1
|
Lin MT, Chan TY, Liao WH, Wu CH, Young TH, Chen WS. Intranasal drug delivery Dynamics: Extracellular and intracellular pathways revealed by Fluoro-Gold tracer in a mouse model. Brain Res 2025; 1858:149644. [PMID: 40233876 DOI: 10.1016/j.brainres.2025.149644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
To address the challenge of drug delivery to the brain, nasal administration was introduced as a non-invasive approach to bypass the blood-brain-barrier. Intranasal (IN)-delivery routes primarily rely on the olfactory nerve and trigeminal nerve. Recent evidence of glymphatic system suggests that the perivascular space (PVS) plays a role in facilitating the rapid distribution of drugs throughout the brain. While several studies have investigated IN-delivery to the brain and have shown the presence of tracers in PVS, none have visualized PVS or trigeminal nerve in different timing or utilized Fluoro-Gold (FG) as a tracer to demonstrate associated pathways. In this study, we utilized retrograde tracer FG to illustrate the intracellular and extracellular pathways to the brain by IN-delivery and transcranial olfactory bulb (OB) injection at different time points in a mouse model. We found FG reached the outermost layer of the cerebral cortex within 30 minutes and penetrated through PVS deep into the brain over time after IN administration, possibly through extracellular pathway; similarly, FG rapidly reached the trigeminal nerve and exhibited a gradual increase in fluorescence signal at the perineural space over time. Immunofluorescence staining confirmed FG and astrocyte co-localized at the cerebral cortex and along the PVS entering the brain parenchyma. The intracellular delivery after transcranial OB injection also revealed a slow velocity of FG projection. We concluded rapid IN delivery of FG relied on the extracellular pathway, penetrating deep into the brain through glymphatic system over time. FG proved to be an excellent tool for evaluating the IN-delivery animal model, providing insights into extracellular transport via olfactory and trigeminal nerves.
Collapse
Affiliation(s)
- Meng-Ting Lin
- Department of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yun Chan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Vorhees NW, Groenwold SL, Williams MT, Putt LS, Sanchez-Gama N, Stalions GA, Taylor GM, Van Dort HE, Calvo-Ochoa E. Olfactory Dysfunction in a Novel Model of Prodromal Parkinson's Disease in Adult Zebrafish. Int J Mol Sci 2025; 26:4474. [PMID: 40429620 PMCID: PMC12111043 DOI: 10.3390/ijms26104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Olfactory dysfunction is a clinical marker of prodromal Parkinson's disease (PD), yet the underlying mechanisms remain unclear. To explore this relationship, we developed a zebrafish model that recapitulates the olfactory impairment observed in prodromal PD without affecting motor function. We used zebrafish due to their olfactory system's similarity to mammals and their unique nervous system regenerative capacity. By injecting 6-hydroxydopamine (6-OHDA) into the dorsal telencephalic ventricle, we observed a significant loss of dopaminergic (DA) periglomerular neurons in the olfactory bulb (OB) and retrograde degeneration of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). These alterations impaired olfactory responses to cadaverine, an aversive odorant, while responses to alanine remained intact. 6-OHDA also triggered robust neuroinflammatory responses. By 7 days post-injection, dopaminergic synapses in the OB were remodeled, OSNs in the OE appeared recovered, and neuroinflammation subsided, leading to full recovery of olfactory responses to cadaverine. These findings highlight the remarkable neuroplasticity of zebrafish and suggest that this model of olfactory dysfunction associated with dopaminergic loss could provide valuable insights into some features of early PD pathology. Understanding the interplay between dopaminergic loss and olfactory dysfunction in a highly regenerative vertebrate may inform therapeutic strategies for individuals suffering from olfactory loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erika Calvo-Ochoa
- Biology Department and Neuroscience Program, Hope College, Holland, MI 49423, USA
| |
Collapse
|
3
|
Liberia T, Han K, Spence NJ, Meller SJ, Martin-Lopez E, Greer CA. Timing Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb. J Comp Neurol 2025; 533:e70045. [PMID: 40128105 PMCID: PMC11949412 DOI: 10.1002/cne.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
In the olfactory bulb (OB), odorant receptor-specific input converges into glomeruli. Subsequently, the coding of odor information is fine-tuned by local synaptic circuits within the glomeruli and the deeper external plexiform layer (EPL) in the OB. Deciphering the organization of inhibitory granule cells (GCs) in the EPL relative to the secondary dendrites of projection neurons is pivotal for understanding odor processing. We conducted a detailed investigation of GCs, focusing on the timing of neurogenesis, laminar distribution, and synaptogenesis between GCs and projection neurons. In summary, GCs develop following a developmental continuum with an outside-in maturation pattern from embryogenesis to adulthood. GCs born 1 week after birth display a unique sublayer-specific distribution pattern, marking a transition between embryonic or neonatal and adult stages. Integration into reciprocal synaptic circuits occurred 10 days post-neurogenesis. We conclude that the timing of neurogenesis dictates the anatomical configuration of GCs within the OB, which, in turn, regulates preferential synaptic integration with either mitral cell or tufted cell secondary dendrites.
Collapse
Affiliation(s)
- Teresa Liberia
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| | - Kimberly Han
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| | - Natalie J. Spence
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| | - Sarah J. Meller
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| | - Eduardo Martin-Lopez
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| | - Charles A. Greer
- Department of Neuroscience and Department of Neurosurgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510
| |
Collapse
|
4
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
5
|
Fernández Acosta FJ, Luque-Molina I, Vecino R, Díaz-Guerra E, Defterali Ç, Pignatelli J, Vicario C. Morphological Diversity of Calretinin Interneurons Generated From Adult Mouse Olfactory Bulb Core Neural Stem Cells. Front Cell Dev Biol 2022; 10:932297. [PMID: 35846352 PMCID: PMC9277347 DOI: 10.3389/fcell.2022.932297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells (NSCs) in the olfactory bulb (OB) core can generate mature interneurons in the adult mice brain. The vast majority of these adult generated cells express the calcium-binding protein Calretinin (CalR), and they migrate towards different OB layers. However, these cells have yet to be fully characterized and hence, to achieve this we injected retroviral particles expressing GFP into the OB core of adult animals and found that the CalR+ neurons generated from NSCs mainly migrate to the granule cell layer (GCL) and glomerular layer (GL) in similar proportions. In addition, since morphology and function are closely related, we used three-dimensional imaging techniques to analyze the morphology of these adult born cells, describing new subtypes of CalR+ interneurons based on their dendritic arborizations and projections, as well as their localization in the GCL or GL. We also show that the migration and morphology of these newly generated neurons can be altered by misexpressing the transcription factor Tbr1 in the OB core. Therefore, the morphology acquired by neurons located in a specific OB layer is the result of a combination of both extrinsic (e.g., layer allocation) and intrinsic mechanisms (e.g., transcription factors). Defining the cellular processes and molecular mechanisms that govern adult neurogenesis might help better understand brain circuit formation and plasticity, as well as eventually opening the way to develop strategies for brain repair.
Collapse
Affiliation(s)
| | - Inma Luque-Molina
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rebeca Vecino
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Çagla Defterali
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Vicario
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Carlos Vicario,
| |
Collapse
|
6
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
7
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
8
|
Defteralı Ç, Moreno-Estellés M, Crespo C, Díaz-Guerra E, Díaz-Moreno M, Vergaño-Vera E, Nieto-Estévez V, Hurtado-Chong A, Consiglio A, Mira H, Vicario C. Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo. Stem Cells 2021; 39:1253-1269. [PMID: 33963799 DOI: 10.1002/stem.3393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023]
Abstract
Although previous studies suggest that neural stem cells (NSCs) exist in the adult olfactory bulb (OB), their location, identity, and capacity to generate mature neurons in vivo has been little explored. Here, we injected enhanced green fluorescent protein (EGFP)-expressing retroviral particles into the OB core of adult mice to label dividing cells and to track the differentiation/maturation of any neurons they might generate. EGFP-labeled cells initially expressed adult NSC markers on days 1 to 3 postinjection (dpi), including Nestin, GLAST, Sox2, Prominin-1, and GFAP. EGFP+ -doublecortin (DCX) cells with a migratory morphology were also detected and their abundance increased over a 7-day period. Furthermore, EGFP-labeled cells progressively became NeuN+ neurons, they acquired neuronal morphologies, and they became immunoreactive for OB neuron subtype markers, the most abundant representing calretinin expressing interneurons. OB-NSCs also generated glial cells, suggesting they could be multipotent in vivo. Significantly, the newly generated neurons established and received synaptic contacts, and they expressed presynaptic proteins and the transcription factor pCREB. By contrast, when the retroviral particles were injected into the subventricular zone (SVZ), nearly all (98%) EGFP+ -cells were postmitotic when they reached the OB core, implying that the vast majority of proliferating cells present in the OB are not derived from the SVZ. Furthermore, we detected slowly dividing label-retaining cells in this region that could correspond to the population of resident NSCs. This is the first time NSCs located in the adult OB core have been shown to generate neurons that incorporate into OB circuits in vivo.
Collapse
Affiliation(s)
- Çağla Defteralı
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mireia Moreno-Estellés
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain.,Instituto de Biomedicina de Valencia-CSIC (IBV-CSIC), Valencia, Spain
| | - Carlos Crespo
- Departamento de Biología Celular, Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina (BIOTECMED), Universitat de Valencia, Valencia, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Díaz-Moreno
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain
| | - Eva Vergaño-Vera
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anahí Hurtado-Chong
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonella Consiglio
- Institute of Biomedicine, Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Helena Mira
- Unidad de Neurobiología Molecular, Área de Biología Celular y del Desarrollo, CNM-ISCIII, Majadahonda, Spain.,Instituto de Biomedicina de Valencia-CSIC (IBV-CSIC), Valencia, Spain
| | - Carlos Vicario
- Instituto Cajal-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Kjell J, Fischer-Sternjak J, Thompson AJ, Friess C, Sticco MJ, Salinas F, Cox J, Martinelli DC, Ninkovic J, Franze K, Schiller HB, Götz M. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell 2021; 26:277-293.e8. [PMID: 32032526 PMCID: PMC7005820 DOI: 10.1016/j.stem.2020.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
The mammalian brain contains few niches for neural stem cells (NSCs) capable of generating new neurons, whereas other regions are primarily gliogenic. Here we leverage the spatial separation of the sub-ependymal zone NSC niche and the olfactory bulb, the region to which newly generated neurons from the sub-ependymal zone migrate and integrate, and present a comprehensive proteomic characterization of these regions in comparison to the cerebral cortex, which is not conducive to neurogenesis and integration of new neurons. We find differing compositions of regulatory extracellular matrix (ECM) components in the neurogenic niche. We further show that quiescent NSCs are the main source of their local ECM, including the multi-functional enzyme transglutaminase 2, which we show is crucial for neurogenesis. Atomic force microscopy corroborated indications from the proteomic analyses that neurogenic niches are significantly stiffer than non-neurogenic parenchyma. Together these findings provide a powerful resource for unraveling unique compositions of neurogenic niches.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Amelia J Thompson
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Christian Friess
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Matthew J Sticco
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Favio Salinas
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; Division of Cell Biology and Anatomy, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany; Institute of Lung Biology and Disease, Member of the German Center for Lung Research, Helmholtz Zentrum Muenchen, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany.
| |
Collapse
|
10
|
Tan XD, Liu B, Jiang Y, Yu HJ, Li CQ. Gadd45b mediates environmental enrichment-induced neurogenesis in the SVZ of rats following ischemia stroke via BDNF. Neurosci Lett 2021; 745:135616. [PMID: 33421485 DOI: 10.1016/j.neulet.2020.135616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Ischemic stroke is a major cause of mortality and disability. Subventricular zone (SVZ) neurogenesis following an ischemic stroke may be beneficial for improving the outcomes. Environmental enrichment (EE) has been reported to increase neurogenesis following stroke. Growth arrest and DNA-damage-inducible protein 45 β (Gadd45b) is a crucial gene for activity-correlated neurogenesis in the adult hippocampus of mice. This study examined whether Gadd45b inhibition affects adult SVZ neurogenesis after an ischemic injury and explored the role of Gadd45b in EE-induced SVZ neurogenesis in adult male Sprague Dawley rats following middle cerebral artery occlusion (MCAO). Gadd45b expression was silenced by a lentivirus with RNA interference (RNAi). The 5-ethynyl-2-deoxyuridine (EdU) staining test was performed to detect cell proliferation. Gadd45b-RNAi after MCAO decreased SVZ proliferation and differentiation in the infarction boundary following ischemic injury, accompanied by the depressed expression of the brain-derived neurotrophic factor (BDNF). Treatment with EE following ischemic stroke upregulated Gadd45b and BDNF expressions and increased neurogenesis in the SVZ. Inhibition of Gadd45b markedly ameliorated the increased neurogenesis induced by EE. These data indicated that Gadd45b is related to SVZ neurogenesis following ischemic stroke, and Gadd45b mediates EE-induced neurogenesis via BDNF in the SVZ of rats following an ischemia stroke. These results implicate that Gadd45b can be a potential therapeutic target to enhance adult neurogenesis following cerebral ischemia.
Collapse
Affiliation(s)
- Xiao-Dan Tan
- Rehabilitation Department, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, 401120, China
| | - Bin Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Ying Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400010, China
| | - Hong-Jun Yu
- Rehabilitation Department, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, 401120, China
| | - Chang-Qing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
11
|
Glioblastoma with a primitive neuroectodermal component: two cases with implications for glioblastoma cell-of-origin. Clin Imaging 2020; 73:139-145. [PMID: 33406475 DOI: 10.1016/j.clinimag.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain malignancy, but much remains unknown about the histogenesis of these tumors. In the great majority of cases, GBM is a purely glial tumor but in rare cases the classic-appearing high-grade glioma component is admixed with regions of small round blue cells with neuronal immunophenotype, and these tumors have been defined in the WHO 2016 Classification as "glioblastoma with a primitive neuronal component." METHODS In this paper, we present two cases of GBM-PNC with highly divergent clinical courses, and review current theories for the GBM cell-of-origin. RESULTS AND CONCLUSIONS GBM-PNC likely arises from a cell type competent to give rise to glial or neuronal lineages. The thesis that GBM recapitulates to some extent normal neurodevelopmental cellular pathways is supported by molecular and clinical features of our two cases of GBM-PNC, but more work is needed to determine which cellular precursor gives rise to specific cases of GBM. GBM-PNC may have a dramatically altered clinical course compared to standard GBM and may benefit from specific lines of treatment.
Collapse
|
12
|
Trova S, Bovetti S, Pellegrino G, Bonzano S, Giacobini P, Peretto P. HPG-Dependent Peri-Pubertal Regulation of Adult Neurogenesis in Mice. Front Neuroanat 2020; 14:584493. [PMID: 33328903 PMCID: PMC7732626 DOI: 10.3389/fnana.2020.584493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation of social stimuli driving reproduction. Previous studies on adult neurogenesis have shown that this process is significantly modulated around puberty in female mice. Puberty is a critical developmental period triggered by increased secretion of the gonadotropin releasing hormone (GnRH), which controls the activity of the hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty participates to the refinement of neural circuits that govern reproduction. Here, by exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH expression during postnatal development (GnRH::Cre;Dicer loxP/loxP mice), we found that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way. Moreover, by examining adult females ovariectomized before the onset of puberty, we provide important evidence that, among the HPG-axis secreting factors, the circulating levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper adult subventricular zone-olfactory bulb neurogenic system.
Collapse
Affiliation(s)
- Sara Trova
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy.,Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Giuliana Pellegrino
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Paolo Giacobini
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| |
Collapse
|
13
|
Effects of Mating and Social Exposure on Cell Proliferation in the Adult Male Prairie Vole ( Microtus ochrogaster). Neural Plast 2020; 2020:8869669. [PMID: 33029122 PMCID: PMC7528033 DOI: 10.1155/2020/8869669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Microtus ochrogaster is a rodent with a monogamous reproductive strategy characterized by strong pair bond formation after 6 h of mating. Here, we determine whether mating-induced pair bonding increases cell proliferation in the subventricular zone (SVZ), rostral migratory stream (RMS), and dentate gyrus (DG) of the hippocampus in male voles. Males were assigned to one of the four groups: (1) control: males were placed alone in a clean cage; (2) social exposure to a female (SE m/f): males that could see, hear, and smell a sexually receptive female but where physical contact was not possible, because the animals were separated by an acrylic screen with small holes; (3) social exposure to a male (SE m/m): same as group 2 but males were exposed to another male without physical contact; and (4) social cohabitation with mating (SCM): males that mated freely with a receptive female for 6 h. This procedure leads to pair bond formation. Groups 2 and 3 were controls for social interaction. Male prairie voles were injected with 5-bromo-2′-deoxyuridine (BrdU) during the behavioral tests and were sacrificed 48 h later. Brains were processed to identify the new cells (BrdU-positive) and neuron precursor cells (neuroblasts). Our principal findings are that in the dorsal region of the SVZ, SCM and SE m/f and m/m increase the percentage of neuron precursor cells. In the anterior region of the RMS, SE m/f decreases the percentage of neuron precursor cells, and in the medial region SE m/f and m/m decrease the number of new cells and neuron precursor cells. In the infrapyramidal blade of the subgranular zone of the DG, SE m/m and SCM increase the number of new neuron precursor cells and SE m/m increases the percentage of these neurons. Our data suggests that social interaction, as well as sexual stimulation, leads to pair bonding in male voles modulating cell proliferation and differentiation to neuronal precursor cells at the SVZ, RMS, and DG.
Collapse
|
14
|
Ung K, Tepe B, Pekarek B, Arenkiel BR, Deneen B. Parallel astrocyte calcium signaling modulates olfactory bulb responses. J Neurosci Res 2020; 98:1605-1618. [PMID: 32426930 PMCID: PMC8147697 DOI: 10.1002/jnr.24634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system. They modulate synaptic function through a variety of mechanisms, and yet remain relatively understudied with respect to overall neuronal circuit function. Exploiting the tractability of the mouse olfactory system, we manipulated astrocyte activity and examined how astrocytes modulate olfactory bulb responses. Toward this, we genetically targeted both astrocytes and neurons for in vivo widefield imaging of Ca2+ responses to odor stimuli. We found that astrocytes exhibited odor response maps that overlap with excitatory neuronal activity. By manipulating Ca2+ activity in astrocytes using chemical genetics we found that odor-evoked neuronal activity was reciprocally affected, suggesting that astrocyte activation inhibits neuronal odor responses. Subsequently, behavioral experiments revealed that astrocyte manipulations affect both odor detection threshold and discrimination, suggesting that astrocytes play an active role in olfactory sensory processing circuits. Together, these studies show that astrocyte calcium signaling contributes to olfactory behavior through modulation of sensory circuits.
Collapse
Affiliation(s)
- Kevin Ung
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Houston, TX 77030, USA
| | - Brandon Pekarek
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Benjamin Deneen
- Program in Developmental Biology, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
16
|
Li J, Wang C, Zhang Z, Wen Y, An L, Liang Q, Xu Z, Wei S, Li W, Guo T, Liu G, Tao G, You Y, Du H, Fu Z, He M, Chen B, Campbell K, Alvarez-Buylla A, Rubenstein JL, Yang Z. Transcription Factors Sp8 and Sp9 Coordinately Regulate Olfactory Bulb Interneuron Development. Cereb Cortex 2019; 28:3278-3294. [PMID: 28981617 DOI: 10.1093/cercor/bhx199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells in the postnatal telencephalic ventricular-subventricular zone (V-SVZ) generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) into the olfactory bulb (OB). The Sp8 and Sp9 transcription factors are expressed in neuroblasts, as well as in the immature and mature interneurons in the V-SVZ-RMS-OB system. Here we show that Sp8 and Sp9 coordinately regulate OB interneuron development: although Sp9 null mutants show no major OB interneuron defect, conditional deletion of both Sp8 and Sp9 resulted in a much more severe reduction of OB interneuron number than that observed in the Sp8 conditional mutant mice, due to defects in neuronal differentiation, tangential and radial migration, and increased cell death in the V-SVZ-RMS-OB system. RNA-Seq and RNA in situ hybridization reveal that, in Sp8/Sp9 double mutant mice, but not in Sp8 or Sp9 single mutant mice, newly born neuroblasts in the V-SVZ-RMS-OB system fail to express Prokr2 and Tshz1 expression, genes with known roles in promoting OB interneuron differentiation and migration, and that are involved in human Kallmann syndrome.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunyang Wang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan Wen
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei An
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Qifei Liang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Song Wei
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weiwei Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Teng Guo
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoping Liu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guangxu Tao
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan You
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Heng Du
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuoning Fu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Miao He
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zhengang Yang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Neuronal precursor cells with dopaminergic commitment in the rostral migratory stream of the mouse. Sci Rep 2019; 9:13359. [PMID: 31527656 PMCID: PMC6746949 DOI: 10.1038/s41598-019-49920-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
Neuroblasts born in the subventricular zone of adult mammals migrate via the rostral migratory stream into the granular cell layer or periglomerular layer of the olfactory bulb to differentiate into interneurons. To analyze if new neurons in the granular cell layer or periglomerular layer have different origins, we inserted a physical barrier into the rostral migratory stream, depleted cell proliferation with cytarabine infusions, labeled newborn cells with bromodeoxyuridine, and sacrificed mice after short-term (0, 2, or 14 days) or long-term (55 or 105 days) intervals. After short-term survival, the subventricular zone and rostral migratory stream rapidly repopulated with bromodeoxyuridine+ cells after cytarabine-induced depletion. Nestin, glial fibrillary acidic protein and the PAX6 were expressed in bromodeoxyuridine+ cells within the rostral migratory stream downstream of the physical barrier. After long-term survival after physical barrier implantation, bromodeoxyuridine+ neurons were significantly reduced in the granular cell layer, but bromodeoxyuridine+ and dopaminergic neurons in the periglomerular layer remained unaffected by the physical barrier. Thus, newborn neurons for the granular cell layer are mainly recruited from neural stem cells located in the subventricular zone, but new neurons for the periglomerular layer with dopaminergic predisposition can rise as well from neuronal stem or precursor cells in the rostral migratory stream.
Collapse
|
18
|
On the existence of mechanoreceptors within the neurovascular unit of the mammalian brain. Brain Struct Funct 2019; 224:2247-2267. [PMID: 31190162 DOI: 10.1007/s00429-019-01863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/16/2019] [Indexed: 10/26/2022]
Abstract
We describe a set of perivascular interneurons (PINs) with series of fibro-vesicular complexes (FVCs) throughout the gray matter of the adult rabbit and rat brains. PIN-FVCs are ubiquitous throughout the brain vasculature as detected in Golgi-impregnated specimens. Most PINs are small, aspiny cells with short or long (> 1 mm) axons that split and travel along arterial blood vessels. Upon ramification, axons form FVCs around the arising vascular branches; then, paired axons run parallel to the vessel wall until another ramification ensues, and a new FVC is formed. Cytologically, FVCs consist of clusters of perivascular bulbs (PVBs) encircling the precapillary and capillary wall surrounded by end-feet and the extracellular matrix of endothelial cells and pericytes. A PVB contains mitochondria, multivesicular bodies, and granules with a membranous core, similar to Meissner corpuscles and other mechanoreceptors. Some PVBs form asymmetrical, axo-spinous synapses with presumptive adjacent neurons. PINs appear to correspond to the type 1 nNOS-positive neurons whose FVCs co-label with markers of sensory fiber-terminals surrounded by astrocytic end-feet. The PIN is conserved in adult cats and rhesus monkey specimens. The location, ubiquity throughout the vasculature of the mammalian brain, and cytological organization of the PIN-FVCs suggests that it is a sensory receptor intrinsic to the mammalian neurovascular unit that corresponds to an afferent limb of the sensorimotor feed-back mechanism controlling local blood flow.
Collapse
|
19
|
Velazco-Mendoza M, Camacho FJ, Paredes RG, Portillo W. The First Mating Experience Induces New Neurons in the Olfactory Bulb in Male Mice. Neuroscience 2018; 396:166-174. [PMID: 30471356 DOI: 10.1016/j.neuroscience.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
In rodents, neurogenesis in the olfactory bulbs (OBs) is enhanced by exposure to olfactory enriched environments including sexually relevant odors. In the present study we evaluated whether sexual stimulation in male mice increases the number of newly generated cells that reach the OB and whether these cells differentiate into neurons. To this end, we used sexually naive male C57BL mice randomly assigned to one of three groups: (1) control, in which animals were left alone in their home cages; (2) exposure, in which animals were exposed to a receptive female precluding any physical contact; and (3) mating, in which males copulated with females. Males were given three injections of the DNA synthesis marker 5-bromo-2'-deoxyuridine (BrdU) 2 h before, at the end and 2 h after the test. Fifteen days after BrdU administration, brains were removed and processed to identify new cells and evaluate if they had differentiated into neurons in the granular (GR), mitral (MI) and glomerular (GL) cell layers of the main and accessory OB (MOB and AOB, respectively). We found an increase in the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB of males from the mating group compared with those from the exposure and control groups. No differences were found in the number of new cells or percentage of new neurons in the rest of the analyzed regions. In male mice, the first sexual experience increases the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB.
Collapse
Affiliation(s)
- M Velazco-Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - F J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
20
|
Pereira-Caixeta AR, Guarnieri LO, Medeiros DC, Mendes EMAM, Ladeira LCD, Pereira MT, Moraes MFD, Pereira GS. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem 2018; 155:92-103. [PMID: 29964163 DOI: 10.1016/j.nlm.2018.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/20/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
Although the functional role for newborn neurons in neural circuits is still matter of investigation, there is no doubt that neurogenesis modulates learning and memory in rodents. In general, boosting neurogenesis before learning, using genetic-target tools or drugs, improves hippocampus-dependent memories. However, inhibiting neurogenesis may yield contradictory results depending on the type of memory evaluated. Here we tested the hypothesis that inhibiting constitutive neurogenesis would compromise social recognition memory (SRM). Male Swiss mice were submitted to three distinct procedures to inhibit neurogenesis: (1) intra-cerebral infusion of Cystosine-β-D-Arabinofuranoside (AraC); (2) intra-peritoneal injection of temozolomide (TMZ) and (3) cranial gamma irradiation. All three methods decreased cell proliferation and neurogenesis in the dentate gyrus of the dorsal (dDG) and ventral hippocampus (vDG), and the olfactory bulb (OB). However, the percentage inhibition diverged between methods and brain regions. Ara-C, TMZ and gamma irradiation impaired SRM, though only gamma irradiation did not cause side effects on weight gain, locomotor activity and anxiety. Finally, we examined the contribution of cell proliferation in vDG, dDG and OB to SRM. The percent of inhibition in the dDG correlates with SRM, independently of the method utilized. This correlation was observed for granular cell layer of OB and vDG, only when the inhibition was induced by gamma irradiation. Animal's performance was restrained by the inhibition of dDG cell proliferation, suggesting that cell proliferation in the dDG has a greater contribution to SRM. Altogether, our results demonstrate that SRM, similarly to other hippocampus-dependent memories, has its formation impaired by reducing constitutive neurogenesis.
Collapse
Affiliation(s)
- Ana Raquel Pereira-Caixeta
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo O Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel C Medeiros
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo M A M Mendes
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz C D Ladeira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio T Pereira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
21
|
Maier AM, Breer H, Strotmann J. Adult Born Periglomerular Cells of Odorant Receptor Specific Glomeruli. Front Neuroanat 2018; 12:26. [PMID: 29692711 PMCID: PMC5902569 DOI: 10.3389/fnana.2018.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
The OR37 subsystem is characterized by a variety of unique features. The odorant receptors (ORs) of this subfamily are selectively tuned to specific ligands which are supposed to play a role in social communication. OR37 expressing sensory neurons project their axons to a single receptor specific glomerulus per bulb which have been shown to be unusually stable in size and to possess a distinct repertoire of periglomerular cells. Since the neuronal network surrounding glomeruli is typically modified by the integration of adult born neurons, in this study it was investigated whether the number of adult born cells might be different for OR37 glomeruli compared to other OR-specific glomeruli. Towards this goal, 23 days after BrdU injection, BrdU labeled cells in the proximity of OR37A glomeruli as well as around OR18-2 and OR256-17 glomeruli were determined. It was found that the number of BrdU labeled cells in the periglomerular region of OR37A glomeruli was significantly lower compared to glomeruli of the other OR types. This finding was in line with a lower number of neuroblasts visualized by the marker protein doublecortin. Double labeling experiments for BrdU and marker proteins revealed that despite a relatively high number of calretinin expressing cells at the OR37A glomeruli, the number of cells co-stained with BrdU was quite low compared to other glomeruli, which may point to an individual turnover rate of this cell type for different glomeruli. Together, the results of the present study support the notion that the neuronal network at the OR37 glomeruli is less dynamic than that of other glomerulus types. This indicates a specific processing of social information in OR37 glomerular networks.
Collapse
Affiliation(s)
- Anna-Maria Maier
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
22
|
García-Marqués J, López-Mascaraque L. Clonal Mapping of Astrocytes in the Olfactory Bulb and Rostral Migratory Stream. Cereb Cortex 2017; 27:2195-2209. [PMID: 27001681 DOI: 10.1093/cercor/bhw071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Astrocytes are the most abundant glial population in the central nervous system, where they fulfill multiple essential tasks. Such diverse functions require a heterogeneous population of cells, yet it is still unclear how this cellular heterogeneity emerges during development. To clarify to what extent such diversity is determined by lineage, we have elaborated the first clonal map of astrocytes in the olfactory bulb and rostral migratory stream. Astrocyte clones are comprised of a limited number of cells, which arise from local progenitors and that are arranged following a radial pattern. Although astroglia exhibit a vast morphological diversity, this was layer-dependent rather than determined by lineage. Likewise, lineage did not strictly determine their position, although we found a striking relationship between the clones and olfactory glomeruli. A distinctive morphology and other clonal features, together with the occurrence of immature forms, reflect the singularity of these astroglial populations.
Collapse
Affiliation(s)
- Jorge García-Marqués
- Instituto Cajal-CSIC, 37 28002 Madrid, Spain.,Current address: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
23
|
Ceder JA, Aalders TW, Schalken JA. Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Res Ther 2017; 8:95. [PMID: 28446230 PMCID: PMC5406885 DOI: 10.1186/s13287-017-0544-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is the second most frequent cancer among males worldwide, and most patients with metastatic disease eventually develop therapy-resistant disease. Recent research has suggested the existence of cancer stem-like cells, and that such cells are behind the therapy resistance and progression. METHODS Here, we have taken advantage of the relatively quiescent nature of stem cells to identify the slow-cycling label-retaining stem cell (LRC) populations of the prostate gland. Mice were pulsed with bromodeoxyuridine (BrdU) during prostate organogenesis, and the LRC populations were then identified and characterized in 5-day-old and in 6-month-old adult animals using immunohistochemistry and immunofluorescence. RESULTS Quantification of LRCs in the adult mouse prostate showed that epithelial LRCs were significantly more numerous in prostatic ducts (3.7 ± 0.47% SD) when compared to the proximal (1.4 ± 0.83%) and distal epithelium (0.48 ± 0.08%) of the secretory lobes. LRCs were identified in both the basal and epithelial cell layers of the prostate, and LRCs co-expressed several candidate stem cell markers in a developmental and duct/acini-specific manner, including Sca-1, TROP-2, CD133, CD44, c-kit, and the novel prostate progenitor marker cytokeratin-7. Importantly, a significant proportion of LRCs were localized in the luminal cell layer, the majority in ducts and the proximal prostate, that co-expressed high levels of androgen receptor in the adult prostate. CONCLUSIONS Our results suggest that there are separate basal and luminal stem cell populations in the prostate, and they open up the possibility that androgen receptor-expressing luminal stem-like cells could function as cancer-initiating and relapse-responsible cells in prostate cancer.
Collapse
Affiliation(s)
- Jens Adam Ceder
- Department of Translational Medicine, Lund University, Skåne University Hospital, Jan Waldenströms gata 35, CRC 91:10, SE20502, Malmö, Sweden.
| | - Tilly Wilhelmina Aalders
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack Antonius Schalken
- Department of Urology (Route 267), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 2016; 42:621-638. [PMID: 27424496 PMCID: PMC5125837 DOI: 10.1111/nan.12337] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
AIMS Neurogenesis in the postnatal human brain occurs in two neurogenic niches; the subventricular zone (SVZ) in the wall of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. The extent to which this physiological process continues into adulthood is an area of ongoing research. This study aimed to characterize markers of cell proliferation and assess the efficacy of antibodies used to identify neurogenesis in both neurogenic niches of the human brain. METHODS Cell proliferation and neurogenesis were simultaneously examined in the SVZ and SGZ of 23 individuals aged 0.2-59 years, using immunohistochemistry and immunofluorescence in combination with unbiased stereology. RESULTS There was a marked decline in proliferating cells in both neurogenic niches in early infancy with levels reaching those seen in the adjacent parenchyma by 4 and 1 year of age, in the SVZ and SGZ, respectively. Furthermore, the phenotype of these proliferating cells in both niches changed with age. In infants, proliferating cells co-expressed neural progenitor (epidermal growth factor receptor), immature neuronal (doublecortin and beta III tubulin) and oligodendrocytic (Olig2) markers. However, after 3 years of age, microglia were the only proliferating cells found in either niche or in the adjacent parenchyma. CONCLUSIONS This study demonstrates a marked decline in neurogenesis in both neurogenic niches in early childhood, and that the sparse proliferating cells in the adult brain are largely microglia.
Collapse
Affiliation(s)
- C V Dennis
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - L S Suh
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - M L Rodriguez
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - J J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - G T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
25
|
Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream. Sci Rep 2016; 6:32203. [PMID: 27573347 PMCID: PMC5004164 DOI: 10.1038/srep32203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis.
Collapse
|
26
|
Winter CC, Katiyar KS, Hernandez NS, Song YJ, Struzyna LA, Harris JP, Cullen DK. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta Biomater 2016; 38:44-58. [PMID: 27090594 DOI: 10.1016/j.actbio.2016.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Neurotrauma, stroke, and neurodegenerative disease may result in widespread loss of neural cells as well as the complex interconnectivity necessary for proper central nervous system function, generally resulting in permanent functional deficits. Potential regenerative strategies involve the recruitment of endogenous neural stem cells and/or directed axonal regeneration through the use of tissue engineered "living scaffolds" built to mimic features of three-dimensional (3-D) in vivo migratory or guidance pathways. Accordingly, we devised a novel biomaterial encasement scheme using tubular hydrogel-collagen micro-columns that facilitated the self-assembly of seeded astrocytes into 3-D living scaffolds consisting of long, cable-like aligned astrocytic networks. Here, robust astrocyte alignment was achieved within a micro-column inner diameter (ID) of 180μm or 300-350μm but not 1.0mm, suggesting that radius of curvature dictated the extent of alignment. Moreover, within small ID micro-columns, >70% of the astrocytes assumed a bi-polar morphology, versus ∼10% in larger micro-columns or planar surfaces. Cell-cell interactions also influenced the aligned architecture, as extensive astrocyte-collagen contraction was achieved at high (9-12×10(5)cells/mL) but not lower (2-6×10(5)cells/mL) seeding densities. This high density micro-column seeding led to the formation of ultra-dense 3-D "bundles" of aligned bi-polar astrocytes within collagen measuring up to 150μm in diameter yet extending to a remarkable length of over 2.5cm. Importantly, co-seeded neurons extended neurites directly along the aligned astrocytic bundles, demonstrating permissive cues for neurite extension. These transplantable cable-like astrocytic networks structurally mimic the glial tube that guides neuronal progenitor migration in vivo along the rostral migratory stream, and therefore may be useful to guide progenitor cells to repopulate sites of widespread neurodegeneration. STATEMENT OF SIGNIFICANCE This manuscript details our development of novel micro-tissue engineering techniques to generate robust networks of longitudinally aligned astrocytes within transplantable micro-column hydrogels. We report a novel biomaterial encasement scheme that facilitated the self-assembly of seeded astrocytes into long, aligned regenerative pathways. These miniature "living scaffold" constructs physically emulate the glial tube - a pathway in the brain consisting of aligned astrocytes that guide the migration of neuronal progenitor cells - and therefore may facilitate directed neuronal migration for central nervous system repair. The small size and self-contained design of these aligned astrocyte constructs will permit minimally invasive transplantation in models of central nervous system injury in future studies.
Collapse
|
27
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
28
|
Gengatharan A, Bammann RR, Saghatelyan A. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb. Front Neurosci 2016; 10:149. [PMID: 27092050 PMCID: PMC4820452 DOI: 10.3389/fnins.2016.00149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future.
Collapse
Affiliation(s)
- Archana Gengatharan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec Quebec, QC, Canada
| | - Rodrigo R Bammann
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec Quebec, QC, Canada
| | - Armen Saghatelyan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de QuébecQuebec, QC, Canada; Department of Psychiatry and Neuroscience, Université LavalQuebec, QC, Canada
| |
Collapse
|
29
|
Corona R, Retana-Márquez S, Portillo W, Paredes RG. Sexual Behavior Increases Cell Proliferation in the Rostral Migratory Stream and Promotes the Differentiation of the New Cells into Neurons in the Accessory Olfactory Bulb of Female Rats. Front Neurosci 2016; 10:48. [PMID: 26955325 PMCID: PMC4767934 DOI: 10.3389/fnins.2016.00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/03/2016] [Indexed: 01/05/2023] Open
Abstract
We have previously demonstrated, that 15 days after female rats pace the sexual interaction, there is an increase in the number of new cells that reach the granular cell layer (GrL) of the accessory olfactory bulb (AOB). The aim of the present study was to evaluate, if the first sexual experience in the female rat increases cell proliferation in the subventricular zone (SVZ) and the rostral migratory stream (RMS). We also tested if this behavior promotes the survival of the new cells that integrate into the main olfactory bulb (MOB) and AOB 45 days after the behavioral test. Sexually, naive female rats were injected with the DNA synthesis marker 5'-bromo-2'-deoxyuridine (BrdU) on the day of the behavioral test. They were randomly divided into the following groups: Female rats placed alone in the mating cage (1); Females exposed to amyl acetate odor [banana scent, (2)]; Females that could see, hear, and smell the male but physical contact was not possible [exposed to male, (3)]; Female rats that could pace the sexual interaction (4); and females that mated without the possibility of pacing the sexual interaction (5). Animals were sacrificed 2 days after the behavioral test (proliferation) or 45 days later (survival). Our results show that 2 days after females were exposed to banana scent or to the male, they had a higher number of cells in the SVZ. Females, that mated in pace and no-paced conditions had more new cells in the RMS. At 45 days, no significant differences were found in the number of new cells that survived in the MOB or in the AOB. However, mating increased the percentage of new cells, that differentiated into neurons in the GrL of the AOB. These new cells expressed c-Fos after a second sexual encounter just before the females were sacrificed. No significant differences in plasma levels of estradiol and progesterone were observed between groups. Our results indicate that the first sexual experience increases cell proliferation in the RMS and mating 45 days later enhances the number of new cells that differentiate into neurons in the AOB. These new neurons are activated by sexual stimulation.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Mexico, Mexico
| | - Socorro Retana-Márquez
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa Mexico, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Mexico, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Mexico, Mexico
| |
Collapse
|
30
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
31
|
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R. Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct 2015; 221:4411-4427. [DOI: 10.1007/s00429-015-1171-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
32
|
Galvez-Contreras AY, Gonzalez-Castaneda RE, Campos-Ordonez T, Luquin S, Gonzalez-Perez O. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation. Eur J Neurosci 2015; 43:139-47. [PMID: 26370587 DOI: 10.1111/ejn.13079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal.
Collapse
Affiliation(s)
- Alma Y Galvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Rocio E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Tania Campos-Ordonez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| |
Collapse
|
33
|
Segarra M, Kirchmaier BC, Acker-Palmer A. A vascular perspective on neuronal migration. Mech Dev 2015; 138 Pt 1:17-25. [PMID: 26192337 DOI: 10.1016/j.mod.2015.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022]
Abstract
During CNS development and adult neurogenesis, immature neurons travel from the germinal zones towards their final destination using cellular substrates for their migration. Classically, radial glia and neuronal axons have been shown to act as physical scaffolds to support neuroblast locomotion in processes known as gliophilic and neurophilic migration, respectively (Hatten, 1999; Marin and Rubenstein, 2003; Rakic, 2003). In adulthood, long distance neuronal migration occurs in a glial-independent manner since radial glia cells differentiate into astrocytes after birth. A series of studies highlight a novel mode of neuronal migration that uses blood vessels as scaffolds, the so-called vasophilic migration. This migration mode allows neuroblast navigation in physiological and also pathological conditions, such as neuronal precursor migration after ischemic stroke or cerebral invasion of glioma tumor cells. Here we review the current knowledge about how vessels pave the path for migrating neurons and how trophic factors derived by glio-vascular structures guide neuronal migration both during physiological as well as pathological processes.
Collapse
Affiliation(s)
- Marta Segarra
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
34
|
The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci 2015; 35:3756-63. [PMID: 25740506 DOI: 10.1523/jneurosci.3454-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.
Collapse
|
35
|
Yuan TF, Liang YX, Tay D, So KF, Ellis-Behnke R. Specialized vasculature in the rostral migratory stream as a neurogenic niche and scaffold for neuroblast migration. Cell Transplant 2015; 24:377-90. [PMID: 25671779 DOI: 10.3727/096368915x686878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurovascular niches serve as the hosts for adult neural stem cells in both the hippocampus and subventricular zone. The rostral migratory stream (RMS) vasculature has been found to be important for neuroblast migration, while its roles in hosting putative neural stem cells have not been investigated. Here we investigated the organization of RMS vasculature and its contribution to the production of new neurons. A single pulse of bromodeoxyuridine (BrdU) administration revealed locally formed new neurons within RMS were located adjacent to blood vessels. In addition, BrdU label-retaining cells that are putative neural stem cells were also found close to the vasculature. Sodium fluorescein perfusion assay demonstrated that the blood-brain barrier (BBB) organization was especially "leaky" in the neurogenic niches. Immunohistochemical visualization of some BBB component molecules indicated a thinner BBB in the RMS region, compared to that in the frontal cortex of adult rats. Finally, the expression of vascular endothelial growth factor was strong and specialized in the RMS region, implying that the region was active in cell proliferation and migration. Here we show that the RMS vasculature associated with surrounding astrocytes provides a highly organized neurovascular niche for adult neural stem cell proliferation, in addition to the function of neuroblast migration support. This result points to a new vasculature supporting neurogenic region in the brain.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, China
| | | | | | | | | |
Collapse
|
36
|
Yuan TF, Liang YX, So KF. Occurrence of new neurons in the piriform cortex. Front Neuroanat 2015; 8:167. [PMID: 25653597 PMCID: PMC4301012 DOI: 10.3389/fnana.2014.00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/30/2014] [Indexed: 01/06/2023] Open
Abstract
Adult neurogenesis has been well studied in hippocampus and subventricular zone (SVZ); while this is much less appreciated in other brain regions, including amygdala, hypothalamus, and piriform cortex (PC). The present review aims at summarizing recent advances on the occurrence of new neurons in the PC, their potential origin, and migration route from the SVZ. We further discuss the relevant implications in olfactory dysfunction accompanying the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University Nanjing, China ; Department of Ophthalmology, The University of Hong Kong Hong Kong, China
| | - Yu-Xiang Liang
- Department of Ophthalmology, The University of Hong Kong Hong Kong, China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong China ; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong Hong Kong, China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong China ; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong Hong Kong, China ; GHM Institute of CNS Regeneration, Jinan University Guangzhou, China
| |
Collapse
|
37
|
Lim DA, Alvarez-Buylla A. Adult neural stem cells stake their ground. Trends Neurosci 2014; 37:563-71. [PMID: 25223700 DOI: 10.1016/j.tins.2014.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023]
Abstract
The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over 2 decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. In this review, we discuss recent findings regarding the unique organization of the V-SVZ NSC niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development.
Collapse
Affiliation(s)
- Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Latchney SE, Rivera PD, Mao XW, Ferguson VL, Bateman TA, Stodieck LS, Nelson GA, Eisch AJ. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment. J Appl Physiol (1985) 2014; 116:1593-604. [PMID: 24744382 DOI: 10.1152/japplphysiol.01174.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced regulation. It is currently unknown how the OB is altered by spaceflight. In this study, we evaluated OB volume and neurogenesis in mice shortly after a 13-day flight on Space Shuttle Atlantis [Space Transport System (STS)-135] relative to two groups of control mice maintained on Earth. Mice housed on Earth in animal enclosure modules that mimicked the conditions onboard STS-135 (AEM-Ground mice) had greater OB volume relative to mice maintained in standard housing on Earth (Vivarium mice), particularly in the granule (GCL) and glomerular (GL) cell layers. AEM-Ground mice also had more OB neuroblasts and fewer apoptotic cells relative to Vivarium mice. However, the AEM-induced increase in OB volume and neurogenesis was not seen in STS-135 mice (AEM-Flight mice), suggesting that spaceflight may have negated the positive effects of the AEM. In fact, when OB volume of AEM-Flight mice was considered, there was a greater density of apoptotic cells relative to AEM-Ground mice. Our findings suggest that factors present during spaceflight have opposing effects on OB size and neurogenesis, and provide insight into potential strategies to preserve OB structure and function during future space missions.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiao W Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado; and
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Louis S Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, Colorado
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
39
|
Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 2014; 17:207-14. [PMID: 24362763 PMCID: PMC4100623 DOI: 10.1038/nn.3610] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Throughout life, neural stem cells (NSCs) in different domains of the ventricular-subventricular zone (V-SVZ) of the adult rodent brain generate several subtypes of interneurons that regulate the function of the olfactory bulb. The full extent of diversity among adult NSCs and their progeny is not known. Here, we report the generation of at least four previously unknown olfactory bulb interneuron subtypes that are produced in finely patterned progenitor domains in the anterior ventral V-SVZ of both the neonatal and adult mouse brain. Progenitors of these interneurons are responsive to sonic hedgehog and are organized into microdomains that correlate with the expression domains of the Nkx6.2 and Zic family of transcription factors. This work reveals an unexpected degree of complexity in the specification and patterning of NSCs in the postnatal mouse brain.
Collapse
Affiliation(s)
- Florian T. Merkle
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Departments of Molecular and Cellular Biology, and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Luis C. Fuentealba
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Timothy A. Sanders
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| |
Collapse
|
40
|
Adult neurogenesis in the olfactory system shapes odor memory and perception. PROGRESS IN BRAIN RESEARCH 2014; 208:157-75. [PMID: 24767482 DOI: 10.1016/b978-0-444-63350-7.00006-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.
Collapse
|
41
|
Trujillo-Cenóz O, Marichal N, Rehermann MI, Russo RE. The inner lining of the reptilian brain: A heterogeneous cellular mosaic. Glia 2013; 62:300-16. [DOI: 10.1002/glia.22607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Nicolás Marichal
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - María Inés Rehermann
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Raúl E. Russo
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| |
Collapse
|
42
|
Monteiro BM, Moreira FA, Massensini AR, Moraes MF, Pereira GS. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice. Hippocampus 2013; 24:239-48. [DOI: 10.1002/hipo.22218] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Brisa M.M. Monteiro
- Núcleo de Neurociências; Departamento de Fisiologia e Biofísica; Universidade Federal de Minas Gerais; Brazil
| | | | - André R. Massensini
- Núcleo de Neurociências; Departamento de Fisiologia e Biofísica; Universidade Federal de Minas Gerais; Brazil
| | - Márcio F.D. Moraes
- Núcleo de Neurociências; Departamento de Fisiologia e Biofísica; Universidade Federal de Minas Gerais; Brazil
| | - Grace S. Pereira
- Núcleo de Neurociências; Departamento de Fisiologia e Biofísica; Universidade Federal de Minas Gerais; Brazil
| |
Collapse
|
43
|
Lemieux A. La pensée post-formelle en gérontagogie ou l’après-Piaget. PSYCHOLOGIE FRANCAISE 2013. [DOI: 10.1016/j.psfr.2013.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Khodosevich K, Lazarini F, von Engelhardt J, Kaneko H, Lledo PM, Monyer H. Connective tissue growth factor regulates interneuron survival and information processing in the olfactory bulb. Neuron 2013; 79:1136-51. [PMID: 23993699 DOI: 10.1016/j.neuron.2013.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 12/27/2022]
Abstract
Neurogenesis underlies plastic changes in defined neuronal circuits in the postnatal and adult brain. Here we identify connective tissue growth factor (CTGF) as a critical factor in the mouse olfactory bulb (OB) in determining the efficiency of incorporation of postnatally born inhibitory neurons, thus gating the output of glomeruli, the first relay station of olfactory processing in the brain. In the OB, CTGF expression was restricted to prenatally born external tufted cells. CTGF enhanced the proapoptotic activity of glial-derived TGF-β2, decreasing the survival of periglomerular inhibitory neurons. Changes in CTGF expression levels in the OB led to modifications in local neuronal circuitry and olfactory behaviors. We show that the odorant-specific recruitment of distinct glomeruli resulted in enhanced local CTGF expression levels in the activated glomeruli. Collectively our data reveal a molecular mechanism controlling the survival of defined postnatally born neurons, thus adapting neuronal integration to the sensory experiences.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany; Department of Clinical Neurobiology/A230, German Center for Cancer Research (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Díaz D, Gómez C, Muñoz-Castañeda R, Baltanás F, Alonso JR, Weruaga E. The Olfactory System as a Puzzle: Playing With Its Pieces. Anat Rec (Hoboken) 2013; 296:1383-400. [DOI: 10.1002/ar.22748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Díaz
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - C. Gómez
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - R. Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - F. Baltanás
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - J. R. Alonso
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
- Institute for High Research, Universidad de Tarapacá; Arica Chile
| | - E. Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| |
Collapse
|
46
|
Bálentová S, Hajtmanová E, Plevková J, Lehotský J, Adamkov M. Fractionated irradiation-induced altered spatio-temporal cell distribution in the rat forebrain. Acta Histochem 2013; 115:308-14. [PMID: 23069376 DOI: 10.1016/j.acthis.2012.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 02/02/2023]
Abstract
Ionizing radiation as one of the strongest cytogenetic factors can induce significant injury to the adult brain. In the present study, adult male Wistar rats were exposed to whole-body irradiation with fractionated doses of gamma rays (a total dose of 3Gy). Seven, 14 and 21 days after irradiation the cell types located in the neurogenic anterior subventricular zone (SVZa) were labeled using immunohistochemistry for SVZa-derived young neurons and astrocytes. Cell counting was performed in four anatomical parts along the pathway known as the rostral migratory stream (RMS) represented by the SVZa, vertical arm, elbow and horizontal arm of the RMS. A considerable increase was seen in the number of neuroblasts in the SVZa, vertical arm and elbow on day 7 after irradiation. Until days 14 and 21 there was a marked decline in the density of young neurons, mostly in the horizontal arm of the RMS. In contrast, the number of astrocytes gradually increased in the caudal parts of the RMS until day 14 after irradiation. Strong enhancement was replaced by a steep decline within the RMS up to 21 days after treatment. Our results showed that the radiation response of proliferating cells originating from the SVZa may play a contributory role in the development of more adverse late radiation-induced effects.
Collapse
Affiliation(s)
- Soňa Bálentová
- Institute of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University, Malá Hora 4, 036 01 Martin, Slovak Republic.
| | | | | | | | | |
Collapse
|
47
|
Brus M, Meurisse M, Gheusi G, Keller M, Lledo PM, Lévy F. Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J Comp Neurol 2013; 521:169-88. [PMID: 22700217 DOI: 10.1002/cne.23169] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022]
Abstract
Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.
Collapse
Affiliation(s)
- M Brus
- INRA, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
48
|
Falcão AM, Palha JA, Ferreira AC, Marques F, Sousa N, Sousa JC. Unbiased stereological method to assess proliferation throughout the subependymal zone. Methods Mol Biol 2013; 1035:141-152. [PMID: 23959988 DOI: 10.1007/978-1-62703-508-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The subependymal zone (SEZ), frequently named as adult subventricular zone (SVZ), is a niche of adult neural stem and progenitor cells that lines a large extension of the lateral ventricles of the brain. The majority of the studies do not analyze the SEZ throughout its entire extension. Instead, studies of cell populations within the SEZ typically focus their analysis on a narrow space between specific bregma coordinates that provides a perspective of only a small portion of the SEZ. We have previously proposed a standard division for the SEZ at the anterior-posterior and dorsal-ventral axes based on external brain anatomical hallmarks (Falcao et al., PLoS One 7:e38647, 2012). Herein, we describe in detail the procedure and a stereological approach that can be used to obtain an unbiased estimation of the SEZ cell proliferation under physiological and pathological conditions. This approach takes into consideration clear SEZ anatomical divisions, both on the anterior-posterior and dorsal-ventral axes, which will standardize future studies on the SEZ.
Collapse
Affiliation(s)
- Ana Mendanha Falcão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Ortega F, Berninger B, Costa MR. Primary culture and live imaging of adult neural stem cells and their progeny. Methods Mol Biol 2013; 1052:1-11. [PMID: 23640252 DOI: 10.1007/7651_2013_22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adult neural stem cells (NSC) generate neurons throughout life, but little is known about the sequence of events involved in the transition from NSC to neurons. Studying the intermediary steps involved in the specification of neuronal cells from NSCs requires observation of cells in real time. Here we describe a primary culture of the adult subependymal zone (SEZ) which allows for continuous live imaging to characterize the mode of cell division and lineage progression of adult NSCs and their progeny. To this end, cells are cultured at low density under adherent conditions and without growth factors. Under these conditions, NSCs display classical hallmarks of adult SEZ NSCs in vivo, such as astroglial marker expression and promoter activity, a slow cell cycle, and a predominantly neurogenic potential. Video time-lapse microscopy experiments using this cell preparation allow for studying the steps involved in the generation of fast-dividing precursors and neuroblasts from slow-dividing astroglia/NSCs.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | |
Collapse
|
50
|
Moreno-EstellÉs M, GonzÁlez-Gómez P, Hortigüela R, Díaz-Moreno M, San Emeterio J, AL C, FariÑas I, Mira H. Symmetric Expansion of Neural Stem Cells from the Adult Olfactory Bulb Is Driven by Astrocytes Via WNT7A. Stem Cells 2012; 30:2796-809. [DOI: 10.1002/stem.1243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
|