1
|
Carretero VJ, Álvarez-Merz I, Hernández-Campano J, Kirov SA, Hernández-Guijo JM. Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage. Neural Regen Res 2025; 20:2454-2463. [PMID: 39314160 PMCID: PMC11801293 DOI: 10.4103/nrr.nrr-d-24-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The involvement of the excitatory amino acids glutamate and aspartate in cerebral ischemia and excitotoxicity is well-documented. Nevertheless, the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied. The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra. Our findings indicated that the reversible loss of field excitatory postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids (L-alanine, glycine, L-glutamine, and L-serine) at their plasma concentrations. These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia, along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors. Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia. It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels, leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation. Thus, previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury. Understanding these pathways could highlight new therapeutic targets to mitigate brain injury.
Collapse
Affiliation(s)
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jorge Hernández-Campano
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
| | - Sergei A. Kirov
- Department of Neuroscience and Regenerative Medicine & Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, School of Medicine, Univ. Autónoma de Madrid, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Neurobiology-Research Service, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Ren ZL, Lan X, Cheng JL, Zheng YX, Chen CA, Liu Y, He YH, Han JH, Wang QG, Cheng FF, Li CX, Wang XQ. Astrocyte-neuron metabolic crosstalk in ischaemic stroke. Neurochem Int 2025; 185:105954. [PMID: 39988284 DOI: 10.1016/j.neuint.2025.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Ischemic stroke (IS) is caused by temporary or permanent obstruction of the brain's blood supply. The disruption in glucose and oxygen delivery that results from the drop in blood flow impairs energy metabolism. A significant pathological feature of IS impaired energy metabolism. Astrocytes, as the most prevalent glial cells in the brain, sit in between neurons and the microvasculature. By taking advantage of their special anatomical location, they play a crucial part in regulating cerebral blood flow (CBF) and metabolism. Astrocytes can withstand hypoxic and ischemic conditions better than neurons do. Additionally, astrocytes are essential for maintaining the metabolism and function of neurons. Therefore, the "neurocentric" perspective on neuroenergetics is gradually giving way to a more comprehensive perspective that takes into account metabolic interaction between astrocytes and neurons. Since neurons in the core region of the infarct are unable to undergo oxidative metabolism, the focus of attention in this review is on neurons in the peri-infarct region. We'll go over the metabolic crosstalk of astrocytes and neurons during the acute phase of IS using three different types of metabolites: lactate, fatty acids (FAs), and amino acids, as well as the mitochondria. After IS, astrocytes in the peri-infarct zone can produce lactate, ketone bodies (KBs), glutamine (Gln), and l-serine, shuttling these metabolites, along with mitochondria, to neurons. This process helps maintain the energy requirements of neurons, preserves their redox state, and regulates neurotransmitter receptor activity.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Lin Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Ai Chen
- Beijing Chinese Medicine Hospital, Capital Medical University, Beijing, 100010, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Hui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Hua Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Brookshier A, Lyden P. Differential vulnerability among cell types in the neurovascular unit: Description and mechanisms. J Cereb Blood Flow Metab 2025; 45:3-12. [PMID: 39520113 PMCID: PMC11563522 DOI: 10.1177/0271678x241299960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Currently, successful preclinical cerebroprotective agents fail to translate effectively into clinical practice suggesting the need for a comprehensive evaluation of all aspects of brain function. Selective vulnerability refers to the specific regional response of the brain following global ischemia, with observed patterns of vulnerability attributed to the distribution of neuronal subtypes and the functions of respective brain regions. Conversely, the concept of differential vulnerability pertains to the cell-type-specific reactions to cerebral ischemia, dictated by the biological characteristics of individual cells. This review aims to explore these vulnerability hypotheses and elucidate potential underlying cellular mechanisms.
Collapse
Affiliation(s)
- Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, USA
| |
Collapse
|
4
|
Verkhratsky A, Sofroniew MV. Neuroglia in stroke. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:101-111. [PMID: 40148039 DOI: 10.1016/b978-0-443-19102-2.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Stroke, ischemic or hemorrhagic, triggers a complex and coordinated glial response, which, to a large extent, defines the progression and outcome of this focal damage of the nervous tissue. Massive cell death in the infarction core results in a release of damage-associated molecular patterns, which, together with blood-borne factors entering the brain through either ruptured vessels or through compromised blood-brain barrier, trigger reactive gliosis. Microglia are the first to migrate toward the lesion, proliferate, and phagocytose cellular debris in and around the infarct core. Reactive astrogliosis occurs around the margins of the infarct core and is characterized by astrocytic proliferation, morphologic remodeling with loss of territorial domain segregation, and transcriptional reprogramming into wound repair astrocytes that form a periinfarct border that protects the healthy tissue and assists postlesional regeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Colombo E, Bacigaluppi M, Bartoccetti M, Triolo D, Bassani C, Bergamaschi A, Descamps HC, Gullotta GS, Henley M, Piccoli M, Anastasia L, Pitt D, Newcombe J, Martino G, Farina C. Astrocyte TrkB promotes brain injury and edema formation in ischemic stroke. Neurobiol Dis 2024; 201:106670. [PMID: 39303814 DOI: 10.1016/j.nbd.2024.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.
Collapse
Affiliation(s)
- Emanuela Colombo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Michela Bartoccetti
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Triolo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hélène C Descamps
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Henley
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- University Vita-Salute San Raffaele, Milan, Italy; Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Li S, Zhang L, Lin J, Su A, Liu X, Zhang J, Xian X, Hu Y, Li W, Sun S, Zhang M. LncRNA BIRF Promotes Brain Ischemic Tolerance Induced By Cerebral Ischemic Preconditioning Through Upregulating GLT-1 via Sponging miR-330-5p. Mol Neurobiol 2022; 59:3996-4014. [PMID: 35451738 PMCID: PMC9167204 DOI: 10.1007/s12035-022-02841-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 10/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important regulatory role in various diseases. However, the role of lncRNAs in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIPC) is still unknown. The lncRNA profile of rat cortical astrocytes pretreated with ischemic preconditioning was analyzed by high-throughput sequencing. The results of Cell-Counting Kit-8 (CCK-8) assay showed that a novel lncRNA, NONRATT009133.2, which we referred to as brain ischemia-related factor (BIRF), was highly correlated with BIT. Through bioinformatics analysis, we predicted that BIRF, miR-330-5p, and GLT-1 (also named Slc1a2) might constitute a ceRNA regulatory network in the induction of BIT. We found that BIRF was upregulated by CIPC, which promoted GLT-1 expression and BIT induction. BIRF could directly bind to miR-330-5p. Furthermore, miR-330-5p directly targeted GLT-1, and miR-330-5p inhibited both GLT-1 expression and BIT induction in vitro and in vivo. Moreover, BIRF acts as a molecular sponge to competitively bind to miR-330-5p with GLT-1 mRNA, while the miR-330-5p inhibitor reversed all the effects of BIRF siRNA on GLT-1 expression and neuronal vitality. Taken together, our results demonstrate the important roles of the BIRF/miR-330-5p/GLT-1 axis in the induction of BIT by CIPC. BIRF may be a potentially effective therapeutic strategy against stroke injury.
Collapse
Affiliation(s)
- Shichao Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Lingyan Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jiajie Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China
| | - Achou Su
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiyun Liu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jingge Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Xian
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yuyan Hu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shaoguang Sun
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China.
| | - Min Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
Kenanoglu S, Kandemir N, Akalin H, Gokce N, Gol MF, Gultekin M, Koseoglu E, Mirza M, Dundar M. Evaluation of Utilizing the Distinct Genes as Predictive Biomarkers in Late-Onset Alzheimer's Disease. Glob Med Genet 2022; 9:110-117. [PMID: 35707770 PMCID: PMC9192179 DOI: 10.1055/s-0042-1743570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by a devastating decline in cognitive activities among all types of dementia, and it severely affects the quality of life. Late-onset AD (LOAD) occurs after the age of 65 years and develops sporadically. Although aging comes first along the main risk factors underlying LOAD, disease-causing susceptibility genes have been associated with disease pathogenesis. In our study, we included the genes
PARP1
,
POLB
,
HTRA2
,
SLC1A2
,
HS1BP3
, and
DRD3
to be investigated in LOAD patients based on their expression levels. Within this framework, we aimed to determine the possible functions of these genes in the pathophysiology of the disease. We investigated whether the utilization of these genes as biomarkers in the early diagnosis of LOAD may help the treatment scheme to be applied in the clinic. We involved 50 individuals in the study and collected peripheral blood samples from the patients and control groups for molecular genetic analysis. Subsequently, RNA was extracted from the peripheral blood samples, and expression analyzes were performed using qualitative reverse transcription polymerase chain reaction. The results obtained were evaluated by using proper statistical methods. Our results demonstrated that there was no difference between patient and control groups in terms of
HTRA2
,
DRD3
,
HS1BP3
, and
POLB
genes. The expression levels of the
SLC1A2
and
PARP1
genes were significantly lower in the patient group compared with the control group. In conclusion, we presume that the
PARP1
and
SLC1A2
genes can be utilized as molecular biomarkers for LOAD.
Collapse
Affiliation(s)
- Sercan Kenanoglu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nefise Kandemir
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet F. Gol
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Gultekin
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Sulbactam improves binding property and uptake capacity of glutamate transporter-1 and decreases glutamate concentration in the CA1 region of hippocampus of global brain ischemic rats. Amino Acids 2021; 53:1649-1661. [PMID: 34716803 DOI: 10.1007/s00726-021-03088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Glutamate transporter-1 (GLT-1) removes most glutamate in the synaptic cleft. Sulbactam confers neuronal protection against ischemic insults in the hippocampal CA1 region accompanied by the upregulation of GLT-1 expression in rats. The present study further investigates the effect of sulbactam on the binding property and uptake capacity of GLT-1 for glutamate, and the change in extracellular glutamate concentration in the hippocampal CA1 region of rats with global brain ischemia. The binding property and uptake capacity of GLT-1 were measured using a radioligand binding and uptake assay, respectively, with L-3H-glutamate. The extracellular glutamate concentration was detected using microdialysis and high-performance liquid chromatography-mass spectrometry. Neuropathological evaluation was performed based on thionin staining. It was shown that sulbactam pre-treatment changed GLT-1 binding property, including increased Bmax and decreased Kd values, increased GLT-1 uptake capacity for glutamate, and inhibited the elevation of extracellular glutamate concentration in rats with global cerebral ischemia. These effects of sulbactam were accompanied by its neuronal protection on the hippocampal CA1 neurons against delayed neuronal death resulted from ischemic insult. Furthermore, administration of GLT-1 antisense oligodeoxynucleotides, which inhibited the expression of GLT-1, blocked the aforementioned sulbactam-related effects, which suggested that GLT-1 upregulation mediated the above effect although other mechanisms independent of the upregulation of GLT-1 expression could not be excluded. It could be concluded that sulbactam improves the binding property and uptake capacity of GLT-1 for glutamate and then reduces the glutamate concentration and excitotoxicity during global cerebral ischemia, which contributes to the neuroprotection of sulbactam against brain ischemia.
Collapse
|
12
|
Extracellular Glutamate Concentration Increases Linearly in Proportion to Decreases in Residual Cerebral Blood Flow After the Loss of Membrane Potential in a Rat Model of Ischemia. J Neurosurg Anesthesiol 2021; 33:356-362. [PMID: 31834249 DOI: 10.1097/ana.0000000000000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Brain ischemia due to disruption of cerebral blood flow (CBF) results in increases in extracellular glutamate concentration and neuronal cell damage. However, the impact of CBF on glutamate dynamics after the loss of the membrane potential remains unknown. MATERIALS AND METHODS To determine this impact, we measured extracellular potential, CBF, and extracellular glutamate concentration in the parietal cortex in male Sprague-Dawley rats (n=21). CBF was reduced by bilateral occlusion of the common carotid arteries and exsanguination until loss of extracellular membrane potential was observed (low-flow group), or until CBF was further reduced by 5% to 10% of preischemia levels (severe-low-flow group). CBF was promptly restored 10 minutes after the loss of membrane potential. Histologic outcomes were evaluated 5 days later. RESULTS Extracellular glutamate concentration in the low-flow group was significantly lower than that in the severe-low-flow group. Moreover, increases in extracellular glutamate concentration exhibited a linear relationship with decreases in CBF after the loss of membrane potential in the severe-low-flow group, and the percentage of damaged neurons exhibited a dose-response relationship with the extracellular glutamate concentration. The extracellular glutamate concentration required to cause 50% neuronal damage was estimated to be 387 μmol/L, at 8.7% of preischemia CBF. Regression analyses revealed that extracellular glutamate concentration increased by 21 μmol/L with each 1% decrease in residual CBF and that the percentage of damaged neurons increased by 2.6%. CONCLUSION Our results indicate that residual CBF is an important factor that determines the extracellular glutamate concentration after the loss of membrane potential, and residual CBF would be one of the important determinants of neuronal cell prognosis.
Collapse
|
13
|
Cheng H, Pamenter ME. Naked mole-rat brain mitochondria tolerate in vitro ischaemia. J Physiol 2021; 599:4671-4685. [PMID: 34472099 DOI: 10.1113/jp281942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Naked mole-rats (NMRs; Heterocephalus glaber) are among the most hypoxia-tolerant mammals. There is evidence that the NMR brain tolerates in vitro hypoxia and NMR brain mitochondria exhibit functional plasticity following in vivo hypoxia; however, if and how these organelles tolerate ischaemia and how ischaemic stress impacts mitochondrial energetics and redox regulation is entirely unknown. We hypothesized that mitochondria fundamentally contribute to in vitro ischaemia resistance in the NMR brain. To test this, we treated NMR and CD-1 mouse cortical brain sheets with an in vitro ischaemic mimic and evaluated mitochondrial respiration capacity and redox regulation following 15 or 30 min of ischaemia or ischaemia/reperfusion (I/R). We found that, relative to mice, the NMR brain largely retains mitochondrial function and redox balance post-ischaemia and I/R. Specifically: (i) ischaemia reduced complex I and II-linked respiration ∼50-70% in mice, vs. ∼20-40% in NMR brain, (ii) NMR but not mouse brain maintained relatively steady respiration control ratios and robust mitochondrial membrane integrity, (iii) electron leakage post-ischaemia was lesser in NMR than mouse brain and NMR brain retained higher coupling efficiency, and (iv) free radical generation during and following ischaemia and I/R was lower from NMR brains than mice. Taken together, our results indicate that NMR brain mitochondria are more tolerant of ischaemia and I/R than mice and retain respiratory capacity while avoiding redox derangements. Overall, these findings support the hypothesis that hypoxia-tolerant NMR brain is also ischaemia-tolerant and suggest that NMRs may be a natural model of ischaemia tolerance in which to investigate evolutionarily derived solutions to ischaemic pathology. KEY POINTS: Ischaemia is highly deleterious to the mammalian brain and this damage is largely mediated by mitochondrial dysfunction. Naked mole-rats are among the most hypoxia-tolerant mammals and their brain tolerates ischaemia ex vivo, but the impact of ischaemia on mitochondrial function is unknown. Naked mole-rat but not mouse brain mitochondria retain respiratory capacity and membrane integrity following ischaemia or ischaemia/reperfusion. Differences in free radical management and respiratory pathway control between species may mediate this tolerance. These results help us understand how natural models of hypoxia tolerance also tolerate ischaemia in the brain.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Álvarez-Merz I, Luengo JG, Muñoz MD, Hernández-Guijo JM, Solís JM. Hypoxia-induced depression of synaptic transmission becomes irreversible by intracellular accumulation of non-excitatory amino acids. Neuropharmacology 2021; 190:108557. [PMID: 33848510 DOI: 10.1016/j.neuropharm.2021.108557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
The intracellular accumulation of some amino acids (AAs), mainly glutamine, can contribute to brain edema observed during liver failure. We recently demonstrated that individual applications of high concentrations (10 mM) of some non-excitatory AAs increase the electrical resistance of hippocampal slices, indicating cell swelling. Therefore, we pondered whether an AA mixture's application might cause cell swelling at a physiological concentration range. In rat hippocampal slices, we carried out extra- and intracellular electrophysiological recordings and AAs analysis to address this question. We applied a mixture of 19 AAs at their plasmatic concentrations (Plasma solution: Ala, Gly, Gln, His, Ser, Tau, Thr, Arg, Leu, Met, Pro, Val, Asn, Cys, Phe, Ile, Lys, Tyr, and Trp). This solution was afterward divided into two according to the individual AAs at 10 mM concentration inducing synaptic potentiation (Plasma1, containing the first seven AAs of Plasma) or not (Plasma2, with the remaining AAs). Plasma application increased evoked field potentials requiring extracellular chloride. This effect was mimicked by the Plasma1 but not the Plasma2 solution. Plasma1-induced potentiation was independent of changes in release probability, basic electrophysiological membrane properties, and NMDAR activation. AAs in Plasma1 act cooperatively to accumulate intracellularly and to induce synaptic potentiation. In the presence of Plasma1, the reversible synaptic depression caused by a 40-min hypoxia period turned into an irreversible disappearance of synaptic potentials through an NMDAR-dependent mechanism. The presence of a system A transport inhibitor did not block Plasma1-mediated effects. These results indicate that cell swelling, induced by the accumulation of non-excitotoxic AAs through unidentified transporters, might foster deleterious effects produced by hypoxia-ischemia episodes.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier G Luengo
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain; Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María-Dolores Muñoz
- Unidad de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | - Jesús M Hernández-Guijo
- Departamento de Farmacología y Terapeútica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, Avda. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - José M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
15
|
Hammad AM, Alasmari F, Sari Y. Effect of Modulation of the Astrocytic Glutamate Transporters' Expression on Cocaine-Induced Reinstatement in Male P Rats Exposed to Ethanol. Alcohol Alcohol 2021; 56:210-219. [PMID: 33063090 PMCID: PMC11004936 DOI: 10.1093/alcalc/agaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
AIM Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that β-lactam antibiotics restored their expression. METHODS In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
16
|
Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M, Pinto A. Molecular Biology of Atherosclerotic Ischemic Strokes. Int J Mol Sci 2020; 21:9372. [PMID: 33317034 PMCID: PMC7763838 DOI: 10.3390/ijms21249372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (M.G.P.); (M.C.V.); (F.C.); (M.D.); (A.P.)
| | | | | | | | | | | |
Collapse
|
17
|
Xian XH, Gao JX, Qi J, Fan SJ, Zhang M, Li WB. Activation of p38 MAPK participates in the sulbactam-induced cerebral ischemic tolerance mediated by glial glutamate transporter-1 upregulation in rats. Sci Rep 2020; 10:20601. [PMID: 33244020 PMCID: PMC7692545 DOI: 10.1038/s41598-020-77583-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous studies have shown that sulbactam can play a neuroprotection role in hippocampal neurons by upregulating the expression and function of glial glutamate transporter-1 (GLT-1) during ischemic insult. Here, using rat global cerebral ischemia model, we studied in vivo the role of p38 mitogen-activated protein kinases (MAPK) in the sulbactam-induced GLT-1 upregulation and neuroprotection against ischemia. The hippocampal CA1 field was selected as observing target. The expressions of phosphorylated-p38 MAPK and GLT-1 were assayed with western blot analysis and immunohistochemistry. The condition of delayed neuronal death (DND) was assayed with neuropathological evaluation under thionin staining. It was shown that administration of sulbactam protected CA1 hippocampal neurons against ischemic insult accompanied with significantly upregulation in the expressions of phosphorylated-p38 MAPK and GLT-1. The time course analysis showed that sulbactam activated p38 MAPK before the GLT-1 upregulation in either normal or global cerebral ischemic rats. Furthermore, inhibiting p38 MAPK activation by SB203580 blocked the GLT-1 upregulation and neuroprotection induced by sulbactam. The above results suggested that p38 MAPK, at least partly, participated in the sulbactam-induced brain tolerance to ischemia mediated by GLT-1 upregulation in rats.
Collapse
Affiliation(s)
- Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Jun-Xia Gao
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Jie Qi
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Shu-Juan Fan
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China. .,Neuroscience Research Center of Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China. .,Neuroscience Research Center of Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
18
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
19
|
Aizawa H, Sun W, Sugiyama K, Itou Y, Aida T, Cui W, Toyoda S, Terai H, Yanagisawa M, Tanaka K. Glial glutamate transporter GLT-1 determines susceptibility to spreading depression in the mouse cerebral cortex. Glia 2020; 68:2631-2642. [PMID: 32585762 DOI: 10.1002/glia.23874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Cortical spreading depression (CSD) is a pathological neural excitation that underlies migraine pathophysiology. Since glutamate receptor antagonists impair CSD propagation, susceptibility to CSD might be determined by any of the neuronal (excitatory amino acid carrier 1 [EAAC1]) and glial (GLutamate ASpartate Transporter [GLAST] and glial glutamate transporter 1 [GLT-1]) glutamate transporters, which are responsible for clearing extracellular glutamate. To investigate this hypothesis, we performed electrophysiological, hemodynamic, and electrochemical analyses using EAAC1- (EAAC1 KO), GLAST- (GLAST KO), and conditional GLT1-1-knockout mice (GLT-1 cKO) to assess altered susceptibility to CSD. Despite the incomplete deletion of the gene in the cerebral cortex, GLT-1 cKO mice exhibited significant reduction of GLT-1 protein in the brain without apparent alteration of the cytoarchitecture in the cerebral cortex. Physiological analysis revealed that GLT-1 cKO showed enhanced susceptibility to CSD elicited by chemical stimulation with increased CSD frequency and velocity compared to GLT-1 control. In contrast, the germ-line EAAC1 and GLAST KOs showed no such effect. Intriguingly, both field potential and cerebral blood flow showed faster dynamics with narrower CSD than the controls. An enzyme-based biosensor revealed more rapid accumulation of glutamate in the extracellular space in GLT-1 cKO mice during the early phase of CSD than in GLT-1 control, resulting in an increased susceptibility to CSD. These results provided the first evidence for a novel role of GLT-1 in determining susceptibility to CSD.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Weinan Sun
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaori Sugiyama
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiko Itou
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanpeng Cui
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Saori Toyoda
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhi Terai
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michiko Yanagisawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
20
|
Sakata K, Kawano G, Suda M, Yokochi T, Yae Y, Imagi T, Akita Y, Ohbu K, Matsuishi T. Determinants of outcomes for acute encephalopathy with reduced subcortical diffusion. Sci Rep 2020; 10:9134. [PMID: 32499614 PMCID: PMC7272444 DOI: 10.1038/s41598-020-66167-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 05/14/2020] [Indexed: 11/09/2022] Open
Abstract
Acute encephalopathy with reduced subcortical diffusion (AED), characterised by seizure onset and widespread reduced apparent diffusion coefficient in the cortex/subcortical white matter, is one of the most common acute encephalopathies in children in East Asia. This 14-year single-centre retrospective study on 34 patients with AED showed that therapeutic hypothermia was used for patients with more severe consciousness disturbance after the first seizure or second phase initiation, extrapolating from neonatal hypoxic encephalopathy and adult post-cardiac arrest syndrome. The basal ganglia/thalamus lesions and the Tada score were the poor outcome determinants in the multivariate analysis. The correlation between the worse outcomes and the duration from the first seizure to the initiation of therapeutic hypothermia was observed only in the patients with AED cooled before the second phase. This correlation was not observed in the overall AED population. There was a moderate negative association between the worse outcomes and the duration between the first seizure and the second phase. Therefore, the basal ganglia/thalamus lesions and the Tada score were the outcome determinants for patients with AED. Further investigation is required to examine the efficacy of therapeutic hypothermia in this population while considering the timing of the therapeutic hypothermia initiation and the second phase.
Collapse
Affiliation(s)
- Kensuke Sakata
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Go Kawano
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan.
| | - Masao Suda
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Takaoki Yokochi
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Yukako Yae
- Department of Paediatrics, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| | - Toru Imagi
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Yukihiro Akita
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Keizo Ohbu
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| | - Toyojiro Matsuishi
- Department of Paediatrics, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan.,Research Centre for Children and Research Centre for Rett Syndrome, St Mary's Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka, 830-8543, Japan
| |
Collapse
|
21
|
Althobaiti YS, Almalki A, Alsaab H, Alsanie W, Gaber A, Alhadidi Q, Hardy AMG, Nasr A, Alzahrani O, Stary CM, Shah ZA. Pregabalin: Potential for Addiction and a Possible Glutamatergic Mechanism. Sci Rep 2019; 9:15136. [PMID: 31641170 PMCID: PMC6805907 DOI: 10.1038/s41598-019-51556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Drug addiction remains a prevalent and fatal disease worldwide that carries significant social and economic impacts. Recent reports suggest illicit pregabalin (Lyrica) use may be increasing among youth, however the addictive potential of pregabalin has not been well established. Drug seeking behavior and chronic drug use are associated with deficits in glutamate clearance and activation of postsynaptic glutamatergic receptors. In the current study, we investigated the abuse potential of pregabalin using conditioned place preference (CPP) paradigm. Different doses of pregabalin (30, 60, 90, and 120 mg/kg) were used to assess the seeking behavior in mice. Glutamate homeostasis is maintained by glutamate transporter type-1 (GLT-1), which plays a vital role in clearing the released glutamate from synapses and drug seeking behavior. Therefore, we investigated the role of glutamate in pregabalin-seeking behavior with ceftriaxone (CEF), a potent GLT-1 upregulator. Mice treated with pregabalin 60 and 90 mg/kg doses demonstrated drug seeking-like behavior, which was significantly blocked by CEF pretreatment. These results suggest that pregabalin-induced CPP was successfully modulated by CEF which could serve as a lead compound for developing treatment for pregabalin abuse.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia. .,Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.
| | - Atiah Almalki
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutical chemistry, Taif, Saudi Arabia
| | - Hashem Alsaab
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Taif, Saudi Arabia
| | - Walaa Alsanie
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Applied Medical Sciences, Department of Clinical Laboratories Sciences, Taif, Saudi Arabia
| | - Ahmed Gaber
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Sciences, Department of Biology, Taif, Saudi Arabia
| | - Qasim Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Ana Maria Gregio Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, OH, USA
| | - Abdulrahman Nasr
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Omar Alzahrani
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
22
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Huang WY, Jiang C, Ye HB, Jiao JT, Cheng C, Huang J, Liu J, Zhang R, Shao JF. miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Res Bull 2019; 149:231-239. [PMID: 31004734 DOI: 10.1016/j.brainresbull.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.
Collapse
Affiliation(s)
- Wei-Yi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jian-Tong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jun-Fei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
24
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
25
|
Yamaguchi S, Hamabe J, Horie N, Kishikawa T, Yagi N, Suyama K. A Case of Rapid Malignant Brain Swelling Subacutely After Reperfusion Therapy for Internal Carotid Artery Occlusion. World Neurosurg 2018; 118:311-315. [PMID: 30055370 DOI: 10.1016/j.wneu.2018.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Severe complications after reperfusion therapy for acute major vessel occlusion are not well described. We present an extremely rare case of a patient with rapid malignant brain swelling subacutely after acute ischemic stroke. CASE DESCRIPTION An 84-year-old man underwent reperfusion therapy for acute left internal carotid artery occlusion; complete reperfusion was achieved. Although magnetic resonance imaging on postoperative day 1 revealed a small hemorrhagic infarction and subarachnoid hemorrhage unrelated to a left middle cerebral artery aneurysm in the left frontal lobe, neurologic deficits resolved completely. On postoperative day 5, the patient developed a fever and sudden disorder of consciousness with right hemiparesis. Urosepsis was diagnosed, and computed tomography revealed massive hemorrhagic infarction in the left frontal lobe and diffuse subarachnoid hemorrhage. Emergent hematoma evacuation and clipping were performed. Although the aneurysm was unruptured, brain swelling was severe despite a patent middle cerebral artery. Computed tomography performed immediately postoperatively (within 6 hours after preoperative computed tomography) showed severe left brain swelling with midline shift. The patient died on postoperative day 15. CONCLUSIONS This case has similarities to both second-impact syndrome after head trauma and perfusion breakthrough phenomenon. Initial ischemic damage following reperfusion therapy and damage secondary to sepsis and subarachnoid hemorrhage may have led to rapid malignant brain swelling in this patient. Careful management is important for patients receiving reperfusion therapy.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Nagasaki Harbor Medical Center, Nagasaki, Japan.
| | - Junpei Hamabe
- Department of Neurology and Strokology, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Nobuhiro Yagi
- Department of Neurosurgery, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Kazuhiko Suyama
- Department of Neurosurgery, Nagasaki Harbor Medical Center, Nagasaki, Japan
| |
Collapse
|
26
|
Paternò R, Chillon JM. Potentially Common Therapeutic Targets for Multiple Sclerosis and Ischemic Stroke. Front Physiol 2018; 9:855. [PMID: 30057552 PMCID: PMC6053536 DOI: 10.3389/fphys.2018.00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke (IS) and multiple sclerosis (MS) are two pathologies of the central nervous system (CNS). At the first look, this appears to be the only similarity between the two diseases, as they seem quite different. Indeed IS has an acute onset compared to MS which develops chronically; IS is consecutive to blood clot migrating to cerebral blood vessels or decrease in cerebral blood flow following atherosclerosis or decreases in cardiac output, whereas MS is an immune disease associated with neurodegeneration. However, both pathologies share similar pathologic pathways and treatments used in MS have been the object of studies in IS. In this mini-review we will discuss similarities between IS and MS on astrocytes and neuroinflammation hallmarks emphasizing the potential for treatments.
Collapse
Affiliation(s)
- Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Jean-Marc Chillon
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (EA 7517), Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France.,Direction de la Recherche Clinique et de l'Innovation, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
27
|
Activity dependent internalization of the glutamate transporter GLT-1 requires calcium entry through the NCX sodium/calcium exchanger. Neurochem Int 2018; 123:125-132. [PMID: 29574129 DOI: 10.1016/j.neuint.2018.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
GLT-1 is the main glutamate transporter in the brain and its trafficking controls its availability at the cell surface, thereby shaping glutamatergic neurotransmission under physiological and pathological conditions. Extracellular glutamate is known to trigger ubiquitin-dependent GLT-1 internalization from the surface of the cell to the intracellular compartment, yet here we show that internalization also requires the participation of calcium ions. Consistent with previous studies, the addition of glutamate (1 mM) to mixed primary cultures (containing neurons and astrocytes) promotes GLT-1 internalization, an effect that was suppressed in the absence of extracellular Ca2+. The pathways of Ca2+ mobilization by astrocytes were analyzed in these mixed cultures using the genetically encoded calcium sensor GCaMP6f. A complex pattern of calcium entry was activated by glutamate, with a dramatic and rapid rise in the intracellular Ca2+ concentration partially driven by glutamate transporters, especially in the initial stages after exposure to glutamate. The Na+/Ca2+ exchanger (NCX) plays a dominant role in this Ca2+ mobilization and its blockade suppresses the glutamate induced internalization of GLT-1, both in astrocytes and in a more straightforward experimental system like HEK293 cells transiently transfected with GLT-1. This regulatory mechanism might be relevant to control the amount of GLT-1 transporter at the cell surface in conditions like ischemia or traumatic brain injury, where extracellular concentrations of glutamate are persistently elevated and they promote rapid Ca2+ mobilization.
Collapse
|
28
|
Sato S, Takeda Y, Mizoue R, Kawase H, Fushimi M, Shimizu T, Morimatsu H. Determination of the Target Temperature Required to Block Increases in Extracellular Glutamate Levels During Intraischemic Hypothermia. Ther Hypothermia Temp Manag 2018; 8:83-89. [PMID: 29406818 DOI: 10.1089/ther.2017.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to determine a target temperature for intraischemic hypothermia that can block increases in extracellular glutamate levels. Two groups of 10 rats each formed the normothermia and intraischemic hypothermia groups. Extracellular glutamate levels, the extracellular potential, and the cerebral blood flow were measured at the adjacent site in the right parietal cerebral cortex. Cerebral ischemia was induced by occlusion of the bilateral common carotid arteries and hypotension. In the intraischemic hypothermia group, brain hypothermia was initiated immediately after the onset of membrane potential loss. In the normothermia group, extracellular glutamate levels began to increase simultaneously with the onset of membrane potential loss and reached a maximum level of 341.8 ± 153.1 μmol·L-1. A decrease in extracellular glutamate levels was observed simultaneously with the onset of membrane potential recovery. In the intraischemic hypothermia group, extracellular glutamate levels initially began to increase, similarly to those in the normothermia group, but subsequently plateaued at 140.5 ± 105.4 μmol·L-1, when the brain temperature had decreased to <32.6°C ± 0.9°C. A decrease in extracellular glutamate levels was observed simultaneously with the onset of membrane potential recovery, similarly to the findings in the normothermia group. The rate of decrease in extracellular glutamate levels was the same in both groups (-36.6 and -36.0 μmol·L-1 in the normothermia and intraischemic hypothermia groups, respectively). In conclusion, the target temperature for blocking glutamate release during intraischemic hypothermia was found to be 32.6°C ± 0.9°C. Our results suggest that the induction of intraischemic hypothermia can maintain low glutamate levels without disrupting glutamate reuptake. Institutional protocol number: OKU-2016146.
Collapse
Affiliation(s)
- Sachiko Sato
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| | - Yoshimasa Takeda
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| | - Ryoichi Mizoue
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| | - Hirokazu Kawase
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| | - Miki Fushimi
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| | - Tomohisa Shimizu
- 2 Department of Neurological Surgery, Okayama University Medical School , Okayama, Japan
| | - Hiroshi Morimatsu
- 1 Department of Anesthesiology, Okayama University Medical School , Okayama, Japan
| |
Collapse
|
29
|
Sugimoto J, Tanaka M, Sugiyama K, Ito Y, Aizawa H, Soma M, Shimizu T, Mitani A, Tanaka K. Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 2017; 66:777-788. [PMID: 29214672 DOI: 10.1002/glia.23281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/06/2022]
Abstract
Glial glutamate transporter GLT1 plays a key role in the maintenance of extracellular glutamate homeostasis. Recent human genetic studies have suggested that de novo mutations in GLT1 (EAAT2) cause early-onset epilepsy with multiple seizure types. Consistent with these findings, global GLT1 null mice show lethal spontaneous seizures. The consequences of GLT1 dysfunction vary between different brain regions, suggesting that the role of GLT1 dysfunction in epilepsy may also vary with brain regions. In this study, we generated region-specific GLT1 knockout mice by crossing floxed-GLT1 mice with mice that express the Cre recombinase in a particular domain of the ventricular zone. Selective deletion of GLT1 in the diencephalon, brainstem and spinal cord is sufficient to reproduce the phenotypes (excess mortality, decreased body weight, and lethal spontaneous seizure) of the global GLT1 null mice. By contrast, dorsal forebrain-specific GLT1 knockout mice showed nonlethal complex seizures including myoclonic jerks, hyperkinetic running, spasm and clonic convulsion via the activation of NMDA receptors during a limited period from P12 to P14 and selective neuronal death in cortical layer II/III and the hippocampus. Thus, GLT1 dysfunction in the dorsal forebrain is involved in the pathogenesis of infantile epilepsy and GLT1 in the diencephalon, brainstem and spinal cord may play a critical role in preventing seizure-induced sudden death.
Collapse
Affiliation(s)
- Junya Sugimoto
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Moeko Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sugiyama
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukiko Ito
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Miho Soma
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoko Shimizu
- Laboratory of Physiology, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Akira Mitani
- Laboratory of Physiology, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Center for Brain Integration Research (CBIR), TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
30
|
Kang S, Li J, Bekker A, Ye JH. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 2017; 129:47-56. [PMID: 29128307 DOI: 10.1016/j.neuropharm.2017.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism and psychiatric disorders like depression and anxiety are often comorbid. Although the mechanisms underlying this comorbidity are unclear, emerging evidence suggests that maladaptation of the glial glutamate transporter GLT-1 may play a role. Findings from animal and human studies have linked aversive states, including those related to drugs of abuse and depression, to aberrant activity in the lateral habenula (LHb). The relationship between GLT-1 maladaptation, LHb activity, and abnormal behaviors related to alcohol withdrawal, however, remains unknown. Here we show that dihydrokainic acid (DHK), a GLT-1 blocker, potentiated glutamatergic transmission to LHb neurons in slices from ethanol naïve rats; this potentiation, though, was not observed in slices from rats withdrawn from repeated in vivo ethanol administration, suggesting reduced GLT-1 function. Furthermore, GLT-1 protein expression was reduced in the LHb of withdrawn rats. This reduction was restored by systemic administration of ceftriaxone, a β-lactam antibiotic known to increase GLT-1 expression. Systemic ceftriaxone treatment also normalized the hyperactivity of LHb neurons in slices from withdrawn rats, which was reversed by bath-applied DHK. Finally, systemic administration of ceftriaxone alleviated depression- and anxiety-like behaviors, which was fully blocked by intra-LHb administrations of DHK, suggesting that GLT-1's function in the LHb is critical. These findings highlight the significant role of LHb astrocytic GLT-1 in the hyperactivity of LHb neurons, and in depressive- and anxiety-like behaviors during ethanol withdrawal. Thus, GLT-1 in the LHb could serve as a therapeutic target for psychiatric disorders comorbid with ethanol withdrawal.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
31
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB. Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 2017; 143:489-506. [PMID: 28771710 DOI: 10.1111/jnc.14135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor β, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Collapse
Affiliation(s)
- Meredith L Lee
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth N Krizman
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Rajatileka S, Odd D, Robinson MT, Spittle AC, Dwomoh L, Williams M, Harding D, Wagstaff M, Owen M, Crosby C, Ching J, Molnár E, Luyt K, Váradi A. Variants of the EAAT2 Glutamate Transporter Gene Promoter Are Associated with Cerebral Palsy in Preterm Infants. Mol Neurobiol 2017; 55:2013-2024. [PMID: 28271401 PMCID: PMC5840247 DOI: 10.1007/s12035-017-0462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
Abstract
Preterm delivery is associated with neurodevelopmental impairment caused by environmental and genetic factors. Dysfunction of the excitatory amino acid transporter 2 (EAAT2) and the resultant impaired glutamate uptake can lead to neurological disorders. In this study, we investigated the role of single nucleotide polymorphisms (SNPs; g.-200C>A and g.-181A>C) in the EAAT2 promoter in susceptibility to brain injury and neurodisability in very preterm infants born at or before 32-week gestation. DNA isolated from newborns’ dried blood spots were used for pyrosequencing to detect both SNPs. Association between EAAT2 genotypes and cerebral palsy, cystic periventricular leukomalacia and a low developmental score was then assessed. The two SNPs were concordant in 89.4% of infants resulting in three common genotypes all carrying two C and two A alleles in different combinations. However, in 10.6% of cases, non-concordance was found, generating six additional rare genotypes. The A alleles at both loci appeared to be detrimental and consequently, the risk of developing cerebral palsy increased four- and sixfold for each additional detrimental allele at -200 and -181 bp, respectively. The two SNPs altered the regulation of the EAAT2 promoter activity and glutamate homeostasis. This study highlights the significance of glutamate in the pathogenesis of preterm brain injury and subsequent development of cerebral palsy and neurodevelopmental disabilities. Furthermore, the described EAAT2 SNPs may be an early biomarker of vulnerability to neurodisability and may aid the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Shavanthi Rajatileka
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - David Odd
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Neonatal Intensive Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Matthew T Robinson
- College of Life & Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Alexandra C Spittle
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Louis Dwomoh
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Maggie Williams
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - David Harding
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Miles Wagstaff
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Marie Owen
- Neonatal Intensive Care Unit, Gloucestershire Royal Hospital, Gloucestershire NHS Trust, Gloucester, GL1 3NN, UK
| | - Charlene Crosby
- Bristol Genetics Laboratory, Pathology Sciences, Blood Sciences and Bristol Genetics, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Jared Ching
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Elek Molnár
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Karen Luyt
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
- Regional Neonatal Intensive Care Unit, St Michael's Hospital, University Hospital NHS Trust, Bristol, BS2 8EG, UK
| | - Anikó Váradi
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
34
|
Murphy-Royal C, Dupuis J, Groc L, Oliet SHR. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 2017; 95:2140-2151. [PMID: 28150867 DOI: 10.1002/jnr.24029] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022]
Abstract
Astrocytes, the major glial cell type in the central nervous system (CNS), are critical for brain function and have been implicated in various disorders of the central nervous system. These cells are involved in a wide range of cerebral processes including brain metabolism, control of central blood flow, ionic homeostasis, fine-tuning synaptic transmission, and neurotransmitter clearance. Such varied roles can be efficiently carried out due to the intimate interactions astrocytes maintain with neurons, the vasculature, as well as with other glial cells. Arguably, one of the most important functions of astrocytes in the brain is their control of neurotransmitter clearance. This is particularly true for glutamate whose timecourse in the synaptic cleft needs to be controlled tightly under physiological conditions to maintain point-to-point excitatory transmission, thereby limiting spillover and activation of more receptors. Most importantly, accumulation of glutamate in the extracellular space can trigger excessive activation of glutamatergic receptors and lead to excitotoxicity, a trademark of many neurodegenerative diseases. It is thus of utmost importance for both physiological and pathophysiological reasons to understand the processes that control glutamate time course within the synaptic cleft and regulate its concentrations in the extracellular space. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Julien Dupuis
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Zafra F, Ibáñez I, Giménez C. Glutamate transporters: The arrestin connection. Oncotarget 2017; 8:5664-5665. [PMID: 28086208 PMCID: PMC5351570 DOI: 10.18632/oncotarget.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Orexin-A promotes Glu uptake by OX1R/PKCα/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro. Mol Cell Biochem 2016; 425:103-112. [DOI: 10.1007/s11010-016-2866-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
|
37
|
Althobaiti YS, Almalki AH, Das SC, Alshehri FS, Sari Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci Lett 2016; 634:25-31. [PMID: 27702628 DOI: 10.1016/j.neulet.2016.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023]
Abstract
Repeated exposure to high doses of methamphetamine (METH) is known to alter several neurotransmitters in certain brain regions. Little is known about the effects of ceftriaxone (CEF), a β-lactam antibiotic, known to upregulate glutamate transporter subtype 1, post-treatment on METH-induced depletion of dopamine and serotonin (5-HT) tissue content in brain reward regions. Moreover, the effects of METH and CEF post-treatment on glutamate and glutamine tissue content are not well understood. In this study, Wistar rats were used to investigate the effects of METH and CEF post-treatment on tissue content of dopamine/5-HT and glutamate/glutamine in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Rats received either saline or METH (10mg/kg, i.p. every 2h×4) followed by either saline or CEF (200mg/kg, i.p, every day×3) post-treatment. METH induced a significant depletion of dopamine and 5-HT in the NAc and PFC. Importantly, dopamine tissue content was completely restored in the NAc following CEF post-treatment. Additionally, METH caused a significant decrease in glutamate and glutamine tissue content in PFC, and this effect was attenuated by CEF post-treatment. These findings demonstrate for the first time the attenuating effects of CEF post-treatment on METH induced alterations in the tissue contents of dopamine, glutamate, and glutamine.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States
| | - Atiah H Almalki
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States
| | - Sujan C Das
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States
| | - Fahad S Alshehri
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States; University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Medicinal and Biological Chemistry, Toledo, OH, United States.
| |
Collapse
|
38
|
Althobaiti YS, Alshehri FS, Almalki AH, Sari Y. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine. Front Neurosci 2016; 10:427. [PMID: 27713684 PMCID: PMC5031687 DOI: 10.3389/fnins.2016.00427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Atiah H Almalki
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA
| |
Collapse
|
39
|
Gong HY, Zheng F, Zhang C, Chen XY, Liu JJ, Yue XQ. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. Int J Mol Med 2016; 38:943-50. [DOI: 10.3892/ijmm.2016.2663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
40
|
David CN, Frias ES, Szu JI, Vieira PA, Hubbard JA, Lovelace J, Michael M, Worth D, McGovern KE, Ethell IM, Stanley BG, Korzus E, Fiacco TA, Binder DK, Wilson EH. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS Pathog 2016; 12:e1005643. [PMID: 27281462 PMCID: PMC4900626 DOI: 10.1371/journal.ppat.1005643] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. The protozoan parasite Toxoplasma gondii infects a third of the world’s population and causes a chronic lifelong infection in the brain of the host. The consequences of such an infection are poorly understood. Here, we demonstrate that Toxoplasma infection can induce profound changes in astrocyte physiology leading to significant disruption of neuronal networks. Pathology can be rescued by upregulating the astrocytic glutamate transporter, GLT-1, restoring concentrations of extracellular glutamate and EEG power. We suggest that such global dysregulation of neurotransmitters should be considered when determining the effects of infection on the CNS.
Collapse
Affiliation(s)
- Clément N. David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Elma S. Frias
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Jenny I. Szu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Philip A. Vieira
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Jacqueline A. Hubbard
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Marena Michael
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Kathryn E. McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Iryna M. Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - B. Glenn Stanley
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Todd A. Fiacco
- Department of Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Sari Y, Toalston JE, Rao PSS, Bell RL. Effects of ceftriaxone on ethanol, nicotine or sucrose intake by alcohol-preferring (P) rats and its association with GLT-1 expression. Neuroscience 2016; 326:117-125. [PMID: 27060486 DOI: 10.1016/j.neuroscience.2016.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/17/2022]
Abstract
Increased glutamatergic neurotransmission appears to mediate the reinforcing properties of drugs of abuse, including ethanol (EtOH). We have shown that administration of ceftriaxone (CEF), a β-lactam antibiotic, reduced EtOH intake and increased glutamate transporter 1 (GLT-1) expression in mesocorticolimbic regions of male and female alcohol-preferring (P) rats. In the present study, we tested whether CEF administration would reduce nicotine (NIC) and/or EtOH intake by adult female P rats. P rats were randomly assigned to 4 groups: (a) 5% sucrose (SUC) or 10% SUC [SUC], (b) 5% SUC+0.07mg/ml NIC and 10% SUC+0.14mg/ml NIC [NIC-SUC], 15% EtOH and 30% EtOH [EtOH] and (d) 15% EtOH+0.07mg/ml NIC and 30% EtOH+0.14mg/ml NIC [NIC-EtOH]. After achieving stable intakes (4weeks), the rats were administered 7 consecutive, daily i.p. injections of either saline or 200mg/kg CEF. The effects of CEF on intake were significant but differed across the reinforcers; such that ml/kg/day SUC was reduced by ∼30%, mg/kg/day NIC was reduced by ∼70% in the NIC-SUC group and ∼40% in the EtOH-NIC group, whereas g/kg/day EtOH was reduced by ∼40% in both the EtOH and EtOH-NIC group. The effects of CEF on GLT-1 expression were also studied. We found that CEF significantly increased GLT-1 expression in the prefrontal cortex and the nucleus accumbens of the NIC and NIC-EtOH rats as compared to NIC and NIC-EtOH saline-treated rats. These findings provide further support for GLT-1-associated mechanisms in EtOH and/or NIC abuse. The present results along with previous reports of CEF's efficacy in reducing cocaine self-administration in rats suggest that modulation of GLT-1 expression and/or activity is an important pharmacological target for treating polysubstance abuse and dependence.
Collapse
Affiliation(s)
- Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA.
| | - Jamie E Toalston
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - P S S Rao
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA
| | - Richard L Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Ibáñez I, Díez-Guerra FJ, Giménez C, Zafra F. Activity dependent internalization of the glutamate transporter GLT-1 mediated by β-arrestin 1 and ubiquitination. Neuropharmacology 2016; 107:376-386. [PMID: 27044663 DOI: 10.1016/j.neuropharm.2016.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
GLT-1 is the main glutamate transporter in the brain and undergoes trafficking processes that control its concentration on the cell surface thereby shaping glutamatergic neurotransmission. We have investigated how the traffic of GLT-1 is regulated by transporter activity. We report that internalization of GLT-1 from the cell surface is accelerated by transportable substrates like glutamate or aspartate, as well as by the transportable inhibitor L-trans-2,4-PDC, but not by the non-substrate inhibitor WAY 213613 in primary mixed cultures and in transiently transfected HEK293 cells. Analysis of the mechanism of endocytosis in HEK293 cells revealed that glutamate promoted the association with the transporter of the adaptor protein β-arrestin and the ubiquitin ligase Nedd4-2. The addition of glutamate is accompanied by an increase in the transporter ubiquitination, and the internalization is suppressed by an ubiquitination inhibitor (PYR41), and in a mutant defective in C-terminal lysines. The glutamate triggered endocytosis was also suppressed by siRNA for β-arrestin. This regulatory mechanism might be relevant in controlling the amount of transporter on the cell surface in conditions such as ischemia or traumatic brain injury, where extracellular concentrations of glutamate are persistently elevated.
Collapse
Affiliation(s)
- Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - F Javier Díez-Guerra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
45
|
Das SC, Althobaiti YS, Alshehri FS, Sari Y. Binge ethanol withdrawal: Effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model. Behav Brain Res 2016; 303:120-5. [PMID: 26821293 DOI: 10.1016/j.bbr.2016.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/28/2022]
Abstract
Alcohol withdrawal syndrome (AWS) is a medical emergency situation which appears after abrupt cessation of ethanol intake. Decreased GABA-A function and increased glutamate function are known to exist in the AWS. However, the involvement of glutamate transporters in the context of AWS requires further investigation. In this study, we used a model of ethanol withdrawal involving abrupt cessation of binge ethanol administration (4 g/kg/gavage three times a day for three days) using male alcohol-preferring (P) rats. After 48 h of withdrawal, P rats were re-exposed to voluntary ethanol intake. The amount of ethanol consumed was measured during post-withdrawal phase. In addition, the expression of GLT-1, GLAST and xCT were determined in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). We also measured glutamine synthetase (GS) activity, and the tissue content of glutamate, glutamine, dopamine and serotonin in both mPFC and NAc. We found that binge ethanol withdrawal escalated post-withdrawal ethanol intake, which was associated with downregulation of GLT-1 expression in both mPFC and NAc. The expression of GLAST and xCT were unchanged in the ethanol-withdrawal (EW) group compared to control group. Tissue content of glutamate was significantly lower in both mPFC and NAc, whereas tissue content of glutamine was higher in mPFC but unchanged in NAc in the EW group compared to control group. The GS activity was unchanged in both mPFC and NAc. The tissue content of DA was significantly lower in both mPFC and NAc, whereas tissue content of serotonin was unchanged in both mPFC and NAc. These findings provide important information of the critical role of GLT-1 in context of AWS.
Collapse
Affiliation(s)
- Sujan C Das
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States.
| |
Collapse
|
46
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
47
|
Barr JL, Rasmussen BA, Tallarida CS, Scholl JL, Forster GL, Unterwald EM, Rawls SM. Ceftriaxone attenuates acute cocaine-evoked dopaminergic neurotransmission in the nucleus accumbens of the rat. Br J Pharmacol 2015; 172:5414-24. [PMID: 26375494 PMCID: PMC4950793 DOI: 10.1111/bph.13330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Ceftriaxone is a β-lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine-evoked dopaminergic neurotransmission in the nucleus accumbens. EXPERIMENTAL APPROACH Adult male Sprague-Dawley rats were pretreated with saline or ceftriaxone (200 mg kg(-1) , i.p. × 10 days) and then challenged with cocaine (15 mg kg(-1) , i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α-synuclein, Akt and GSK3β were analysed in the nucleus accumbens. KEY RESULTS Ceftriaxone-pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline-pretreated controls challenged with cocaine. The reduction in cocaine-evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α-synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. CONCLUSIONS AND IMPLICATIONS These results are the first evidence that ceftriaxone affects cocaine-evoked dopaminergic transmission, in addition to its well-described effects on glutamate, and suggest that its ability to attenuate cocaine-induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens.
Collapse
Affiliation(s)
- J L Barr
- Department of Pharmacology and Centre for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaPAUSA
| | - B A Rasmussen
- Department of Pharmacology and Centre for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaPAUSA
| | - C S Tallarida
- Department of Pharmacology and Centre for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaPAUSA
| | - J L Scholl
- Centre for Brain and Behaviour Research, Division of Basic Biomedical SciencesSanford School of Medicine at the University of South DakotaVermillionSDUSA
| | - G L Forster
- Centre for Brain and Behaviour Research, Division of Basic Biomedical SciencesSanford School of Medicine at the University of South DakotaVermillionSDUSA
| | - E M Unterwald
- Department of Pharmacology and Centre for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaPAUSA
| | - S M Rawls
- Department of Pharmacology and Centre for Substance Abuse ResearchTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
48
|
Expression of Glutamate and Glutamine Transporter Proteins in Neurovascular Unit Cells In Vitro. Bull Exp Biol Med 2015; 159:614-6. [PMID: 26459476 DOI: 10.1007/s10517-015-3027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 10/23/2022]
Abstract
Glutamine transporter protein SLC1A5 and glutamate transporter protein EAAT2 responsible for cell-cell communication and energetic coupling were studied using in vitro model of multicellular neurovascular unit consisting of astrocytes, neurons, and endotheliocytes under standard conditions and during chemical hypoxia in vitro. Hypoxic damage to the neurovascular unit cells increased the number of SLC1A5-expressing cells and reduced the number of EAAT2-expressing astrocytes. Metabolic uncoupling in the neurovascular unit cells under hypoxic conditions resulted from abnormal expression of glutamine and glutamate transporter proteins, which is indicative of impaired glutamine and glutamate transport.
Collapse
|
49
|
The Potential Roles of Aquaporin 4 in Alzheimer's Disease. Mol Neurobiol 2015; 53:5300-9. [PMID: 26433375 DOI: 10.1007/s12035-015-9446-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/16/2015] [Indexed: 01/28/2023]
Abstract
Aquaporin 4 (AQP4) is the major water channel expressed in the central nervous system (CNS), and it is primarily expressed in astrocytes. It has been studied in various brain pathological conditions. However, the potential for AQP4 to influence Alzheimer's disease (AD) is still unclear. Research regarding AQP4 functions related to AD can be traced back several years and has gradually progressed toward a better understanding of the potential mechanisms. Currently, it has been suggested that AQP4 influences synaptic plasticity, and AQP4 deficiency may impair learning and memory, in part, through glutamate transporter-1 (GLT-1). AQP4 may mediate the clearance of amyloid beta peptides (Aβ). In addition, AQP4 may influence potassium (K(+)) and calcium (Ca(2+)) ion transport, which could play decisive roles in the pathogenesis of AD. Furthermore, AQP4 knockout is involved in neuroinflammation and interferes with AD. To date, no specific therapeutic agents have been developed to inhibit or enhance AQP4. However, experimental results strongly emphasize the importance of this topic for future investigations.
Collapse
|
50
|
Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions. Neurochem Res 2015; 41:73-85. [PMID: 26364050 DOI: 10.1007/s11064-015-1713-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [(3)H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.
Collapse
|