1
|
Lish AM, Grogan EFL, Benoit CR, Pearse RV, Heuer SE, Luquez T, Orme GA, Galle PC, Milinkeviciute G, Green KN, Alexander KD, Fancher SB, Stern AM, Fujita M, Bennett DA, Seyfried NT, De Jager PL, Menon V, Young-Pearse TL. CLU alleviates Alzheimer's disease-relevant processes by modulating astrocyte reactivity and microglia-dependent synaptic density. Neuron 2025:S0896-6273(25)00254-5. [PMID: 40311610 DOI: 10.1016/j.neuron.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Genetic studies implicate clusterin (CLU) in the pathogenesis of Alzheimer's disease (AD), yet its precise molecular impact remains unclear. Through unbiased proteomic profiling and functional validation in CLU-deficient astrocytes, we identify increased nuclear factor κB (NF-κB)-dependent signaling and complement C3 secretion. Reduction of astrocyte CLU induced microglia-dependent modulation of extracellular apolipoprotein E (APOE) and phosphorylated tau, as well as increased microglial phagocytosis and reduced synapse numbers. By integrating mouse and human cellular models with comprehensive analyses of human plasma and brain tissue, we demonstrate that CLU AD-risk alleles are associated with reduced CLU protein and heightened inflammatory profiles. These findings establish a mechanistic link between AD genetic risk factors, astrocyte reactivity, and microglia-mediated effects on synaptic integrity. Collectively, these results support a model in which CLU upregulation in response to neuropathology is associated with maintenance of cognitive function, while diminished astrocyte CLU levels heighten disease susceptibility.
Collapse
Affiliation(s)
- Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elyssa F L Grogan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah E Heuer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tain Luquez
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn A Orme
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paige C Galle
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kellianne D Alexander
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zoccali C, Capasso G. Genetic biomarkers of cognitive impairment and dementia of potential interest in CKD patients. J Nephrol 2024; 37:2473-2479. [PMID: 38970746 DOI: 10.1007/s40620-024-02006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review discusses genetic variants associated with cognitive dysfunction in chronic kidney disease (CKD) patients, emphasising the limited research in this area. Four studies have explored genetic markers of cognitive dysfunction in CKD, with findings suggesting shared genetic biomarkers between Alzheimer's Disease and CKD.Because of the limited specific research on genetic markers of cognitive dysfunction and dementia in CKD, we extracted data from the current literature studies on genetic markers in the general population that may be relevant to the CKD population. These markers include Apolipoprotein E (APOE), Complement Receptor 1 (CR1), Clusterin (CLU), Sortilin-related receptor 1 (SORL1), Catechol-O-methyltransferase (COMT), and Brain-derived neurotrophic factor (BDNF), all of which are known to be associated with cognitive dysfunction and dementia in other populations. These genes play various roles in lipid metabolism, inflammation, Aβ clearance, and neuronal function, making them potential candidates for studying cognitive decline in CKD patients.CKD-specific research is needed to understand the role of these genetic markers in CKD-related cognitive dysfunction. Investigating how these genes influence cognitive decline in CKD patients could provide valuable insights into early detection, targeted interventions, and personalised treatment strategies. Overall, genetic studies to enhance our understanding and management of cognitive dysfunction in CKD represent a clinical research priority in this population.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Giovambattista Capasso
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
3
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Chen C, Tang X, Lan Z, Chen W, Su H, Li W, Li Y, Zhou X, Gao H, Feng X, Guo Y, Yao M, Deng W. GABAergic signaling abnormalities in a novel CLU mutation Alzheimer's disease mouse model. Transl Res 2023; 260:32-45. [PMID: 37211336 DOI: 10.1016/j.trsl.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The CLU rs11136000C mutation (CLUC) is the third most common risk factor for Alzheimer's disease (AD). However, the mechanism by which CLUC leads to abnormal GABAergic signaling in AD is unclear. To address this question, this study establishes the first chimeric mouse model of CLUC AD. Examination of grafted CLUC medial ganglionic eminence progenitors (CLUC hiMGEs) revealed increased GAD65/67 and a high frequency of spontaneous releasing events. CLUC hiMGEs also impaired cognition in chimeric mice and caused AD-related pathologies. The expression of GABA A receptor, subunit alpha 2 (Gabrα2) was higher in chimeric mice. Interestingly, cognitive impairment in chimeric mice was reversed by treatment with pentylenetetrazole, which is a GABA A receptor inhibitor. Taken together, these findings shed light on the pathogenesis of CLUC AD using a novel humanized animal model and suggest sphingolipid signaling over-activation as a potential mechanism of GABAergic signaling disorder.
Collapse
Affiliation(s)
- Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China; Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Xihe Tang
- Department of neurosurgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China; Department of neurosurgery, Aviation General Hospital, Beijing, P. R. China
| | - Zhaohui Lan
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Hua Su
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, P. R. China
| | - Weidong Li
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xing Zhou
- Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Hong Gao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Xinwei Feng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China.
| |
Collapse
|
5
|
Cochran JN, Acosta-Uribe J, Esposito BT, Madrigal L, Aguillón D, Giraldo MM, Taylor JW, Bradley J, Fulton-Howard B, Andrews SJ, Acosta-Baena N, Alzate D, Garcia GP, Piedrahita F, Lopez HE, Anderson AG, Rodriguez-Nunez I, Roberts K, Dominantly Inherited Alzheimer Network, Absher D, Myers RM, Beecham GW, Reitz C, Rizzardi LF, Fernandez MV, Goate AM, Cruchaga C, Renton AE, Lopera F, Kosik KS. Genetic associations with age at dementia onset in the PSEN1 E280A Colombian kindred. Alzheimers Dement 2023; 19:3835-3847. [PMID: 36951251 PMCID: PMC10514237 DOI: 10.1002/alz.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.
Collapse
Affiliation(s)
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute, University of California, Santa Barbara, California, and Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, California, USA
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Bianca T Esposito
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lucia Madrigal
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - David Aguillón
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Margarita M Giraldo
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Joseph Bradley
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian Fulton-Howard
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shea J Andrews
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Diana Alzate
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Gloria P Garcia
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Francisco Piedrahita
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Hugo E Lopez
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | | | | - Kevin Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Gary W Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Christiane Reitz
- Department of Epidemiology, Sergievsky Center, Taub Institute for Research on the Aging Brain, Columbia University, New York, New York, USA
| | | | | | - Alison M Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan E Renton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, California, and Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, California, USA
| |
Collapse
|
6
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
7
|
Liu Z, Chao J, Wang C, Sun G, Roeth D, Liu W, Chen X, Li L, Tian E, Feng L, Davtyan H, Blurton-Jones M, Kalkum M, Shi Y. Astrocytic response mediated by the CLU risk allele inhibits OPC proliferation and myelination in a human iPSC model. Cell Rep 2023; 42:112841. [PMID: 37494190 PMCID: PMC10510531 DOI: 10.1016/j.celrep.2023.112841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
The C allele of rs11136000 variant in the clusterin (CLU) gene represents the third strongest known genetic risk factor for late-onset Alzheimer's disease. However, whether this single-nucleotide polymorphism (SNP) is functional and what the underlying mechanisms are remain unclear. In this study, the CLU rs11136000 SNP is identified as a functional variant by a small-scale CRISPR-Cas9 screen. Astrocytes derived from isogenic induced pluripotent stem cells (iPSCs) carrying the "C" or "T" allele of the CLU rs11136000 SNP exhibit different CLU expression levels. TAR DNA-binding protein-43 (TDP-43) preferentially binds to the "C" allele to promote CLU expression and exacerbate inflammation. The interferon response and CXCL10 expression are elevated in cytokine-treated C/C astrocytes, leading to inhibition of oligodendrocyte progenitor cell (OPC) proliferation and myelination. Accordingly, elevated CLU and CXCL10 but reduced myelin basic protein (MBP) expression are detected in human brains of C/C carriers. Our study uncovers a mechanism underlying reduced white matter integrity observed in the CLU rs11136000 risk "C" allele carriers.
Collapse
Affiliation(s)
- Zhenqing Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Daniel Roeth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Li Li
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - E Tian
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
8
|
Qian Z, Qin J, Lai Y, Zhang C, Zhang X. Large-Scale Integration of Single-Cell RNA-Seq Data Reveals Astrocyte Diversity and Transcriptomic Modules across Six Central Nervous System Disorders. Biomolecules 2023; 13:692. [PMID: 37189441 PMCID: PMC10135484 DOI: 10.3390/biom13040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The dysfunction of astrocytes in response to environmental factors contributes to many neurological diseases by impacting neuroinflammation responses, glutamate and ion homeostasis, and cholesterol and sphingolipid metabolism, which calls for comprehensive and high-resolution analysis. However, single-cell transcriptome analyses of astrocytes have been hampered by the sparseness of human brain specimens. Here, we demonstrate how large-scale integration of multi-omics data, including single-cell and spatial transcriptomic and proteomic data, overcomes these limitations. We created a single-cell transcriptomic dataset of human brains by integration, consensus annotation, and analyzing 302 publicly available single-cell RNA-sequencing (scRNA-seq) datasets, highlighting the power to resolve previously unidentifiable astrocyte subpopulations. The resulting dataset includes nearly one million cells that span a wide variety of diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), epilepsy (Epi), and chronic traumatic encephalopathy (CTE). We profiled the astrocytes at three levels, subtype compositions, regulatory modules, and cell-cell communications, and comprehensively depicted the heterogeneity of pathological astrocytes. We constructed seven transcriptomic modules that are involved in the onset and progress of disease development, such as the M2 ECM and M4 stress modules. We validated that the M2 ECM module could furnish potential markers for AD early diagnosis at both the transcriptome and protein levels. In order to accomplish a high-resolution, local identification of astrocyte subtypes, we also carried out a spatial transcriptome analysis of mouse brains using the integrated dataset as a reference. We found that astrocyte subtypes are regionally heterogeneous. We identified dynamic cell-cell interactions in different disorders and found that astrocytes participate in key signaling pathways, such as NRG3-ERBB4, in epilepsy. Our work supports the utility of large-scale integration of single-cell transcriptomic data, which offers new insights into underlying multiple CNS disease mechanisms where astrocytes are involved.
Collapse
Affiliation(s)
- Zhenwei Qian
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinglin Qin
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yiwen Lai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing 210000, China
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Milinkeviciute G, Green KN. Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Front Aging Neurosci 2023; 15:1167886. [PMID: 37122381 PMCID: PMC10133478 DOI: 10.3389/fnagi.2023.1167886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
11
|
Moon SW, Zhao L, Matloff W, Hobel S, Berger R, Kwon D, Kim J, Toga AW, Dinov ID. Brain structure and allelic associations in Alzheimer's disease. CNS Neurosci Ther 2023; 29:1034-1048. [PMID: 36575854 PMCID: PMC10018103 DOI: 10.1111/cns.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic. AIMS This paper examines late-onset dementia-related cognitive impairment utilizing neuroimaging-genetics biomarker associations. MATERIALS AND METHODS The participants, ages 65-85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD-associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample-major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta-GWAS study by Jansen and colleagues. RESULTS We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models. DISCUSSION In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM-NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC. CONCLUSION This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry, Research Institute of Medical ScienceKonkuk University School of MedicineSeoulKorea
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - William Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Sam Hobel
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ryan Berger
- Microbiology & ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daehong Kwon
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Jaebum Kim
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Arthur W. Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ivo D. Dinov
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
- Department of Health Behavior and Biological Sciences, Statistics Online Computational Resource (SOCR), Michigan Institute for Data Science (MIDAS)University of MichiganAnn ArborMichiganUSA
- Department of StatisticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
12
|
Moon SW. Neuroimaging Genetics and Network Analysis in Alzheimer's Disease. Curr Alzheimer Res 2023; 20:526-538. [PMID: 37957920 DOI: 10.2174/0115672050265188231107072215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 11/15/2023]
Abstract
The issue of the genetics in brain imaging phenotypes serves as a crucial link between two distinct scientific fields: neuroimaging genetics (NG). The articles included here provide solid proof that this NG link has considerable synergy. There is a suitable collection of articles that offer a wide range of viewpoints on how genetic variations affect brain structure and function. They serve as illustrations of several study approaches used in contemporary genetics and neuroscience. Genome-wide association studies and candidate-gene association are two examples of genetic techniques. Cortical gray matter structural/volumetric measures from magnetic resonance imaging (MRI) are sources of information on brain phenotypes. Together, they show how various scientific disciplines have benefited from significant technological advances, such as the single-nucleotide polymorphism array in genetics and the development of increasingly higher-resolution MRI imaging. Moreover, we discuss NG's contribution to expanding our knowledge about the heterogeneity within Alzheimer's disease as well as the benefits of different network analyses.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Psychiatry, Institute of Medical Science, Konkuk University School of Medicine, Chungju, Republic of Korea
| |
Collapse
|
13
|
de Mélo Silva Júnior ML, Diniz PRB, de Souza Vilanova MV, Basto GPT, Valença MM. Brain ventricles, CSF and cognition: a narrative review. Psychogeriatrics 2022; 22:544-552. [PMID: 35488797 DOI: 10.1111/psyg.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The brain ventricles are structures that have been related to cognition since antiquity. They are essential components in the development and maintenance of brain functions. The aging process runs with the enlargement of ventricles and is related to a less selective blood-cerebrospinal fluid barrier and then a more toxic cerebrospinal fluid environment. The study of brain ventricles as a biological marker of aging is promissing because they are structures easily identified in neuroimaging studies, present good inter-rater reliability, and measures of them can identify brain atrophy earlier than cortical structures. The ventricular system also plays roles in the development of dementia, since dysfunction in the clearance of beta-amyloid protein is a key mechanism in sporadic Alzheimer's disease. The morphometric and volumetric studies of the brain ventricles can help to distinguish between healthy elderly and persons with mild cognitive impairment (MCI) and dementia. Brain ventricle data may contribute to the appropriate allocation of individuals in groups at higher risk for MCI-dementia progression in clinical trials and to measuring therapeutic responses in these studies, as well as providing differential diagnosis, such as normal pressure hydrocephalus. Here, we reviewed the pathophysiology of healthy aging and cognitive decline, focusing on the role of the choroid plexus and brain ventricles in this process.
Collapse
Affiliation(s)
- Mário Luciano de Mélo Silva Júnior
- Medical School, Universidade Federal de Pernambuco, Recife, Brazil.,Medical School, Centro Universitário Maurício de Nassau, Recife, Brazil.,Neurology Unit, Hospital da Restauração, Recife, Brazil
| | | | | | | | | |
Collapse
|
14
|
Abdul Aziz M, Md Ashraf G, Safiqul Islam M. Link of BIN1, CLU and IDE gene polymorphisms with the susceptibility of Alzheimer's disease: evidence from a meta-analysis. Curr Alzheimer Res 2022; 19:302-316. [PMID: 35546756 DOI: 10.2174/1567205019666220511140955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder. The association of BIN1, CLU and IDE genetic polymorphisms with AD risk have been evaluated overtimes that produced conflicting outcomes. OBJECTIVE We performed this meta-analysis to investigate the contribution of BIN1 (rs744373 and rs7561528), CLU (rs11136000 and rs9331888), and IDE (rs1887922) polymorphisms to AD risk. METHODS From a systemic literature search up to July 15, 2021, we included 25 studies with rs744373, 16 studies with rs7561528, 37 studies with rs11136000, 16 studies with rs9331888, and 4 studies with rs1887922. To analyze the correlation, we constructed seven genetic models that used odds ratio and 95% confidence intervals. We used RevMan 5.4 for meta-analysis. RESULTS Our study suggests that BIN1 rs744373 is associated with a significantly increased risk of AD in five genetic models (OR>1). Again, CLU rs11136000 showed reduced association in all genetic models (OR<1). CLU rs9331888 revealed an increased association in two models (OR>1). The IDE rs1887922 showed significantly increased risk in four models (OR>1). From subgroup analysis, a significantly increased risk of AD was observed in Caucasians and Asians for BIN1 rs744373. Again, BIN1 rs7561528 showed a significantly enhanced risk of AD only in Caucasians. CLU rs11136000 showed significantly reduced risk in Caucasians but rs9331888 showed increased risk in the same ethnicity. CONCLUSION Our meta-analysis confirms the association of BIN1 rs744373, CLU rs9331888 and IDE rs1887922 polymorphisms with an increased risk of AD, especially in Caucasians. Again, CLU rs11136000 is associated with reduced AD risk in the overall population and Caucasians.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka-1205, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur-3814, Noakhali, Bangladesh
| |
Collapse
|
15
|
Li S, An N, Chen N, Wang Y, Yang L, Wang Y, Yao Z, Hu B. The impact of Alzheimer's disease susceptibility loci on lateral ventricular surface morphology in older adults. Brain Struct Funct 2022; 227:913-924. [PMID: 35028746 DOI: 10.1007/s00429-021-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
The enlargement of ventricular volume is a general trend in the elderly, especially in patients with Alzheimer's disease (AD). Multiple susceptibility loci have been reported to have an increased risk for AD and the morphology of brain structures are affected by the variations in the risk loci. Therefore, we hypothesized that genes contributed significantly to the ventricular surface, and the changes of ventricular surface were associated with the impairment of cognitive functions. After the quality controls (QC) and genotyping, a lateral ventricular segmentation method was employed to obtain the surface features of lateral ventricle. We evaluated the influence of 18 selected AD susceptibility loci on both volume and surface morphology across 410 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI). Correlations were conducted between radial distance (RD) and Montreal Cognitive Assessment (MoCA) subscales. Only the C allele at the rs744373 loci in BIN1 gene significantly accelerated the atrophy of lateral ventricle, including the anterior horn, body, and temporal horn of left lateral ventricle. No significant effect on lateral ventricle was found at other loci. Our results revealed that most regions of the bilateral ventricular surface were significantly negatively correlated with cognitive scores, particularly in delayed recall. Besides, small areas of surface were negatively correlated with language, orientation, and visuospatial scores. Together, our results indicated that the genetic variation affected the localized areas of lateral ventricular surface, and supported that lateral ventricle was an important brain structure associated with cognition in the elderly.
Collapse
Affiliation(s)
- Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Na An
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShangHai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, LanZhou, China.
- Engineering Research Center of Open Source Software and Real-Time System, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Sapkota S, McFall GP, Masellis M, Dixon RA, Black SE. Differential Cognitive Decline in Alzheimer's Disease Is Predicted by Changes in Ventricular Size but Moderated by Apolipoprotein E and Pulse Pressure. J Alzheimers Dis 2021; 85:545-560. [PMID: 34864669 DOI: 10.3233/jad-215068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Differential cognitive trajectories in Alzheimer's disease (AD) may be predicted by biomarkers from multiple domains. OBJECTIVE In a longitudinal sample of AD and AD-related dementias patients (n = 312), we tested whether 1) change in brain morphometry (ventricular enlargement) predicts differential cognitive trajectories, 2) further risk is contributed by genetic (Apolipoprotein E [APOE] ɛ4+) and vascular (pulse pressure [PP]) factors separately, and 3) the genetic + vascular risk moderates this pattern. METHODS We applied a dynamic computational approach (parallel process models) to test both concurrent and change-related associations between predictor (ventricular size) and cognition (executive function [EF]/attention). We then tested these associations as stratified by APOE (ɛ4-/ɛ4+), PP (low/high), and APOE+ PP (low/intermediate/high) risk. RESULTS First, concurrently, higher ventricular size predicted lower EF/attention performance and, longitudinally, increasing ventricular size predicted steeper EF/attention decline. Second, concurrently, higher ventricular size predicted lower EF/attention performance selectively in APOEɛ4+ carriers, and longitudinally, increasing ventricular size predicted steeper EF/attention decline selectively in the low PP group. Third, ventricular size and EF/attention associations were absent in the high APOE+ PP risk group both concurrently and longitudinally. CONCLUSION As AD progresses, a threshold effect may be present in which ventricular enlargement in the context of exacerbated APOE+ PP risk does not produce further cognitive decline.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - G Peggy McFall
- Department of Psychology (Science), University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Roger A Dixon
- Department of Psychology (Science), University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Structural basis of soluble membrane attack complex packaging for clearance. Nat Commun 2021; 12:6086. [PMID: 34667172 PMCID: PMC8526713 DOI: 10.1038/s41467-021-26366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis. To prevent unregulated complement activation, extracellular chaperones capture soluble precursors to the membrane attack complex (sMAC). Here, structural analysis of sMAC reveals how clusterin recognizes heterogeneous sMAC complexes and inhibits polymerization of complement protein C9.
Collapse
|
18
|
An N, Fu Y, Shi J, Guo HN, Yang ZW, Li YC, Li S, Wang Y, Yao ZJ, Hu B. Synergistic Effects of APOE and CLU May Increase the Risk of Alzheimer's Disease: Acceleration of Atrophy in the Volumes and Shapes of the Hippocampus and Amygdala. J Alzheimers Dis 2021; 80:1311-1327. [PMID: 33682707 DOI: 10.3233/jad-201162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The volume loss of the hippocampus and amygdala in non-demented individuals has been reported to increase the risk of developing Alzheimer's disease (AD). Many neuroimaging genetics studies mainly focused on the individual effects of APOE and CLU on neuroimaging to understand their neural mechanisms, whereas their synergistic effects have been rarely studied. OBJECTIVE To assess whether APOE and CLU have synergetic effects, we investigated the epistatic interaction and combined effects of the two genetic variants on morphological degeneration of hippocampus and amygdala in the non-demented elderly at baseline and 2-year follow-up. METHODS Besides the widely-used volume indicator, the surface-based morphometry method was also adopted in this study to evaluate shape alterations. RESULTS Our results showed a synergistic effect of homozygosity for the CLU risk allele C in rs11136000 and APOEɛ4 on the hippocampal and amygdalar volumes during a 2-year follow-up. Moreover, the combined effects of APOEɛ4 and CLU C were stronger than either of the individual effects in the atrophy progress of the amygdala. CONCLUSION These findings indicate that brain morphological changes are caused by more than one gene variant, which may help us to better understand the complex endogenous mechanism of AD.
Collapse
Affiliation(s)
- Na An
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu Fu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Han-Ning Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zheng-Wu Yang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yong-Chao Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shan Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yin Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhi-Jun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China.,Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | | |
Collapse
|
19
|
Zhao L, Batta I, Matloff W, O'Driscoll C, Hobel S, Toga AW. Neuroimaging PheWAS (Phenome-Wide Association Study): A Free Cloud-Computing Platform for Big-Data, Brain-Wide Imaging Association Studies. Neuroinformatics 2021; 19:285-303. [PMID: 32822005 DOI: 10.1007/s12021-020-09486-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large-scale, case-control genome-wide association studies (GWASs) have revealed genetic variations associated with diverse neurological and psychiatric disorders. Recent advances in neuroimaging and genomic databases of large healthy and diseased cohorts have empowered studies to characterize effects of the discovered genetic factors on brain structure and function, implicating neural pathways and genetic mechanisms in the underlying biology. However, the unprecedented scale and complexity of the imaging and genomic data requires new advanced biomedical data science tools to manage, process and analyze the data. In this work, we introduce Neuroimaging PheWAS (phenome-wide association study): a web-based system for searching over a wide variety of brain-wide imaging phenotypes to discover true system-level gene-brain relationships using a unified genotype-to-phenotype strategy. This design features a user-friendly graphical user interface (GUI) for anonymous data uploading, study definition and management, and interactive result visualizations as well as a cloud-based computational infrastructure and multiple state-of-art methods for statistical association analysis and multiple comparison correction. We demonstrated the potential of Neuroimaging PheWAS with a case study analyzing the influences of the apolipoprotein E (APOE) gene on various brain morphological properties across the brain in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Benchmark tests were performed to evaluate the system's performance using data from UK Biobank. The Neuroimaging PheWAS system is freely available. It simplifies the execution of PheWAS on neuroimaging data and provides an opportunity for imaging genetics studies to elucidate routes at play for specific genetic variants on diseases in the context of detailed imaging phenotypic data.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ishaan Batta
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Caroline O'Driscoll
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Samuel Hobel
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Xu L, Tian S, Peng X, Hua Y, Yang W, Chen L, Liu S, Wu W, Zhao J, He J, Wu L, Yang J, Zheng Y. Clusterin inhibits Aβ 42 aggregation through a "strawberry model" as detected by FRET-FCS. J Neurochem 2021; 158:444-454. [PMID: 33694231 DOI: 10.1111/jnc.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 11/28/2022]
Abstract
Extracellular plaque deposits of β-amyloid peptide (Aβ) are one of the main pathological features of Alzheimer's disease (AD). The aggregation of Aβ42 species, especially Aβ42 oligomers, is still an active research field in AD pathogenesis. Secretory clusterin protein (sCLU), an extracellular chaperone, plays an important role in AD pathogenesis. Although sCLU interacts directly with Aβ42 in vitro and in vivo, the mechanism is not clear. In this paper, His-tagged sCLU (sCLU-His) was cloned, expressed and purified, and we applied florescence resonance energy transfer-fluorescence correlation spectroscopy (FRET-FCS) to investigate the direct interaction of sCLU-His and Aβ42 at the single-molecule fluorescence level in vitro. Here, we chose four different fluorescently labeled Aβ42 oligomers to form two different groups of aggregation models, easy or difficult to aggregate. The results showed that sCLU-His could form complexes with both aggregation models, and sCLU-His inhibited the aggregation of Aβ42/RB ~ Aβ42/Atto647 (easy to aggregate model). The complexes were produced as the Aβ42/Label adhered to the sCLU-His, which is similar to a "strawberry model," as strawberry seeds are dotted on the outer surface of strawberries. This work provided additional insight into the interaction mechanism of sCLU and Aβ42 .
Collapse
Affiliation(s)
- Lingwan Xu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shijun Tian
- Hebei Agriculture University, Baoding, China
| | - Xianglei Peng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Ying Hua
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenxuan Yang
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Longwei Chen
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shilei Liu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenzheng Wu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Jiang Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jinsheng He
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Jingfa Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Zheng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
21
|
Chen F, Swartzlander DB, Ghosh A, Fryer JD, Wang B, Zheng H. Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer's disease neuropathology. Mol Neurodegener 2021; 16:5. [PMID: 33517893 PMCID: PMC7849119 DOI: 10.1186/s13024-021-00426-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genome-wide association studies have established clusterin (CLU) as a genetic modifier for late-onset Alzheimer's disease (AD). Both protective and risk alleles have been identified which may be associated with its expression levels. However, the physiological function of clusterin in the central nervous system remains largely unknown. METHODS We examined Clu expression in mouse brains by immunohistochemistry and high-resolution imaging. We performed electrophysiological recordings and morphological analysis of dendritic spines in wild-type and Clu knockout mice. We tested synaptic function of astrocytic Clu using neuron-glia co-cultures and by AAV-mediated astroglial Clu expression in vivo. Finally, we investigated the role of astrocytic Clu on synaptic properties and amyloid pathology in 5xFAD transgenic mouse model of AD. RESULTS We show that astrocyte secreted Clu co-localizes with presynaptic puncta of excitatory neurons. Loss of Clu led to impaired presynaptic function and reduced spine density in vivo. Neurons co-cultured with Clu-overexpressing astrocytes or treated with conditioned media from HEK293 cells transfected with Clu displayed enhanced excitatory neurotransmission. AAV-mediated astroglial Clu expression promoted excitatory neurotransmission in wild-type mice and rescued synaptic deficits in Clu knockout mice. Overexpression of Clu in the astrocytes of 5xFAD mice led to reduced Aβ pathology and fully rescued the synaptic deficits. CONCLUSION We identify Clu as an astrocyte-derived synaptogenic and anti-amyloid factor; the combination of these activities may influence the progression of late-onset AD.
Collapse
Affiliation(s)
- Fading Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
- Present address: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Dan B. Swartzlander
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
| | - Anamitra Ghosh
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
22
|
The Down-Regulation of Clusterin Expression Enhances the αSynuclein Aggregation Process. Int J Mol Sci 2020; 21:ijms21197181. [PMID: 33003328 PMCID: PMC7582711 DOI: 10.3390/ijms21197181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive neurodegenerative disease characterized by the presence of proteinaceous aggregates of αSynuclein (αSyn) in the dopaminergic neurons. Chaperones are key components of the proteostasis network that are able to counteract αSyn’s aggregation, as well as its toxic effects. Clusterin (CLU), a molecular chaperone, was consistently found to interfere with Aβ aggregation in Alzheimer’s Disease (AD). However, its role in PD pathogenesis has yet to be extensively investigated. In this study, we assessed the involvement of CLU in the αSyn aggregation process by using SH-SY5Y cells stably overexpressing αSyn (SH-Syn). First, we showed that αSyn overexpression caused a strong increase in CLU expression without affecting levels of Hsp27, Hsp70, and Hsp90, which are the chaperones widely recognized to counteract αSyn burden. Then, we demonstrated that αSyn aggregation, induced by proteasome inhibition, determines a strong increase of CLU in insoluble aggregates. Remarkably, we revealed that CLU down-regulation results in an increase of αSyn aggregates in SH-Syn without significantly affecting cell viability and the Unfolded Protein Response (UPR). Furthermore, we demonstrated the direct molecular interaction between CLU and αSyn via a co-immunoprecipitation (co-IP) assay. All together, these findings provide incontrovertible evidence that CLU is an important player in the response orchestrated by the cell to cope with αSyn burden.
Collapse
|
23
|
Zhang XY, Wang YF, Zheng LJ, Zhang H, Lin L, Lu GM, Zhang LJ. Impacts of AD-Related ABCA7 and CLU Variants on Default Mode Network Connectivity in Healthy Middle-Age Adults. Front Mol Neurosci 2020; 13:145. [PMID: 32848603 PMCID: PMC7412986 DOI: 10.3389/fnmol.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the impact of Alzheimer’s disease (AD)-related risk gene (ATP-binding cassette A7-ABCA7 and Clusterin-CLU) on the functional connectivity pattern of default mode network (DMN) in healthy middle-age adults. Methods A total of 147 healthy middle-aged volunteers were enrolled in this study. All subjects completed MRI scans, neuropsychological assessments, and AD-related genotyped analysis. All subjects were divided into high, middle and low risk groups according to the score of risk genotypes, which included CLU (rs11136000, rs2279590, rs9331888, and rs9331949) and ABCA7 (rs3764650 and rs4147929). The genetic effects of CLU, ABCA7, and CLU × ABCA7 on DMN functional connectivity pattern were further explored. Moreover, the genetic effect of Apolipoprotein ε4 (APOEε4) was also considered. Finally, correlation analysis was performed between the signals of brain regions with genetic effect and neuropsychological test scores. Results Compared with the low-risk group, the high-risk group of CLU showed decreased functional connectivity in posterior cingulate cortex (PCC) and the left middle frontal cortex (P < 0.05, GRF correction). As for the interaction between the CLU and ABCA7, all the subjects were divided into high, middle, and low risk group; the middle-risk group was divided into CLU and ABCA7-dominated middle-risk group. The function connectivity pattern of DMN among the three or four groups were distributed in the bilateral medial prefrontal cortex (MPFC) and bilateral superior frontal gyrus (SFG) (P < 0.05, GRF correction). When APOEε4 carriers were excluded, the CLU-predominant middle-risk group displayed the decreased functional connectivity in MPFC when compared with the low-risk group, while ABCA7-prodominant middle-risk group displayed decreased functional connectivity in cuneus when compared with the high-risk group (all P < 0.05, GRF correction). The z values of left middle frontal cortex were positively correlated with the scores of Serial Dotting Test (SDT) in high-risk group of CLU, while z values of MPFC and cuneus were positively correlated to the scores of Montreal Cognitive Assessment (MoCA) in low-risk group of three or four groups. Conclusion The functional connectivity of MPFC-PCC might be modulated by the interaction of CLU and ABCA7. Moreover, APOEε4 might be interacted with ABCA7 and CLU modulation in the middle-aged carriers.
Collapse
|
24
|
Dong Q, Zhang W, Stonnington CM, Wu J, Gutman BA, Chen K, Su Y, Baxter LC, Thompson PM, Reiman EM, Caselli RJ, Wang Y. Applying surface-based morphometry to study ventricular abnormalities of cognitively unimpaired subjects prior to clinically significant memory decline. NEUROIMAGE-CLINICAL 2020; 27:102338. [PMID: 32683323 PMCID: PMC7371915 DOI: 10.1016/j.nicl.2020.102338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
A completely automated surface-based ventricular morphometry system. Generate a whole connected 3D ventricular shape model. Test-retest the system in two independent CU subject cohorts. Subregional ventricular abnormalities prior to clinically memory decline.
Ventricular volume (VV) is a widely used structural magnetic resonance imaging (MRI) biomarker in Alzheimer’s disease (AD) research. Abnormal enlargements of VV can be detected before clinically significant memory decline. However, VV does not pinpoint the details of subregional ventricular expansions. Here we introduce a ventricular morphometry analysis system (VMAS) that generates a whole connected 3D ventricular shape model and encodes a great deal of ventricular surface deformation information that is inaccessible by VV. VMAS contains an automated segmentation approach and surface-based multivariate morphometry statistics. We applied VMAS to two independent datasets of cognitively unimpaired (CU) groups. To our knowledge, it is the first work to detect ventricular abnormalities that distinguish normal aging subjects from those who imminently progress to clinically significant memory decline. Significant bilateral ventricular morphometric differences were first shown in 38 members of the Arizona APOE cohort, which included 18 CU participants subsequently progressing to the clinically significant memory decline within 2 years after baseline visits (progressors), and 20 matched CU participants with at least 4 years of post-baseline cognitive stability (non-progressors). VMAS also detected significant differences in bilateral ventricular morphometry in 44 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects (18 CU progressors vs. 26 CU non-progressors) with the same inclusion criterion. Experimental results demonstrated that the ventricular anterior horn regions were affected bilaterally in CU progressors, and more so on the left. VMAS may track disease progression at subregional levels and measure the effects of pharmacological intervention at a preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Human Brain Imaging Laboratory, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci 2020; 23:701-706. [PMID: 32341542 PMCID: PMC9262034 DOI: 10.1038/s41593-020-0624-8] [Citation(s) in RCA: 569] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
The role of non-neuronal cells in Alzheimer’s disease (AD) progression has not been fully elucidated. Using single-nucleus RNA-seq, we identified a population of disease associated astrocytes (DAAs) in an AD mouse model. The DAA population appeared at early disease stages and increased in abundance with age. We discovered that similar astrocytes appeared in aged wild-type mice and in aging human brains, suggesting their linkage to genetic and age-related factors.
Collapse
|
26
|
Sampedro F, Marín‐Lahoz J, Martínez‐Horta S, Pérez‐González R, Pagonabarraga J, Kulisevsky J. CLU rs11136000 Promotes Early Cognitive Decline in Parkinson's Disease. Mov Disord 2020; 35:508-513. [DOI: 10.1002/mds.27949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Juan Marín‐Lahoz
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Saul Martínez‐Horta
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Rocío Pérez‐González
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) Barcelona Spain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| |
Collapse
|
27
|
Pandey RS, Graham L, Uyar A, Preuss C, Howell GR, Carter GW. Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer's disease. Mol Neurodegener 2019; 14:50. [PMID: 31878951 PMCID: PMC6933917 DOI: 10.1186/s13024-019-0351-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer's disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease. METHODS We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine's Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor. RESULTS Mouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe-/-, APOEε4, Clu-/-, and APP/PS1 mouse models. Apoe-/-, GFAP-driven APOEε4, and APP/PS1 driven modules overlapped with AMP-AD inflammation and microglial modules; Clu-/- driven modules overlapped with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules. CONCLUSIONS This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants.
Collapse
Affiliation(s)
- Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Leah Graham
- The Jackson Laboratory, Bar Harbor, ME USA
- Sackler School of graduate Biomedical Sciences, Tufts University, Boston, MA USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME USA
- Sackler School of graduate Biomedical Sciences, Tufts University, Boston, MA USA
| | - Gregory W. Carter
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
- The Jackson Laboratory, Bar Harbor, ME USA
- Sackler School of graduate Biomedical Sciences, Tufts University, Boston, MA USA
| |
Collapse
|
28
|
Abstract
Radiogenomics, defined as the integrated analysis of radiologic imaging and genetic data, is a well-established tool shown to augment neuroimaging in the clinical diagnosis, prognostication, and scientific study of late-onset Alzheimer disease (LOAD). Early work using candidate single nucleotide polymorphisms (SNPs) identified genetic variation in APOE, BIN1, CLU, and CR1 as key modifiers of brain structure and function using magnetic resonance imaging (MRI). More recently, polygenic risk scores used in conjunction with MRI and positron emission tomography have shown great promise as a risk-stratification tool for clinical trials and care-management decisions. In addition, recent work using multimodal MRI and positron emission tomography as proxies of LOAD progression has identified novel risk variants that are enhancing our understanding of LOAD pathophysiology and progression. Herein, we highlight key studies and trends in the radiogenomics of LOAD over the past two decades and their implications for clinical practice and scientific research.
Collapse
|
29
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Squarzoni P, Duran FLS, Busatto GF, Alves TCTDF. Reduced Gray Matter Volume of the Thalamus and Hippocampal Region in Elderly Healthy Adults with no Impact of APOE ɛ4: A Longitudinal Voxel-Based Morphometry Study. J Alzheimers Dis 2019; 62:757-771. [PMID: 29480170 DOI: 10.3233/jad-161036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many cross-sectional voxel-based morphometry (VBM) investigations have shown significant inverse correlations between chronological age and gray matter (GM) volume in several brain regions in healthy humans. However, few VBM studies have documented GM decrements in the healthy elderly with repeated MRI measurements obtained in the same subjects. Also, the extent to which the APOE ɛ4 allele influences longitudinal findings of GM reduction in the healthy elderly is unclear. OBJECTIVE Verify whether regional GM changes are associated with significant decrements in cognitive performance taking in account the presence of the APOE ɛ4 allele. METHODS Using structural MRI datasets acquired in 55 cognitively intact elderly subjects at two time-points separated by approximately three years, we searched for voxels showing significant GM reductions taking into account differences in APOE genotype. RESULTS We found global GM reductions as well as regional GM decrements in the right thalamus and left parahippocampal gyrus (p < 0.05, family-wise error corrected for multiple comparisons over the whole brain). These findings were not affected by APOE ɛ4. CONCLUSIONS Irrespective of APOE ɛ4, longitudinal VBM analyses show that the hippocampal region and thalamus are critical sites where GM shrinkage is greater than the degree of global volume reduction in healthy elderly subjects.
Collapse
Affiliation(s)
- Paula Squarzoni
- Department of Psychiatry, Laboratory of Psychiatric Neuroimaging (LIM 21), Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Fabio Luis Souza Duran
- Department of Psychiatry, Laboratory of Psychiatric Neuroimaging (LIM 21), Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Geraldo F Busatto
- Department of Psychiatry, Laboratory of Psychiatric Neuroimaging (LIM 21), Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Tania Correa Toledo de Ferraz Alves
- Department of Psychiatry, Laboratory of Psychiatric Neuroimaging (LIM 21), Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 2018; 24:1910-1918. [PMID: 30374196 DOI: 10.1038/s41591-018-0206-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Tau and amyloid beta (Aβ) proteins accumulate along neuronal circuits in Alzheimer's disease. Unraveling the genetic background for the regional vulnerability of these proteinopathies can help in understanding the mechanisms of pathology progression. To that end, we developed a novel graph theory approach and used it to investigate the intersection of longitudinal Aβ and tau positron emission tomography imaging of healthy adult individuals and the genetic transcriptome of the Allen Human Brain Atlas. We identified distinctive pathways for tau and Aβ accumulation, of which the tau pathways correlated with cognitive levels. We found that tau propagation and Aβ propagation patterns were associated with a common genetic profile related to lipid metabolism, in which APOE played a central role, whereas the tau-specific genetic profile was classified as 'axon related' and the Aβ profile as 'dendrite related'. This study reveals distinct genetic profiles that may confer vulnerability to tau and Aβ in vivo propagation in the human brain.
Collapse
|
32
|
Han Z, Qu J, Zhao J, Zou X. Analyzing 74,248 Samples Confirms the Association Between CLU rs11136000 Polymorphism and Alzheimer's Disease in Caucasian But Not Chinese population. Sci Rep 2018; 8:11062. [PMID: 30038359 PMCID: PMC6056482 DOI: 10.1038/s41598-018-29450-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Clusterin (CLU) is considered one of the most important roles for pathogenesis of Alzheimer's Disease (AD). The early genome-wide association studies (GWAS) identified the CLU rs11136000 polymorphism is significantly associated with AD in Caucasian. However, the subsequent studies are unable to replicate these findings in different populations. Although two independent meta-analyses show evidence to support significant association in Asian and Caucasian populations by integrating the data from 18 and 25 related GWAS studies, respectively, many of the following 18 studies also reported the inconsistent results. Moreover, there are six missed and a misclassified GWAS studies in the two meta-analyses. Therefore, we suspected that the small-scale and incompletion or heterogeneity of the samples maybe lead to different results of these studies. In this study, large-scale samples from 50 related GWAS studies (28,464 AD cases and 45,784 controls) were selected afresh from seven authoritative sources to reevaluate the effect of rs11136000 polymorphism to AD risk. Similarly, we identified that the minor allele variant of rs11136000 significantly decrease AD risk in Caucasian ethnicity using the allele, dominant and recessive model. Different from the results of the previous studies, however, the results showed a negligible or no association in Asian and Chinese populations. Collectively, our analysis suggests that, for Asian and Chinese populations, the variant of rs11136000 may be irrelevant to AD risk. We believe that these findings can help to improve the understanding of the AD's pathogenesis.
Collapse
Affiliation(s)
- Zhijie Han
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Jiaojiao Qu
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiehong Zhao
- College of Pharmacy, Guiyang University of Chinese Medicine, Guian new area, 550025, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
33
|
Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 2018; 29:241-260. [DOI: 10.1515/revneuro-2017-0049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
AbstractAlzheimer’s disease (AD) is one of the most common neurodegenerative disorders mainly affecting elderly people. It is characterized by progressive loss of memory and cognitive function. More than 95% of AD cases are related to sporadic or late-onset AD (LOAD). The etiology of LOAD is still unclear. It has been reported that environmental factors and epigenetic alterations play a significant role in AD pathogenesis. Furthermore, recently, genome-wide association studies (GWAS) identified 10 novel risk genes:ABCA7,APOE,BIN1,CD2AP,CD33,CLU,CR1,MS4A6A,MS4A4E, andPICALM, which play an important role for LOAD. In this review, the therapeutic approaches of AD by epigenetic modifications have been discussed. Nowadays, HDAC inhibitors have clinically proven its activity for epigenetic modifications. Furthermore, we try to establish the relationship between HDAC inhibitors and above mentioned LOAD risk genes. Finally, we are hoping that this review may open new area of research for AD treatment.
Collapse
|
34
|
Abstract
Alzheimer's disease (AD), the main form of dementia in the elderly, is the most common progressive neurodegenerative disease characterized by rapidly progressive cognitive dysfunction and behavior impairment. AD exhibits a considerable heritability and great advances have been made in approaches to searching the genetic etiology of AD. In AD genetic studies, methods have developed from classic linkage-based and candidate-gene-based association studies to genome-wide association studies (GWAS) and next generation sequencing (NGS). The identification of new susceptibility genes has provided deeper insights to understand the mechanisms underlying AD. In addition to searching novel genes associated with AD in large samples, the NGS technologies can also be used to shed light on the 'black matter' discovery even in smaller samples. The shift in AD genetics between traditional studies and individual sequencing will allow biomaterials of each patient as the central unit of genetic studies. This review will cover genetic findings in AD and consequences of AD genetic findings. Firstly, we will discuss the discovery of mutations in APP, PSEN1, PSEN2, APOE, and ADAM10. Then we will summarize and evaluate the information obtained from GWAS of AD. Finally, we will outline the efforts to identify rare variants associated with AD using NGS.
Collapse
|
35
|
Fernández-de-Retana S, Cano-Sarabia M, Marazuela P, Sánchez-Quesada JL, Garcia-Leon A, Montañola A, Montaner J, Maspoch D, Hernández-Guillamon M. Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci Rep 2017; 7:14637. [PMID: 29116115 PMCID: PMC5677083 DOI: 10.1038/s41598-017-15215-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral β-amyloidosis is a major feature of Alzheimer’s disease (AD), characterized by the accumulation of β-amyloid protein (Aβ) in the brain. Several studies have implicated lipid/lipoprotein metabolism in the regulation of β-amyloidosis. In this regard, HDL (High Density Lipoprotein)-based therapies could ameliorate pathological features associated with AD. As apolipoprotein J (ApoJ) is a natural chaperone that interacts with Aβ, avoiding its aggregation and toxicity, in this study we propose to prepare reconstituted rHDL-rApoJ nanoparticles by assembling phospholipids with recombinant human ApoJ (rApoJ). Hence, rHDL particles were prepared using the cholate dialysis method and characterized by N-PAGE, dynamic light scattering, circular dichroism and electron transmission microscopy. The preparation of rHDL particles showed two-sized populations with discoidal shape. Functionally, rHDL-rApoJ maintained the ability to prevent the Aβ fibrillization and mediated a higher cholesterol efflux from cultured macrophages. Fluorescently-labelled rHDL-rApoJ nanoparticles were intravenously administrated in mice and their distribution over time was determined using an IVIS Xenogen® imager. It was confirmed that rHDL-rApoJ accumulated in the cranial region, especially in old transgenic mice presenting a high cerebral Aβ load. In conclusion, we have standardized a reproducible protocol to produce rHDL-rApoJ nanoparticles, which may be potentially considered as a therapeutic option for β-amyloid-related pathologies.
Collapse
Affiliation(s)
- Sofía Fernández-de-Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Annabel Garcia-Leon
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
Harari JH, Díaz-Caneja CM, Janssen J, Martínez K, Arias B, Arango C. The association between gene variants and longitudinal structural brain changes in psychosis: a systematic review of longitudinal neuroimaging genetics studies. NPJ SCHIZOPHRENIA 2017; 3:40. [PMID: 29093492 PMCID: PMC5665946 DOI: 10.1038/s41537-017-0036-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
Evidence suggests that genetic variation might influence structural brain alterations in psychotic disorders. Longitudinal genetic neuroimaging (G-NI) studies are designed to assess the association between genetic variants, disease progression and brain changes. There is a paucity of reviews of longitudinal G-NI studies in psychotic disorders. A systematic search of PubMed from inception until November 2016 was conducted to identify longitudinal G-NI studies examining the link between Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI)-based brain measurements and specific gene variants (SNPs, microsatellites, haplotypes) in patients with psychosis. Eleven studies examined seven genes: BDNF, COMT, NRG1, DISC1, CNR1, GAD1, and G72. Eight of these studies reported at least one association between a specific gene variant and longitudinal structural brain changes. Genetic variants associated with longitudinal brain volume or cortical thickness loss included a 4-marker haplotype in G72, a microsatellite and a SNP in NRG1, and individual SNPs in DISC1, CNR1, BDNF, COMT and GAD1. Associations between genotype and progressive brain changes were most frequently observed in frontal regions, with five studies reporting significant interactions. Effect sizes for significant associations were generally of small or intermediate magnitude (Cohen’s d < 0.8). Only two genes (BDNF and NRG1) were assessed in more than one study, with great heterogeneity of the results. Replication studies and studies exploring additional genetic variants identified by large-scale genetic analysis are warranted to further ascertain the role of genetic variants in longitudinal brain changes in psychosis.
Collapse
Affiliation(s)
- Julia H Harari
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.,University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Bárbara Arias
- Zoology and Biological Anthropology Unit. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. IBUB., Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. .,CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain.
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
37
|
Xiao E, Chen Q, Goldman AL, Tan HY, Healy K, Zoltick B, Das S, Kolachana B, Callicott JH, Dickinson D, Berman KF, Weinberger DR, Mattay VS. Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:673-679. [PMID: 29560901 DOI: 10.1016/j.bpsc.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. METHODS In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. RESULTS There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. CONCLUSIONS There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes.
Collapse
Affiliation(s)
- Ena Xiao
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland.
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Hao Yang Tan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Kaitlin Healy
- Genes Cognition and Psychosis Program, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Brad Zoltick
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Saumitra Das
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Bhaskar Kolachana
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Joseph H Callicott
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Role of clusterin in the brain vascular clearance of amyloid-β. Proc Natl Acad Sci U S A 2017; 114:8681-8682. [PMID: 28765369 DOI: 10.1073/pnas.1711357114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
39
|
Wang Y, Qin X, Paudel HK. Amyloid β peptide promotes lysosomal degradation of clusterin via sortilin in hippocampal primary neurons. Neurobiol Dis 2017; 103:78-88. [PMID: 28396259 DOI: 10.1016/j.nbd.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive accumulation of amyloid-β peptide (Aβ) in the brain is implicated as the central event in the development of Alzheimer's disease (AD). It is thought that extracellular Aβ triggers toxic signals leading to neurodegeneration. The events downstream of Aβ however are not entirely clear. Clusterin (Apo J) is one of the major risk factors for sporadic form of AD. Clusterin binds to Aβ and prevents Aβ aggregation. In addition, clusterin promotes Aβ degradation and accelerates Aβ clearance from the brain. Clusterin thus protects neurons from Aβ and loss of clusterin level in the brain is implicated as promoting AD pathology. In this study, we found that the level of clusterin protein but not mRNA is reduced in the brains of 3xTg-AD mice. When rat hippocampal primary neurons were treated with Aβ1-42, level of clusterin protein but not mRNA was downregulated. Aβ1-42-induced downregulation of clusterin was blocked by lysosome inhibitors bafilomycin A1 and ammonium chloride. In neurons, Aβ1-42 induced expression of sortilin, a lysosomal sorting protein that targets proteins to lysosome for degradation. In BE(2) M17 human neuroblastoma cells, clusterin bound to sortilin and when sortilin expression was silenced, Aβ1-42-induced clusterin downregulation was almost completely blocked. Our data demonstrate that in neurons, Aβ1-42 promotes lysosomal degradation of clusterin by inducing expression of sortilin and provide a novel mechanism by which Aβ promotes AD pathogenesis.
Collapse
Affiliation(s)
- Yunling Wang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada
| | - Xike Qin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada
| | - Hemant K Paudel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
40
|
Roussotte FF, Hua X, Narr KL, Small GW, Thompson PM. The C677T variant in MTHFR modulates associations between brain integrity, mood, and cognitive functioning in old age. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:280-288. [PMID: 28435933 PMCID: PMC5395287 DOI: 10.1016/j.bpsc.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The C677T functional variant in the methylene-tetrahydrofolate reductase (MTHFR) gene leads to reduced enzymatic activity and elevated blood levels of homocysteine. Hyperhomocysteinemia has been linked with higher rates of cardiovascular diseases, cognitive decline, and late-life depression. METHODS AND MATERIALS Here, 3D magnetic resonance imaging data was analyzed from 738 individuals (age: 75.5 ± 6.8 years; 438 men/300 women) including 173 Alzheimer's patients, 359 subjects with mild cognitive impairment, and 206 healthy older adults, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS We found that this variant associates with localized brain atrophy, after controlling for age, sex, and dementia status, in brain regions implicated in both intellectual and emotional functioning, notably the medial orbitofrontal cortices. The medial orbitofrontal cortex is involved in the cognitive modulation of emotional processes, and localized atrophy in this region was previously linked with both cognitive impairment and depressive symptoms. Here, we report that increased plasma homocysteine mediates the association between MTHFR genotype and lower medial orbitofrontal volumes, and that these volumes mediate the association between cognitive decline and depressed mood in this elderly cohort. We additionally show that vitamin B12 deficiency interacts with the C677T variant in the etiology of hyperhomocysteinemia. CONCLUSION This study sheds light on important relationships between vascular risk factors, age-related cognitive decline, and late-life depression, and represents a significant advance in our understanding of clinically relevant associations relating to MTHFR genotype.
Collapse
Affiliation(s)
- Florence F. Roussotte
- Department of Neurology, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xue Hua
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Katherine L. Narr
- Department of Neurology, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Gary W. Small
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Paul M. Thompson
- Department of Neurology, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
- Departments of Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
41
|
Ye Q, Su F, Shu H, Gong L, Xie CM, Zhou H, Zhang ZJ, Bai F. Shared effects of the clusterin gene on the default mode network among individuals at risk for Alzheimer's disease. CNS Neurosci Ther 2017; 23:395-404. [PMID: 28233427 DOI: 10.1111/cns.12682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS To explore the common effects of the clusterin (CLU) rs11136000 variant on the default mode network (DMN) in amnestic mild cognitive impairment (aMCI) subjects and remitted geriatric depression (RGD) subjects. METHODS Fifty-one aMCI subjects, 38 RGD subjects, and 64 cognitively normal elderly subjects underwent resting-state fMRI scans and neuropsychological tests at both baseline and a 35-month follow-up. Posterior cingulate cortex seed-based functional connectivity (FC) analysis was used to obtain the DMN patterns. RESULTS A CLU gene×disease×time interaction for aMCI subjects was mainly detected in the core cortical midline structures of the DMN, and the interaction for RGD subjects was mainly detected in the limbic system. However, they overlapped in two frontal regions, where consistent effects of the CLU gene on FC alterations were found between aMCI and RGD groups. Furthermore, the alterations of FC with frontal, parietal, and limbic regions compensated for episodic memory impairments in CLU-CT/TT carriers, while no such compensation was found in CLU-CC carriers. CONCLUSION The CLU gene could consistently affect the DMN FC with frontal regions among individuals at risk for Alzheimer's disease, and the CLU-T allele was associated with more compensatory neural processes in DMN changes.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Immunity factor contributes to altered brain functional networks in individuals at risk for Alzheimer's disease: Neuroimaging-genetic evidence. Brain Behav Immun 2016; 56:84-95. [PMID: 26899953 DOI: 10.1016/j.bbi.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Clusterin (CLU) is recognized as a secreted protein that is related to the processes of inflammation and immunity in the pathogenesis of Alzheimer's disease (AD). The effects of the risk variant of the C allele at the rs11136000 locus of the CLU gene are associated with variations in the brain structure and function. However, the relationship of the CLU-C allele to architectural disruptions in resting-state networks in amnestic mild cognitive impairment (aMCI) subjects (i.e., individuals with elevated risk of AD) remains relatively unknown. Using resting-state functional magnetic resonance imaging and an imaging genetic approach, this study investigated whether individual brain functional networks, i.e., the default mode network (DMN) and the task-positive network, were modulated by the CLU-C allele (rs11136000) in 50 elderly participants, including 26 aMCI subjects and 24 healthy controls. CLU-by-aMCI interactions were associated with the information-bridging regions between resting-state networks rather than with the DMN itself, especially in cortical midline regions. Interestingly, the complex communications between resting-state networks were enhanced in aMCI subjects with the CLU rs11136000 CC genotype and were modulated by the degree of memory impairment, suggesting a reconstructed balance of the resting-state networks in these individuals with an elevated risk of AD. The neuroimaging-genetic evidence indicates that immunity factors may contribute to alterations in brain functional networks in aMCI. These findings add to the evidence that the CLU gene may represent a potential therapeutic target for slowing disease progression in AD.
Collapse
|
43
|
Tan L, Wang HF, Tan MS, Tan CC, Zhu XC, Miao D, Yu WJ, Jiang T, Tan L, Yu JT. Effect of CLU genetic variants on cerebrospinal fluid and neuroimaging markers in healthy, mild cognitive impairment and Alzheimer's disease cohorts. Sci Rep 2016; 6:26027. [PMID: 27229352 PMCID: PMC4882617 DOI: 10.1038/srep26027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/25/2016] [Indexed: 01/18/2023] Open
Abstract
The Clusterin (CLU) gene, also known as apolipoprotein J (ApoJ), is currently the third most associated late-onset Alzheimer's disease (LOAD) risk gene. However, little was known about the possible effect of CLU genetic variants on AD pathology in brain. Here, we evaluated the interaction between 7 CLU SNPs (covering 95% of genetic variations) and the role of CLU in β-amyloid (Aβ) deposition, AD-related structure atrophy, abnormal glucose metabolism on neuroimaging and CSF markers to clarify the possible approach by that CLU impacts AD. Finally, four loci (rs11136000, rs1532278, rs2279590, rs7982) showed significant associations with the Aβ deposition at the baseline level while genotypes of rs9331888 (P = 0.042) increased Aβ deposition. Besides, rs9331888 was significantly associated with baseline volume of left hippocampus (P = 0.014). We then further validated the association with Aβ deposition in the AD, mild cognitive impairment (MCI), normal control (NC) sub-groups. The results in sub-groups confirmed the association between CLU genotypes and Aβ deposition further. Our findings revealed that CLU genotypes could probably modulate the cerebral the Aβ loads on imaging and volume of hippocampus. These findings raise the possibility that the biological effects of CLU may be relatively confined to neuroimaging trait and hence may offer clues to AD.
Collapse
Affiliation(s)
- Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Xi-Chen Zhu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | - Dan Miao
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wan-Jiang Yu
- Department of Radiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Tan
- College of Medicine and Pharmaceutics, Ocean University of China, China.,Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China.,Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | | |
Collapse
|
44
|
Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study. PLoS One 2016; 11:e0152901. [PMID: 27065111 PMCID: PMC4827849 DOI: 10.1371/journal.pone.0152901] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.
Collapse
|
45
|
Baird AL, Westwood S, Lovestone S. Blood-Based Proteomic Biomarkers of Alzheimer's Disease Pathology. Front Neurol 2015; 6:236. [PMID: 26635716 PMCID: PMC4644785 DOI: 10.3389/fneur.2015.00236] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The complexity of Alzheimer’s disease (AD) and its long prodromal phase poses challenges for early diagnosis and yet allows for the possibility of the development of disease modifying treatments for secondary prevention. It is, therefore, of importance to develop biomarkers, in particular, in the preclinical or early phases that reflect the pathological characteristics of the disease and, moreover, could be of utility in triaging subjects for preventative therapeutic clinical trials. Much research has sought biomarkers for diagnostic purposes by comparing affected people to unaffected controls. However, given that AD pathology precedes disease onset, a pathology endophenotype design for biomarker discovery creates the opportunity for detection of much earlier markers of disease. Blood-based biomarkers potentially provide a minimally invasive option for this purpose and research in the field has adopted various “omics” approaches in order to achieve this. This review will, therefore, examine the current literature regarding blood-based proteomic biomarkers of AD and its associated pathology.
Collapse
Affiliation(s)
- Alison L Baird
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Sarah Westwood
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford , Oxford , UK
| |
Collapse
|
46
|
In-vivo brain neuroimaging provides a gateway for integrating biological and clinical biomarkers of Alzheimer's disease. Curr Opin Neurol 2015; 28:351-7. [DOI: 10.1097/wco.0000000000000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, Ramanan VK, Foroud TM, Faber KM, Sarwar N, Munsie LM, Hu X, Soares HD, Potkin SG, Thompson PM, Kauwe JSK, Kaddurah-Daouk R, Green RC, Toga AW, Weiner MW. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement 2015; 11:792-814. [PMID: 26194313 PMCID: PMC4510473 DOI: 10.1016/j.jalz.2015.05.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.
Collapse
Affiliation(s)
- Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohui Yao
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; School of Informatics and Computing, Indiana University, Purdue University - Indianapolis, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Xiaolan Hu
- Bristol-Myers Squibb, Wallingford, CT, USA
| | | | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California - Irvine, Irvine, CA, USA
| | - Paul M Thompson
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA; Imaging Genetics Center, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA; Department of Neuroscience, Brigham Young University, Provo, UT, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Robert C Green
- Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute for Neuroimaging and Neuroinformatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Michael W Weiner
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|