P-neurons required NGF, but not bFGF. NGF continued to promote their survival, although less potently, up to postnatal day 2 (P2). Conversely, at P5, they needed bFGF but not NGF, with either factor having similar effects at P2. This trophic switch was unique to that DRG neuronal group. In addition, neither neurotrophin-3 (NT-3) nor brain-derived neurotrophic factor influenced their survival during embryonic and postnatal stages, respectively. The expression of NGF (Trk-A) and bFGF (flg) receptors paralleled the switch in trophic requirement. No single P-neuron appeared to coexpress both Trk-A and flg. In contrast, all of them coexpressed flg and substance P, providing a specific marker of these cells. Immunosuppression of bFGF in newborn animals greatly reduced their number, suggesting that the factor was required in vivo. bFGF was present in the DRG and spinal cord, as well as in skeletal muscle, the peripheral projection site of P-neurons, as revealed by tracer DiIC(18)3. The lack of requirement of NT-3 for survival and immunoreactivity for the neurofilament of 200 kDa distinguished them from muscle proprioceptors, suggesting that they are likely to be unmyelinated muscle fibers. Collectively, their properties indicate that P-neurons constitute a distinct subpopulation of sensory neurons for which the function may be modulated by enkephalins.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Count
- Cell Survival/drug effects
- Cells, Cultured
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Muscle, Skeletal/innervation
- Nerve Growth Factor/pharmacology
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurotrophin 3/pharmacology
- Patch-Clamp Techniques
- Phenotype
- Rats
- Receptor, trkA/metabolism
- Substance P/biosynthesis
Collapse
Affiliation(s)
- C G Acosta
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-Consejo Nacional de Investigaciones Cientificas y Técnicas, (5000) Córdoba, Argentina
| | | | | | | |
Collapse
|
44
|
Perrin FE, Rathjen FG, Stoeckli ET. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 2001; 30:707-23. [PMID: 11430805 DOI: 10.1016/s0896-6273(01)00315-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.
Collapse
Affiliation(s)
- F E Perrin
- Pharmacenter, University of Basel, CH-4056, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Taylor MD, Vancura R, Patterson CL, Williams JM, Riekhof JT, Wright DE. Postnatal regulation of limb proprioception by muscle-derived neurotrophin-3. J Comp Neurol 2001; 432:244-58. [PMID: 11241389 DOI: 10.1002/cne.1100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate the effects of neurotrophin-3 (NT-3) on postnatal proprioceptive neurons and their targets, transgenic mice were generated that use the myosin light chain 1 (mlc) promoter to overexpress NT-3 in skeletal muscle. Ribonuclease protection assays revealed that NT-3 overexpression in hindlimb skeletal muscle began at embryonic day 14 (E14) and continued throughout adulthood. Overexpression of NT-3 during late embryogenesis resulted in increased numbers of large sensory and small fusimotor axons. Within a week of birth, mlc/NT-3 mice retract their limbs to the torso when lifted by the tail. Footprint analysis revealed that mlc/NT-3 mice had significant abnormalities in their gait compared with wild-types. Beam walking and rotorod analysis confirmed the poor limb control by mlc/NT-3 mice. These locomotive deficits progressively worsened with age and were likely related to the formation of morphologically abnormal muscle spindles. The most common spindle anomaly was the presence of excessive intrafusal bag fibers within individual muscle spindles. To assess the role of NT-3 in recovery from nerve injury, sciatic nerve crushes were performed in young adult mice. Two days after injury, mlc/NT-3 mice displayed significantly improved sciatic functional indexes and a significant increase in muscle spindles that remained associated with axons. The latter finding suggests that excess NT-3 in muscle may retard the degeneration of proprioceptive axons after nerve crush. Long-term survival after nerve injury in mlc/NT-3 mice did not induce further changes in spindle number or morphology. These findings demonstrate that, in addition to promoting embryonic proprioceptive neuron survival, postnatal overexpression of NT-3 in muscle leads to abnormal spindle formation and deficits in locomotive control. However, our results also show that NT-3 may be therapeutic for proprioceptive axons immediately after nerve injury by delaying axon degeneration.
Collapse
Affiliation(s)
- M D Taylor
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
46
|
Carlsten JA, Kothary R, Wright DE. Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival. J Comp Neurol 2001; 432:155-68. [PMID: 11241383 DOI: 10.1002/cne.1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated the fate of different neurotrophin-responsive subpopulations of dorsal root ganglion neurons in dystonia musculorum (dt) mice. These mice have a null mutation in the cytoskeletal linker protein, dystonin. Dystonin is expressed by all sensory neurons and cross links actin filaments, intermediate filaments, and microtubules. The dt mice undergo massive sensory neurodegeneration postnatally and die at around 4 weeks of age. We assessed the surviving and degenerating neuronal populations by comparing the dorsal root ganglion (DRG) neurons and central and peripheral projections in dt mice and wildtype mice. Large, neurofilament-H-positive neurons, many of which are muscle afferents and are neurotrophin-3 (NT-3)-responsive, were severely decreased in number in dt DRGs. The loss of muscle afferents was correlated with a degeneration of muscle spindles in skeletal muscle. Nerve growth factor (NGF)-responsive populations, which were visualized using calcitonin gene-related peptide and p75, appeared qualitatively normal in the lumbar spinal cord, DRG, and hindlimb skin. In contrast, glial cell line-derived neurotrophic factor (GDNF)-responsive populations, which were visualized using the isolectin B-4 and thiamine monophosphatase, were severely diminished in the lumbar spinal cord, DRG, and hindlimb skin. Analysis of NT-3, NGF, and GDNF mRNA levels using semiquantitative reverse transcriptase-polymerase chain reaction revealed normal trophin synthesis in the peripheral targets of dt mice, arguing against decreased trophic synthesis as a possible cause of neuronal degeneration. Thus, the absence of dystonin results in the selective survival of NGF-responsive neurons and the postnatal degeneration of many NT-3- and GDNF-responsive neurons. Our results reveal that the loss of this ubiquitously expressed cytoskeletal linker has diverse effects on sensory subpopulations. Moreover, we show that dystonin is critical for the maintenance of certain DRG neurons, and its function may be related to neurotrophic support.
Collapse
Affiliation(s)
- J A Carlsten
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
47
|
Karlsson M, Mayordomo R, Reichardt LF, Catsicas S, Karten HJ, Hallböök F. Nerve growth factor is expressed by postmitotic avian retinal horizontal cells and supports their survival during development in an autocrine mode of action. Development 2001; 128:471-9. [PMID: 11171331 PMCID: PMC2710126 DOI: 10.1242/dev.128.4.471] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell death in the developing retina is regulated, but so far little is known about what factors regulate the cell death. Several neurotrophic factors and receptors, including the neurotrophins and Trk receptors, are expressed during the critical time. We have studied the developing avian retina with respect to the role of nerve growth factor (NGF) in these processes. Our starting point for the work was that NGF and its receptor TrkA are expressed in a partially overlapping pattern in the inner nuclear layer of the developing retina. Our results show that TrkA and NGF-expressing cells are postmitotic. The first NGF-expressing cells were found on the vitreal side of the central region of E5.5-E6 retina. This pattern changed and NGF-expressing cells identified as horizontal cells were later confined to the external inner nuclear layer. We show that these horizontal cells co-express TrkA and NGF, unlike a subpopulation of amacrine cells that only expresses TrkA. In contrast to the horizontal cells, which survive, the majority of the TrkA-expressing amacrine cells die during a period of cell death in the inner nuclear layer. Intraocular injections of NGF protein rescued the dying amacrine cells and injection of antisense oligonucleotides for NGF that block its synthesis, caused death among the TrkA-expressing horizontal cells, which normally would survive. Our results suggest that NGF supports the survival of TrkA expressing avian horizontal cells in an autocrine mode of action in the retina of E10-E12 chicks. The cells co-express TrkA and NGF and the role for NGF is to maintain the TrkA-expressing horizontal cells. The TrkA-expressing amacrine cells are not supported by NGF and subsequently die. In addition to the effect on survival, our results suggest that NGF plays a role in horizontal cell plasticity.
Collapse
Affiliation(s)
- Miriam Karlsson
- Department of Neuroscience, Unit of Developmental Neuroscience, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Raquel Mayordomo
- Department of Neuroscience, Unit of Developmental Neuroscience, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | - Stefan Catsicas
- IBCM, Medical Faculty, University of Lausanne, Lausanne, Switzerland
| | - Harvey J. Karten
- Department of Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Finn Hallböök
- Department of Neuroscience, Unit of Developmental Neuroscience, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
48
|
Rifkin JT, Todd VJ, Anderson LW, Lefcort F. Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev Biol 2000; 227:465-80. [PMID: 11071767 DOI: 10.1006/dbio.2000.9841] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To identify potential functions for neurotrophins during sensory neuron genesis and differentiation, we determined the temporal and spatial protein expression patterns of neurotrophin receptors throughout the process of sensory neurogenesis in the dorsal root ganglia (DRG). We show that neurotrophin receptors are expressed early, being first detected on subsets of migrating neural crest cells, and that trkC is among the earliest markers of neural lineage specification. In the immature DRG, we find that both trkC and p75(NTR) are expressed on subsets of dividing progenitor cells in vivo. Furthermore, our data directly reveal distinct patterns of trk receptor expression by individual sensory neurons from the time of their inception with all early arising cells initially being trkC(+), some subsets of whom also coexpress either trkA or trkB or both. As sensory neurons innervate their targets and establish their mature identities, the spectrum of trk receptors expressed by individual neurons is altered. The stereotyped trk receptor expression profiles identified here may potentially correspond to distinct lineages of sensory neurons. These data, in conjunction with other studies, argue for multiple functions for neurotrophins during the process of sensory neuron differentiation, including effects on both neural crest and DRG mitotically active progenitor cells, in addition to possibly influencing the establishment of sensory neuron identity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- Cell Differentiation
- Chick Embryo
- DNA Primers/genetics
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Mitosis
- Neural Crest/cytology
- Neural Crest/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- J T Rifkin
- Biotech Services Group, 1700 Rockville Pike, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
49
|
Ibáñez CF. Neurotrophic factors: versatile signals for cell-cell communication in the nervous system. Results Probl Cell Differ 2000; 30:163-88. [PMID: 10857189 DOI: 10.1007/978-3-540-48002-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
50
|
Oakley RA, Lefcort FB, Plouffe P, Ritter A, Frank E. Neurotrophin-3 promotes the survival of a limited subpopulation of cutaneous sensory neurons. Dev Biol 2000; 224:415-27. [PMID: 10926777 DOI: 10.1006/dbio.2000.9804] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the chick embryo, exogenous neurotrophin-3 (NT3) is sufficient to promote the differentiation of proprioceptive afferents even in the absence of limb muscle targets. To determine if NT3 can promote the differentiation of this phenotype in afferents with cutaneous targets, we analyzed the effects of chronic NT3 on cutaneous and muscle sensory neurons that express trkC, a receptor for NT3. In normal embryos, retrograde labeling and immunohistochemistry showed that about 75% of large-diameter muscle afferents express trkC, whereas only about 7% of large-diameter cutaneous afferents express this protein. After chronic treatment with NT3 during the cell death period, both populations of trkC(+) neurons were increased approximately twofold. Because this treatment is known to block cell death in sensory neurons, these results indicate that NT3 can promote the survival of both proprioceptive afferents and cutaneous afferents. To examine the phenotype of the cutaneous afferents rescued by NT3, we analyzed their projections and connections using transganglionic labeling and electrophysiological recording. The results indicate that exogenous NT3 neither altered the pattern of spinal projections nor caused cutaneous afferents to form monosynaptic connections with motor neurons. These results demonstrate that selective cell death does not contribute to the modality-specific pattern of spinal innervation and suggest that proprioceptive afferents may innervate muscle selectively.
Collapse
Affiliation(s)
- R A Oakley
- Department of Neurobiology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|