1
|
Shan S, Cheng D, Li H, Yao W, Kou R, Ji J, Liu N, Zeng T, Zhao X. Short-term PS-NP exposure in early adulthood induces neuronal damage in middle-aged mice via microglia-mediated neuroinflammation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137615. [PMID: 39978191 DOI: 10.1016/j.jhazmat.2025.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nanoplastics (NPs) are ubiquitous environmental pollutants that have garnered considerable attention for their potential adverse health effects. In this study, male C57BL/6 J mice were orally treated with a mixture of 50-nm and 200-nm polystyrene (PS)-NPs for one week followed by measurements of their neurobehavioral performance and neuronal damage 10 months later. Notably, PS-NPs were detected in the brains of the mice by transmission electron microscopy (TEM) and a nanoscale hyperspectral microscope imaging system 10 months after the PS-NP exposure. The mice exposed to short-term PS-NPs exhibited cognitive dysfunction and anxiety-like symptoms, neuronal damage and synapse loss, and an increase in the number of M1-polarized microglia and A1-reactive astrocytes. Interestingly, the inhibition of microglial activation by minocycline significantly mitigated the PS-NP-induced synapse loss and neuron damage. In vitro studies showed that PS-NPs could be readily internalized by three types of neurovascular unit (NVU) cells, including microglia, astrocytes, and brain microvascular endothelial cells, via multiple pathways. RNA-seq analysis confirmed that microglia-mediated neuronal injury was associated with disturbances in synapse and cell death signaling pathways. Collectively, these findings suggest that short-term PS-NP exposure-induced neuroinflammation in early adulthood may not be resolved naturally but may deteriorate under the interaction of microglia and astrocytes, leading to synapse loss, neuron degeneration, and cognitive dysfunction in middle age. The results of the present study provide important insights into the potential neurological impacts of NPs and suggest that targeting microglia to suppress inflammation might be a potential intervention strategy for neurodegeneration induced by NPs.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Wenhuan Yao
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Ruirui Kou
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Ji
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Na Liu
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Yang XY, Wang HQ, Wang ZZ, Chen NH. Linking depression and neuroinflammation: Crosstalk between glial cells. Eur J Pharmacol 2025; 995:177408. [PMID: 39984011 DOI: 10.1016/j.ejphar.2025.177408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
The inflammatory hypothesis is one of the more widely accepted pathogenesis of depression. Glia plays an important immunomodulatory role in neuroinflammation, mediating interactions between the immune system and the central nervous system (CNS). Glial cell-driven neuroinflammation is not only an important pathological change in depression, but also a potential therapeutic target. This review discusses the association between depression and glial cell-induced neuroinflammation and elucidates the role of glial cell crosstalk in neuroinflammation. Firstly, we focus on the role of glial cells in neuroinflammation in depression and glial cell interactions; secondly, we categorize changes in different glial cells in animal models of depression and depressed patients, focusing on how glial cells mediate inflammatory responses and exacerbate depressive symptoms; Thirdly, we review how conventional and novel antidepressants affect the phenotype and function of glial cells, thereby exerting anti-inflammatory activity; finally, we discuss the role of the gut-brain axis in glial cell function and depression, and objectively analyze the problems that remain in current antidepressant therapy. This review aims to provide an objective analysis of how glial cell cross-talk may mediate neuroinflammation and thereby influence pathologic progression of depression. It is concluded that a novel therapeutic strategy may be to ameliorate glial cell-mediated inflammatory responses.
Collapse
Affiliation(s)
- Xue-Ying Yang
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Králová A, Montaser AB, Tampio J, Adla SK, Jalkanen A, Rysä J, Huttunen KM. A novel paracetamol derivative alleviates lipopolysaccharide-induced neuroinflammation. Eur J Pharmacol 2025; 995:177409. [PMID: 39986592 DOI: 10.1016/j.ejphar.2025.177409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Neuroinflammation has been implicated as a pathological contributor to several neurodegenerative disorders. Increasing evidence suggests that paracetamol (PCM, acetaminophen) has unappreciated anti-neuroinflammatory properties. However, PCM possesses hepatotoxicity in higher dosages, which are needed for achieving therapeutic concentrations in the brain. To lessen this effect and improve drug efficacy, PCM was in this study converted into an L-type amino acid transporter 1 (LAT1)-utilizing derivative and tested whether this LAT1-mediated delivery approach could enhance the relief of neuroinflammation, using both in vitro and in vivo lipopolysaccharide (LPS)-stimulated models. The gained results confirmed the derivative's improved transport into mouse primary astrocytes, immortalized microglia (BV2), and human immortalized microglia (SV40) via LAT1. In the LPS-stimulated BV2 model, the derivative effectively reduced the prostaglandin E2 (PGE2) level by 57% compared to the LPS treatment. Moreover, a more profound reduction of brain PGE2 production was confirmed in the LPS-stimulated mouse model. Finally, the global proteome of the whole mouse brain revealed that the derivative was able to reverse the altered expression of several inflammatory biomarkers, including ras-related C3 botulinum toxin substrate 1 (Rac1), cytochrome c oxidase subunit 2 (COX2), phospholipid phosphatase-related protein type 2 (Plppr2), ubiquitin-conjugating enzyme E2 variant 1 (Ube2v1) and A-kinase anchor protein 1, mitochondrial (Akap1).
Collapse
Affiliation(s)
- Adéla Králová
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
4
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
5
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Nishigaki A, Ishikawa H, Nishiguchi Y, Tachibana K, Kato N, Matsuda K, Mori Y, Matsuyama H, Matsuura K, Ii Y, Wakita H, Oikawa S, Tomimoto H, Shindo A. Alpha-1-acid glycoprotein as a potential serum biomarker for cerebral amyloid angiopathy. J Alzheimers Dis 2025:13872877251333802. [PMID: 40261388 DOI: 10.1177/13872877251333802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundCerebral amyloid angiopathy (CAA) is a form of cerebral small vessel disease (SVD) associated with Alzheimer's disease, intracerebral hemorrhage, and cognitive decline. Despite its clinical significance, no reliable serum biomarker exists for early diagnosis or monitoring of disease progression.ObjectiveThis study hypothesizes that α1-acid glycoprotein (α1-AGP) and other serum biomarkers can aid CAA diagnosis and assessment using gel-based mass spectrometry. A comparative analysis was performed to investigate associations between serum biomarkers and radiological scores.MethodsSerum proteins from individuals with probable or possible CAA (n = 10), classified using the modified Boston criteria, and age-matched controls (n = 10) were analyzed via two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS). Candidate proteins were validated using enzyme-linked immunosorbent assay (ELISA). Outcome measures included biomarker diagnostic accuracy, assessed by receiver operating characteristic (ROC) curve analysis, and correlations between α1-AGP levels and CAA-SVD scores.ResultsFour proteins-hemopexin, complement C3, complement C9, and α1-AGP-were significantly elevated, while apolipoprotein A-1 was reduced in the CAA group. ELISA confirmed higher α1-AGP levels in individuals with CAA (p < 0.0001). ROC analysis demonstrated that α1-AGP could indicate the presence of CAA with a sensitivity and specificity of 1.00 (95%CI: 1.000, 1.000). Additionally, α1-AGP levels correlated with the CAA-SVD score (R² = 0.783).Conclusionsα1-AGP may serve as a novel serum biomarker for CAA. Larger cohorts and external validation are required to substantiate these findings and determine their clinical relevance.
Collapse
Affiliation(s)
- Akisato Nishigaki
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yamato Nishiguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kei Tachibana
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Natsuko Kato
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideaki Wakita
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Gu X, Chen W, Li Z, Wang X, Su Q, Zhou F. Drp1 mitochondrial fission in astrocyte modulates behavior and neuroinflammation during morphine addiction. J Neuroinflammation 2025; 22:108. [PMID: 40247294 PMCID: PMC12007278 DOI: 10.1186/s12974-025-03438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Mitochondrial dynamics in neurons accompanied by neuroinflammation has been proved as pivotal events during repeated morphine exposure, however, the relationship between mitochondrial dynamics and neuroinflammation still remains unknown. METHODS This study was designed to investigate the potential role of astrocyte Drp1 in neuroinflammation during morphine addiction. Nucleus accumbens (NAc) tissues were collected for immunofluorescence, transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of pro-inflammatory cytokines and mitochondrial fission proteins. Morphine-induced conditioned place preference (CPP) and open field test (OFT) were used to determine the effects of Mdivi-1, a selective inhibitor of mitochondrial fission protein Drp1 in the rewarding properties of morphine. Astrocyte-specific knockdown experiments by an adeno-associated virus (AAV) vector containing shRNADrp1-EGFP infusion were performed to determine the effects of astrocyte Drp1 in NAc of mice with morphine treatment. RESULTS In this study, we found that repeated morphine exposure induced mitochondrial fragmentation in neurons, astrocytes, and microglia in NAc, correlating with increased inflammatory markers and addictive behaviors. The application of Mdivi-1 effectively mitigated mitochondrial fragmentation and astrocyte-mediated neuroinflammation within the NAc, thereby alleviating morphine-induced addictive behaviors. Crucially, the astrocyte-specific knockdown of Drp1 in NAc significantly curtailed drug-seeking behavior and substantially reduced neuroinflammation. CONCLUSIONS Collectively, our findings suggest that alterations in mitochondrial dynamics, particularly within astrocytes, play an important role in regulating neuroinflammation associated with morphine addiction. This research offers novel insights into potential therapeutic strategies for addressing substance use disorder (SUD) by regulating mitochondrial dynamics within astrocyte.
Collapse
Affiliation(s)
- Xiaotong Gu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Wenjing Chen
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Zixin Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Xinran Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Qianying Su
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Feifan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570100, China.
| |
Collapse
|
8
|
Cook SEV, Menšíková K, Koníčková D, Šlanhofová H, Klíčová K, Raška M, Zapletalová J, Friedecký D, Kaňovský P. Comparison of inflammatory biomarker levels in neurodegenerative proteinopathies: a case-control study. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02902-6. [PMID: 40029428 DOI: 10.1007/s00702-025-02902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
While diagnostic criteria have been established and validated for most neurodegenerative diseases, the considerable overlap between individual nosological entities remains a significant diagnostic challenge. Increasing evidence suggests that neurodegeneration is often initiated by inflammation within the central nervous system. The identification of inflammation could serve as a first signal of the pathophysiological process. As such, validated biological markers ("biomarkers") of neuroinflammation are critically important. This study aimed to assess the presence and levels of inflammatory biomarkers in three neurodegenerative diseases: Lewy body diseases (LBD), multiple system atrophy (MSA), and 4-repeat tauopathies (4RT). A total of 83 LBD, 24 MSA, and 31 4RT patients were included, with 83 control subjects for comparison. Six immune-related proteins were analysed in cerebrospinal fluid (CSF) and blood serum (serum): C3 complement, C4 complement, haptoglobin, transferrin, orosomucoid, and β2 microglobulin (β2M). ANCOVA statistical analysis revealed significantly lower levels of several inflammatory biomarkers in LBD (CSF: transferrin, C3 complement, orosomucoid; Serum: orosomucoid, β2M) and MSA (CSF: transferrin, C3 complement, C4 complement, orosomucoid) compared to controls. Significant differences were also observed between the synucleinopathy patient groups (LBD and MSA) and 4RT in serum levels of C3 complement. Additionally, the CSF/serum quotients for transferrin (LBD and MSA) and C3 complement (LBD) were significantly lower in disease relative to controls. These findings suggest that inflammatory processes may play a role in the pathophysiology of neurodegenerative proteinopathies, warranting further research to confirm these associations. The identification of potential fluid biomarkers would then represent a promising step forward in the field.
Collapse
Affiliation(s)
- Sarah E V Cook
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic.
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Dorota Koníčková
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Hedvika Šlanhofová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Milan Raška
- Department of Immunology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jana Zapletalová
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - David Friedecký
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
- Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
9
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
10
|
Chen J, Zeng X, Wang L, Zhang W, Li G, Cheng X, Su P, Wan Y, Li X. Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury. Neural Regen Res 2025; 20:557-573. [PMID: 38819067 PMCID: PMC11317951 DOI: 10.4103/nrr.nrr-d-23-01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiaolin Zeng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Wenwu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Gang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 PMCID: PMC11817173 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
12
|
Wei X, Wang L, Yang B, Ma Y, Yuan W, Ma J. Orosomucoid 2 upregulation mediates liver injury-induced colorectal cancer liver metastasis by promoting EMT and cell migration. Cancer Sci 2025; 116:44-55. [PMID: 38475962 PMCID: PMC11711048 DOI: 10.1111/cas.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The relationship between drug-induced liver injury and liver metastasis of colorectal cancer and the underlying mechanisms are not well understood. In this study, we used carbon tetrachloride to construct a classic mouse liver injury model and injected CT26 colorectal cancer cells into the mouse spleen to simulate the natural route of colorectal cancer liver metastasis. Liver injury significantly increased the number of colorectal cancer liver metastases. Transcriptome sequencing and data-independent acquisition protein quantification identified proteins that were significantly differentially expressed in injured livers, and orosomucoid (ORM) 2 was identified as a target protein for tumor liver metastasis. In vitro experiments showed that exogenous ORM2 protein increased the expression of EMT markers such as Twist, Zeb1, Vim, Snail1 and Snail2 and chemokine ligands to promote CT26 cell migration. In addition, liver-specific overexpression of the ORM2 protein in the mouse model significantly promoted tumor cell liver metastasis without inducing liver injury. Our results indicate that drug-induced liver injury can promote colorectal cancer liver metastasis and that ORM2 can promote cell migration by inducing EMT in tumor cells.
Collapse
Affiliation(s)
- Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Laboratory Center, Chifeng Municipal Hospital/Chifeng Clinical CollegeInner Mongolia Medical UniversityChifengChina
| | - Bing Yang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yuanyuan Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Wei Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijing Hospital/National Center of GerontologyBeijingChina
| |
Collapse
|
13
|
Zhang L, Verkhratsky A, Shi FD. Astrocytes and microglia in multiple sclerosis and neuromyelitis optica. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:133-145. [PMID: 40148041 DOI: 10.1016/b978-0-443-19102-2.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple sclerosis and neuromyelitis optica are autoimmune neurodegenerative diseases primarily targeting myelin sheath and neuroglia. In multiple sclerosis, autoantibodies destroy oligodendrocytes and myelin, which underlies primary neurologic symptoms. Focal damage to myelin triggers reactive astrogliosis and microgliosis, which contribute to and to a large extent define the disease progression. In neuromyelitis optica, autoantibodies against water channel aquaporin 4 (AQP4), which are localized at astrocytic endfeet mediate damage of the glia limitans thus facilitating infiltration of blood-borne molecules and cells that propagate the damage to nerves and neurons. This primary astrocytopathy recruits microglia, which contribute to the neuroinflammatory response. Neuroglial cells therefore are potential targets for cell-specific therapies.
Collapse
Affiliation(s)
- Linjie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Peng X, Ju J, Li Z, Liu J, Jia X, Wang J, Ren J, Gao F. C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats. CNS Neurosci Ther 2025; 31:e70216. [PMID: 39801259 PMCID: PMC11725764 DOI: 10.1111/cns.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
AIMS Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance. METHODS Sprague-Dawley rats were intrathecally treated with morphine twice daily for 9 days to establish morphine-tolerant rat model. Tail-flick latency test was performed to identify the analgesic effect of morphine. The role of microglia, astrocyte and C3-C3aR axis in morphine tolerance were elucidated by real-time quantitative polymerase chain reaction, Western blot, and immunofluorescence. RESULTS Chronic morphine treatment notably promoted the activation of microglia, upregulated the production of proinflammatory mediators (interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q)). Simultaneously, it programed astrocytes to a pro-inflammatory phenotype (A1), which mainly expresses complement 3 (C3) and serping1. PLX3397 (a colony-stimulating factor 1 receptor (CSF1R) inhibitor), Compstain (a C3 inhibitor) and SB290157(a C3aR antagonist) could reverse the above pathological process and alleviate morphine tolerance to different extents. CONCLUSION Our findings identify C3-C3aR axis as an amplifier of microglia-astrocyte crosstalk, neuroinflammation and a node for therapeutic intervention in morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Heo MJ, Cheon I, Kim KH. More than carriers, orosomucoids are key metabolic modulators. Trends Endocrinol Metab 2024:S1043-2760(24)00322-9. [PMID: 39701917 DOI: 10.1016/j.tem.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Orosomucoids (ORMs) have historically been considered as carriers involved in drug and lipid delivery. However, recent studies indicate ORM2 as a hepatokine involved in metabolic regulation. Here, we highlight the functions of ORM2 in controlling metabolic health and disease, focusing on its newly discovered regulatory mechanisms.
Collapse
Affiliation(s)
- Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Inyoung Cheon
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Zhang S, Jiang X, Yan M, Cheng Z, Bi J, Wang Q, Luo Y, Tian X. Revealing induced pluripotent stem cells' potential as a better alternative to embryonic stem cells for Parkinson's disease treatment based on single-cell RNA-seq. Braz J Med Biol Res 2024; 57:e13482. [PMID: 39699375 PMCID: PMC11653487 DOI: 10.1590/1414-431x2024e13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
Both embryonic stem cells (ESCs) and the successful reprogramming of induced pluripotent stem cells (iPSCs) offer an unprecedented therapeutic potential for Parkinson's disease (PD), allowing for the replacement of depleted neurons in PD-affected brain regions, thereby achieving therapeutic goals. This study explored the differences in cell types between iPSCs and ESCs in the PD brain to provide a feasible theoretical basis for the improved use of iPSCs as a replacement for ESCs in treating PD. Signal cell RNA sequencing data and microarray data of ESCs and iPSCs were collected from the GEO database. scRNA-seq data were subjected to quality control, clustering, and identification using the Seurat R package to determine cell types and proportions in ESCs and iPSCs. Differential expression analysis was performed to identify differentially expressed genes between ESCs and iPSCs, and PPI network analysis was conducted using String. Based on scRNA-seq data, we identified 13 cell clusters in ESCs and 13 cell clusters in iPSCs. iPSCs were predominantly composed of immune cells and lacked astrocytes, neurons, and dopamine neurons compared to ESCs. iPSCs also exhibited lower cell type diversity compared to ESCs. At the gene level, iPSCs lacked key genes, such as TH and GAP43 for nerve growth and development. At the metabolic level, the difference between ESCs and iPSC was mainly reflected in nerve cells and was closely related to the tumor-proliferation signature. iPSCs can be promoted to differentiate into cell types closer to or even replace ESCs, providing a better therapeutic option for PD treatment.
Collapse
Affiliation(s)
- Sen Zhang
- Shandong Sport University, Jinan, Shandong Province, China
| | - Xing Jiang
- Shandong Sport University, Jinan, Shandong Province, China
| | - Min Yan
- Shandong Sport University, Jinan, Shandong Province, China
| | - Zixiao Cheng
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Jun Bi
- Shandong Sport University, Jinan, Shandong Province, China
| | - Qinglu Wang
- Shandong Sport University, Jinan, Shandong Province, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Xuewen Tian
- Shandong Sport University, Jinan, Shandong Province, China
| |
Collapse
|
17
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhu X, Wang X, Wang J, Du L, Zhang Z, Zhou D, Han J, Luan B. Intermittent Fasting-Induced Orm2 Promotes Adipose Browning via the GP130/IL23R-p38 Cascade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407789. [PMID: 39248328 PMCID: PMC11558143 DOI: 10.1002/advs.202407789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Intermittent fasting (IF) plays a critical role in mitigating obesity, yet the precise biological mechanisms require further elucidation. Here Orosomucoid 2 (Orm2) is identified as an IF-induced hepatokine that stimulates adipose browning. IF induced Orm2 expression and secretion from the liver through peroxisome proliferator-activated receptor alpha (PPARα). In adipose tissue, Orm2 bound to glycoprotein 130/interleukin 23 receptor (GP130/IL23R) and promoted adipose browning through the activation of p38 mitogen-activated protein kinases (p38-MAPK). In obese mice, Orm2 led to a significant induction of adipose tissue browning and subsequent weight loss, an effect that is not replicated by a mutant variant of Orm2 deficient in GP130/IL23R binding capability. Crucially, genetic association studies in humans identified an obesity-associated Orm2 variant (D178E), which shows decreased GP130/IL23R binding and impaired browning capacity in mice. Overall, the research identifies Orm2 as a promising therapeutic target for obesity, mediating adipose browning through the GP130/IL23R-p38 signalling pathway.
Collapse
Affiliation(s)
- Xuejuan Zhu
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xinran Wang
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Department of Breast and Thyroid SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Jingang Wang
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Lei Du
- Department of Breast and Thyroid SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhen‐Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Donglei Zhou
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Junfeng Han
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Bing Luan
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
20
|
Jing K, Gu R, Chen F, Wan J, Sun Y, Guo P, Chen F, Feng J, Guo J, Liu X. Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke. Pharmacol Res 2024; 209:107422. [PMID: 39293585 DOI: 10.1016/j.phrs.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6 h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5 h (early) or 12 h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. In vitro, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.
Collapse
Affiliation(s)
- Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Ruinan Gu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jinmin Guo
- Department of Clinical Pharmacy, 960th Hospital of Joint Logistic Support Force, Jinan, Shandong, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China.
| |
Collapse
|
21
|
Bramble MS, Fourcassié V, Vashist N, Roux-Dalvai F, Zhou Y, Bumoko G, Kasendue ML, Spencer D, Musasa Hanshi-Hatuhu H, Kambale-Mastaki V, Manalo RVM, Mohammed A, McIlwain DR, Cunningham G, Summar M, Boivin MJ, Caldovic L, Vilain E, Mumba-Ngoyi D, Tshala-Katumbay D, Droit A. Glutathione peroxidase 3 is a potential biomarker for konzo. Nat Commun 2024; 15:7811. [PMID: 39242582 PMCID: PMC11379914 DOI: 10.1038/s41467-024-52136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Konzo is a neglected paralytic neurological disease associated with food (cassava) poisoning that affects the world's poorest children and women of childbearing ages across regions of sub-Saharan Africa. Despite understanding the dietary factors that lead to konzo, the molecular markers and mechanisms that trigger this disease remain unknown. To identify potential protein biomarkers associated with a disease status, plasma was collected from two independent Congolese cohorts, a discovery cohort (n = 60) and validation cohort (n = 204), sampled 10 years apart and subjected to multiple high-throughput assays. We identified that Glutathione Peroxidase 3 (GPx3), a critical plasma-based antioxidant enzyme, was the sole protein examined that was both significantly and differentially abundant between affected and non-affected participants in both cohorts, with large reductions observed in those affected with konzo. Our findings raise the notion that reductions in key antioxidant mechanisms may be the biological risk factor for the development of konzo, particularly those mediated through pathways involving the glutathione peroxidase family.
Collapse
Affiliation(s)
- Matthew S Bramble
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA.
| | - Victor Fourcassié
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Neerja Vashist
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Florence Roux-Dalvai
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Yun Zhou
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Guy Bumoko
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
| | - Michel Lupamba Kasendue
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - D'Andre Spencer
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Hilaire Musasa Hanshi-Hatuhu
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Vincent Kambale-Mastaki
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Rafael Vincent M Manalo
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Ermita, Manila, Philippines
| | - Aliyah Mohammed
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - David R McIlwain
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Gary Cunningham
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Marshall Summar
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Michael J Boivin
- Departments of Psychiatry and Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Dieudonne Mumba-Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Desire Tshala-Katumbay
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Arnaud Droit
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada.
| |
Collapse
|
22
|
Yang X, Sun A, Kong L, Yang X, Zhao X, Wang S. Inhibition of NLRP3 inflammasome alleviates cognitive deficits in a mouse model of anti-NMDAR encephalitis induced by active immunization. Int Immunopharmacol 2024; 137:112374. [PMID: 38851162 DOI: 10.1016/j.intimp.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neurological disorder, characterized by cognitive deficits as one of its vital features. The nucleotide-binding oligomerization domain-like receptor (NLRP3) inflammasome is a key contributor to neuroinflammation and cognitive deficits in neurological diseases. However, the underlying mechanism of anti-NMDAR encephalitis remains unclear, and the biological function of the NLRP3 inflammasome in this condition has not been elucidated. In this study, a mouse model of anti-NMDAR encephalitis was induced by active immunization with the GluN1356-385 peptide (NEA model). The NLRP3 inflammasome in the hippocampus and temporal cortex was investigated using real-time quantitative PCR (RT-qPCR), western blotting, and immunofluorescence staining. The impact of MCC950 on cognitive function and NLRP3 inflammation was assessed. Confocal immunofluorescence staining and Sholl analysis were employed to examine the function and morphology of microglia. In the current study, we discovered overactivation of the NLRP3 inflammasome and an enhanced inflammatory response in the NEA model, particularly in the hippocampus and temporal cortex. Furthermore, significant cognitive dysfunction was observed in the NEA model. While, MCC950, a selective inhibitor of the NLRP3 inflammasome, sharply attenuated the inflammatory response in mice, leading to mitigated cognitive deficits of mice and more regular arrangements of neurons and reduced number of hyperchromatic cells were also observed in the hippocampus area. In addition, we found that the excess elevation of NLRP3 inflammasome was mainly expressed in microglia accompanied with the overactivation of microglia, while MCC950 treatment significantly inhibited the increased number and activated morphological changes of microglia in the NEA model. Altogether, our study reveals the vital role of overactivated NLRP3 signaling pathway in aggravating the inflammatory response and cognitive deficits and the potential protective effect of MCC950 in anti-NMDAR encephalitis. Thus, MCC950 represents a promising strategy for anti-inflammation in anti-NMDAR encephalitis and our study lays a theoretical foundation for it to become a clinically targeted drug.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Anqi Sun
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Liangbo Kong
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
23
|
Kim M, Oh S, Kim S, Kim IS, Kim J, Han J, Ahn JW, Chung S, Jang JH, Shin JE, Park KI. In vivo neural regeneration via AAV-NeuroD1 gene delivery to astrocytes in neonatal hypoxic-ischemic brain injury. Inflamm Regen 2024; 44:33. [PMID: 39014391 PMCID: PMC11253351 DOI: 10.1186/s41232-024-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology. METHODS Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells. RESULTS AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions. CONCLUSIONS This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.
Collapse
Affiliation(s)
- Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seokmin Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songyeon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joowon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Han
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Ji Woong Ahn
- BnH Research. Co., Ltd. Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- GluGene Therapeutics Inc., Seoul, Republic of Korea
| | - Jeong Eun Shin
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Kook In Park
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
24
|
Siddiqui AM, Sabljic TF, Ball AK. Anatomical location of injected microglia in different activation states and time course of injury determines survival of retinal ganglion cells after optic nerve crush. Int J Neurosci 2024; 134:677-699. [PMID: 36371721 DOI: 10.1080/00207454.2022.2142579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Background: Activated microglia release harmful substances to retinal ganglion cells (RGCs), but may also benefit by removing cellular debris and secreting neurotrophic factors. These paradoxical roles remain controversial because the nature and time-course of the injury that defines their role is unknown. The aim of this study was to determine if pharmacological manipulation of microglia to acquire a pro-inflammatory or pro-survival phenotype will exacerbate or enhance neuronal survival after injury.Material and methods: Treated HAP I (highly aggressively proliferating immortalized) microglia were injected into the vitreous or tail vein (T V) of female Sprague-Dawley rats. Retinas were examined at 4-14 days following optic nerve crush (ONC) and the number of surviving RGCs was determined.Results: Injection of untreated HAP I cells resulted in the greater loss of RGCs early after ONC when injected into the vitreous and later after ONC when injected into the T V. LP S activated HAP I cells injected into the vitreous resulted in greater RGC loss with and without injury. When injected into the T V with ONC there was no loss of RGCs 4 days after ONC but greater loss afterwards. Minocycline treated HAP I cells injected into the vitreous resulted in greater RGC survival than untreated HAP I cells. However, when injected into the T V with ONC there was greater loss of RGCs. These results suggest that optic nerve signals attract extrinsic microglia to the retina, resulting in a proinflammatory response.Conclusion: Neuroprotection or cytotoxicity of microglia depends on the type of activation, time course of the injury, and if they act on the axon or cell body.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas F Sabljic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander K Ball
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
27
|
Roy S, Saha P, Bose D, Trivedi A, More M, Lin C, Wu J, Oakes M, Chatterjee S. Periodic heat waves-induced neuronal etiology in the elderly is mediated by gut-liver-brain axis: a transcriptome profiling approach. Sci Rep 2024; 14:10555. [PMID: 38719902 PMCID: PMC11079080 DOI: 10.1038/s41598-024-60664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.
Collapse
Affiliation(s)
- Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Christina Lin
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Melanie Oakes
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA.
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Long Beach VA Medical Center, Long Beach, CA, 90822, USA.
| |
Collapse
|
28
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Sun M, Rong J, Zhou M, Liu Y, Sun S, Liu L, Cai D, Liang F, Zhao L. Astrocyte-Microglia Crosstalk: A Novel Target for the Treatment of Migraine. Aging Dis 2024; 15:1277-1288. [PMID: 37450927 PMCID: PMC11081170 DOI: 10.14336/ad.2023.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Migraine is a pervasive neurologic disease closely related to neurogenic inflammation. The astrocytes and microglia in the central nervous system are vital in inducing neurogenic inflammation in migraine. Recently, it has been found that there may be a crosstalk phenomenon between microglia and astrocytes, which plays a crucial part in the pathology and treatment of Alzheimer's disease and other central nervous system diseases closely related to inflammation, thus becoming a novel hotspot in neuroimmune research. However, the role of the crosstalk between microglia and astrocytes in the pathogenesis and treatment of migraine is yet to be discussed. Based on the preliminary literature reports, we have reviewed relevant evidence of the crosstalk between microglia and astrocytes in the pathogenesis of migraine and summarized the crosstalk pathways, thereby hoping to provide novel ideas for future research and treatment.
Collapse
Affiliation(s)
- Mingsheng Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengdi Zhou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiqi Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingjun Cai
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Zhao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Lee SH, Suh JH, Heo MJ, Choi JM, Yang Y, Jung HJ, Gao Z, Yu Y, Jung SY, Kolonin MG, Cox AR, Hartig SM, Eltzschig HK, Ju C, Moore DD, Kim KH. The Hepatokine Orosomucoid 2 Mediates Beneficial Metabolic Effects of Bile Acids. Diabetes 2024; 73:701-712. [PMID: 38320268 PMCID: PMC11043061 DOI: 10.2337/db23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Korea
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Hyun-Jung Jung
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Aaron R. Cox
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sean M. Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
31
|
Che Y, Ren J, Zhao H, Yang Y, Chen Z. Orosomucoid 2 as a biomarker of carotid artery atherosclerosis plaque vulnerability through its generation of reactive oxygen species and lipid accumulation in vascular smooth muscle cells. Biochem Biophys Res Commun 2024; 705:149736. [PMID: 38447392 DOI: 10.1016/j.bbrc.2024.149736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.
Collapse
Affiliation(s)
- Yuan Che
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Haoyang Zhao
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yaoguo Yang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Zhong Chen
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Ayerra L, Abellanas MA, Basurco L, Tamayo I, Conde E, Tavira A, Trigo A, Vidaurre C, Vilas A, San Martin-Uriz P, Luquin E, Clavero P, Mengual E, Hervás-Stubbs S, Aymerich MS. Nigrostriatal degeneration determines dynamics of glial inflammatory and phagocytic activity. J Neuroinflammation 2024; 21:92. [PMID: 38610019 PMCID: PMC11015575 DOI: 10.1186/s12974-024-03091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.
Collapse
Grants
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- PI20/01063 Instituto de Salud Carlos III
- FPU19/03255 Ministerio de Ciencia, Innovación y Universidades
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- PC060-061 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra
- FPU18/02244 Ministerio de Ciencia, Innovación y Universidades,Spain
- FPU21/01545 Ministerio de Ciencia, Innovación y Universidades,Spain
Collapse
Affiliation(s)
- Leyre Ayerra
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Miguel Angel Abellanas
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Leyre Basurco
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Ibon Tamayo
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Adriana Tavira
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaya Trigo
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Clara Vidaurre
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, España
| | - Amaia Vilas
- CIMA-Universidad de Navarra, Pamplona, España
| | | | - Esther Luquin
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Pedro Clavero
- Servicio de Neurología, Hospital Universitario de Navarra, Pamplona, Spain
| | - Elisa Mengual
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- CIMA-Universidad de Navarra, Pamplona, España
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Maria S Aymerich
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain.
- CIMA-Universidad de Navarra, Pamplona, España.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
33
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
34
|
Ren X, Gao X, Li Z, Ding Y, Xu A, Du L, Yang Y, Wang D, Wang Z, Shu S. Electroacupuncture ameliorates neuroinflammation by inhibiting TRPV4 channel in ischemic stroke. CNS Neurosci Ther 2024; 30:e14618. [PMID: 38334061 PMCID: PMC10853892 DOI: 10.1111/cns.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS We investigated the potential mechanisms underlying the therapeutic efficacy of electroacupuncture (EA) at the Shuigou (GV26) and Baihui (GV20) acupoints in the treatment of ischemic stroke. METHODS We assessed the therapeutic effects of EA on MCAO mice through behavioral studies and TTC staining. Various techniques, such as RT-PCR, immunofluorescence, and Western blots, were employed to evaluate the activation and polarization of microglia/macrophages, and changes in the TRPV4 ion channel. We used the TRPV4 antagonist GSK2193874 (GSK219) to verify the involvement of TRPV4 in the therapeutic effects of EA. RESULTS EA effectively improved neurological impairments and reduced cerebral infarction volume in MCAO mice. It suppressed activated microglia/macrophages and inhibited their polarization toward the M1 phenotype post-MCAO. EA also downregulated the expression of pro-inflammatory cytokines, including Tnf-α, Il-6, Il-1β, and Ccl-2 mRNA. Furthermore, EA reduced the elevated expression of TRPV4 following MCAO. Treatment with the TRPV4 antagonist GSK219 mirrored the effects of EA in MCAO mice. Notably, the combination of EA and GSK219 did not demonstrate an additive or synergistic effect. CONCLUSION EA may inhibit neuroinflammation and exhibit a protective effect against ischemic brain injury by suppressing TRPV4 and the subsequent M1 polarization of microglia/macrophages.
Collapse
Affiliation(s)
- Xueqi Ren
- School of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xinyi Gao
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ziqing Li
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangyang Ding
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ao Xu
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lixia Du
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yufang Yang
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Deheng Wang
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhifei Wang
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shi Shu
- School of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
35
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
36
|
Li L, Chen J, Sun H, Niu Q, Zhao Y, Yang X, Sun Q. Orm2 Deficiency Aggravates High-Fat Diet-Induced Obesity through Gut Microbial Dysbiosis and Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300236. [PMID: 37853937 DOI: 10.1002/mnfr.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/09/2023] [Indexed: 10/20/2023]
Abstract
SCOPE Orosomucoid 2 (Orm2) is a hepatocyte-secreted protein that plays a crucial role in regulating obesity-type metabolic disease and immunity. The imbalance of gut microbiota is one of the causes of obesity, but the mechanism of the relationship between Orm2 and gut microbiota in obesity remains unclear. METHODS AND RESULTS Orm2-/- (Orm2 knockout) mice on a normal diet developed spontaneous obesity and metabolic disturbances at the 20th week. Through 16S rRNA gene sequencing, the study finds that the gut microbiota of Orm2-/- mice has a different microbial composition compared to wild type (WT) mice. Furthermore, a high-fat diet (HFD) for 16 weeks exacerbates obesity in Orm2-/- mice. Lack of Orm2 promotes dysregulation of gut microbiota under the HFD, especially a reduction of Clostridium spp. Supplementation with Clostridium butyricum alleviates obesity and alters the gut microbial composition in WT mice, but has minimal effects on Orm2-/- mice. In contrast, co-housing of Orm2-/- mice with WT mice rescues Orm2-/- obesity by reducing pathogenic bacteria and mitigating intestinal inflammation. CONCLUSION These findings suggest Orm2 deficiency exacerbates HFD-induced gut microbiota disturbance and intestinal inflammation, providing a novel insight into the complex bacterial flora but not a single probiotic administration in the therapeutic strategy of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Niu
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
37
|
Zhang S, Meng R, Jiang M, Qing H, Ni J. Emerging Roles of Microglia in Blood-Brain Barrier Integrity in Aging and Neurodegeneration. Curr Neuropharmacol 2024; 22:1189-1204. [PMID: 36740799 PMCID: PMC10964094 DOI: 10.2174/1570159x21666230203103910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly selective interface between the blood and the brain parenchyma. It plays an essential role in maintaining a specialized environment for central nervous system function and homeostasis. The BBB disrupts with age, which contributes to the development of many age-related disorders due to central and peripheral toxic factors or BBB dysfunction. Microglia, the resident innate immune cells of the brain, have recently been explored for their ability to directly and indirectly regulate the integrity of the BBB. This review will focus on the current understanding of the molecular mechanisms utilized by microglia to regulate BBB integrity and how this becomes disrupted in aging and age-associated diseases. We will also discuss the rationale for considering microglia as a therapeutic target to prevent or slow down neurodegeneration.
Collapse
Affiliation(s)
- Simeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Meng
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Muzhou Jiang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
38
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
39
|
Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Saiz-Sanchez D, Martinez-Marcos A, Ubeda-Banon I, Flores-Cuadrado A. Synaptic Involvement of the Human Amygdala in Parkinson's Disease. Mol Cell Proteomics 2023; 22:100673. [PMID: 37947401 PMCID: PMC10700869 DOI: 10.1016/j.mcpro.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
α-Synuclein, a protein mostly present in presynaptic terminals, accumulates neuropathologically in Parkinson's disease in a 6-stage sequence and propagates in the nervous system in a prion-like manner through neurons and glia. In stage 3, the substantia nigra are affected, provoking motor symptoms and the amygdaloid complex, leading to different nonmotor symptoms; from here, synucleinopathy spreads to the temporal cortex and beyond. The expected increase in Parkinson's disease incidence accelerates the need for detection biomarkers; however, the heterogeneity of this disease, including pathological aggregates and pathophysiological pathways, poses a challenge in the search for new therapeutic targets and biomarkers. Proteomic analyses are lacking, and the literature regarding synucleinopathy, neural and glial involvement, and volume of the human amygdaloid complex is controversial. Therefore, the present study combines both proteomic and stereological probes. Data-independent acquisition-parallel accumulation of serial fragmentation proteomic analysis revealed a remarkable proteomic impact, especially at the synaptic level in the human amygdaloid complex in Parkinson's disease. Among the 199 differentially expressed proteins, guanine nucleotide-binding protein G(i) subunit alpha-1 (GNAI1), elongation factor 1-alpha 1 (EEF1A1), myelin proteolipid protein (PLP1), neuroplastin (NPTN), 14-3-3 protein eta (YWHAH), gene associated with retinoic and interferon-induced mortality 19 protein (GRIM19), and orosomucoid-2 (ORM2) stand out as potential biomarkers in Parkinson's disease. Stereological analysis, however, did not reveal alterations regarding synucleinopathy, neural or glial populations, or volume changes. To our knowledge, this is the first proteomic study of the human amygdaloid complex in Parkinson's disease, and it identified possible biomarkers of the disease. Lewy pathology could not be sufficient to cause neurodegeneration or alteration of microglial and astroglial populations in the human amygdaloid complex in Parkinson's disease. Nevertheless, damage at the proteomic level is manifest, showing up significant synaptic involvement.
Collapse
Affiliation(s)
- Sandra Villar-Conde
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Veronica Astillero-Lopez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Melania Gonzalez-Rodriguez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Daniel Saiz-Sanchez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Alino Martinez-Marcos
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Isabel Ubeda-Banon
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Alicia Flores-Cuadrado
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| |
Collapse
|
40
|
Kim JH, Suk K. Unexpected role of complement component 8 gamma chain in the inflamed brain. Neural Regen Res 2023; 18:2655-2656. [PMID: 37449608 DOI: 10.4103/1673-5374.373706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University; Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
41
|
Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med 2023; 15:eadi7828. [PMID: 37939162 DOI: 10.1126/scitranslmed.adi7828] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive interactions with other cell types in the CNS. In this Review, we highlight the intricate interactions between astrocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the context of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
43
|
Zhou M, Su P, Liang J, Xiong T. Research progress on the roles of neurovascular unit in stroke-induced immunosuppression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:662-672. [PMID: 37899404 PMCID: PMC10630064 DOI: 10.3724/zdxbyxb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
A complex pathophysiological mechanism is involved in brain injury following cerebral infarction. The neurovascular unit (NVU) is a complex multi-cellular structure consisting of neurons, endothelial cells, pericyte, astrocyte, microglia and extracellular matrix, etc. The dyshomeostasis of NVU directly participates in the regulation of inflammatory immune process. The components of NVU promote inflammatory overreaction and synergize with the overactivation of autonomic nervous system to initiate stroke-induced immunodepression (SIID). SIID can alleviate the damage caused by inflammation, however, it also makes stroke patients more susceptible to infection, leading to systemic damage. This article reviews the mechanism of SIID and the roles of NVU in SIID, to provide a perspective for reperfusion, prognosis and immunomodulatory therapy of cerebral infarction.
Collapse
Affiliation(s)
- Mengqin Zhou
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
| | - Peng Su
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Jingyan Liang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
44
|
Zavori L, Varnai R, Molnar T, Szirmay B, Farkas N, Schwarcz A, Csecsei P. Acute Phase Protein Orosomucoid (Alpha-1-Acid Glycoprotein) Predicts Delayed Cerebral Ischemia and 3-Month Unfavorable Outcome after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:15267. [PMID: 37894947 PMCID: PMC10607772 DOI: 10.3390/ijms242015267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The pathophysiology and consequences of early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) remain incompletely understood. This study aims to investigate the role of orosomucoid (ORM) in aSAH, its potential as a marker for assessing the extent of EBI-induced damage, and its correlation with delayed cerebral ischemia (DCI) and functional recovery over a 3-month period. We collected serum specimens 72 h post-aSAH to measure ORM levels. The study included 151 aSAH patients and 105 healthy subjects. The serum ORM levels within the patient cohort significantly exceeded those in the control group (p < 0.001). The ORM value showed significant correlation with the admission WFNS (p < 0.0001) and mFS scores (p < 0.05). Substantially elevated serum ORM levels at 72 h post-aSAH were detected among patients experiencing DCI, as well as those with poor functional outcomes after 3 months (p = 0.009 and p < 0.001). Binary logistic regression analyses revealed that serum ORM at 72 h post-SAH was independently associated with DCI and 3-month functional outcome after adjusting for confounders. The early stage events of aSAH influence the level of ORM. ORM serves as a marker for assessing the extent of damage during EBI and is linked to the occurrence of DCI as well as unfavorable long-term functional outcomes.
Collapse
Affiliation(s)
- Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates;
- Doctoral School, University of Pecs, 7624 Pecs, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Balazs Szirmay
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.S.); (P.C.)
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.S.); (P.C.)
| |
Collapse
|
45
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
46
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
47
|
Li L, Sun H, Chen J, Ding C, Yang X, Han H, Sun Q. Mitigation of non-alcoholic steatohepatitis via recombinant Orosomucoid 2, an acute phase protein modulating the Erk1/2-PPARγ-Cd36 pathway. Cell Rep 2023; 42:112697. [PMID: 37355990 DOI: 10.1016/j.celrep.2023.112697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The therapeutic administration of recombinant proteins is utilized in a multitude of research studies for treating various diseases. In this study, we investigate the therapeutic potential of Orosomucoid 2 (Orm2), an acute phase protein predominantly secreted by hepatocytes, for treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Our results show that high Orm2 expression prevents high-fat-diet (HFD)-induced obesity in mice. Pharmacological administration of recombinant ORM2 protein ameliorates hepatic steatosis, inflammation, hepatocyte injury, and fibrosis in mouse livers afflicted by NAFLD and NASH under dietary stress. Orm2 knockout mice develop spontaneous obesity under a regular diet and exacerbate HFD-induced steatosis, steatohepatitis, and fibrosis. Mechanistically, Orm2 deletion activates the Erk1/2-PPARγ-Cd36 signaling pathway, increasing fatty acid uptake and absorption in hepatocytes and mice. Overall, our findings underscore the critical role of Orm2 in preventing NASH and associated NAFLD in the context of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Ding
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Han
- Department of Biomedicine, Future Agriculture Institute, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
48
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
49
|
Xingi E, Koutsoudaki PN, Thanou I, Phan MS, Margariti M, Scheller A, Tinevez JY, Kirchhoff F, Thomaidou D. LPS-Induced Systemic Inflammation Affects the Dynamic Interactions of Astrocytes and Microglia with the Vasculature of the Mouse Brain Cortex. Cells 2023; 12:1418. [PMID: 37408252 DOI: 10.3390/cells12101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
The Neurovascular Unit (NVU), composed of glia (astrocytes, oligodendrocytes, microglia), neurons, pericytes and endothelial cells, is a dynamic interface ensuring the physiological functioning of the central nervous system (CNS), which gets affected and contributes to the pathology of several neurodegenerative diseases. Neuroinflammation is a common feature of neurodegenerative diseases and is primarily related to the activation state of perivascular microglia and astrocytes, which constitute two of its major cellular components. Our studies focus on monitoring in real time the morphological changes of perivascular astrocytes and microglia, as well as their dynamic interactions with the brain vasculature, under physiological conditions and following systemic neuroinflammation triggering both microgliosis and astrogliosis. To this end, we performed 2-photon laser scanning microscopy (2P-LSM) for intravital imaging of the cortex of transgenic mice visualizing the dynamics of microglia and astroglia following neuroinflammation induced by systemic administration of the endotoxin lipopolysaccharide (LPS). Our results indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, an event that most possibly contributes to a loss of blood-brain barrier (BBB) integrity. At the same time, microglial cells become activated and exhibit a higher extent of physical contact with the blood vessels. These dynamic responses of perivascular astrocytes and microglia are peaking at 4 days following LPS administration; however, they still persist at a lower level at 8 days after LPS injection, revealing incomplete reversal of inflammation affecting the glial properties and interactions within the NVU.
Collapse
Affiliation(s)
- Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Paraskevi N Koutsoudaki
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Irini Thanou
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Minh-Son Phan
- Institut Pasteur, Université de Paris, Image Analysis Hub, F-75015 Paris, France
| | - Maria Margariti
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris, Image Analysis Hub, F-75015 Paris, France
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Dimitra Thomaidou
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
50
|
Kim JH, Han J, Afridi R, Kim JH, Rahman MH, Park DH, Lee WS, Song GJ, Suk K. A multiplexed siRNA screen identifies key kinase signaling networks of brain glia. Life Sci Alliance 2023; 6:e202201605. [PMID: 36878638 PMCID: PMC9990460 DOI: 10.26508/lsa.202201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The dynamic behaviors of brain glial cells in various neuroinflammatory conditions and neurological disorders have been reported; however, little is known about the underlying intracellular signaling pathways. Here, we developed a multiplexed kinome-wide siRNA screen to identify the kinases regulating several inflammatory phenotypes of mouse glial cells in culture, including inflammatory activation, migration, and phagocytosis of glia. Subsequent proof-of-concept experiments involving genetic and pharmacological inhibitions indicated the importance of T-cell receptor signaling components in microglial activation and a metabolic shift from glycolysis to oxidative phosphorylation in astrocyte migration. This time- and cost-effective multiplexed kinome siRNA screen efficiently provides exploitable drug targets and novel insight into the mechanisms underlying the phenotypic regulation of glial cells and neuroinflammation. Moreover, the kinases identified in this screen may be relevant in other inflammatory diseases and cancer, wherein kinases play a critical role in disease signaling pathways.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hong Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Won Suk Lee
- Neuracle Science Co., Ltd. Seoul, Republic Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Republic Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|