1
|
Alotaibi S, Papas E, Mobeen R, Ozkan J, Misra SL, Markoulli M. Tear film hTERT and corneal nerve characteristics in dry eye disease. Clin Exp Optom 2025; 108:450-455. [PMID: 38755754 DOI: 10.1080/08164622.2024.2354775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
CLINICAL RELEVANCE The behaviour of human telomerase reverse transcriptase (hTERT) in tears reflects its role in maintaining the ocular surface homoeostasis, as it is increased after the initial fitting of contact lenses and post-overnight lid closure. BACKGROUND hTERT has been shown to respond to cellular stress in neurodegenerative diseases and to enhance axonal regeneration after peripheral axotomy in an animal model. This work investigated whether the behaviour of hTERT in the tear film reflects ocular surface inflammation and neuronal changes in the presence of dry eye disease. METHODS Flush tears were collected from 18 participants with dry eye disease (14 females, 4 males, mean age 34.7 ± 5.2 years) and from 18 healthy participants without dry eye disease (8 females, 10 males, mean age 31.9 ± 5.8 years). Dry eye disease status was defined using the TFOS DEWS II diagnostic criteria. hTERT levels in tears were measured using enzyme-linked immunosorbent assays. Confocal images were taken at the level of the subbasal nerve plexus at the central cornea and at the inferior whorl, and the densities of corneal immune cells were evaluated as well as corneal nerve morphology metrics using a fully automated technique (University of Manchester, United Kingdom). RESULTS In participants with dry eye disease, hTERT levels were significantly higher compared to controls (median [interquartile range]: 434 [320-600] ng/ml, and 184 [42-390] ng/ml, respectively, p = 0.01). Increased nerve fibre width at the inferior whorl, was seen in those with dry eyes (0.0219 [0.0214-0.0236] mm/mm compared to controls 0.0217 [0.0207 0.0222] p < 0.001), but no significant differences were found in the density of corneal immune cells. CONCLUSIONS hTERT levels were elevated in participants with dry eye disease, and this was accompanied by increased nerve thickness in the inferior cornea. The hTERT response may reflect the stress induced to the ocular surface and corneal nerves due to having dry eye disease.
Collapse
Affiliation(s)
- Sultan Alotaibi
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Eric Papas
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Rabia Mobeen
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Jerome Ozkan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Ning X, Fu Z, Zhang J, Gao S, Cui Z, Cong M, Guo Q, Sun X, Li J, Zhang M, Wang S. The role of alternative splicing in lung cancer. Cancer Chemother Pharmacol 2023; 92:83-95. [PMID: 37335335 DOI: 10.1007/s00280-023-04553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Aberrant alternative splicing (AS) events are frequently observed in lung cancer, which can be attributed to aberrant gene AS, alterations in splicing regulatory factors, or changes in splicing regulatory mechanisms. Consequently, the dysregulation of alternative RNA splicing is the fundamental cause of lung cancer. In this review, we have summarized the pivotal role of AS in the development, progression, invasion, metastasis, angiogenesis, and drug resistance of lung cancer. Ultimately, this review emphasizes the potential of AS as biomarkers in lung cancer prognosis and diagnosis, and introduces some applications of AS isoform in the treatment of lung cancer. The comprehension of the AS may provide a glimmer of hope for the eradication of lung cancer.
Collapse
Affiliation(s)
- Xuelian Ning
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xixi Sun
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Minghui Zhang
- Department of Oncology, Chifeng Municipal Hospital, No.1 Zhaowuda Road, Chifeng, 024000, China.
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
3
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
4
|
Yıldızhan K, Nazıroğlu M. NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res 2023; 1803:148232. [PMID: 36610553 DOI: 10.1016/j.brainres.2023.148232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
TRPM2 channel is activated by the increase of hypoxia (HYP)-mediated excessive mitochondrial (mROS) and cytosolic (cROS) free reactive oxygen species generation and intracellular free Ca2+ ([Ca2+]i) influx. The stimulations of the N-methyl-d-aspartate(NMDA) receptor and TRPM2 channel induce mROS and apoptosis in the neurons, although their inhibitions via the treatments of memantine (MEM) and MK-801 decrease mROS and apoptosis. However, the molecular mechanisms underlying MEM treatment and NMDA inhibition' neuroprotection via TRPM2 inhibition in the HYP remain elusive. We investigated the modulator role of MEM and NMDA via the modulation of TRPM2 on oxidative neurodegeneration and apoptosis in SH-SY5Y neuronal cells. Six groups were induced in the SH-SY5Y and HEK293 cells as follows: Control, MEM, NMDA blocker (MK-801), HYP (CoCl2), HYP + MEM, and HYP + MK-801. The HYP caused to the increases of TRPM2 and PARP-1 expressions, and TRPM2 agonist (H2O2 and ADP-ribose)-induced TRPM2 current density and [Ca2+]i concentration via the upregulation of mitochondrial membrane potential, cROS, and mROS generations. The alterations were not observed in the absence of TRPM2 in the HEK293 cells. The increase of cROS, mROS, lipid peroxidation, cell death (propidium iodide/Hoechst) rate, apoptosis, caspase -3, caspase -8, and caspase -9 were restored via upregulation of glutathione and glutathione peroxidase by the treatments of TRPM2 antagonists (ACA or 2-APB), MEM, and MK-801. In conclusion, the inhibition of NMDA receptor via MEM treatment modulated HYP-mediated mROS, apoptosis, and TRPM2-induced excessive [Ca2+]i and may provide an avenue for protecting HYP-mediated neurodegenerative diseases associated with the increase of mROS, [Ca2+]i, and apoptosis.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; Drug Discovery Unit, BSN Health, Analyses, Innov., Consult., Org., Agricul., Trade Ltd, Isparta, Turkey; Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
5
|
Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, Lin Q, Chen X, Deng Y. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol Neurobiol 2021; 58:6552-6576. [PMID: 34585328 PMCID: PMC8639545 DOI: 10.1007/s12035-021-02568-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.
Collapse
Affiliation(s)
- Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfen Lin
- Department of Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peixian Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiongyu Lin
- Department of Critical Care Medicine, Jieyang People's Hospital, Jieyang, 522000, Guangdong, China
| | - Xuan Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College (FCS), Shantou, 515063, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Shim HS, Horner JW, Wu CJ, Li J, Lan ZD, Jiang S, Xu X, Hsu WH, Zal T, Flores II, Deng P, Lin YT, Tsai LH, Wang YA, DePinho RA. Telomerase Reverse Transcriptase Preserves Neuron Survival and Cognition in Alzheimer's Disease Models. NATURE AGING 2021; 1:1162-1174. [PMID: 35036927 PMCID: PMC8759755 DOI: 10.1038/s43587-021-00146-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Amyloid-induced neurodegeneration plays a central role in Alzheimer's disease (AD) pathogenesis. Here, we show that telomerase reverse transcriptase (TERT) haploinsufficiency decreases BDNF and increases amyloid-β (Aβ) precursor in murine brain. Moreover, prior to disease onset, the TERT locus sustains accumulation of repressive epigenetic marks in murine and human AD neurons, implicating TERT repression in amyloid-induced neurodegeneration. To test the impact of sustained TERT expression on AD pathobiology, AD mouse models were engineered to maintain physiological levels of TERT in adult neurons, resulting in reduced Aβ accumulation, improved spine morphology, and preserved cognitive function. Mechanistically, integrated profiling revealed that TERT interacts with β-catenin and RNA polymerase II at gene promoters and upregulates gene networks governing synaptic signaling and learning processes. These TERT-directed transcriptional activities do not require its catalytic activity nor telomerase RNA. These findings provide genetic proof-of-concept for somatic TERT gene activation therapy in attenuating AD progression including cognitive decline.
Collapse
Affiliation(s)
- Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - James W. Horner
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zheng D. Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xueping Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ivonne I. Flores
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuan-Ta Lin
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y. Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Nudelman KNH, Lin J, Lane KA, Nho K, Kim S, Faber KM, Risacher SL, Foroud TM, Gao S, Davis JW, Weiner MW, Saykin AJ. Telomere Shortening in the Alzheimer's Disease Neuroimaging Initiative Cohort. J Alzheimers Dis 2020; 71:33-43. [PMID: 31322561 DOI: 10.3233/jad-190010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although shorter telomeres have been associated with Alzheimer's disease (AD), it is unclear whether longitudinal change in telomere length is associated with AD progression. OBJECTIVE To investigate the association of telomere length change with AD diagnosis and progression. METHODS In 653 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, T/S ratio (telomere versus single copy gene), a proxy of telomere length, was measured for up to five visits per participant (N = 1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate association of telomere length with AD diagnostic group and interaction of age and diagnosis. Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to MCI or AD to telomere change in participants with stable diagnoses. RESULTS Shorter telomeres were associated with older age (Effect Size (ES) = -0.23) and male sex (ES = -0.26). Neither baseline T/S ratio (ES = -0.036) nor T/S ratio change (ES = 0.046) differed significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-significant, telomere shortening compared to non-converters (ES = -0.186). CONCLUSIONS Although AD compared to controls showed small, non-significant effects for baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant effect for greater telomere shortening in converters compared to non-converters. Although our results do not support telomere shortening as a robust biomarker of AD progression, further investigation in larger samples and for subgroups of participants may be informative.
Collapse
Affiliation(s)
- Kelly N H Nudelman
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Lane
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Electrical and Computer Engineering, SUNY Oswego, Oswego, NY, USA
| | - Kelley M Faber
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin W Davis
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Saykin
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
8
|
Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1. Cell Death Dis 2020; 11:425. [PMID: 32513926 PMCID: PMC7280311 DOI: 10.1038/s41419-020-2641-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Mutations in the phosphatase and tensin homologue-induced putative kinase 1 (PINK1) gene have been linked to an early-onset autosomal recessive form of familial Parkinson′s disease (PD). PINK1, a mitochondrial serine/threonine-protein kinase, plays an important role in clearing defective mitochondria by mitophagy – the selective removal of mitochondria through autophagy. Evidence suggests that alteration of the PINK1 pathway contributes to the pathogenesis of PD, but the mechanisms by which the PINK1 pathway regulates mitochondrial quality control through mitophagy remain unclear. Human telomerase reverse transcriptase (hTERT) is a catalytic subunit of telomerase that functions in telomere maintenance as well as several non-telomeric activities. For example, hTERT has been associated with cellular immortalization, cell growth control, and mitochondrial regulation. We determined that hTERT negatively regulates the cleavage and cytosolic processing of PINK1 and enhances its mitochondrial localization by inhibiting mitochondrial processing peptidase β (MPPβ). Consequently, hTERT promotes mitophagy following carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced mitochondrial dysfunction and improves the function of damaged mitochondria by modulating PINK1. These findings suggest that hTERT positively regulates PINK1 function, leading to increased mitophagy following mitochondrial damage.
Collapse
|
9
|
Thompson CA, Wong JM. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance. Curr Top Med Chem 2020; 20:498-507. [DOI: 10.2174/1568026620666200131125110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere
repeat synthesis activity, telomerase may have other biologically important functions. The canonical
roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic
stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase
(TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative
mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed
at higher levels than necessary for maintaining functional telomere length, suggesting other possible
adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric
DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics,
and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily
show cellular protective effects, and nuclear TERT has been shown to protect against cell death
following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT
has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of
gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent
RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria,
TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial
integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased
proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding
the spectrum of non-canonical functions of telomerase may have important implications for the rational
design of anti-cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Connor A.H. Thompson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Judy M.Y. Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
10
|
Zheng Q, Huang J, Wang G. Mitochondria, Telomeres and Telomerase Subunits. Front Cell Dev Biol 2019; 7:274. [PMID: 31781563 PMCID: PMC6851022 DOI: 10.3389/fcell.2019.00274] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial functions and telomere functions have mostly been studied independently. In recent years, it, however, has become clear that there are intimate links between mitochondria, telomeres, and telomerase subunits. Mitochondrial dysfunctions cause telomere attrition, while telomere damage leads to reprogramming of mitochondrial biosynthesis and mitochondrial dysfunctions, which has important implications in aging and diseases. In addition, evidence has accumulated that telomere-independent functions of telomerase also exist and that the protein component of telomerase TERT shuttles between the nucleus and mitochondria under oxidative stress. Our previously published data show that the RNA component of telomerase TERC is also imported into mitochondria, processed, and exported back to the cytosol. These data show a complex regulation network where telomeres, nuclear genome, and mitochondria are co-regulated by multi-localization and multi-function proteins and RNAs. This review summarizes the connections between mitochondria and telomeres, the mitochondrion-related functions of telomerase subunits, and how they play a role in crosstalk between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Qian Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Adv Clin Chem 2019; 90:81-132. [PMID: 31122612 DOI: 10.1016/bs.acc.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ever since their discovery, the telomeres and the telomerase have been topics of intensive research, first as a mechanism of cellular aging and later as an indicator of health and diseases in humans. By protecting the chromosome ends, the telomeres play a vital role in preserving the information in our genome. Telomeres shorten with age and the rate of telomere erosion provides insight into the proliferation history of cells. The pace of telomere attrition is known to increase at the onset of several pathological conditions. Telomere shortening has been emerging as a potential contributor in the pathogenesis of several neurological disorders including autism spectrum disorders (ASD), schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD) and depression. The rate of telomere attrition in the brain is slower than that of other tissues owing to the low rate of cell proliferation in brain. Telomere maintenance is crucial for the functioning of stem cells in brain. Taking together the studies on telomere attrition in various neurological disorders, an association between telomere shortening and disease status has been demonstrated in schizophrenia, AD and depression, in spite of a few negative reports. But, studies in ASD and PD have failed to produce conclusive results. The cause-effect relationship between TL and neurological disorders is yet to be elucidated. The factors responsible for telomere erosion, which have also been implicated in the pathogenesis of neurological disorders, need to be explored in detail. Telomerase activation is now being considered as a potential therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Ismail Thanseem
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mahesh Mundalil Vasu
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Vijitha Viswambharan
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Suresh A Poovathinal
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| |
Collapse
|
13
|
Zhang L, Li S, Chen L, Li J, Zhang Z, Yang Y, Wang X, Liu J. Cerebellar fastigial nucleus electrical stimulatin protects against cerebral ischemic damage by upregulating telomerase activity. Restor Neurol Neurosci 2019; 37:131-141. [PMID: 30988241 DOI: 10.3233/rnn-180876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cerebellar fastigial nucleus electrical stimulation (FNS) in rats has been shown to protect against brain ischemia/reperfusion (I/R) damage. Activation of telomerase has been reported to provide neuroprotection in animal models of stroke. OBJECTIVE The aim of this study was to explore whether precondition FNS increases the expression of telomerase reverse transcriptase (TERT) and telomerase activity in rats after cerebral I/R injury. METHODS One day after continuous stimulation of the fastigial cerebellar nucleus for 1 h, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h, 48 h and 72 h, while the I/R control groups received the same treatment without FNS. Ischemic lesion volumes were measured following TTC staining. The number of apoptotic cells was measured by using TUNEL assays. Subsequently, telomerase activity was examined by using TRAP-silver staining. Additionally, the expression level of TERT mRNA was assessed by using real-time fluorescence quantitative PCR. Finally, the expression of TERT protein was measured by using Western blotting. RESULTS The results of our study demonstrated that FNS significantly decreased infarct volumes and improved neurological deficits when compared with the I/R control group. The telomerase activity in the I/R + FNS group was significantly increased compared with that in the I/R control group, particularly in the 24 h reperfusion subgroup (P < 0.05). FNS treatment significantly decreased the number of TUNEL-positive cells when compared with that in the I/R control group. Expression of TERT gradually increased, with the peak occurring after or before 48 h reperfusion and the 24 h and 72 h reperfusion subgroups demonstrating higher expression than each I/R control group (P < 0.05). CONCLUSIONS Our results show that pre-FNS exerts neuroprotective effects that may be achieved by upregulating the expression of TERT and then by increasing telomerase activity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Shenghua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Zhaoxia Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Xiaoling Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning, China
| |
Collapse
|
14
|
Jin Y, You L, Kim HJ, Lee HW. Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members. Mol Cells 2018; 41:684-694. [PMID: 29937479 PMCID: PMC6078858 DOI: 10.14348/molcells.2018.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Upregulation of human telomerase reverse transcriptase (hTERT) expression is an important factor in the cellular survival and cancer. Although growing evidence suggests that hTERT inhibits cellular apoptosis by telomere-independent functions, the mechanisms involved are not fully understood. Here, we show that hTERT contains a BH3-like motif, a short peptide sequence found in BCL-2 family proteins, and interacts with anti-apoptotic BCL-2 family proteins MCL-1 and BCL-xL, suggesting a functional link between hTERT and the mitochondrial pathway of apoptosis. Additionally, we propose that hTERT can be categorized into the atypical BH3-only proteins that promote cellular survival, possibly due to the non-canonical interaction between hTERT and antiapoptotic proteins. Although the detailed mechanisms underlying the hTERT BH3-like motif functions and interactions between hTERT and BCL-2 family proteins have not been elucidated, this work proposes a possible connection between hTERT and BCL-2 family members and reconsiders the role of the BH3-like motif as an interaction motif.
Collapse
Affiliation(s)
- Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Long You
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Hye Jeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| |
Collapse
|
15
|
Wang J, Zhang MY, Xu SQ, Cheng J, Yu ZJ, Hu XM. Down-regulation of telomerase reverse transcriptase-related anti-apoptotic function in a rat model of acrylamide induced neurobehavioral deficits. Biotech Histochem 2018; 93:512-518. [PMID: 29926741 DOI: 10.1080/10520295.2018.1471523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Although the precise mechanism is unknown, neuron apoptosis is believed to participate in neuropathy caused by acrylamide (ACR). Telomerase reverse transcriptase (TERT) exhibits an anti-apoptotic function, but its contribution to the pathogenesis of ACR neurotoxicity is unclear. We investigated adult male rats that were given 30, 40 and 50 mg/kg ACR three times/week for 4 weeks. We found that ACR treatment caused significant deficits in sensory/motor function as measured by gait score, landing foot spread distance, movement initiation test and tail immersion test. Histological examination showed that the cerebral cortex in all ACR treated animals exhibited fewer neurons and more condensed nuclei than normal cortex. A significant increase in apoptosis was found in the cerebral cortex of rat brains subjected to ACR treatment in a dose-dependent manner. The expression of TERT in the brain was significantly reduced by ACR treatment. The pro-apoptotic cleaved caspase-3 protein level was increased, while the anti-apoptotic Bcl-2 protein level was decreased by 30 - 50 mg/kg ACR. Our findings indicate that TERT and its downstream regulators of neuron apoptosis, including Bcl-2 and cleaved caspase-3, were involved in ACR neurotoxicity.
Collapse
Affiliation(s)
- J Wang
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - M Y Zhang
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - S Q Xu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - J Cheng
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - Z J Yu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan
| | - X M Hu
- a Department of Pharmacy , College of Medicine, Wuhan University of Science and Technology , Wuhan.,b Hubei Province Key Laboratory of Occupational Hazard Identification and Control , Wuhan University of Science and Technology , Wuhan.,c College of Pharmacy , Shanghai University of Medicine & Health Sciences , Shanghai , China
| |
Collapse
|
16
|
Rhee J, Park K, Kim KC, Shin CY, Chung C. Impaired Hippocampal Synaptic Plasticity and Enhanced Excitatory Transmission in a Novel Animal Model of Autism Spectrum Disorders with Telomerase Reverse Transcriptase Overexpression. Mol Cells 2018; 41:486-494. [PMID: 29696935 PMCID: PMC5974625 DOI: 10.14348/molcells.2018.0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 01/23/2023] Open
Abstract
Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphory-lated CaMKIIα were significantly decreased while the expression level of CaMKIIα was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.
Collapse
Affiliation(s)
- Jeehae Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Kwanghoon Park
- Department of Biological Sciences, College of Bioscience and Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Ki Chan Kim
- Department of Neuroscience and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029,
Korea
| | - Chan Young Shin
- Department of Neuroscience and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029,
Korea
| | - ChiHye Chung
- Department of Biological Sciences, College of Bioscience and Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
17
|
Liu MY, Nemes A, Zhou QG. The Emerging Roles for Telomerase in the Central Nervous System. Front Mol Neurosci 2018; 11:160. [PMID: 29867352 PMCID: PMC5964194 DOI: 10.3389/fnmol.2018.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer and aging. Telomerase exists in neural stem cells (NSCs) and neural progenitor cells (NPCs), at a high level in the developing and adult brains of humans and rodents. Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis. In addition, recent works have shown that telomerase reverse transcriptase (TERT) can protect newborn neurons from apoptosis and excitotoxicity. However, to date, the link between telomerase and diseases in the central nervous system (CNS) is not well reviewed. Here, we analyze the evidence and summarize the important roles of telomerase in the CNS. Understanding the roles of telomerase in the nervous system is not only important to gain further insight into the process of the neural cell life cycle but would also provide novel therapeutic applications in CNS diseases such as neurodegenerative condition, mood disorders, aging and other ailments.
Collapse
Affiliation(s)
- Meng-Ying Liu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, China
| | - Ashley Nemes
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
18
|
Kim KC, Cho KS, Yang SM, Gonzales EL, Valencia S, Eun PH, Choi CS, Mabunga DF, Kim JW, Noh JK, Kim HJ, Jeon SJ, Han SH, Bahn GH, Shin CY. Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice. Biomol Ther (Seoul) 2017; 25:374-382. [PMID: 28208013 PMCID: PMC5499615 DOI: 10.4062/biomolther.2016.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.
Collapse
Affiliation(s)
- Ki Chan Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Suk Cho
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Schley Valencia
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Pyeong Hwa Eun
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Darine Froy Mabunga
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Woon Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Judy Kyoungju Noh
- College of Human Ecology, Cornell University, Ithaca, New York 14853, United States of America
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
19
|
Manipulating cognitive reserve: Pre-injury environmental conditions influence the severity of concussion symptomology, gene expression, and response to melatonin treatment in rats. Exp Neurol 2017; 295:55-65. [PMID: 28579327 DOI: 10.1016/j.expneurol.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/21/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Abstract
In an effort to understand the factors that contribute to heterogeneity in outcomes often associated with mTBI in youth, this study examined the role of premorbid differences in cognitive reserve on post-concussive symptoms (PCS), molecular markers, and treatment response. Male and female rats matured in one of three environmental conditions (Stress, Enrichment, Control), received a mTBI in adolescence, and were randomized to melatonin or placebo treatment. All animals underwent a behavioural test battery designed to examine PCS. Using prefrontal cortex and hippocampus tissue, expression of 9 genes was assessed in an effort to determine how the brain's epigenome was influenced by cognitive reserve, mTBI, and melatonin. Enrichment increased cognitive reserve (CR) and prevented lingering symptoms. Conversely, stress was associated with progressive worsening and manifestation of PCS in the longer-term. Melatonin was able to restore baseline function for control and enriched animals, but was ineffective for the stress condition. Epigenetic change in the prefrontal cortex was largely driven by the injury, while gene expression changes in the hippocampus were dependent upon cognitive reserve. The occurrence and severity of PCS is dependent upon a complex and multifaceted array of factors that modify behavioural and epigenetic responses to mTBI and its treatment.
Collapse
|
20
|
Eitan E, Braverman C, Tichon A, Gitler D, Hutchison ER, Mattson MP, Priel E. Excitotoxic and Radiation Stress Increase TERT Levels in the Mitochondria and Cytosol of Cerebellar Purkinje Neurons. THE CEREBELLUM 2017; 15:509-17. [PMID: 26374457 DOI: 10.1007/s12311-015-0720-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.
Collapse
Affiliation(s)
- Erez Eitan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Carmel Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ailone Tichon
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Esther Priel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
21
|
Efficient Transformation of Primary Human Mesenchymal Stromal Cells by Adenovirus Early Region 1 Oncogenes. J Virol 2016; 91:JVI.01782-16. [PMID: 27795433 DOI: 10.1128/jvi.01782-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022] Open
Abstract
Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. IMPORTANCE It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human embryonic tissue, albeit the exact cell type is not known yet. We show for the first time the successful transformation of primary human mesenchymal stromal cells (hMSCs) by HAdV-5 E1A and E1B. Further, we show upon HAdV-5 E1A and E1B expression that these primary progenitor cells exhibit features of tumor cells and can no longer be differentiated into the adipogenic, chondrogenic, or osteogenic lineage. Hence, primary hMSCs represent a robust and novel model system to elucidate the underlying molecular mechanisms of adenovirus-mediated transformation of multipotent human progenitor cells.
Collapse
|
22
|
Zhao FY, Qu Y, Zhang L, Huang L, Liu HT, Li J, Mu DZ. [The neuroprotective role of exogenous TERT gene in neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1296-1301. [PMID: 27974126 PMCID: PMC7403081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/18/2016] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the effect of telomerase reverse transcriptase (TERT) on cell apoptosis in neonatal rat brains after hypoxic-ischemic brain injury (HIBD). METHODS A total of 72 neonatal rats were divided into sham, vehicle, HIBD and TERT groups. HIBD was induced by Rice method in the later three groups. The neonatal rats in the vehicle and TERT groups were injected with plasmids containing mock or full length TERT by an intracerebroventricular injection 30 minutes after hypoxic-ischemic (HI) injury. Pathological changes of brain tissue were observed by hematoxylin and eosin (HE) staining. Western blot was used to detect the protein expression of TERT, apoptosis-inducing factor (AIF) and cleaved caspase 3 (CC3). Apoptotic cells were detected by TUNEL staining. RESULTS Western blot showed that TERT protein was dramatically increased in the vehicle, HIBD and TERT groups compared with the sham group. Compared with the vehicle and HIBD groups, TERT protein in the TERT group was significantly upregulated. Compared with the sham group, there was a significant increase in apoptotic index and expression of AIF and CC3 proteins in the vehicle and HIBD groups (p<0.01). The TERT group showed decreased expression of AIF and CC3 proteins and apoptotic index compared with the vehicle and HIBD groups (p<0.01). CONCLUSIONS TERT can inhibit cell apoptosis induced by HI and might have a neuroprotective role in developing brain with HIBD.
Collapse
Affiliation(s)
- Feng-Yan Zhao
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhao FY, Qu Y, Zhang L, Huang L, Liu HT, Li J, Mu DZ. [The neuroprotective role of exogenous TERT gene in neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1296-1301. [PMID: 27974126 PMCID: PMC7403081 DOI: 10.7499/j.issn.1008-8830.2016.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effect of telomerase reverse transcriptase (TERT) on cell apoptosis in neonatal rat brains after hypoxic-ischemic brain injury (HIBD). METHODS A total of 72 neonatal rats were divided into sham, vehicle, HIBD and TERT groups. HIBD was induced by Rice method in the later three groups. The neonatal rats in the vehicle and TERT groups were injected with plasmids containing mock or full length TERT by an intracerebroventricular injection 30 minutes after hypoxic-ischemic (HI) injury. Pathological changes of brain tissue were observed by hematoxylin and eosin (HE) staining. Western blot was used to detect the protein expression of TERT, apoptosis-inducing factor (AIF) and cleaved caspase 3 (CC3). Apoptotic cells were detected by TUNEL staining. RESULTS Western blot showed that TERT protein was dramatically increased in the vehicle, HIBD and TERT groups compared with the sham group. Compared with the vehicle and HIBD groups, TERT protein in the TERT group was significantly upregulated. Compared with the sham group, there was a significant increase in apoptotic index and expression of AIF and CC3 proteins in the vehicle and HIBD groups (p<0.01). The TERT group showed decreased expression of AIF and CC3 proteins and apoptotic index compared with the vehicle and HIBD groups (p<0.01). CONCLUSIONS TERT can inhibit cell apoptosis induced by HI and might have a neuroprotective role in developing brain with HIBD.
Collapse
Affiliation(s)
- Feng-Yan Zhao
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, Ko MJ, Han SH, Banerjee S, Shin CY. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2016; 113:71-81. [PMID: 27638451 DOI: 10.1016/j.neuropharm.2016.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/26/2023]
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Chan Kim
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seol-Heui Han
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Sourav Banerjee
- National Brain Research Center, NH-8, Nainwal Mode, Haryana, India
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
25
|
Mychasiuk R, Hehar H, Ma I, Candy S, Esser MJ. Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. Eur J Neurosci 2016; 44:2407-2417. [DOI: 10.1111/ejn.13360] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Richelle Mychasiuk
- Alberta Children's Hospital Research Institute; Department of Psychology; University of Calgary; Heritage Medical Research Building, 3330 Hospital Drive NW Calgary AB T2N 1N4 Canada
| | - Harleen Hehar
- Alberta Children's Hospital Research Institute; Department of Psychology; University of Calgary; Heritage Medical Research Building, 3330 Hospital Drive NW Calgary AB T2N 1N4 Canada
| | - Irene Ma
- Alberta Children's Hospital Research Institute; Department of Psychology; University of Calgary; Heritage Medical Research Building, 3330 Hospital Drive NW Calgary AB T2N 1N4 Canada
| | - Sydney Candy
- Alberta Children's Hospital Research Institute; Faculty of Medicine; University of Calgary; Calgary AB Canada
| | - Michael J. Esser
- Alberta Children's Hospital Research Institute; Faculty of Medicine; University of Calgary; Calgary AB Canada
| |
Collapse
|
26
|
González-Giraldo Y, Forero DA, Echeverria V, Gonzalez J, Ávila-Rodriguez M, Garcia-Segura LM, Barreto GE. Neuroprotective effects of the catalytic subunit of telomerase: A potential therapeutic target in the central nervous system. Ageing Res Rev 2016; 28:37-45. [PMID: 27095058 DOI: 10.1016/j.arr.2016.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Senescence plays an important role in neurodegenerative diseases and involves key molecular changes induced by several mechanisms such as oxidative stress, telomere shortening and DNA damage. Potential therapeutic strategies directed to counteract these molecular changes are of great interest for the prevention of the neurodegenerative process. Telomerase is a ribonucleoprotein composed of a catalytic subunit (TERT) and a RNA subunit (TERC). It is known that the telomerase is involved in the maintenance of telomere length and is a highly expressed protein in embryonic stages and decreases in adult cells. In the last decade, a growing number of studies have shown that TERT has neuroprotective effects in cellular and animal models after a brain injury. Significantly, differences in TERT expression between controls and patients with major depressive disorder have been observed. More recently, TERT has been associated with the decrease in reactive oxygen species and DNA protection in mitochondria of neurons. In this review, we highlight the role of TERT in some neurodegenerative disorders and discuss some studies focusing on this protein as a potential target for neuroprotective therapies.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; Universidad Científica del Sur, Lima, Peru.
| |
Collapse
|
27
|
Telomerase Activity is Downregulated Early During Human Brain Development. Genes (Basel) 2016; 7:genes7060027. [PMID: 27322326 PMCID: PMC4929426 DOI: 10.3390/genes7060027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022] Open
Abstract
Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6-19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw.
Collapse
|
28
|
Rao S, Ye N, Hu H, Shen Y, Xu Q. Variants in TERT influencing telomere length are associated with paranoid schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:317-24. [PMID: 26799699 DOI: 10.1002/ajmg.b.32403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is one of the most severe psychiatric disorders, with a high heritability of up to 80%. Several studies have reported telomere dysfunction in schizophrenia, and common variants in the telomerase reverse transcriptase (TERT) gene. TERT is a key component of the telomerase complex that maintains telomere length by addition of telomere repeats to telomere ends, and has repeatedly shown association with mean lymphocyte telomere length (LTL). Thus, we hypothesized that TERT may be a novel susceptibility gene for schizophrenia. Using a Taqman protocol, we genotyped eight tag SNPs from the TERT locus in 1,072 patients with paranoid schizophrenia and 1,284 control subjects from a Chinese Han population. We also measured mean LTL in 98 cases and 109 controls using a quantitative PCR-based technique. Chi-square tests showed that two SNPs, rs2075786 (P = 0.0009, OR = 0.76, 95%CI = 0.65-0.90) and rs4975605 (P = 0.0026, OR = 0.73, 95%CI = 0.60-0.90), were associated with a protective effect, while rs10069690 was associated with risk of paranoid schizophrenia (P = 0.0044, OR = 1.23, 95%CI = 1.07-1.42). Additionally, the rs2736118-rs2075786 haplotype showed significant association with paranoid schizophrenia (P = 0.0013). Moreover, mean LTL correlated with rs2075786 genotypes was significantly shorter in the patient group than the control group. The present results suggest that the TERT gene may be a novel candidate involved in the development of paranoid schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Ning Ye
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Huiling Hu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis 2016; 87:11-8. [DOI: 10.1016/j.nbd.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
|
30
|
Linkus B, Wiesner D, MeΔner M, Karabatsiakis A, Scheffold A, Rudolph KL, Thal DR, Weishaupt JH, Ludolph AC, Danzer KM. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY) 2016; 8:382-93. [PMID: 26978042 PMCID: PMC4789589 DOI: 10.18632/aging.100904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype inSOD1G93A-transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS.
Collapse
Affiliation(s)
- Birgit Linkus
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Martina MeΔner
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Annika Scheffold
- Department of Internal Medicine III, Ulm University, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Deng W, Cheung ST, Tsao SW, Wang XM, Tiwari AFY. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: A systematic review. Psychoneuroendocrinology 2016; 64:150-63. [PMID: 26677763 DOI: 10.1016/j.psyneuen.2015.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To summarise and discuss the association between telomerase activity and psychological stress, mental disorders and lifestyle factors. METHOD A systematic review was carried out to identify prospective or retrospective studies and interventions published up to June 2015 that reported associations between telomerase activity and psychological stress, mental disorders and lifestyle factors. Electronic data bases of PubMed, ProQuest, CINAHL and Google Scholar were searched. RESULTS Twenty six studies on humans measured telomerase activity in peripheral blood mononuclear cells (PBMCs) or leukocytes and examined its association with psychological stress, mental disorders and lifestyle factors. Of those studies, three reported significantly decreased telomerase activity in individuals under chronic psychological stress. Interestingly, one of the three studies found that acute laboratory psychological stress significantly increased telomerase activity. Nine studies reported mixed results on association between mental disorders and telomerase activity. Of the nine studies, five reported that major depressive disorder (MDD) was associated with significantly increased telomerase activity. In thirteen out of fourteen studies on lifestyle factors, it was reported that physical exercise, diet micronutrient supplementation, mindfulness meditation, Qigong practice or yoga mediation resulted in increase in telomerase activity. In addition, two studies on animal models showed that depression-like behaviour was associated with decreased hippocampus telomerase activity. Five animal studies showed that physical exercise increased telomerase activity by cell-type-specific and genotype-specific manners. CONCLUSION Although multi-facet results were reported on the association between telomerase activity and psychological stress, mental disorders and lifestyle factors, there were some consistent findings in humans such as (1) decreased telomerase activity in individuals under chronic stress, (2) increased telomerase activity in individuals with MDD, and (3) increased telomerase activity in individuals under lifestyle interventions. Animal studies showed that physical exercise increased telomerase activity in specific cell-types. However, the exact mechanisms for the changes in telomerase activity have not been elucidated. We propose conglomerate models connecting chronic psychological stress, depression, mediation and physical exercise to telomerase activation. Several areas for future research are suggested.
Collapse
Affiliation(s)
- W Deng
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - S T Cheung
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - X M Wang
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - A F Y Tiwari
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Kim KC, Rhee J, Park JE, Lee DK, Choi CS, Kim JW, Lee HW, Song MR, Yoo HJ, Chung C, Shin CY. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice. Mol Neurobiol 2015; 53:7312-7328. [DOI: 10.1007/s12035-015-9630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
|
33
|
Lee JS, Jeong SW, Cho SW, Juhn JP, Kim KW. Relationship between Initial Telomere Length, Initial Telomerase Activity, Age, and Replicative Capacity of Nucleus Pulposus Chondrocytes in Human Intervertebral Discs: What Is a Predictor of Replicative Potential? PLoS One 2015; 10:e0144177. [PMID: 26633809 PMCID: PMC4669191 DOI: 10.1371/journal.pone.0144177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
There is evidence that telomere length (TL), telomerase activity (TA), and age are related to the replicative potential of human nucleus pulposus chondrocytes (NPCs). However, it has not yet been established if any of these factors can serve as predictors of the replicative potential of NPCs. To establish predictors of the replicative potential of NPCs, we evaluated potential relationships between replicative capacity of NPCs, initial TL (telomere length at the first passage), initial TA (telomerase activity at the first passage), and age. Nucleus pulposus specimens were obtained from 14 patients of various ages undergoing discectomy. NPCs were serially cultivated until the end of their replicative lifespans. Relationships among cumulative population doubling level (PDL), initial TL, initial TA, and age were analyzed. Initial TA was negatively correlated with age (r = -0.674, P = 0.008). However, no correlation between initial TL and age was observed. Cumulative PDL was also negatively correlated with age (r = -0.585, P = 0.028). Although the cumulative PDL appeared to increase with initial TL or initial TA, this trend was not statistically significant. In conclusion, age is the sole predictor of the replicative potential of human NPCs, and replicative potential decreases with age. Initial TL and initial TA are not predictors of replicative potential, and can serve only as reference values.
Collapse
Affiliation(s)
- Jun-Seok Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopedic Research, Medical Research Institute, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| | - Seo-Won Jeong
- Department of Orthopedic Research, Medical Research Institute, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Wook Cho
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon-Pyo Juhn
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Won Kim
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopedic Research, Medical Research Institute, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
34
|
Alibardi L. Immunocalization of telomerase in cells of lizard tail after amputation suggests cell activation for tail regeneration. Tissue Cell 2015; 48:63-71. [PMID: 26697743 DOI: 10.1016/j.tice.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 01/28/2023]
Abstract
Tail amputation (autotomy) in most lizards elicits a remarkable regenerative response leading to a new although simplified tail. No information on the trigger mechanism following wounding is known but cells from the stump initiate to proliferate and form a regenerative blastema. The present study shows that telomerases are mainly activated in the nuclei of various connective and muscle satellite cells of the stump, and in other tissues, probably responding to the wound signals. Western blotting detection also indicates that telomerase positive bands increases in the regenerating blastema in comparison to the normal tail. Light and ultrastructural immunocytochemistry localization of telomerase shows that 4-14 days post-amputation in lizards immunopositive nuclei of sparse cells located among the wounded tissues are accumulating into the forming blastema. These cells mainly include fibroblasts and fat cells of the connective tissue and satellite cells of muscles. Also some immature basophilic and polychromatophilic erytroblasts, lymphoblasts and myelocytes present within the Bone Marrow of the vertebrae show telomerase localization in their nuclei, but their contribution to the formation of the regenerative blastema remains undetermined. The study proposes that one of the initial mechanisms triggering cell proliferation for the formation of the blastema in lizards involve gene activation for the production of telomerase that stimulates the following signaling pathways for cell division and migration.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
35
|
Bersani FS, Lindqvist D, Mellon SH, Penninx BW, Verhoeven JE, Révész D, Reus VI, Wolkowitz OM. Telomerase activation as a possible mechanism of action for psychopharmacological interventions. Drug Discov Today 2015; 20:1305-9. [DOI: 10.1016/j.drudis.2015.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022]
|
36
|
Alberti L, Losi L, Leyvraz S, Benhattar J. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells. PLoS One 2015; 10:e0132977. [PMID: 26185996 PMCID: PMC4506091 DOI: 10.1371/journal.pone.0132977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Aldehyde Dehydrogenase 1 Family
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nanog Homeobox Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Organ Specificity
- Phenotype
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Retinal Dehydrogenase/genetics
- Retinal Dehydrogenase/metabolism
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Signal Transduction
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- Loredana Alberti
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serge Leyvraz
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Benhattar
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
- Biopath Lab, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, Li Y, Franzoso G, Li S, Guccione E, Tergaonkar V. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015; 125:2109-22. [PMID: 25893605 PMCID: PMC4463203 DOI: 10.1172/jci79134] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 12/25/2022] Open
Abstract
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. However, while reactivation of TERT has been functionally linked to the acquisition of several "hallmarks of cancer" in tumors, the molecular mechanisms by which this occurs and whether these mechanisms are distinct from the role of telomerase on telomeres is not clear. Here, we demonstrated that first-generation TERT-null mice, unlike Terc-null mice, show delayed onset of MYC-induced lymphomagenesis. We further determined that TERT is a regulator of MYC stability in cancer. TERT stabilized MYC levels on chromatin, contributing to either activation or repression of its target genes. TERT regulated MYC ubiquitination and proteasomal degradation, and this effect of TERT was independent of its reverse transcriptase activity and role in telomere elongation. Based on these data, we conclude that reactivation of TERT, a direct transcriptional MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Enzyme Activation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myc
- Glycogen Synthase Kinase 3/physiology
- Glycogen Synthase Kinase 3 beta
- Heterografts
- Humans
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Stability
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/physiology
- RNA/genetics
- RNA/physiology
- RNA Interference
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/physiology
- Telomere Homeostasis/genetics
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- Cheryl M. Koh
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Ekta Khattar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi Chi Leow
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chia Yi Liu
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Wei Xia Ang
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Guido Franzoso
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
- Department of Physiology and
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Wolkowitz OM, Mellon SH, Lindqvist D, Epel ES, Blackburn EH, Lin J, Reus VI, Burke H, Rosser R, Mahan L, Mackin S, Yang T, Weiner M, Mueller S. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. Psychiatry Res 2015; 232:58-64. [PMID: 25773002 PMCID: PMC4404215 DOI: 10.1016/j.pscychresns.2015.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Accelerated cell aging, indexed in peripheral leukocytes by telomere shortness and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD.
Collapse
Affiliation(s)
- Owen M. Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
,Corresponding author: Dept. of Psychiatry, UCSF School of Medicine, 401 Parnassus Ave., San Francisco, CA 94143-0983, USA. Tel.: +1 (415) 476-7433; Fax: +1 (415) 502-2661;
| | - Synthia H. Mellon
- Department of OBGYN and Reproductive Endocrinology, UCSF School of Medicine, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S. Epel
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H. Blackburn
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Victor I. Reus
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Heather Burke
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Scott Mackin
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Tony Yang
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Michael Weiner
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Susanne Mueller
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| |
Collapse
|
39
|
The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci 2015; 35:1659-74. [PMID: 25632141 DOI: 10.1523/jneurosci.2925-14.2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The telomerase reverse transcriptase protein TERT has recently been demonstrated to have a variety of functions both in vitro and in vivo, which are distinct from its canonical role in telomere extension. In different cellular systems, TERT protein has been shown to be protective through its interaction with mitochondria. TERT has previously been found in rodent neurons, and we hypothesize that it might have a protective function in adult human brain. Here, we investigated the expression of TERT at different stages of Alzheimer's disease pathology (Braak Stages I-VI) in situ and the ability of TERT to protect against oxidative damage in an in vitro model of tau pathology. Our data reveal that TERT is expressed in vitro in mouse neurons and microglia, and in vivo in the cytoplasm of mature human hippocampal neurons and activated microglia, but is absent from astrocytes. Intriguingly, hippocampal neurons expressing TERT did not contain hyperphosphorylated tau. Vice versa, neurons that expressed high levels of pathological tau did not appear to express TERT protein. TERT protein colocalized with mitochondria in the hippocampus of Alzheimer's disease brains (Braak Stage VI), as well as in cultured neurons under conditions of oxidative stress. Our in vitro data suggest that the absence of TERT increases ROS generation and oxidative damage in neurons induced by pathological tau. Together, our findings suggest that TERT protein persists in neurons of the adult human brain, where it may have a protective role against tau pathology.
Collapse
|
40
|
Wang J, Zhao C, Zhao A, Li M, Ren J, Qu X. New Insights in Amyloid Beta Interactions with Human Telomerase. J Am Chem Soc 2015; 137:1213-9. [DOI: 10.1021/ja511030s] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiasi Wang
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chuanqi Zhao
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Andong Zhao
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Meng Li
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology
and Division of Biological Inorganic Chemistry, State Key Laboratory
of Rare Earth Resource Utilization, Changchun Institute of Applied
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
41
|
Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J Hum Genet 2014; 59:555-61. [PMID: 25142509 DOI: 10.1038/jhg.2014.72] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/13/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
Telomerase and telomeric complex have been linked to a variety of disease states related to neurological dysfunction. In amyotrophic lateral sclerosis (ALS) patients, telomerase activity, as human telomerase reverse transcriptase (hTERT) expression, has not been characterized yet. Here, for the first time, we characterized telomerase and related pathway in blood sample and spinal cord from ALS patients compared with healthy controls. We found that hTERT expression level was significantly lower in ALS patients and was correlated either to p53 mRNA expression or p21 expression, pointing out the hypothesis that telomerase inhibition could be a pathogenetic contributor to neurodegeneration in ALS. As a consequence of the reduced telomerase activity, we identified shorter telomeres in leukocytes from sporadic ALS patients compared with healthy control group.
Collapse
|
42
|
Zhao F, Qu Y, Liu H, Du B, Mu D. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci 2014; 38:147-54. [PMID: 24999119 DOI: 10.1016/j.ijdevneu.2014.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD), a leading cause of perinatal disability and death, has limited therapeutic options. Stem cell therapy has been demonstrated as a potential novel therapy for neurological disorders. Compared with other types of stem cells, umbilical cord blood mesenchymal stem cells (UCB-MSCs) have several unique characteristics, such as a higher rate of cell proliferation and clonality. However, the limited life span of UCB-MSCs hinders their clinical application. Therefore, efforts are urgently needed to circumvent this disadvantage. Telomerase reverse transcriptase (TERT), which promotes cell proliferation and survival, plays a protective role in hypoxic-ischemic (HI) brain injury. Thus, it is reasonable to propose that UCB-MSCs modified by exogenous TERT expression might have a longer lifespan and increased viability. Moreover, brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates development, regeneration, survival and maintenance of neurons, facilitates post-injury recovery when administered by infusion or virus-mediated delivery. Therefore, TERT- and BDNF-modified UCB-MSCs may have a longer lifespan and also maintain neural differentiation, thus promoting the recovery of neurological function following hypoxic-ischemic brain damage (HIBD) and thereby representing a new effective strategy for HIBD in neonates.
Collapse
Affiliation(s)
- Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Haiting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Baowen Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China; Department of Pediatrics and Neurology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Manguan-Garcia C, Pintado-Berninches L, Carrillo J, Machado-Pinilla R, Sastre L, Pérez-Quilis C, Esmoris I, Gimeno A, García-Giménez JL, Pallardó FV, Perona R. Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells. PLoS One 2014; 9:e101424. [PMID: 24987982 PMCID: PMC4079255 DOI: 10.1371/journal.pone.0101424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023] Open
Abstract
The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we have found that an increased basal and induced DNA damage response occurred in X-DC cells in comparison with normal cells. DNA damage that is also localized in telomeres results in increased heterochromatin formation and senescence. Expression of a cDNA coding for GSE24.2 rescues both global and telomeric DNA damage. Furthermore, transfection of bacterial purified or a chemically synthesized GSE24.2 peptide is able to rescue basal DNA damage in X-DC cells. We have also observed an increase in oxidative stress in X-DC cells and expression of GSE24.2 was able to diminish it. Altogether our data indicated that supplying GSE24.2, either from a cDNA vector or as a peptide reduces the pathogenic effects of Dkc1 mutations and suggests a novel therapeutic approach.
Collapse
Affiliation(s)
- Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | | | - Jaime Carrillo
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
| | - Rosario Machado-Pinilla
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Carme Pérez-Quilis
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Esmoris
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Amparo Gimeno
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jose Luis García-Giménez
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V. Pallardó
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
- * E-mail:
| |
Collapse
|
44
|
Horne SD, Pollick SA, Heng HHQ. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2014; 136:2012-21. [PMID: 24957955 DOI: 10.1002/ijc.29031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumulation drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of cancer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on individual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original estimation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowledge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be summarized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers, including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolutionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of cancer.
Collapse
Affiliation(s)
- Steven D Horne
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|
45
|
Abstract
Telomerase reverse transcriptase (TERT) is the protein component of telomerase and combined with an RNA molecule, telomerase RNA component, forms the telomerase enzyme responsible for telomere elongation. Telomerase is essential for maintaining telomere length from replicative attrition and thus contributes to the preservation of genome integrity. Although diverse mouse models have been developed and studied to prove the physiological roles of telomerase as a telomere- elongating enzyme, recent studies have revealed non-canonical TERT activities beyond telomeres. To gain insights into the physiological impact of extra-telomeric roles, this review revisits the strategies and phenotypes of telomerase mouse models in terms of the extra-telomeric functions of telomerase.
Collapse
Affiliation(s)
- Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | - Muhammad Ali
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| |
Collapse
|
46
|
Cobrinik D, Ostrovnaya I, Hassimi M, Tickoo SK, Cheung IY, Cheung NKV. Recurrent pre-existing and acquired DNA copy number alterations, including focal TERT gains, in neuroblastoma central nervous system metastases. Genes Chromosomes Cancer 2013; 52:1150-66. [PMID: 24123354 DOI: 10.1002/gcc.22110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Stage 4 neuroblastomas have a high rate of local and metastatic relapse and associated disease mortality. The central nervous system (CNS) is currently one of the most common isolated relapse sites, yet the genomic alterations that contribute to these metastases are unknown. This study sought to identify recurrent DNA copy number alterations (CNAs) and target genes relating to neuroblastoma CNS metastases by studying 19 pre-CNS primary tumors and 27 CNS metastases, including 12 matched pairs. SNP microarray analyses revealed that MYCN amplified (MYCNA) tumors had recurrent CNAs different from non-MYCNA cohorts. Several CNAs known to be prevalent among primary neuroblastomas occurred more frequently in CNS metastases, including 4p-, 7q+, 12q+, and 19q- in non-MYCNA metastases, and 9p- and 14q- irrespective of MYCNA status. In addition, novel CNS metastases-related CNAs included 18q22.1 gains in non-MYCNA pre-CNS primaries and 5p15.33 gains and 15q26.1→tel losses in non-MYCNA CNS metastases. Based on minimal common regions, gene expression, and biological properties, TERT (5p), NR2F2 (15q), ALDH1A3 (15q), CDKN2A (9p), and possibly CDH7 and CDH19 (18q) were candidate genes associated with the CNS metastatic process. Notably, the 5p15 minimal common region contained only TERT, and non-MYCNA CNS metastases with focal 5p15 gains had increased TERT expression, similar to MYCNA tumors. These findings suggest that a specific genomic lesion (18q22.1 gain) predisposes to CNS metastases and that distinct lesions are recurrently acquired during metastatic progression. Among the acquired lesions, increased TERT copy number and expression appears likely to function in lieu of MYCNA to promote CNS metastasis.
Collapse
Affiliation(s)
- David Cobrinik
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | | | | | | | | | | |
Collapse
|
47
|
Roh JI, Sung YH, Lee HW. Clinical implications of antitelomeric drugs with respect to the nontelomeric functions of telomerase in cancer. Onco Targets Ther 2013; 6:1161-6. [PMID: 24009427 PMCID: PMC3762763 DOI: 10.2147/ott.s50918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Telomerase is responsible for maintaining the length of telomeres at the ends of chromosomes. Although most somatic cells do not exhibit telomerase activity, it is reactivated in approximately 85% of cancers. This simple and attractive phenomenon steers the development of anticancer drugs targeting telomeres and telomerase. Recent studies have been revealing extratelomeric roles of telomerase in normal tissues, affecting processes that are critical for survival and aging of organisms. In this review, we will discuss the current therapeutic strategies targeting telomeres and telomerase and evaluate their potential advantages and risks with respect to nontelomeric functions.
Collapse
Affiliation(s)
- Jae-Il Roh
- Mouse Molecular Genetics Laboratory, Department of Biochemistry, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
48
|
Li J, Qu Y, Chen D, Zhang L, Zhao F, Luo L, Pan L, Hua J, Mu D. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation. Neuroscience 2013; 252:346-58. [PMID: 23968592 DOI: 10.1016/j.neuroscience.2013.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 01/14/2023]
Abstract
Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8h and peaked at 24h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- J Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen XH, Xu SJ, Jin CY, Ding F, Zhou YC, Fu GS. Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. Int Immunopharmacol 2013; 16:261-7. [DOI: 10.1016/j.intimp.2013.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 01/17/2023]
|
50
|
Smith JA, Park S, Krause JS, Banik NL. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 2013; 62:764-75. [PMID: 23422879 DOI: 10.1016/j.neuint.2013.02.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 01/19/2023]
Abstract
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Joshua A Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas St., Clinical Sciences Building Room 309, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|