1
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Zhang W, Xie Y, Chen F, Xie B, Yin Z. Development and validation of a neutrophil extracellular traps-related gene signature for lower-grade gliomas. Comput Biol Med 2025; 188:109844. [PMID: 39978096 DOI: 10.1016/j.compbiomed.2025.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
There is growing evidence linking neutrophil extracellular traps (NETs) to tumor genesis, growth, distant metastasis, and tumor-related thrombosis. However, the roles of NETs-related genes (NETRGs) on LGG prognosis remain unclear. The purpose of this study was to integrate multiple machine learning techniques and experiment validation to develop a reliable NETs-based signature that opens up novel approaches for assessing the prognosis and treatment response of LGG patients. Consensus clustering, k-means clustering and Nonnegative Matrix Factorization was used for the TCGA-LGG dataset and identified two NETs-related subgroups. The prognostic hallmark and nomogram for LGG were developed, which consist of five differentially expressed NETRGs (FPR1, PTAFR, SLC11A1, ICAM1, LTF) based on nine analytic approaches. The ROC curves and calibration curves of our NETRGs signature and nomogram exhibited strong and robust prognosis prediction abilities in both the TCGA-LGG training set and CGGA-325, CGGA-693 validation sets. The prognosis for LGG individuals in the low-risk category was better. The TISCH was used to examine the five NETRGs at the single-cell level. Common immunological checkpoints were expressed at greater levels in high-risk individuals. LGG individuals in the low-risk category posses a higher likelihood of being sensitive to Carmustine and Vincristine, as indicated by the drug sensitivity analysis. The qRT-PCR experiment and immunohistochemistry images confirmed that the expression of FPR1, PTAFR, SLC11A1 and ICAM1 are higher in low-grade oligodendroglioma. The NETRGs signature and nomogram can accurately and conveniently predict the LGG patients' prognosis, which can facilitate individualized treatment and the improvement of prognosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Youlong Xie
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Biao Xie
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
3
|
Le N, Awad S, Palazzo I, Hoang T, Blackshaw S. Viral-mediated Oct4 overexpression and inhibition of Notch signaling synergistically induce neurogenic competence in mammalian Muller glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.18.613666. [PMID: 39345433 PMCID: PMC11429848 DOI: 10.1101/2024.09.18.613666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal Muller glia in cold-blooded vertebrates can reprogram into neurogenic progenitors to replace neurons lost to injury, but mammals lack this ability. While recent studies have shown that transgenic overexpression of neurogenic bHLH factors and glial-specific disruption of NFI family transcription factors and Notch signaling induce neurogenic competence in mammalian Muller glia, induction of neurogenesis in wild-type glia has thus far proven elusive. Here, we report that viral-mediated overexpression of the pluripotency factor Oct4 (Pou5f1) induces transdifferentiation of mouse Muller glia into bipolar neurons, and synergistically stimulates glial-derived neurogenesis in parallel with Notch loss of function. Single cell multiomic analysis shows that Oct4 overexpression leads to widespread changes in gene expression and chromatin accessibility, inducing activity of both the neurogenic transcription factor Rfx4 and the Yamanaka factors Sox2 and Klf4. This study demonstrates that viral-mediated overexpression of Oct4 induces neurogenic competence in retinal Muller glia, identifying mechanisms that could be used in cell-based therapies for treating retinal dystrophies.
Collapse
|
4
|
Lin L, Yuan Y, Huang Z, Wang Y. YAP Signaling in Glia: Pivotal Roles in Neurological Development, Regeneration and Diseases. Neurosci Bull 2025; 41:501-519. [PMID: 39503968 PMCID: PMC11876503 DOI: 10.1007/s12264-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 03/04/2025] Open
Abstract
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing. In this review, we aim to summarize the roles and underlying mechanisms of YAP in glia and glia-related neurological diseases in an integrated perspective.
Collapse
Affiliation(s)
- Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
González Alvarado MN, Aprato J. Sox8: a multifaceted transcription factor in development and disease. Biol Open 2025; 14:bio061840. [PMID: 39936824 PMCID: PMC11849977 DOI: 10.1242/bio.061840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Sox8 is a transcription factor that belongs to the Sox family of high-mobility-group domain containing proteins and is closely related to Sox9 and Sox10. During prenatal development, Sox8 is expressed in several ectoderm-, endoderm- and mesoderm-derived tissues and has been implicated in processes of organogenesis and differentiation. Sox8 expression is found in several important cells such as Sertoli cells in the male gonad, glial cells, satellite cells, and chondrocytes. However, Sox8 is not essential for the proper development of any of the involved systems, as it functions redundantly with Sox9 or Sox10 and no major developmental disturbances have been noticed in its absence. Despite its perceived limited importance as a developmental regulator, Sox8 exhibits a more significant role in late development and adult tissues. Several studies highlight the importance of Sox8 for the homeostasis of adipose tissue, Sertoli cells and the blood-testis-barrier functioning, and the maintenance of myelin in the central nervous system. Emerging evidence points to SOX8 as a promising candidate for a disease-causing gene in humans and suggests that changes in SOX8 function or expression could contribute to pathological states. For instance, genetic variants of SOX8 have been linked to multiple sclerosis and familial essential tremor, while SOX8 alterations have been related to poor cancer prognosis and infertility. This Review provides an overview of Sox8's versatile role in development and adult tissues as well as its lesser-known contributions to various diseases, and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Jessica Aprato
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Hernández-Núñez I, Urman A, Zhang X, Jacobs W, Hoffman C, Rebba S, Harding EG, Li Q, Mao F, Cani AK, Chen S, Dawlaty MM, Rao RC, Ruzycki PA, Edwards JR, Clark BS. Active DNA demethylation is upstream of rod-photoreceptor fate determination and required for retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636318. [PMID: 39975078 PMCID: PMC11838574 DOI: 10.1101/2025.02.03.636318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Retinal cell fate specification from multipotent retinal progenitors is governed by dynamic changes in chromatin structure and gene expression. Methylation at cytosines in DNA (5mC) is actively regulated for proper control of gene expression and chromatin architecture. Numerous genes display active DNA demethylation across retinal development; a process that requires oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and is controlled by the ten-eleven translocation methylcytosine dioxygenase (TET) enzymes. Using an allelic series of conditional TET enzyme mutants, we determine that DNA demethylation is required upstream of NRL and NR2E3 expression for the establishment of rod-photoreceptor fate. Using histological, behavioral, transcriptomic, and base-pair resolution DNA methylation analyses, we establish that inhibition of active DNA demethylation results in global changes in gene expression and methylation patterns that prevent photoreceptor precursors from adopting a rod-photoreceptor fate, instead producing a retina in which all photoreceptors specify as cones. Our results establish the TET enzymes and DNA demethylation as critical regulators of retinal development and cell fate specification, elucidating a novel mechanism required for the specification of rod-photoreceptors.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - William Jacobs
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christy Hoffman
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sohini Rebba
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shiming Chen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Genetics, and Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department and Center of Computational Medicine and Bioinformatics, Comprehensive Cancer Center, A. Alfred Taubman Medical Research Institute, Center for RNA Biomedicine, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgery Section, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Zhang C, Lin Z, Yu Y, Wu S, Huang H, Huang Y, Liu J, Mo K, Tan J, Han Z, Li M, Zhao W, Ouyang H, Chen X, Wang L. Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system. LIFE MEDICINE 2024; 3:lnae033. [PMID: 39872440 PMCID: PMC11749776 DOI: 10.1093/lifemedi/lnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 01/30/2025]
Abstract
The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the in vitro differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages. Key marker gene expression, transcription factor activity, and signaling pathway insights revealed stepwise transitions from undifferentiated ESCs to fate-specified cell types, including a PAX6 + TP63 + population indicative of OSE precursors. Comparative analysis with mouse embryonic development confirmed the model's accuracy in mimicking in vivo epiblast-to-surface ectoderm dynamics. By integrating temporal dynamics of transcription factor activation and cell-cell communication, we constructed a comprehensive molecular atlas of the differentiation pathway from ESCs to distinct ectodermal lineages. This study provides new insights into the cellular heterogeneity and regulatory mechanisms of OSE development, aiding the understanding of ocular surface biology and the design of cell-based therapies for ocular surface disorders.
Collapse
Affiliation(s)
- Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi 832002, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| |
Collapse
|
8
|
Le N, Vu TD, Palazzo I, Pulya R, Kim Y, Blackshaw S, Hoang T. Robust reprogramming of glia into neurons by inhibition of Notch signaling and nuclear factor I (NFI) factors in adult mammalian retina. SCIENCE ADVANCES 2024; 10:eadn2091. [PMID: 38996013 PMCID: PMC11244444 DOI: 10.1126/sciadv.adn2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for treating neurodegenerative diseases. In this study, we present an efficient method for reprogramming retinal glial cells into neurons. By suppressing Notch signaling by disrupting either Rbpj or Notch1/2, we induced mature Müller glial cells to reprogram into bipolar- and amacrine-like neurons. We demonstrate that Rbpj directly activates both Notch effector genes and genes specific to mature Müller glia while indirectly repressing expression of neurogenic basic helix-loop-helix (bHLH) factors. Combined loss of function of Rbpj and Nfia/b/x resulted in conversion of nearly all Müller glia to neurons. Last, inducing Müller glial proliferation by overexpression of dominant-active Yap promotes neurogenesis in both Rbpj- and Nfia/b/x/Rbpj-deficient Müller glia. These findings demonstrate that Notch signaling and NFI factors act in parallel to inhibit neurogenic competence in mammalian Müller glia and help clarify potential strategies for regenerative therapies aimed at treating retinal dystrophies.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Trieu-Duc Vu
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Isabella Palazzo
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ritvik Pulya
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yehna Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| |
Collapse
|
9
|
Li CP, Wu S, Sun YQ, Peng XQ, Gong M, Du HZ, Zhang J, Teng ZQ, Wang N, Liu CM. Lhx2 promotes axon regeneration of adult retinal ganglion cells and rescues neurodegeneration in mouse models of glaucoma. Cell Rep Med 2024; 5:101554. [PMID: 38729157 PMCID: PMC11148806 DOI: 10.1016/j.xcrm.2024.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Chang-Ping Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Qi Peng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Maolei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
10
|
Alamin M, Humaira Sultana M, Babarinde IA, Azad AKM, Moni MA, Xu H. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Brief Bioinform 2024; 25:bbae230. [PMID: 38739758 PMCID: PMC11089419 DOI: 10.1093/bib/bbae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Md Alamin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | | | - Isaac Adeyemi Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Jung S, Ko SH, Ahn N, Lee J, Park CH, Hwang J. Role of UPF1-LIN28A interaction during early differentiation of pluripotent stem cells. Nat Commun 2024; 15:158. [PMID: 38167913 PMCID: PMC10762078 DOI: 10.1038/s41467-023-44600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
UPF1 and LIN28A are RNA-binding proteins involved in post-transcriptional regulation and stem cell differentiation. Most studies on UPF1 and LIN28A have focused on the molecular mechanisms of differentiated cells and stem cell differentiation, respectively. We reveal that LIN28A directly interacts with UPF1 before UPF1-UPF2 complexing, thereby reducing UPF1 phosphorylation and inhibiting nonsense-mediated mRNA decay (NMD). We identify the interacting domains of UPF1 and LIN28A; moreover, we develop a peptide that impairs UPF1-LIN28A interaction and augments NMD efficiency. Transcriptome analysis of human pluripotent stem cells (hPSCs) confirms that the levels of NMD targets are significantly regulated by both UPF1 and LIN28A. Inhibiting the UPF1-LIN28A interaction using a CPP-conjugated peptide promotes spontaneous differentiation by repressing the pluripotency of hPSCs during proliferation. Furthermore, the UPF1-LIN28A interaction specifically regulates transcripts involved in ectodermal differentiation. Our study reveals that transcriptome regulation via the UPF1-LIN28A interaction in hPSCs determines cell fate.
Collapse
Affiliation(s)
- Seungwon Jung
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Narae Ahn
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Jinsam Lee
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea.
| | - Jungwook Hwang
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| |
Collapse
|
12
|
Yoshimoto T, Chaya T, Varner LR, Ando M, Tsujii T, Motooka D, Kimura K, Furukawa T. The Rax homeoprotein in Müller glial cells is required for homeostasis maintenance of the postnatal mouse retina. J Biol Chem 2023; 299:105461. [PMID: 37977220 PMCID: PMC10714373 DOI: 10.1016/j.jbc.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.
Collapse
Affiliation(s)
- Takuya Yoshimoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Leah R Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Makoto Ando
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
13
|
Wang J, Cheng X, Liang Q, Owen LA, Lu J, Zheng Y, Wang M, Chen S, DeAngelis MM, Li Y, Chen R. Single-cell multiomics of the human retina reveals hierarchical transcription factor collaboration in mediating cell type-specific effects of genetic variants on gene regulation. Genome Biol 2023; 24:269. [PMID: 38012720 PMCID: PMC10680294 DOI: 10.1186/s13059-023-03111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Systematic characterization of how genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. RESULTS We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. CONCLUSIONS Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jiaxiong Lu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, MO, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, University at Buffalo the State University of New York, Buffalo, NY, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Li J, Wang J, Ibarra IL, Cheng X, Luecken MD, Lu J, Monavarfeshani A, Yan W, Zheng Y, Zuo Z, Colborn SLZ, Cortez BS, Owen LA, Tran NM, Shekhar K, Sanes JR, Stout JT, Chen S, Li Y, DeAngelis MM, Theis FJ, Chen R. Integrated multi-omics single cell atlas of the human retina. RESEARCH SQUARE 2023:rs.3.rs-3471275. [PMID: 38014002 PMCID: PMC10680922 DOI: 10.21203/rs.3.rs-3471275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Zhen Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | | | | | - Leah A Owen
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Margaret M DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
15
|
Le N, Vu TD, Palazzo I, Pulya R, Kim Y, Blackshaw S, Hoang T. Robust reprogramming of glia into neurons by inhibition of Notch signaling and NFI factors in adult mammalian retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.560483. [PMID: 37961663 PMCID: PMC10634926 DOI: 10.1101/2023.10.29.560483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for neurodegenerative diseases. Despite successful applications in vitro , in vivo implementation has been hampered by low efficiency. In this study, we present a highly efficient strategy for reprogramming retinal glial cells into neurons by simultaneously inhibiting key negative regulators. By suppressing Notch signaling through the removal of its central mediator Rbpj, we induced mature Müller glial cells to reprogram into bipolar and amacrine neurons in uninjured adult mouse retinas, and observed that this effect was further enhanced by retinal injury. We found that specific loss of function of Notch1 and Notch2 receptors in Müller glia mimicked the effect of Rbpj deletion on Müller glia-derived neurogenesis. Integrated analysis of multiome (scRNA- and scATAC-seq) and CUT&Tag data revealed that Rbpj directly activates Notch effector genes and genes specific to mature Müller glia while also indirectly represses the expression of neurogenic bHLH factors. Furthermore, we found that combined loss of function of Rbpj and Nfia/b/x resulted in a robust conversion of nearly all Müller glia to neurons. Finally, we demonstrated that inducing Müller glial proliferation by AAV (adeno-associated virus)-mediated overexpression of dominant- active Yap supports efficient levels of Müller glia-derived neurogenesis in both Rbpj - and Nfia/b/x/Rbpj - deficient Müller glia. These findings demonstrate that, much like in zebrafish, Notch signaling actively represses neurogenic competence in mammalian Müller glia, and suggest that inhibition of Notch signaling and Nfia/b/x in combination with overexpression of activated Yap could serve as an effective component of regenerative therapies for degenerative retinal diseases.
Collapse
|
16
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Agarwal D, Dash N, Mazo KW, Chopra M, Avila MP, Patel A, Wong RM, Jia C, Do H, Cheng J, Chiang C, Jurlina SL, Roshan M, Perry MW, Rho JM, Broyer R, Lee CD, Weinreb RN, Gavrilovici C, Oesch NW, Welsbie DS, Wahlin KJ. Human retinal ganglion cell neurons generated by synchronous BMP inhibition and transcription factor mediated reprogramming. NPJ Regen Med 2023; 8:55. [PMID: 37773257 PMCID: PMC10541876 DOI: 10.1038/s41536-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.
Collapse
Affiliation(s)
- Devansh Agarwal
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Kevin W Mazo
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Maria P Avila
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Amit Patel
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Ryan M Wong
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cairang Jia
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Hope Do
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Jie Cheng
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Colette Chiang
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Shawna L Jurlina
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Mona Roshan
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Michael W Perry
- Department of Biological Sciences, UC San Diego, La Jolla, CA, USA
| | - Jong M Rho
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Risa Broyer
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cassidy D Lee
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | | | - Nicholas W Oesch
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
- Department of Psychology, UC San Diego, La Jolla, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Karl J Wahlin
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Eastlake K, Luis J, Wang W, Lamb W, Khaw PT, Limb GA. Transcriptomics of CD29 +/CD44 + cells isolated from hPSC retinal organoids reveals a single cell population with retinal progenitor and Müller glia characteristics. Sci Rep 2023; 13:5081. [PMID: 36977817 PMCID: PMC10050419 DOI: 10.1038/s41598-023-32058-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Müller glia play very important and diverse roles in retinal homeostasis and disease. Although much is known of the physiological and morphological properties of mammalian Müller glia, there is still the need to further understand the profile of these cells during human retinal development. Using human embryonic stem cell-derived retinal organoids, we investigated the transcriptomic profiles of CD29+/CD44+ cells isolated from early and late stages of organoid development. Data showed that these cells express classic markers of retinal progenitors and Müller glia, including NFIX, RAX, PAX6, VSX2, HES1, WNT2B, SOX, NR2F1/2, ASCL1 and VIM, as early as days 10-20 after initiation of retinal differentiation. Expression of genes upregulated in CD29+/CD44+ cells isolated at later stages of organoid development (days 50-90), including NEUROG1, VSX2 and ASCL1 were gradually increased as retinal organoid maturation progressed. Based on the current observations that CD24+/CD44+ cells share the characteristics of early and late-stage retinal progenitors as well as of mature Müller glia, we propose that these cells constitute a single cell population that upon exposure to developmental cues regulates its gene expression to adapt to functions exerted by Müller glia in the postnatal and mature retina.
Collapse
Affiliation(s)
- Karen Eastlake
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Joshua Luis
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Weixin Wang
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - William Lamb
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - G Astrid Limb
- NIHR Biomedical Research Centre at Moorfields Eye Hospital, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
19
|
Cohen-Gulkar M, David A, Messika-Gold N, Eshel M, Ovadia S, Zuk-Bar N, Idelson M, Cohen-Tayar Y, Reubinoff B, Ziv T, Shamay M, Elkon R, Ashery-Padan R. The LHX2-OTX2 transcriptional regulatory module controls retinal pigmented epithelium differentiation and underlies genetic risk for age-related macular degeneration. PLoS Biol 2023; 21:e3001924. [PMID: 36649236 PMCID: PMC9844853 DOI: 10.1371/journal.pbio.3001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.
Collapse
Affiliation(s)
- Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Ahuvit David
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Mai Eshel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| |
Collapse
|
20
|
Javed A, Santos-França PL, Mattar P, Cui A, Kassem F, Cayouette M. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 2023; 150:286611. [PMID: 36537580 DOI: 10.1242/dev.200436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Temporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production. Using CUT&RUN and functional assays, we show that Ikzf4 binds and represses genes involved in late-born rod photoreceptor specification, hence favoring cone production. At late stages, when Ikzf1 is no longer expressed in progenitors, we show that Ikzf4 re-localizes to target genes involved in gliogenesis and is required for Müller glia production. We report that Ikzf4 regulates Notch signaling genes and is sufficient to activate the Hes1 promoter through two Ikzf GGAA-binding motifs, suggesting a mechanism by which Ikzf4 may influence gliogenesis. These results uncover a combinatorial role for Ikaros family members during nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Allie Cui
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal H3A 0G4, Canada
| |
Collapse
|
21
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
22
|
Fernández‐Nogales M, López‐Cascales MT, Murcia‐Belmonte V, Escalante A, Fernández‐Albert J, Muñoz‐Viana R, Barco A, Herrera E. Multiomic Analysis of Neurons with Divergent Projection Patterns Identifies Novel Regulators of Axon Pathfinding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200615. [PMID: 35988153 PMCID: PMC9561852 DOI: 10.1002/advs.202200615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Maria Teresa López‐Cascales
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Verónica Murcia‐Belmonte
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Augusto Escalante
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Jordi Fernández‐Albert
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Rafael Muñoz‐Viana
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Angel Barco
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas ‐Universidad Miguel Hernández de Elche, CSIC‐UMH)San Juan de AlicanteAv. Santiago Ramón y Cajal s/nAlicante03550Spain
| |
Collapse
|
23
|
Le N, Appel H, Pannullo N, Hoang T, Blackshaw S. Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. Front Cell Dev Biol 2022; 10:914386. [PMID: 36200040 PMCID: PMC9527291 DOI: 10.3389/fcell.2022.914386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct reprogramming of retinal Müller glia is a promising avenue for replacing photoreceptors and retinal ganglion cells lost to retinal dystrophies. However, questions have recently been raised about the accuracy of studies claiming efficient glia-to-neuron reprogramming in retina that were conducted using GFAP mini promoter-driven adeno-associated virus (AAV) vectors. In this study, we have addressed these questions using GFAP mini promoter-driven AAV constructs to simultaneously overexpress the mCherry reporter and candidate transcription factors predicted to induce glia-to-neuron conversion, in combination with prospective genetic labeling of retinal Müller glia using inducible Cre-dependent GFP reporters. We find that, while control GFAP-mCherry constructs express faithfully in Müller glia, 5 out of 7 transcription factor overexpression constructs tested are predominantly expressed in amacrine and retinal ganglion cells. These findings demonstrate strong insert-dependent effects on AAV-based GFAP mini promoter specificity that preclude its use in inferring cell lineage relationships when studying glia-to-neuron conversion in retina.
Collapse
Affiliation(s)
- Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Pannullo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
25
|
Chew SH, Martinez C, Chirco KR, Kandoi S, Lamba DA. Timed Notch Inhibition Drives Photoreceptor Fate Specification in Human Retinal Organoids. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36129723 PMCID: PMC9513742 DOI: 10.1167/iovs.63.10.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Transplanting photoreceptors from human pluripotent stem cell-derived retinal organoids have the potential to reverse vision loss in affected individuals. However, transplantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal of our current study was to accelerate and synchronize photoreceptor differentiation in retinal organoids by inhibiting the Notch signaling pathway at different developmental time-points using a small molecule, PF-03084014 (PF). Methods Human induced pluripotent stem cell- and human embryonic stem cells-derived retinal organoids were treated with 10 µM PF for 3 days starting at day 45 (D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA sequencing (n = 3-5 organoids from three independent experiments). Results Retinal organoids collected after treatment showed a decrease in progenitor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120. PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor markers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photoreceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition. Conclusions Timing the Notch pathway inhibition in human retinal organoids to align with progenitor competency stages can yield an enriched population of early cone or rod photoreceptors.
Collapse
Affiliation(s)
- Shereen H. Chew
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Kathleen R. Chirco
- Department of Ophthalmology, University of California San Francisco, California, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| |
Collapse
|
26
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
27
|
Daniszewski M, Senabouth A, Liang HH, Han X, Lidgerwood GE, Hernández D, Sivakumaran P, Clarke JE, Lim SY, Lees JG, Rooney L, Gulluyan L, Souzeau E, Graham SL, Chan CL, Nguyen U, Farbehi N, Gnanasambandapillai V, McCloy RA, Clarke L, Kearns LS, Mackey DA, Craig JE, MacGregor S, Powell JE, Pébay A, Hewitt AW. Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma. CELL GENOMICS 2022; 2:100142. [PMID: 36778138 PMCID: PMC9903700 DOI: 10.1016/j.xgen.2022.100142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/08/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.
Collapse
Affiliation(s)
- Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Anne Senabouth
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Helena H. Liang
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Priyadharshini Sivakumaran
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Jordan E. Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Shiang Y. Lim
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,O’Brien Institute Department of St Vincent’s Institute of Medical Research, Melbourne, Fitzroy, VIC 3065, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department of St Vincent’s Institute of Medical Research, Melbourne, Fitzroy, VIC 3065, Australia,Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Louise Rooney
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Lerna Gulluyan
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Stuart L. Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Chia-Ling Chan
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Uyen Nguyen
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Vikkitharan Gnanasambandapillai
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Rachael A. McCloy
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Lisa S. Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - David A. Mackey
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, Crawley, WA 6009, Australia,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Joseph E. Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW 2052, Australia,Corresponding author
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia,Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia,Corresponding author
| | - Alex W. Hewitt
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia,Corresponding author
| |
Collapse
|
28
|
Reduced chromatin accessibility correlates with resistance to Notch activation. Nat Commun 2022; 13:2210. [PMID: 35468895 PMCID: PMC9039071 DOI: 10.1038/s41467-022-29834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
The Notch signalling pathway is a master regulator of cell fate transitions in development and disease. In the brain, Notch promotes neural stem cell (NSC) proliferation, regulates neuronal migration and maturation and can act as an oncogene or tumour suppressor. How NOTCH and its transcription factor RBPJ activate distinct gene regulatory networks in closely related cell types in vivo remains to be determined. Here we use Targeted DamID (TaDa), requiring only thousands of cells, to identify NOTCH and RBPJ binding in NSCs and their progeny in the mouse embryonic cerebral cortex in vivo. We find that NOTCH and RBPJ associate with a broad network of NSC genes. Repression of NSC-specific Notch target genes in intermediate progenitors and neurons correlates with decreased chromatin accessibility, suggesting that chromatin compaction may contribute to restricting NOTCH-mediated transactivation.
Collapse
|
29
|
Palazzo I, Todd LJ, Hoang TV, Reh TA, Blackshaw S, Fischer AJ. NFkB-signaling promotes glial reactivity and suppresses Müller glia-mediated neuron regeneration in the mammalian retina. Glia 2022; 70:1380-1401. [PMID: 35388544 DOI: 10.1002/glia.24181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/25/2022]
Abstract
Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFβ2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Levi J Todd
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas A Reh
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
30
|
Shen Z, Wu Y, He G. Long non-coding RNA PTPRG-AS1/microRNA-124-3p regulates radiosensitivity of nasopharyngeal carcinoma via the LIM Homeobox 2-dependent Notch pathway through competitive endogenous RNA mechanism. Bioengineered 2022; 13:8208-8225. [PMID: 35300558 PMCID: PMC9161917 DOI: 10.1080/21655979.2022.2037364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor in the nasopharyngeal cavity. LncRNA PTPRG-AS1 is essential in NPC radiosensitivity. This study sought to explore the mechanism of PTPRG-AS1 in NPC radiosensitivity by regulating the miR-124-3p/LHX2 axis. First, NPC-related microarray was analyzed to screen differentially expressed lncRNAs. PTPRG-AS1 and miR-124-3p expression patterns in NPC tissues and adjacent tissues of NPC patients and NPC cell lines were detected by RT-qPCR. PTPRG-AS1 was knocked down in CNE2 and 5–8 F cells by transfection. The radiosensitivity, proliferation and apoptosis before and after radiotherapy (0/6 Gy) were detected by cloning formation assay, CCK-8 assay, and flow cytometry. Bioinformatics, Pearson correlation analysis, RNA pull-down, and luciferase reporter assays were performed to explore the regulatory relationship of the lncRNA PTPRG-AS1/miR-124-3/LHX2 axis. The corresponding functions were verified in the complementation test. The levels of LHX2 and Notch pathway-related proteins were detected by Western blot. PTPRG-AS1 was upregulated in NPC cell lines and tissues. PTPRG-AS1 knockdown decreased NPC cell proliferation and promoted radiotherapy-induced apoptosis and cell radiosensitivity. PTPRG-AS1 upregulated LHX2 as a ceRNA of miR-124-3p. miR-124-3p inhibition partially reversed PTPRG-AS1 silencing-induced NPC cell radiosensitivity. miR-124-3p targeted LHX2. LHX2 overexpression attenuated the miR-124-3p overexpression-induced NPC cell radiosensitivity. LHX2 attenuated NPC cell radiosensitivity by activating the Notch pathway. Briefly, lncRNA PTPRG-AS1 reduced NPC cell radiosensitivity by regulating the miR-124-3p/LHX2 axis through the ceRNA mechanism.
Collapse
Affiliation(s)
- Zhangquan Shen
- Department of Otolaryngology, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang, China
| | - Yang Wu
- Department of Otolaryngology, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Guijun He
- Department of Otolaryngology, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| |
Collapse
|
31
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
32
|
Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2022; 15:815923. [PMID: 35185477 PMCID: PMC8856507 DOI: 10.3389/fncir.2021.815923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Müller glia of the retina share many features with astroglia located throughout the brain including maintenance of homeostasis, modulation of neurotransmitter spillover, and robust response to injury. Here we present the molecular factors and signaling events that govern Müller glial specification, patterning, and differentiation. Next, we discuss the various roles of Müller glia in retinal development, which include maintaining retinal organization and integrity as well as promoting neuronal survival, synaptogenesis, and phagocytosis of debris. Finally, we review the mechanisms by which Müller glia integrate into retinal circuits and actively participate in neuronal signaling during development.
Collapse
Affiliation(s)
- Joshua M. Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Joshua M. Tworig,
| | - Marla B. Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
33
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
35
|
Lyu P, Hoang T, Santiago CP, Thomas ED, Timms AE, Appel H, Gimmen M, Le N, Jiang L, Kim DW, Chen S, Espinoza DF, Telger AE, Weir K, Clark BS, Cherry TJ, Qian J, Blackshaw S. Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep 2021; 37:109994. [PMID: 34788628 PMCID: PMC8642835 DOI: 10.1016/j.celrep.2021.109994] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siqi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David F Espinoza
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel E Telger
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA
| | - Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian S Clark
- Department of Ophthalmology and Visual Sciences, Brotman Baty Institute, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Brotman Baty Institute, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Webster SE, Sklar NC, Spitsbergen JB, Stanchfield ML, Webster MK, Linn DM, Otteson DC, Linn CL. Stimulation of α7 nAChR leads to regeneration of damaged neurons in adult mammalian retinal disease models. Exp Eye Res 2021; 210:108717. [PMID: 34348130 PMCID: PMC8459670 DOI: 10.1016/j.exer.2021.108717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The adult mammal lacks the ability to regenerate neurons lost to retinal damage or disease in a meaningful capacity. However, previous studies from this laboratory have demonstrated that PNU-282987, an α7 nicotinic acetylcholine receptor agonist, elicits a robust neurogenic response in the adult murine retina. With eye drop application of PNU-282987, Müller glia cells re-enter the cell cycle and produce progenitor-like cells that can differentiate into various types of retinal neurons. In this study, we analyzed the regenerative capability of PNU-282987 in two retinal disease models and identified the source of newly regenerated neurons. Wild-type mice and mice with a transgenic Müller-glia lineage tracer were manipulated to mimic loss of retinal cells associated with glaucoma or photoreceptor degeneration. Following treatment with PNU-282987, the regenerative response of retinal neurons was quantified and characterized. After onset of photoreceptor degeneration, PNU-282987 was able to successfully regenerate both rod and cone photoreceptors. Quantification of this response demonstrated significant regeneration, restoring photoreceptors to near wild-type density. In mice that had glaucoma-like conditions induced, PNU-282987 treatment led to a significant increase in retinal ganglion cells. Retrograde labeling of optic nerve axon fibers demonstrated that newly regenerated axons projected into the optic nerve. Lineage tracing analysis demonstrated that these new neurons were derived from Müller glia. These results demonstrate that PNU-282987 can induce retinal regeneration in adult mice following onset of retinal damage. The ability of PNU-282987 to regenerate retinal neurons in a robust manner offers a new direction for developing novel and potentially transformative treatments to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah E Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Nathan C Sklar
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jake B Spitsbergen
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Megan L Stanchfield
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Mark K Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - David M Linn
- Grand Valley State University, Department of Biomedical Sciences, Allendale, MI, United States
| | - Deborah C Otteson
- University of Houston College of Optometry, Houston, TX, United States
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States.
| |
Collapse
|
37
|
Welle A, Kasakow CV, Jungmann AM, Gobbo D, Stopper L, Nordström K, Salhab A, Gasparoni G, Scheller A, Kirchhoff F, Walter J. Epigenetic control of region-specific transcriptional programs in mouse cerebellar and cortical astrocytes. Glia 2021; 69:2160-2177. [PMID: 34028094 DOI: 10.1002/glia.24016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Astrocytes from the cerebral cortex (CTX) and cerebellum (CB) share basic molecular programs, but also form distinct spatial and functional subtypes. The regulatory epigenetic layers controlling such regional diversity have not been comprehensively investigated so far. Here, we present an integrated epigenome analysis of methylomes, open chromatin, and transcriptomes of astroglia populations isolated from the cortex or cerebellum of young adult mice. Besides a basic overall similarity in their epigenomic programs, cortical astrocytes and cerebellar astrocytes exhibit substantial differences in their overall open chromatin structure and in gene-specific DNA methylation. Regional epigenetic differences are linked to differences in transcriptional programs encompassing genes of region-specific transcription factor networks centered around Lhx2/Foxg1 in CTX astrocytes and the Zic/Irx families in CB astrocytes. The distinct epigenetic signatures around these transcription factor networks point to a complex interconnected and combinatorial regulation of region-specific transcriptomes. These findings suggest that key transcription factors, previously linked to temporal, regional, and spatial control of neurogenesis, also form combinatorial networks important for astrocytes. Our study provides a valuable resource for the molecular basis of regional astrocyte identity and physiology.
Collapse
Affiliation(s)
- Anna Welle
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Carmen V Kasakow
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Annemarie M Jungmann
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Laura Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Karl Nordström
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Jörn Walter
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| |
Collapse
|
38
|
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, Rizzolo LJ. Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33151282 PMCID: PMC7671856 DOI: 10.1167/iovs.61.13.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Many studies have demonstrated the ability of the retinal pigment epithelium (RPE) to foster the maturation of the developing retina. Few studies have examined the reciprocal effects of developing retina on the RPE. Methods RPE isolated from human fetal RPE or differentiated from human stem cells was cultured on Transwell filter inserts. Retinal progenitor cells (RPCs) were differentiated from human stem cells and cultured on a planar scaffold composed of gelatin, chondroitin sulfate, hyaluronic acid, and laminin-521. Cultures were analyzed by quantitative RT-PCR, immunofluorescence, immunoblotting, and transepithelial electrical resistance (TER). Results RPCs initially differentiated into several retina-like cell types that segregated from one another and formed loosely organized layers or zones. With time, the presumptive photoreceptor and ganglion cell layers persisted, but the intervening zone became dominated by cells that expressed glial markers with no evidence of bipolar cells or interneurons. Co-culture of this underdeveloped retinoid with the RPE resulted in a thickened layer of recoverin-positive cells but did not prevent the loss of interneuron markers in the intervening zone. Although photoreceptor inner and outer segments were not observed, immunoblots revealed that co-culture increased expression of rhodopsin and red/green opsin. Co-culture of the RPE with this underdeveloped retinal culture increased the TER of the RPE and the expression of RPE signature genes. Conclusions These studies indicated that an immature neurosensory retina can foster maturation of the RPE; however, the ability of RPE alone to foster maturation of the neurosensory retina is limited.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaoyu Chen
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tina Xia
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Maryam Ghiassi-Nejad
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Laurel Tainsh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Ron A Adelman
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Lawrence J Rizzolo
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut, United States.,Department of Ophthalmology and Visual Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
39
|
Wu F, Bard JE, Kann J, Yergeau D, Sapkota D, Ge Y, Hu Z, Wang J, Liu T, Mu X. Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas. Nat Commun 2021; 12:1465. [PMID: 33674582 PMCID: PMC7935890 DOI: 10.1038/s41467-021-21704-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Julien Kann
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University at Buffalo, Buffalo, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
40
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
41
|
Suzuki F, Okuno M, Tanaka T, Sanuki R. Overexpression of neural miRNAs miR-9/9* and miR-124 suppresses differentiation to Müller glia and promotes differentiation to neurons in mouse retina in vivo. Genes Cells 2020; 25:741-752. [PMID: 32979863 DOI: 10.1111/gtc.12809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) are known to regulate gene expression and modulate cellular differentiation. MicroRNA-9/9* (miR-9/9*) and microRNA-124 (miR-124) are highly expressed in the central nervous system. In vivo function of miR-9/9* and miR-124 has been investigated in detail, whereas there remain some discrepancies regarding neural development. To this end, we electroporated miR-9/9*, miR-124 or miR-9/9*/124 expression plasmids into neonatal retinal progenitor cells (RPCs) in vivo and analyzed the fate of electroporated cells. Both miR-9/9* and miR-124 reduced the number of SOX9- and GS-positive cells and increased that of TUBB3-positive cells in the postnatal day 14 retina. No major effects on the proliferation and apoptosis of the electroporated cells were detected at least postnatal day 3. These indicated that miR-9/9* and miR-124 influence the cell fate of glial cells, thereby inducing their differentiation into neurons. Moreover, we found this cell fate modulation was occurred in RPCs indicating high-level expression of miRNA, but not in the low level. Our results strongly suggest that high-level miRNA overexpression is essential for directing cell fate by miR-9/9* and miR-124 interference.
Collapse
Affiliation(s)
- Fumiko Suzuki
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Mariko Okuno
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoya Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Rikako Sanuki
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
42
|
Xie H, Zhang W, Zhang M, Akhtar T, Li Y, Yi W, Sun X, Zuo Z, Wei M, Fang X, Yao Z, Dong K, Zhong S, Liu Q, Shen Y, Wu Q, Wang X, Zhao H, Bao J, Qu K, Xue T. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids. SCIENCE ADVANCES 2020; 6:eaay5247. [PMID: 32083182 PMCID: PMC7007246 DOI: 10.1126/sciadv.aay5247] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/25/2019] [Indexed: 05/06/2023]
Abstract
Retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs) provide potential opportunities for studying human retinal development and disorders; however, to what extent ROs recapitulate the epigenetic features of human retinal development is unknown. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics over long-term human retinal and RO development. Our results showed that ROs recapitulated the human retinogenesis to a great extent, but divergent chromatin features were also discovered. We further reconstructed the transcriptional regulatory network governing human and RO retinogenesis in vivo. Notably, NFIB and THRA were identified as regulators in human retinal development. The chromatin modifications between developing human and mouse retina were also cross-analyzed. Notably, we revealed an enriched bivalent modification of H3K4me3 and H3K27me3 in human but not in murine retinogenesis, suggesting a more dedicated epigenetic regulation on human genome.
Collapse
Affiliation(s)
- Haohuan Xie
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Wen Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Tasneem Akhtar
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Young Li
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Wenyang Yi
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Sun
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Zuqi Zuo
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
| | - Min Wei
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Xin Fang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Ziqin Yao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Dong
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Suijuan Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Liu
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Kun Qu
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230026, China
- Corresponding author. (T.X.); (K.Q.); (M.Z.)
| | - Tian Xue
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (T.X.); (K.Q.); (M.Z.)
| |
Collapse
|
43
|
Buono L, Martinez-Morales JR. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development. Bioessays 2020; 42:e1900187. [PMID: 31997389 DOI: 10.1002/bies.201900187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ontogeny of the vertebrate retina has been a topic of interest to developmental biologists and human geneticists for many decades. Understanding the unfolding of the genetic program that transforms a field of progenitors cells into a functionally complex and multi-layered sensory organ is a formidable challenge. Although classical genetic studies succeeded in identifying the key regulators of retina specification, understanding the architecture of their gene network and predicting their behavior are still a distant hope. The emergence of next-generation sequencing platforms revolutionized the field unlocking the access to genome-wide datasets. Emerging techniques such as RNA-seq, ChIP-seq, ATAC-seq, or single cell RNA-seq are used to characterize eye developmental programs. These studies provide valuable information on the transcriptional and cis-regulatory profiles of precursors and differentiated cells, outlining the trajectories that connect each intermediate state. Here, recent systems biology efforts are reviewed to understand the genetic programs shaping the vertebrate retina.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville, 41013 , Spain
| | | |
Collapse
|
44
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
45
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
46
|
Langer BE, Hiller M. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences. Nucleic Acids Res 2019; 47:e19. [PMID: 30496469 PMCID: PMC6393245 DOI: 10.1093/nar/gky1200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Changes in gene regulation are important for phenotypic and in particular morphological evolution. However, it remains challenging to identify the transcription factors (TFs) that contribute to differences in gene regulation and thus to phenotypic differences between species. Here, we present TFforge (Transcription Factor forward genomics), a computational method to identify TFs that are involved in the loss of phenotypic traits. TFforge screens an input set of regulatory genomic regions to detect TFs that exhibit a significant binding site divergence signature in species that lost a particular phenotypic trait. Using simulated data of modular and pleiotropic regulatory elements, we show that TFforge can identify the correct TFs for many different evolutionary scenarios. We applied TFforge to available eye regulatory elements to screen for TFs that exhibit a significant binding site decay signature in subterranean mammals. This screen identified interacting and co-binding eye-related TFs, and thus provides new insights into which TFs likely contribute to eye degeneration in these species. TFforge has broad applicability to identify the TFs that contribute to phenotypic changes between species, and thus can help to unravel the gene-regulatory differences that underlie phenotypic evolution.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| |
Collapse
|
47
|
Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, Gronostajski RM, Fertig EJ, Goff LA, Blackshaw S. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019; 102:1111-1126.e5. [PMID: 31128945 PMCID: PMC6768831 DOI: 10.1016/j.neuron.2019.04.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle H Cannon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca E James-Esposito
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Zibetti C, Liu S, Wan J, Qian J, Blackshaw S. Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin. Commun Biol 2019; 2:142. [PMID: 31044167 PMCID: PMC6484012 DOI: 10.1038/s42003-019-0375-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/11/2019] [Indexed: 11/14/2022] Open
Abstract
Retinal neurogenesis occurs through partially overlapping temporal windows, driven by concerted actions of transcription factors which, in turn, may contribute to the establishment of divergent genetic programs in the developing retina by coordinating variations in chromatin landscapes. Here we comprehensively profile murine retinal progenitors by integrating next generation sequencing methods and interrogate changes in chromatin accessibility at embryonic and post-natal stages. An unbiased search for motifs in open chromatin regions identifies putative factors involved in the developmental progression of the epigenome in retinal progenitor cells. Among these factors, the transcription factor LHX2 exhibits a developmentally regulated cis-regulatory repertoire and stage-dependent motif instances. Using loss-of-function assays, we determine LHX2 coordinates variations in chromatin accessibility, by competition for nucleosome occupancy and secondary regulation of candidate pioneer factors.
Collapse
Affiliation(s)
- Cristina Zibetti
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sheng Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jun Wan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
49
|
Guo H, Tian L, Zhang JZ, Kitani T, Paik DT, Lee WH, Wu JC. Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports 2019; 12:772-786. [PMID: 30827876 PMCID: PMC6449785 DOI: 10.1016/j.stemcr.2019.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotine, the main chemical constituent of tobacco, is highly detrimental to the developing fetus by increasing the risk of gestational complications and organ disorders. The effects of nicotine on human embryonic development and related mechanisms, however, remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of human embryonic stem cell (hESC)-derived embryoid body (EB) in the presence or absence of nicotine. Nicotine-induced lineage-specific responses and dysregulated cell-to-cell communication in EBs, shedding light on the adverse effects of nicotine on human embryonic development. In addition, nicotine reduced cell viability, increased reactive oxygen species (ROS), and altered cell cycling in EBs. Abnormal Ca2+ signaling was found in muscle cells upon nicotine exposure, as verified in hESC-derived cardiomyocytes. Consequently, our scRNA-seq data suggest direct adverse effects of nicotine on hESC differentiation at the single-cell level and offer a new method for evaluating drug and environmental toxicity on human embryonic development in utero.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|