1
|
Magro G. Early Polytherapy for Probably Benzodiazepine Refractory Naïve Status Epilepticus (Stage 1 Plus). Neurol Int 2025; 17:11. [PMID: 39852775 PMCID: PMC11767287 DOI: 10.3390/neurolint17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Stage 1 Plus is defined here as a naïve, previously untreated, status epilepticus (SE) that is probably refractory to Benzodiazepines (BDZ). These cases include not only prolonged SE as previously proposed by the author (SE lasting > 10 min) but also other cases notoriously associated with BDZ refractoriness such as the absence of prominent motor phenomena and acute etiology (especially primary central nervous system etiology). Interestingly, the absence of prominent motor phenomena as is the case of non convulsive SE might implicitly fall in the category of prolonged SE due to the delay in recognition and treatment. Future studies should help identify other factors associated with BDZ refractoriness, therefore widening the definition of Stage 1 Plus. The appropriate timing for defining prolonged SE may also differ depending on different etiology. Consequently, in future tailored models of SE, the definition of prolonged SE could be enhanced by defining it for a longer duration than Tx, a time point that changes based on different etiologies (x), Tx being much shorter than 10 min in acute etiologies. These cases of naïve probably BDZ refractory SE (Stage 1 Plus) might require a different approach: combined polytherapy from the start. The objective of this review is to provide pathophysiological and pre-clinical evidence, mostly from animal studies, for the different approach of combined polytherapy from the start for those cases of SE falling in the definition of Stage 1 Plus.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, "Giovanni Paolo II" Hospital, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
2
|
Abend NS, Wusthoff CJ, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:381-448.e17. [DOI: 10.1016/b978-0-443-10513-5.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
4
|
Lee KKY, Chattopadhyaya B, do Nascimento ASF, Moquin L, Rosa-Neto P, Amilhon B, Di Cristo G. Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice. Neurobiol Dis 2024; 193:106465. [PMID: 38460800 DOI: 10.1016/j.nbd.2024.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.
Collapse
Affiliation(s)
- Karen Ka Yan Lee
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada
| | | | | | - Luc Moquin
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Pedro Rosa-Neto
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Bénédicte Amilhon
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| |
Collapse
|
5
|
Xing B, Barbour AJ, Vithayathil J, Li X, Dutko S, Fawcett-Patel J, Lancaster E, Talos DM, Jensen FE. Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J Clin Invest 2024; 134:e175167. [PMID: 38227384 PMCID: PMC10904056 DOI: 10.1172/jci175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.
Collapse
|
6
|
Ma L, Wu Q, Yuan J, Wang Y, Zhang P, Liu Q, Tan D, Liang M, Chen Y. Inhibition of ANXA2 activity attenuates epileptic susceptibility and GluA1 phosphorylation. CNS Neurosci Ther 2023; 29:3644-3656. [PMID: 37302990 PMCID: PMC10580353 DOI: 10.1111/cns.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/15/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
INTRODUCTION Annexin A2 (ANXA2) participates in the pathology of a variety of diseases. Nevertheless, the impact of ANXA2 on epilepsy remains to be clarified. AIMS Hence, the study aimed at investigating the underlying role of ANXA2 in epilepsy through behavioral, electrophysiological, and pathological analyses. RESULTS It was found that ANXA2 was markedly upregulated in the cortical tissues of temporal lobe epilepsy patients (TLE), kainic acid (KA)-induced epilepsy mice, and in a seizure-like model in vitro. ANXA2 silencing in mice suppressed first seizure latency, number of seizures, and seizure duration in behavioral analysis. In addition, abnormal brain discharges were less frequent and shorter in the hippocampal local field potential (LFP) record. Furthermore, the results showed that the frequency of miniature excitatory postsynaptic currents was decreased in ANXA2 knockdown mice, indicating that the excitatory synaptic transmission is reduced. Co-immunoprecipitation (COIP) experiments demonstrated that ANXA2 interacted with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. Moreover, ANXA2 knockdown decreased GluA1 expression on the cell surface and its phosphorylation onserine 831 and serine 845, related to the decreased phosphorylation levels mediated by protein kinases A and C (PKA and PKC). CONCLUSIONS This study covers a previously unknown and key function of ANXA2 in epilepsy. These findings indicate that ANXA2 can regulate excitatory synaptic activity mediated by AMPAR subunit GluA1 to improve seizure activity, which can provide novel insights for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Limin Ma
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurologyChongqing University Three Gorges HospitalChongqingChina
| | - Qingyuan Wu
- Department of NeurologyChongqing University Three Gorges HospitalChongqingChina
| | - Jinxian Yuan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - You Wang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Peng Zhang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiankun Liu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dandan Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Minxue Liang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yangmei Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
7
|
Li YJ, Zhang K, Sun T, Guo YY, Yang Q, Liu SB, Wu YM, Zhao MG. Improvement of Learning and Memory by Elevating Brain D-Aspartate in a Mouse Model of Fragile X Syndrome. Mol Neurobiol 2023; 60:6410-6423. [PMID: 37453994 PMCID: PMC10533629 DOI: 10.1007/s12035-023-03438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023]
Abstract
Fragile X syndrome (FXS) is an inherited human mental retardation that arises from expansion of a CGG repeat in the Fmr1 gene, causing loss of the fragile X mental retardation protein (FMRP). It is reported that N-methyl-D-aspartate receptor (NMDAR)-mediated facilitation of long-term potentiation (LTP) and fear memory are impaired in Fmr1 knockout (KO) mice. In this study, biological, pharmacological, and electrophysiological techniques were performed to determine the roles of D-aspartate (D-Asp), a modulator of NMDAR, and its metabolizing enzyme D-aspartate oxidase (DDO) in Fmr1 KO mice. Levels of D-Asp were decreased in the medial prefrontal cortex (mPFC ); however, the levels of its metabolizing enzyme DDO were increased. Electrophysiological recordings indicated that oral drinking of D-Asp recovered LTP induction in mPFC from Fmr1 KO mice. Moreover, chronic oral administration of D-Asp reversed behavioral deficits of cognition and locomotor coordination in Fmr1 KO mice. The therapeutic action of D-Asp was partially through regulating functions of NMDARs and mGluR5/mTOR/4E-BP signaling pathways. In conclusion, supplement of D-Asp may benefit for synaptic plasticity and behaviors in Fmr1 KO mice and offer a potential therapeutic strategy for FXS.
Collapse
Affiliation(s)
- Yu-Jiao Li
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
- Department of Pharmacy, General Hospital of Eastern Theater Command/Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting Sun
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Yan-Yan Guo
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Qi Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
8
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
9
|
Hajipour S, Khombi Shooshtari M, Farbood Y, Ali Mard S, Sarkaki A, Moradi Chameh H, Sistani Karampour N, Ghafouri S. Fingolimod administration following hypoxia induced neonatal seizure can restore impaired long-term potentiation and memory performance in adult rats. Neuroscience 2023; 519:107-119. [PMID: 36990271 DOI: 10.1016/j.neuroscience.2023.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Neonatal seizures commonly caused by hypoxia can lead to long-term neurological outcomes. Early inflammation plays an important role in the pathology of these outcomes. Therefore, in the current study, we explored the long-term effects of Fingolimod (FTY720), an analog of sphingosine and potentsphingosine 1-phosphate(S1P) receptors modulator, as an anti-inflammatory and neuroprotective agent in attenuating anxiety, memory impairment, and possible alterations in gene expression of hippocampal inhibitory and excitatory receptors following hypoxia-induced neonatal seizure (HINS). Seizure was induced in 24 male and female pups (6 in each experimental group) at postnatal day 10 (P10) by premixed gas (5% oxygen/ 95% nitrogen) in a hypoxic chamber for 15 minutes. Sixty minutes after the onset of hypoxia, FTY720 (0.3 mg/kg) or saline (100 µl) was administered for 12 days (from P10 up to P21). Anxiety-like behavior and hippocampal memory function were assessed at P90 by elevated plus maze (EPM) and novel object recognition (NOR), respectively. Long-term potentiation (LTP) was recorded from hippocampal dentate gyrus region (DG) following stimulation of perforant pathway (PP). In addition, the hippocampal concentration of superoxide dismutase activity (SOD), malondialdehyde (MDA), and thiol as indices of oxidative stress were evaluated. Finally, the gene expression of NR2A subunit of N-Methyl-D-aspartic acid (NMDA) receptor, GluR2 subunit of (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA receptor and γ2 subunit of γ-Aminobutyric acid (GABAA) receptor were assessed at P90 by the quantitative real-time PCR. FTY720 significantly reduced later-life anxiety-like behavior, ameliorated object recognition memory and increased the amplitude and slope of the field excitatory postsynaptic potential (fEPSP) in the rats following HINS. These effects were associated with restoration of the hippocampal thiol content to the normal values and the regulatory role of FTY720 in the expression of hippocampal GABA and glutamate receptors subunits. In conclusion, FTY720 could restore the dysregulated gene expression of excitatory and inhibitory receptors. It also increased the reduced hippocampal thiol content, which was accompanied with attenuation of HINS-induced anxiety, reduced the impaired hippocampal related memory, and prevented hippocampal LTP deficits in later life following HINS.
Collapse
|
10
|
Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Zhou C. Artificial sleep-like up/down-states induce synaptic plasticity in cortical neurons from mouse brain slices. Front Cell Neurosci 2022; 16:948327. [PMID: 36313618 PMCID: PMC9615418 DOI: 10.3389/fncel.2022.948327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023] Open
Abstract
During non-rapid eye movement (NREM) sleep, cortical neuron activity alternates between a depolarized (firing, up-state) and a hyperpolarized state (down-state) coinciding with delta electroencephalogram (EEG) slow-wave oscillation (SWO, 0. 5-4 Hz) in vivo. Recently, we have found that artificial sleep-like up/down-states can potentiate synaptic strength in layer V cortical neurons ex vivo. Using mouse coronal brain slices, whole cell voltage-clamp recordings were made from layer V cortical pyramidal neurons to record spontaneous excitatory synaptic currents (sEPSCs) and inhibitory synaptic currents (sIPSCs). Artificial sleep-like up/down-states (as SWOs, 0.5 Hz, 10 min, current clamp mode) were induced by injecting sinusoidal currents into layer V cortical neurons. Baseline pre-SWO recordings were recorded for 5 min and post-SWO recordings for at least 25-30 min. Compared to pre-SWO sEPSCs or sIPSCs, post-SWO sEPSCs or sIPSCs in layer V cortical neurons exhibited significantly larger amplitudes and a higher frequency for 30 min. This finding suggests that both sEPSCs and sIPSCs could be potentiated in layer V cortical neurons by the low-level activity of SWOs, and sEPSCs and sIPSCs maintained a balance in layer V cortical neurons during pre- and post-SWO periods. Overall, this study presents an ex vivo method to show SWO's ability to induce synaptic plasticity in layer V cortical neurons, which may underlie sleep-related synaptic potentiation for sleep-related memory consolidation in vivo.
Collapse
Affiliation(s)
- Gai-Linn Kay Besing
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily Kate St. John
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cobie Victoria Potesta
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martin J. Gallagher
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Pardo-Peña K, Yañez-Hernández A, Medina-Ceja L, Morales-Villagrán A. Ellagic acid and allopurinol decrease H 2O 2 concentrations, epileptiform activity and astrogliosis after status epilepticus in the hippocampus of adult rats. Exp Brain Res 2022; 240:1191-1203. [PMID: 35171306 DOI: 10.1007/s00221-022-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.
Collapse
Affiliation(s)
- Kenia Pardo-Peña
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico.
| | - Aldo Yañez-Hernández
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | | |
Collapse
|
12
|
Marcoli M, Cervetto C, Amato S, Fiorucci C, Maura G, Mariottini P, Cervelli M. Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures. Biomolecules 2022; 12:204. [PMID: 35204705 PMCID: PMC8961639 DOI: 10.3390/biom12020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Cristian Fiorucci
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (S.A.); (G.M.)
| | - Paolo Mariottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (C.F.); (P.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
13
|
Volpe JJ. Commentary - Early discontinuation of antiseizure medication in neonatal seizures - Proceed with caution. J Neonatal Perinatal Med 2021; 15:203-207. [PMID: 34459421 PMCID: PMC9108580 DOI: 10.3233/npm-210849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Meyer C, Kettner A, Hochenegg U, Rubi L, Hilber K, Koenig X, Boehm S, Hotka M, Kubista H. On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Ca v1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience 2021; 468:265-281. [PMID: 34015369 DOI: 10.1016/j.neuroscience.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca2+ elevations. Herein, a key element is the gating of L-type voltage gated Ca2+ channels (LTCCs, Cav1.x family), which may convey Ca2+ signals to the nucleus. Accordingly, the present study investigates various insult-associated neuronal challenges for their propensities to trigger PDS in a LTCC-dependent manner. Our data demonstrate that diverse disturbances of neuronal function are variably suited to induce PDS-like events, and the contribution of LTCCs is essential to evoke PDS in rat hippocampal neurons that closely resemble GDPs. These PDS appear to be initiated in the dendritic sub-compartment. Their morphology critically depends on the position of recording electrodes and on their rate of occurrence. These results provide novel insight into induction mechanisms, origin, variability, and co-existence of PDS with other discharge patterns and thereby pave the way for future investigations regarding the role of PDS in epileptogenesis.
Collapse
Affiliation(s)
- Christiane Meyer
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Annika Kettner
- University of Applied Sciences (FH Campus Wien), Favoritenstrasse 226, 1100 Vienna, Austria.
| | - Ulla Hochenegg
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Lena Rubi
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Xaver Koenig
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Doi A, Miyazaki T, Mihara T, Ikeda M, Niikura R, Andoh T, Goto T. CLP290 promotes the sedative effects of midazolam in neonatal rats in a KCC2-dependent manner: A laboratory study in rats. PLoS One 2021; 16:e0248113. [PMID: 33711029 PMCID: PMC7954344 DOI: 10.1371/journal.pone.0248113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Immature neurons dominantly express the Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) rather than the K+-Cl- cotransporter isoform 2 (KCC2). The intracellular chloride ion concentration ([Cl-]i) is higher in immature neurons than in mature neurons; therefore, γ-aminobutyric acid type A (GABAA) receptor activation in immature neurons does not cause chloride ion influx and subsequent hyperpolarization. In our previous work, we found that midazolam, benzodiazepine receptor agonist, causes less sedation in neonatal rats compared to adult rats and that NKCC1 blockade by bumetanide enhances the midazolam-induced sedation in neonatal, but not in adult, rats. These results suggest that GABA receptor activation requires the predominance of KCC2 over NKCC1 to exert sedative effects. In this study, we focused on CLP290, a novel KCC2-selective activator, and found that midazolam administration at 20 mg/kg after oral CLP290 intake significantly prolonged the righting reflex latency even in neonatal rats at postnatal day 7. By contrast, CLP290 alone did not exert sedative effects. Immunohistochemistry showed that midazolam combined with CLP290 decreased the number of phosphorylated cAMP response element-binding protein-positive cells in the cerebral cortex, suggesting that CLP290 reverted the inhibitory effect of midazolam. Moreover, the sedative effect of combined CLP290 and midazolam treatment was inhibited by the administration of the KCC2-selective inhibitor VU0463271, suggesting indirectly that the sedation-promoting effect of CLP290 was mediated by KCC2 activation. To our knowledge, this study is the first report showing the sedation-promoting effect of CLP290 in neonates and providing behavioral and histological evidence that CLP290 reverted the sedative effect of GABAergic drugs through the activation of KCC2. Our data suggest that the clinical application of CLP290 may provide a breakthrough in terms of midazolam-resistant sedation.
Collapse
Affiliation(s)
- Akiko Doi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Mihara
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maiko Ikeda
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Niikura
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomio Andoh
- Department of Anesthesiology, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
17
|
Gavrilovici C, Jiang Y, Kiroski I, Sterley TL, Vandal M, Bains J, Park SK, Rho JM, Teskey GC, Nguyen MD. Behavioral Deficits in Mice with Postnatal Disruption of Ndel1 in Forebrain Excitatory Neurons: Implications for Epilepsy and Neuropsychiatric Disorders. Cereb Cortex Commun 2021; 2:tgaa096. [PMID: 33615226 PMCID: PMC7876307 DOI: 10.1093/texcom/tgaa096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dysfunction of nuclear distribution element-like 1 (Ndel1) is associated with schizophrenia, a neuropsychiatric disorder characterized by cognitive impairment and with seizures as comorbidity. The levels of Ndel1 are also altered in human and models with epilepsy, a chronic condition whose hallmark feature is the occurrence of spontaneous recurrent seizures and is typically associated with comorbid conditions including learning and memory deficits, anxiety, and depression. In this study, we analyzed the behaviors of mice postnatally deficient for Ndel1 in forebrain excitatory neurons (Ndel1 CKO) that exhibit spatial learning and memory deficits, seizures, and shortened lifespan. Ndel1 CKO mice underperformed in species-specific tasks, that is, the nest building, open field, Y maze, forced swim, and dry cylinder tasks. We surveyed the expression and/or activity of a dozen molecules related to Ndel1 functions and found changes that may contribute to the abnormal behaviors. Finally, we tested the impact of Reelin glycoprotein that shows protective effects in the hippocampus of Ndel1 CKO, on the performance of the mutant animals in the nest building task. Our study highlights the importance of Ndel1 in the manifestation of species-specific animal behaviors that may be relevant to our understanding of the clinical conditions shared between neuropsychiatric disorders and epilepsy.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Toni-Lee Sterley
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Milene Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Jaideep Bains
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Zhang CQ, Catron MA, Ding L, Hanna CM, Gallagher MJ, Macdonald RL, Zhou C. Impaired State-Dependent Potentiation of GABAergic Synaptic Currents Triggers Seizures in a Genetic Generalized Epilepsy Model. Cereb Cortex 2020; 31:768-784. [PMID: 32930324 DOI: 10.1093/cercor/bhaa256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non rapid eye-movement sleep and quiet-wakefulness in human GGE patients.
Collapse
Affiliation(s)
- Chun-Qing Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mackenzie A Catron
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlyn M Hanna
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Villasana-Salazar B, Hernández-Soto R, Guerrero-Gómez ME, Ordaz B, Manrique-Maldonado G, Salgado-Puga K, Peña-Ortega F. Chronic intermittent hypoxia transiently increases hippocampal network activity in the gamma frequency band and 4-Aminopyridine-induced hyperexcitability in vitro. Epilepsy Res 2020; 166:106375. [PMID: 32745888 DOI: 10.1016/j.eplepsyres.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic intermittent hypoxia (CIH) is the most distinct feature of obstructive sleep apnea (OSA), a common breathing and sleep disorder that leads to several neuropathological consequences, including alterations in the hippocampal network and in seizure susceptibility. However, it is currently unknown whether these alterations are permanent or remit upon normal oxygenation. Here, we investigated the effects of CIH on hippocampal spontaneous network activity and hyperexcitability in vitro and explored whether these alterations endure or fade after normal oxygenation. Results showed that applying CIH for 21 days to adult rats increases gamma-band hippocampal network activity and aggravates 4-Aminopyridine-induced epileptiform activity in vitro. Interestingly, these CIH-induced alterations remit after 30 days of normal oxygenation. Our findings indicate that hippocampal network alterations and increased seizure susceptibility induced by CIH are not permanent and can be spontaneously reverted, suggesting that therapeutic interventions against OSA in patients with epilepsy, such as surgery or continuous positive airway pressure (CPAP), could be favorable for seizure control.
Collapse
Affiliation(s)
- Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - María Estefanía Guerrero-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Guadalupe Manrique-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
20
|
Zhang L, Zhu X, Peng A, Lai W, He S, Qiu X, Zou X, Chen L. Predictors of drug-resistance in epilepsy with auditory features. Epilepsy Res 2020; 164:106353. [PMID: 32447239 DOI: 10.1016/j.eplepsyres.2020.106353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 05/02/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate predictors of drug-resistance in epilepsy with auditory features (EAF). METHODS Drug-resistant epilepsy (DRE) was defined according to International League Against Epilepsy guidelines. For univariate analysis, the chi-squared, Fisher's exact, and Mann-Whitney test were used. Odds ratios (OR) and 95% confidence intervals (CIs) of predictors were estimated by logistic regression analyses. RESULTS A total of 107 patients (52 male) between the ages of 13.0 and 78.8 years were included in this cohort. In univariate analysis, ten variables, including age at seizure onset < or = 10 years, febrile seizures, psychiatric disorders, seizures during sleep, multiple first ictal symptoms, electroencephalogram epileptiform discharges during waking, non-specific abnormalities in electroencephalogram, oxcarbazepine as the first drug, oxcarbazepine in the first two drugs and valproic acid in the first two drugs, showed possibilities as prognostic factors of EAF (p < 0.10). After logistic regression analyses, two positive predictors of drug-resistance, including age at seizures onset < or = 10 (OR = 6.37, 95% CI = 1.08-37.7, p = 0.041) and seizures during sleep (OR = 4.42, 95% CI = 1.45-13.48, p = 0.009) were found. Oxcarbazepine as the first AED is a negative predictive factor of drug-resistance (OR = 0.22, 95% CI = 0.06-0.84, p = 0.027). CONCLUSIONS Three predictors may help early diagnosis of DRE in EAF. Early use of oxcarbazepine is a negative predictor of drug-resistance, which may provide an intervention point to minimize the risk of drug-resistance.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Xi Zhu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Anjiao Peng
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Wanlin Lai
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Shixu He
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Xiangmiao Qiu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Xiaoyi Zou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
21
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
22
|
Hayashi T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 2020; 178:784-797. [PMID: 32159240 DOI: 10.1111/bph.15050] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
23
|
Jung S, Ballheimer YE, Brackmann F, Zoglauer D, Geppert CI, Hartmann A, Trollmann R. Seizure-induced neuronal apoptosis is related to dysregulation of the RNA-edited GluR2 subunit in the developing mouse brain. Brain Res 2020; 1735:146760. [PMID: 32142720 DOI: 10.1016/j.brainres.2020.146760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
Ca2+-permeable AMPA receptors (AMPAR) which crucially modify maturational programs of the developing brain are involved in seizure-induced glutamate excitotoxicity and apoptosis. Regulatory effects on AMPAR subunit composition and RNA-editing in the developing brain and their significance as therapeutic targets are not well understood. Here, we analyzed acute effects of recurrent pilocarpine-induced neonatal seizures on age- and region-specific expression of AMPAR subunits and adenosine deaminases (ADAR) in the developing mouse brain (P10). After recurrent seizure activity and regeneration periods of 6-72 h cerebral mRNA levels of GluR (glutamate receptor subunit) 1, GluR2, GluR3, and GluR4 were unaffected compared to controls. However, ratio of GluR2 and GluR4 to pooled GluR1-4 mRNA concentration significantly decreased in seizure-exposed brains in comparison to controls. After a regeneration period of 24-72 h ADAR1 and ADAR2 mRNA expression was significantly lower in seizure-exposed brains than in those of controls. This was confirmed at the protein level in the hippocampal CA3 region. We observed a regionally increased apoptosis (TUNEL+ and CC3+ cells) in the hippocampus, parietal cortex and subventricular zone of seizure-exposed brains in comparison to controls. Together, present in vivo data demonstrate the maturational age-specific, functional role of RNA-edited GluR2 in seizure-induced excitotoxicity in the developing mouse brain. In response to recurrent seizure activity, we observed reduced expression of GluR2 and the GluR2 mRNA-editing enzymes ADAR1 and ADAR2 accompanied by increased apoptosis in a region-specific manner. Thus, AMPA receptor subtype-specific mRNA editing is assessed as a promising target of novel neuroprotective treatment strategies in consideration of age-related developmental mechanisms.
Collapse
Affiliation(s)
- Susan Jung
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Yili E Ballheimer
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Brackmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Zoglauer
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
24
|
Sun H, Takesian AE, Wang TT, Lippman-Bell JJ, Hensch TK, Jensen FE. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity. Cell Rep 2019; 23:2533-2540. [PMID: 29847785 PMCID: PMC6446922 DOI: 10.1016/j.celrep.2018.04.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of “silent,” NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become “unsilenced” due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anne E Takesian
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jocelyn J Lippman-Bell
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA; Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA.
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Yennawar M, White RS, Jensen FE. AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder. J Neurosci 2019; 39:4814-4828. [PMID: 30952813 PMCID: PMC6561688 DOI: 10.1523/jneurosci.2041-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Pathogenic mutations in cyclin-dependent kinase-like 5 (CDKL5) result in CDKL5 deficiency disorder (CDD), a rare disease marked by early-life seizures, autistic behaviors, and intellectual disability. Although mouse models of CDD exhibit dendritic instability and alterations in synaptic scaffolding proteins, studies of glutamate receptor levels and function are limited. Here we used a novel mouse model of CDD, the Cdkl5R59X knock-in mouse (R59X), to investigate changes in synaptic glutamate receptor subunits and functional consequences. Male mice were used for all experiments to avoid the confounding effects of X-inactivation that would be present in female heterozygous mice. We showed that adult male R59X mice recapitulated the behavioral outcomes observed in other mouse models of CDD, including social deficits and memory and learning impairments, and exhibited decreased latency to seizure upon pentylenetetrazol administration. Furthermore, we observed a specific increase in GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (AMPARs) in the adult R59X hippocampus, which is accompanied electrophysiologically by increased rectification ratio of AMPAR EPSCs and elevated early-phase long term potentiation (LTP). Finally, we showed that acute treatment with the GluA2-lacking AMPAR blocker IEM-1460 decreased AMPAR currents, and rescued social deficits, working memory impairments, and seizure behavior latency in R59X mice.SIGNIFICANCE STATEMENT CDKL5 deficiency disorder (CDD) is a rare disease marked by autistic-like behaviors, intellectual disability, and seizures. While synaptic dysfunction has been observed in mouse models of CDD, there is limited information on how synaptic alterations contribute to behavioral and functional changes in CDD. Here we reveal elevated hippocampal GluA2-lacking AMPAR expression in a novel mouse model of CDD that is accompanied by changes in synaptic AMPAR function and plasticity. We also show, for the first time, that acutely targeting GluA2-lacking AMPAR dysregulation rescues core synaptic and neurobehavioral deficits in CDD.
Collapse
MESH Headings
- Adult
- Animals
- Behavior, Animal
- Child, Preschool
- Disease Models, Animal
- Epileptic Syndromes/drug therapy
- Epileptic Syndromes/genetics
- Epileptic Syndromes/psychology
- Excitatory Postsynaptic Potentials/genetics
- Female
- Gene Knock-In Techniques
- Humans
- Learning Disabilities/genetics
- Learning Disabilities/psychology
- Male
- Memory Disorders/genetics
- Memory Disorders/psychology
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Mutation/genetics
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Psychomotor Performance
- Receptors, AMPA/deficiency
- Receptors, AMPA/drug effects
- Receptors, AMPA/genetics
- Seizures/chemically induced
- Seizures/physiopathology
- Social Behavior
- Spasms, Infantile/drug therapy
- Spasms, Infantile/genetics
- Spasms, Infantile/psychology
Collapse
Affiliation(s)
| | - Rachel S White
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
Goussakov I, Synowiec S, Yarnykh V, Drobyshevsky A. Immediate and delayed decrease of long term potentiation and memory deficits after neonatal intermittent hypoxia. Int J Dev Neurosci 2019; 74:27-37. [PMID: 30858028 PMCID: PMC6461389 DOI: 10.1016/j.ijdevneu.2019.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
Apnea of prematurity is a common clinical condition that occurs in premature infants and results in intermittent hypoxia (IH) to brain and other organs. While short episodes of apnea are considered of no clinical significance, prolonged apnea with bradycardia and large oxygen desaturation is associated with adverse neurological and cognitive outcome. The mechanisms of cognitive deficits in IH are poorly understood. We hypothesized that brief but multiple episodes of severe oxygen desaturation accompanied by bradycardia may affect early and late synaptic plasticity and produce long-term cognitive deficits. C57BL/6 mouse pups were exposed to IH paradigm consisting of alternating cycles of 5% oxygen for 2.5 min and room air for 5-10 min, 2 h a day from P3 to P7. Long term potentiation (LTP) of synaptic strength in response to high frequency stimulation in hippocampal slices were examined 3 days and 6 weeks after IH. LTP was decreased in IH group relative to controls at both time points. That decrease was associated with deficits in spatial memory on Morris water maze and context fear conditioning test. Hypomyelination was observed in multiple gray and white matter areas on in vivo MRI using micromolecule proton fraction and ex vivo diffusion tensor imaging. No difference in caspase labeling was found between control and IH groups. We conclude that early changes in synaptic plasticity occurring during severe episodes of neonatal IH and persisting to adulthood may represent functional and structural substrate for long term cognitive deficits.
Collapse
Affiliation(s)
- Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, 2650 Ridge Ave 60201, Evanston, IL, USA
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, 2650 Ridge Ave 60201, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, 850 Republican St., Room 255 Seattle, WA, USA
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, 2650 Ridge Ave 60201, Evanston, IL, USA.
| |
Collapse
|
27
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
28
|
Urbanska M, Kazmierska-Grebowska P, Kowalczyk T, Caban B, Nader K, Pijet B, Kalita K, Gozdz A, Devijver H, Lechat B, Jaworski T, Grajkowska W, Sadowski K, Jozwiak S, Kotulska K, Konopacki J, Van Leuven F, van Vliet EA, Aronica E, Jaworski J. GSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation. EBioMedicine 2018; 39:377-387. [PMID: 30502054 PMCID: PMC6355642 DOI: 10.1016/j.ebiom.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase-3β (GSK3β) is a key regulator of cellular homeostasis. In neurons, GSK3β contributes to the control of neuronal transmission and plasticity, but its role in epilepsy remains to be defined. METHODS Biochemical and electrophysiological methods were used to assess the role of GSK3β in regulating neuronal transmission and epileptogenesis. GSK3β activity was increased genetically in GSK3β[S9A] mice. Its effects on neuronal transmission and epileptogenesis induced by kainic acid were assessed by field potential recordings in mice brain slices and video electroencephalography in vivo. The ion channel expression was measured in brain samples from mice and followed by analysis in samples from patients with temporal lobe epilepsy or focal cortical dysplasia in correlation to GSK3β phosphorylation. FINDINGS Higher GSK3β activity decreased the progression of kainic acid induced epileptogenesis. At the biochemical level, higher GSK3β activity increased the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel 4 under basal conditions and in the epileptic mouse brain and decreased phosphorylation of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 at Serine 831 under basal conditions. Moreover, we found a significant correlation between higher inhibitory GSK3β phosphorylation at Serine 9 and higher activating GluA1 phosphorylation at Serine 845 in brain samples from epileptic patients. INTERPRETATION Our data imply GSK3β activity in the protection of neuronal networks from hyper-activation in response to epileptogenic stimuli and indicate that the anti-epileptogenic function of GSK3β involves modulation of HCN4 level and the synaptic AMPA receptors pool.
Collapse
Affiliation(s)
- Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland; Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland.
| | - Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Karolina Nader
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Barbara Pijet
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Katarzyna Kalita
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Agata Gozdz
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Tomasz Jaworski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland; Department of Child Neurology, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven 3000, Belgium
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.
| |
Collapse
|
29
|
Deficiency of AMPAR-Palmitoylation Aggravates Seizure Susceptibility. J Neurosci 2018; 38:10220-10235. [PMID: 30355633 DOI: 10.1523/jneurosci.1590-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.
Collapse
|
30
|
Quinlan SMM, Rodriguez-Alvarez N, Molloy EJ, Madden SF, Boylan GB, Henshall DC, Jimenez-Mateos EM. Complex spectrum of phenobarbital effects in a mouse model of neonatal hypoxia-induced seizures. Sci Rep 2018; 8:9986. [PMID: 29968748 PMCID: PMC6030182 DOI: 10.1038/s41598-018-28044-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/11/2018] [Indexed: 11/09/2022] Open
Abstract
Seizures in neonates, mainly caused by hypoxic-ischemic encephalopathy, are thought to be harmful to the brain. Phenobarbital remains the first line drug therapy for the treatment of suspected neonatal seizures but concerns remain with efficacy and safety. Here we explored the short- and long-term outcomes of phenobarbital treatment in a mouse model of hypoxia-induced neonatal seizures. Seizures were induced in P7 mice by exposure to 5% O2 for 15 minutes. Immediately after hypoxia, pups received a single dose of phenobarbital (25 mg.kg-1) or saline. We observed that after administration of phenobarbital seizure burden and number of seizures were reduced compared to the hypoxic period; however, PhB did not suppress acute histopathology. Behavioural analysis of mice at 5 weeks of age previously subjected to hypoxia-seizures revealed an increase in anxiety-like behaviour and impaired memory function compared to control littermates, and these effects were not normalized by phenobarbital. In a seizure susceptibility test, pups previously exposed to hypoxia, with or without phenobarbital, developed longer and more severe seizures in response to kainic acid injection compared to control mice. Unexpectedly, mice treated with phenobarbital developed less hippocampal damage after kainic acid than untreated counterparts. The present study suggests phenobarbital treatment in immature mice does not improve the long lasting functional deficits induces by hypoxia-induced seizures but, unexpectedly, may reduce neuronal death caused by exposure to a second seizure event in later life.
Collapse
Affiliation(s)
- Sean M M Quinlan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123, St Stephen Green, Dublin, 2, Dublin, Ireland
| | - Natalia Rodriguez-Alvarez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123, St Stephen Green, Dublin, 2, Dublin, Ireland
| | - Eleanor J Molloy
- Paediatrics, Academic Centre, Tallaght Hospital, Trinity College, The University of Dublin, Dublin, Ireland.,Neonatology, Coombe Women and Infants' University Hospital, Dublin, Ireland.,Neonatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Beaux Lane House, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123, St Stephen Green, Dublin, 2, Dublin, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123, St Stephen Green, Dublin, 2, Dublin, Ireland.
| |
Collapse
|
31
|
Rosenberg EC, Lippman-Bell JJ, Handy M, Soldan SS, Rakhade S, Hilario-Gomez C, Folweiler K, Jacobs L, Jensen FE. Regulation of seizure-induced MeCP2 Ser421 phosphorylation in the developing brain. Neurobiol Dis 2018; 116:120-130. [PMID: 29738885 DOI: 10.1016/j.nbd.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal seizures disrupt normal synaptic maturation and often lead to later-life epilepsy and cognitive deficits. During early life, the brain exhibits heightened synaptic plasticity, in part due to a developmental overabundance of CaV1.2 L-type voltage gated calcium (Ca2+) channels (LT-VGCCs) and Ca2+-permeable AMPARs (CP-AMPARs) lacking GluA2 subunits. We hypothesized that early-life seizures overactivate these channels, in turn dysregulating Ca2+-dependent signaling pathways including that of methyl CPG binding protein 2 (MeCP2), a transcription factor implicated in the autism spectrum disorder (ASD) Rett Syndrome. Here, we show that in vivo hypoxia-induced seizures (HS) in postnatal day (P)10 rats acutely induced phosphorylation of the neuronal-specific target of activity-dependent MeCP2 phosphorylation, S421, as well as its upstream activator CaMKII T286. We next identified mechanisms by which activity-dependent Ca2+ influx induced MeCP2 phosphorylation using in vitro cortical and hippocampal neuronal cultures at embryonic day (E)18 + 10 days in vitro (DIV). In contrast to the prevalent role of NMDARs in the adult brain, we found that both CP-AMPARs and LT-VGCCs mediated MeCP2 S421 and CaMKII T286 phosphorylation induced by kainic acid (KA) or high potassium chloride (KCl) stimulation. Furthermore, in vivo post-seizure treatment with the broad-spectrum AMPAR antagonist NBQX, the CP-AMPAR blocker IEM-1460, or the LT-VGCC antagonist nimodipine blocked seizure-induced MeCP2 phosphorylation. Collectively, these results demonstrate that early-life seizures dysregulate critical activity-dependent developmental signaling pathways, in part via CP-AMPAR and LT-VGCC activation, providing novel age-specific therapeutic targets for convergent pathways underlying epilepsy and ASDs.
Collapse
Affiliation(s)
- Evan C Rosenberg
- Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States; New York University Langone Medical Center, New York, NY 10016, United States
| | - Jocelyn J Lippman-Bell
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States; Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States; Philadelphia College of Osteopathic Medicine, Department of Biomedical Sciences, Philadelphia, PA 19131, United States
| | - Marcus Handy
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Samantha S Soldan
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Sanjay Rakhade
- Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States
| | | | - Kaitlyn Folweiler
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Leah Jacobs
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Frances E Jensen
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States; Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States.
| |
Collapse
|
32
|
Abstract
Hypoxic-ischemic encephalopathy (HIE) refers to acute brain injury that results from perinatal asphyxia. HIE is a major cause of neonatal seizures, and outcomes can range from apparent recovery to severe cognitive impairment, cerebral palsy, and epilepsy. Acute partial seizures frequently aid in indicating the severity and localization of brain injury. However, evidence also suggests that the occurrence of seizures further increases the likelihood of epilepsy in later life regardless of the severity of the initial injury. Here, we describe a neonatal rat model of seizure-provoking mild hypoxia without overt brain injury that has been used to investigate potential epileptogenic effects of hypoxia-associated seizures alone on neonatal brain development. Clinically, HIE is defined by brain injury, and thus, this model is not intended to mimic clinical HIE. Rather, its utility is in providing a model to understand the dynamic and long-term regulation of brain function and how this can be perturbed by early life seizures that are provoked by a commonly encountered pathophysiological trigger. Additionally, the model allows the study of brain pathophysiology without the potential confound of variable neuroanatomical changes that are reactive to widespread cell death.
Collapse
Affiliation(s)
- Jason A Justice
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, USA
| | - Russell M Sanchez
- Division of Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Abend NS, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:275-321.e14. [DOI: 10.1016/b978-0-323-42876-7.00012-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Rudy M, Mayer-Proschel M. Iron Deficiency Affects Seizure Susceptibility in a Time- and Sex-Specific Manner. ASN Neuro 2017; 9:1759091417746521. [PMID: 29243938 PMCID: PMC5734468 DOI: 10.1177/1759091417746521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Iron deficiency (ID) affects more than three billion people worldwide making it the most common micronutrient deficiency. ID is most prevalent during gestation and early life, which is of particular concern since its impact on the developing central nervous system is associated with an increased risk of a wide range of different psychiatric disorders later in life. The cause for this association is not known, but many of these same disorders are also associated with an imbalance between excitation and inhibition (E/I) within the brain. Based on this shared impairment, we asked whether ID could contribute to such an imbalance. Disruptions in the E/I balance can be uncovered by the brain’s response to seizure inducing insults. We therefore tested the seizure threshold under different nutritional models of ID. We found that mice which were postnatally exposed to ID (and were acutely ID) had a decreased seizure threshold and increased susceptibility to certain seizure types. In contrast, mice that were exposed to ID only during gestation had an increased seizure threshold and low seizure incidence. We suggest that exposure to ID during gestation might alter the cellular components that contribute to the establishment of a proper E/I balance later in life. In addition, our data highlight the importance of considering the window of vulnerability since gestational ID and postnatal ID have significantly different consequences on seizure probability.
Collapse
Affiliation(s)
- Michael Rudy
- 1 Department of Environmental Medicine, University of Rochester, NY, USA.,2 Department of Biomedical Genetics, University of Rochester, NY, USA
| | - Margot Mayer-Proschel
- 2 Department of Biomedical Genetics, University of Rochester, NY, USA.,3 Department of Neuroscience, University of Rochester, NY, USA
| |
Collapse
|
35
|
Di Bonaventura C, Labate A, Maschio M, Meletti S, Russo E. AMPA receptors and perampanel behind selected epilepsies: current evidence and future perspectives. Expert Opin Pharmacother 2017; 18:1751-1764. [PMID: 29023170 DOI: 10.1080/14656566.2017.1392509] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are the major mediators of glutamate-mediated excitatory neurotransmission, and are critical for synchronization and spread of epileptic activity. Areas covered: AMPA receptor antagonists have been also developed as antiepileptic drugs and perampanel (PER) is the first highly selective, non-competitive AMPA-type glutamate receptor antagonist that is available on the market. It is approved as adjunctive therapy for the treatment of partial-onset seizures with or without secondary generalization, and for primary generalized tonic-clonic seizures in idiopathic generalized epilepsy, in patients aged ≥ 12 years. This article reviews the role of AMPA receptors in the neuronal hyperexcitability underlying epilepsy, the mechanism of action and clinical experience on the anti-seizure activity of PER. Moreover, the rationale for targeting AMPA receptor in specific epileptic disorders, including brain tumor-related epilepsy, mesial temporal lobe epilepsy with/without hippocampal sclerosis, and status epilepticus is evaluated. Finally, the pharmacological rationale for the development of AMPA receptor antagonists in other neurological disorders beyond epilepsy is considered. Expert opinion: Further research aimed at better understanding the pharmacology and blocking mechanism of PER and other AMPA receptor antagonists will drive future development of therapeutic agents that target epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Carlo Di Bonaventura
- a Department of Neurology and Psychiatry, Neurology Unit , 'Sapienza' University , Rome , Italy
| | - Angelo Labate
- b Institute of Neurology , University Magna Graecia of Catanzaro , Catanzaro , Italy.,c Institute of Molecular Bioimaging and Physiology of the National Research Council , Catanzaro , Italy
| | - Marta Maschio
- d Center for Tumor-related Epilepsy, UOSD Neurology , Regina Elena National Cancer Institute , Rome , Italy
| | - Stefano Meletti
- e Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology , University of Modena and Reggio Emilia , Modena , Italy
| | - Emilio Russo
- f Department of Science of Health, School of Medicine and Surgery , University 'Magna Graecia' of Catanzaro , Catanzaro , Italy
| |
Collapse
|
36
|
Tai TY, Warner LN, Jones TD, Jung S, Concepcion FA, Skyrud DW, Fender J, Liu Y, Williams AD, Neumaier JF, D'Ambrosio R, Poolos NP. Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy. Neuroscience 2017; 349:35-47. [PMID: 28237815 DOI: 10.1016/j.neuroscience.2017.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Several phosphorylation signaling pathways have been implicated in the pathogenesis of epilepsy arising from both genetic causes and acquired insults to the brain. Identification of dysfunctional signaling pathways in epilepsy may provide novel targets for antiepileptic therapies. We previously described a deficit in phosphorylation signaling mediated by p38 mitogen-activated protein kinase (p38 MAPK) that occurs in an animal model of temporal lobe epilepsy, and that produces neuronal hyperexcitability measured in vitro. We asked whether in vivo pharmacological manipulation of p38 MAPK activity would influence seizure frequency in chronically epileptic animals. Administration of a p38 MAPK inhibitor, SB203580, markedly worsened spontaneous seizure frequency, consistent with prior in vitro results. However, anisomycin, a non-specific p38 MAPK activator, significantly increased seizure frequency. We hypothesized that this unexpected result was due to activation of a related MAPK, c-Jun N-terminal kinase (JNK). Administration of JNK inhibitor SP600125 significantly decreased seizure frequency in a dose-dependent manner without causing overt behavioral abnormalities. Biochemical analysis showed increased JNK expression and activity in untreated epileptic animals. These results show for the first time that JNK is hyperactivated in an animal model of epilepsy, and that phosphorylation signaling mediated by JNK may represent a novel antiepileptic target.
Collapse
Affiliation(s)
- Tina Y Tai
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, United States
| | - Lindsay N Warner
- Neurobiology Program, University of Washington, Seattle, WA, United States
| | - Terrance D Jones
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Sangwook Jung
- Department of Neurology, University of Washington, Seattle, WA, United States
| | | | - David W Skyrud
- Department of Chemistry, Seattle University, Seattle, WA, United States
| | - Jason Fender
- Department of Neurosurgery, University of Washington, Seattle, WA, United States
| | - Yusha Liu
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA, United States
| | - Aaron D Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - John F Neumaier
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA, United States
| | - Raimondo D'Ambrosio
- Department of Neurosurgery, University of Washington, Seattle, WA, United States; Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - Nicholas P Poolos
- Department of Neurology, University of Washington, Seattle, WA, United States; Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States; Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
37
|
Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D'Amelio M, Maura G, Mariottini P, Voci A, Marcoli M, Cervelli M. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromolecular Med 2016; 18:50-68. [PMID: 26530396 DOI: 10.1007/s12017-015-8377-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132, Genoa, Italy
| | - Milena Ragazzoni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nicola Berretta
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Nicola Mercuri
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
- Medical School Campus, Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Paolo Mariottini
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy.
- Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Manuela Cervelli
- Department of Sciences, University of Rome "Roma Tre", Viale Marconi 446, 00146, Rome, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Viale Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
38
|
Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2015; 100:1645-1666. [DOI: 10.1007/s00253-015-7244-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
|
39
|
Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods 2015; 260:252-60. [PMID: 26434705 DOI: 10.1016/j.jneumeth.2015.09.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Despite greater understanding and improved management, seizures continue to be a major problem in childhood. Neonatal seizures are often refractory to conventional antiepileptic drugs, and can result in later life epilepsy and cognitive deficits, conditions for which there are no specific treatments. Hypoxic and/or ischemic encephalopathy (HIE) is the most common cause for neonatal seizures, and accounts for more than two-thirds of neonatal seizure cases. A better understanding of the cellular and molecular mechanisms is essential for identifying new therapeutic strategies that control the neonatal seizures and its cognitive consequences. This heavily relies on animal models that play a critical role in discovering novel mechanisms underlying both epileptogenesis and associated cognitive impairments. To date, a number of animal models have provided a tremendous amount of information regarding the pathophysiology of HIE-induced neonatal seizures. This review provides an overview on the most important features of the main animal models of HIE-induced seizures. In particular, we focus on the methodology of seizure induction and the characterizations of post-HIE injury consequences. These aspects of HIE-induced seizure models are discussed in the light of the suitability of these models in studying human HIE-induced seizures.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor M Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
40
|
Korb E, Herre M, Zucker-Scharff I, Darnell RB, Allis CD. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci 2015; 18:1464-73. [PMID: 26301327 PMCID: PMC4752120 DOI: 10.1038/nn.4095] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
Precise regulation of transcription is crucial for the cellular mechanisms underlying memory formation. However, the link between neuronal stimulation and the proteins that directly interact with histone modifications to activate transcription in neurons remains unclear. Brd4 is a member of the bromodomain and extra-terminal domain (BET) protein family, which binds acetylated histones and is a critical regulator of transcription in many cell types, including transcription in response to external cues. Small molecule BET inhibitors are in clinical trials, yet almost nothing is known about Brd4 function in the brain. Here we show that Brd4 mediates the transcriptional regulation underlying learning and memory. The loss of Brd4 function affects critical synaptic proteins, which results in memory deficits in mice but also decreases seizure susceptibility. Thus Brd4 provides a critical link between neuronal activation and the transcriptional responses that occur during memory formation.
Collapse
Affiliation(s)
- Erica Korb
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Margo Herre
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
41
|
Zanelli SA, Rajasekaran K, Grosenbaugh DK, Kapur J. Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience 2015; 310:279-89. [PMID: 26404876 DOI: 10.1016/j.neuroscience.2015.09.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The present study tested the hypothesis that exposure to in vitro hypoxia-ischemia alters membrane properties and excitability as well as excitatory synaptic transmission of CA1 pyramidal neurons in the neonatal mouse. METHODS Experiments were conducted in hippocampal slices in P7-P9 C57Bl/6 mice using whole-cell patch clamp in current- and voltage-clamp mode. Passive membrane potential (Vm), input resistance (Rin) and active (action potential (AP) threshold and amplitude) membrane properties of CA1 pyramidal neurons were assessed at baseline, during 10 min in vitro ischemia (oxygen-glucose deprivation (OGD)) and during reoxygenation. Spontaneous and miniature excitatory post-synaptic currents (s and mEPSCs) were studied under similar conditions. RESULTS OGD caused significant depolarization of CA1 pyramidal neurons as well as decrease in AP threshold and increase in AP amplitude. These changes were blocked by the application of tetrodotoxin (TTX), indicating Na(+) channels' involvement. Following 10 min of reoxygenation, significant membrane hyperpolarization was noted and it was associated with a decrease in Rin. AP threshold and amplitude returned to baseline during that stage. sEPSC and mEPSC frequency increased during both OGD and reoxygenation but their amplitude remained unchanged. Additionally, we found that OGD decreases Ih (hyperpolarization activated current) in CA1 neurons from neonatal mice and this effect persists during reoxygenation. SIGNIFICANCE These results indicate that in vitro ischemia leads to changes in membrane excitability mediated by sodium and potassium channels. Further, it results in enhanced neurotransmitter release from presynaptic terminals. These changes are likely to represent one of the mechanisms of hypoxia/ischemia-mediated seizures in the neonatal period.
Collapse
Affiliation(s)
- S A Zanelli
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States.
| | - K Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - D K Grosenbaugh
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - J Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
42
|
Rodriguez-Alvarez N, Jimenez-Mateos EM, Dunleavy M, Waddington JL, Boylan GB, Henshall DC. Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice. Neurobiol Dis 2015; 83:100-14. [PMID: 26341542 DOI: 10.1016/j.nbd.2015.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
Seizures are common during the neonatal period, often due to hypoxic-ischemic encephalopathy and may contribute to acute brain injury and the subsequent development of cognitive deficits and childhood epilepsy. Here we explored short- and long-term consequences of neonatal hypoxia-induced seizures in 7 day old C57BL/6J mice. Seizure activity, molecular markers of hypoxia and histological injury were investigated acutely after hypoxia and response to chemoconvulsants and animal behaviour was explored at adulthood. Hypoxia was induced by exposing pups to 5% oxygen for 15 min (global hypoxia). Electrographically defined seizures with behavioral correlates occurred in 95% of these animals and seizures persisted for many minutes after restitution of normoxia. There was minimal morbidity or mortality. Pre- or post-hypoxia injection of phenobarbital (50mg/kg) had limited efficacy at suppressing seizures. The hippocampus from neonatal hypoxia-seizure mice displayed increased expression of vascular endothelial growth factor and the immediate early gene c-fos, minimal histological evidence of cell injury and activation of caspase-3 in scattered neurons. Behavioral analysis of mice five weeks after hypoxia-induced seizures detected novel anxiety-related and other behaviors, while performance in a spatial memory test was similar to controls. Seizure threshold tests with kainic acid at six weeks revealed that mice previously subject to neonatal hypoxia-induced seizures developed earlier, more frequent and longer-duration seizures. This study defines a set of electro-clinical, molecular, pharmacological and behavioral consequences of hypoxia-induced seizures that indicate short- and long-term deleterious outcomes and may be a useful model to investigate the pathophysiology and treatment of neonatal seizures in humans.
Collapse
Affiliation(s)
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland.
| |
Collapse
|
43
|
Uzasci L, Auh S, Cotter RJ, Nath A. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns. Proteomics Clin Appl 2015; 10:126-35. [PMID: 26033855 DOI: 10.1002/prca.201400134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/18/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain. EXPERIMENTAL DESIGN Parietal cortex from individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high resolution. RESULTS Our phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs, which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2'-3'-cyclic nucleotide-3' phosphodiesterase have relatively higher phosphorylation levels during HIV infection. CONCLUSIONS AND CLINICAL RELEVANCE This study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Lerna Uzasci
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,The Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sungyoung Auh
- Clinical Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Cotter
- The Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 2015; 77:618-36. [DOI: 10.1002/ana.24358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
|
45
|
Gazina EV, Leaw BTW, Richards KL, Wimmer VC, Kim TH, Aumann TD, Featherby TJ, Churilov L, Hammond VE, Reid CA, Petrou S. 'Neonatal' Nav1.2 reduces neuronal excitability and affects seizure susceptibility and behaviour. Hum Mol Genet 2014; 24:1457-68. [PMID: 25378553 DOI: 10.1093/hmg/ddu562] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developmentally regulated alternative splicing produces 'neonatal' and 'adult' isoforms of four Na(+) channels in human brain, NaV1.1, NaV1.2, NaV1.3 and NaV1.6. Heterologously expressed 'neonatal' NaV1.2 channels are less excitable than 'adult' channels; however, functional importance of this difference is unknown. We hypothesized that the 'neonatal' NaV1.2 may reduce neuronal excitability and have a seizure-protective role during early brain development. To test this hypothesis, we generated NaV1.2(adult) mice expressing only the 'adult' NaV1.2, and compared the firing properties of pyramidal cortical neurons, as well as seizure susceptibility, between the NaV1.2(adult) and wild-type (WT) mice at postnatal day 3 (P3), when the 'neonatal' isoform represents 65% of the WT NaV1.2. We show significant increases in action potential firing in NaV1.2(adult) neurons and in seizure susceptibility of NaV1.2(adult) mice, supporting our hypothesis. At postnatal day 15 (P15), when 17% of the WT NaV1.2 is 'neonatal', the firing properties of NaV1.2(adult) and WT neurons converged. However, inhibitory postsynaptic currents in NaV1.2(adult) neurons were larger and the expression level of Scn2a mRNA was 24% lower compared with the WT. The enhanced seizure susceptibility of the NaV1.2(adult) mice persisted into adult age. The adult NaV1.2(adult) mice also exhibited greater risk-taking behaviour. Overall, our data reveal a significant impact of 'neonatal' NaV1.2 on neuronal excitability, seizure susceptibility and behaviour and may contribute to our understanding of NaV1.2 roles in health and diseases such as epilepsy and autism.
Collapse
Affiliation(s)
- Elena V Gazina
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Bryan T W Leaw
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Kay L Richards
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Verena C Wimmer
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Tae H Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Timothy D Aumann
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Travis J Featherby
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Leonid Churilov
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Vicki E Hammond
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia Centre for Neural Engineering, University of Melbourne, Parkville VIC 3052, Australia
| |
Collapse
|
46
|
Morelli E, Ghiglieri V, Pendolino V, Bagetta V, Pignataro A, Fejtova A, Costa C, Ammassari-Teule M, Gundelfinger ED, Picconi B, Calabresi P. Environmental enrichment restores CA1 hippocampal LTP and reduces severity of seizures in epileptic mice. Exp Neurol 2014; 261:320-7. [DOI: 10.1016/j.expneurol.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
|
47
|
Bernard PB, Benke TA. Early life seizures: evidence for chronic deficits linked to autism and intellectual disability across species and models. Exp Neurol 2014; 263:72-8. [PMID: 25284323 DOI: 10.1016/j.expneurol.2014.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 11/08/2022]
Abstract
Recent work in Exp Neurol by Lugo et al. (2014b) demonstrated chronic alterations in sociability, learning and memory following multiple early life seizures (ELS) in a mouse model. This work adds to the growing body of evidence supporting the detrimental nature of ELS on the developing brain to contribute to aspects of an autistic phenotype with intellectual disability. Review of the face validity of behavioral testing and the construct validity of the models used informs the predictive ability and thus the utility of these models to translate underlying molecular and cellular mechanisms into future human studies.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, USA; Neuroscience Graduate Program, University of Colorado, School of Medicine, USA; Department of Neurology, University of Colorado, School of Medicine, USA; Department of Pharmacology, University of Colorado, School of Medicine, USA; Department of Otolaryngology, University of Colorado, School of Medicine, USA.
| |
Collapse
|
48
|
McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, Shaver DC, Riddle A, Dean JM, Gunn AJ, Mohr C, Kaplan JS, Rossi DJ, Kroenke CD, Hohimer AR, Back SA. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 2014; 75:508-24. [PMID: 24395459 DOI: 10.1002/ana.24100] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/15/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Recently, we reported that the neocortex displays impaired growth after transient cerebral hypoxia-ischemia (HI) at preterm gestation that is unrelated to neuronal death but is associated with decreased dendritic arbor complexity of cortical projection neurons. We hypothesized that these morphological changes constituted part of a more widespread neuronal dysmaturation response to HI in the caudate nucleus (CN), which contributes to motor and cognitive disability in preterm survivors. METHODS Ex vivo magnetic resonance imaging (MRI), immunohistochemistry, and Golgi staining defined CN growth, cell death, proliferation, and dendritic maturation in preterm fetal sheep 4 weeks after HI. Patch-clamp recording was used to analyze glutamatergic synaptic currents in CN neurons. RESULTS MRI-defined growth of the CN was reduced after ischemia compared to controls. However, no significant acute or delayed neuronal death was seen in the CN or white matter. Nor was there significant loss of calbindin-positive medium spiny projection neurons (MSNs) or CN interneurons expressing somatostatin, calretinin, parvalbumin, or tyrosine hydroxylase. Morphologically, ischemic MSNs showed a markedly immature dendritic arbor, with fewer dendritic branches, nodes, endings, and spines. The magnitude and kinetics of synaptic currents, and the relative contribution of glutamate receptor subtypes in the CN were significantly altered. INTERPRETATION The marked MSN dendritic and functional abnormalities after preterm cerebral HI, despite the marked resistance of immature CN neurons to cell death, are consistent with widespread susceptibility of projection neurons to HI-induced dysmaturation. These global disturbances in dendritic maturation and glutamatergic synaptic transmission suggest a new mechanism for long-term motor and behavioral disabilities in preterm survivors via widespread disruption of neuronal connectivity.
Collapse
Affiliation(s)
- Evelyn McClendon
- Department of Pediatrics, Oregon Health and Science University, Portland, OR
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis 2014; 5:e1026. [PMID: 24481440 PMCID: PMC4040667 DOI: 10.1038/cddis.2013.538] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 02/01/2023]
Abstract
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.
Collapse
|
50
|
Pajand P, Elahdadi Salmani M, Shajiee H, Abiri H, Goudarzi I, Abrari K. Stress during first pregnancy increases seizure threshold in adult male offspring. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:34-40. [PMID: 24592305 PMCID: PMC3938884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE(S) Stress induces many homeostatic aberrations which are followed by lifelong allostatic responses. Epilepsy is developed or influenced by different environmental factors, i.e. prenatal stress which makes many contradictory developmental changes in seizure threshold and intensity. We investigated the potential seizure response of the rat offspring to prenatal stress; the stress which was applied to their mothers. MATERIALS AND METHODS Nine day heterogeneous sequential stress (HSS) model was used before and during the first and before the second pregnancy. The kindling was induced using 13 IP injections of pentylenetetrazol (PTZ) every 48 hr to adult male Wistar rat's offspring. RESULTS The results of the present study demonstrated that, before pregnancy stress decreased the rate of kindling (P<0.05) in the offspring, while stress which was applied during pregnancy completely prevented kindling (P <0.001). Further, their convulsive latency was increased and tonic clonic seizure duration was decreased. In contrast, previous pregnancy and between pregnancies stress could not change kindling process. Although maternal separation stress did not change kindling development, it could increase convulsive intensities by elongating the duration of seizures (P<0.05) and reducing convulsion latency (P <0.05). CONCLUSION It is concluded that stress detrimental effects could be prevented by stress which was applied around first pregnancy; however this beneficial effect is weakened by before second pregnancy stress.
Collapse
Affiliation(s)
- Peyman Pajand
- Azad Islamic University-Damghan Branch, Damghan, Iran
| | - Mahmoud Elahdadi Salmani
- School of Biology, Damghan University, Damghan, Iran,Institute of Biological Sciences, Damghan University, Damghan, Iran,Corresponding author: Mahmoud Elahdadi Salmani. School of Biology, Damghan University, Damghan, Iran. Tel: +98-232-5247146, ;
| | | | - Hasan Abiri
- Azad Islamic University-Damghan Branch, Damghan, Iran
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Kataneh Abrari
- School of Biology, Damghan University, Damghan, Iran,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|