1
|
Wu S, Zhang Y, Lu Y, Yin Y, Yang C, Tang W, Song T, Tao X, Wang Q. Vascular depression: A comprehensive exploration of the definition, mechanisms, and clinical challenges. Neurobiol Dis 2025; 211:106946. [PMID: 40349857 DOI: 10.1016/j.nbd.2025.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Vascular depression (VaDep), which was proposed over two decades ago, is a distinct subtype of depression primarily observed in patients with stroke and cerebral small-vessel disease and is characterized by white matter hyperintensities; however, the lack of standardized diagnostic criteria and consensus limits its clinical application. This review explores the pathological conditions and vascular risk factors that may precipitate VaDep, particularly in relation to stroke and cerebral small-vessel disease. VaDep is distinguished by unique pathophysiological mechanisms and treatment responses. We categorize these mechanisms into three groups: 1) macroscopic mechanisms, including vascular aging, cerebral hypoperfusion, blood-brain barrier disruption, and neural circuit dysfunction; 2) microscopic mechanisms, involving the inflammatory response, hypothalamic-pituitary-adrenal axis dysregulation, impaired monoamine synthesis, and mitochondrial dysfunction; and 3) undetermined mechanisms, such as microbiota-gut-brain axis dysbiosis. These insights support VaDep as a distinct depression subtype, differentiating it from late-life depression and major depressive disorder. Treatment is challenging, as patients with VaDep often exhibit resistance to conventional antidepressants. Addressing vascular risk factors and protecting vascular integrity are essential for effective management. Future research should validate these mechanisms and develop novel diagnostic and therapeutic approaches to improve VaDep outcomes.
Collapse
Affiliation(s)
- Siyuan Wu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, Hunan, China; Clinical Research Center for Cerebrovascular Disease Rehabilitation in Hunan Province, Changsha 410016, Hunan, China
| | - Yi Zhang
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, Hunan, China
| | - Yingqiong Lu
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yuqi Yin
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, Hunan, China
| | - Chen Yang
- Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Wenjing Tang
- Department of Rehabilitation, Rehabilitation Hospital of Hunan Province, Changsha 410003, Hunan, China
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, Hunan, China; Clinical Research Center for Cerebrovascular Disease Rehabilitation in Hunan Province, Changsha 410016, Hunan, China; Hunan Provincial Key Laboratory of Neurorestoratology, Changsha 410016, Hunan, China
| | - Xi Tao
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, Hunan, China; Clinical Research Center for Cerebrovascular Disease Rehabilitation in Hunan Province, Changsha 410016, Hunan, China; Hunan Provincial Key Laboratory of Neurorestoratology, Changsha 410016, Hunan, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
2
|
Wu Y, Xie L, Sun J, Wang Q, Xia W, Cai Q, Lu X, Gou X. Response of astrocytes and their interaction with surrounding brain cells after acute ischemia-reperfusion analyzed by single-cell transcriptome sequencing. Brain Res Bull 2025; 226:111355. [PMID: 40286940 DOI: 10.1016/j.brainresbull.2025.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Astrocytes play a key role in the occurrence and development of ischemic stroke. However, reactive astrocytes have both detrimental and protective roles in ischemic stroke. Regrettably, the stimulation signals associated with the transformation of astrocytes into different subclusters lack systemic analysis, and the mechanism by which astrocytes produce multiple effects is not entirely clear. We investigated the heterogeneity of mouse astrocytes 12 h after cerebral ischemia-reperfusion via Single-cell RNA sequencing and verified gene expressions by reverse transcription-polymerase chain reaction. We acquired astrocyte subclusters' transcriptional characteristics involved in diversified functions. To explore what stimulus signals cause astrocyte heterogeneity, we present a blueprint for cellular communication between astrocyte subclusters and other surrounding brain cells 12 h after ischemia-reperfusion, and identified 9 genes which are potential and promising for being therapeutic targets and 6 genes were specific to astrocyte subcluster 2 that tend to resist ischemia-reperfusion injury. At 12 h after ischemia-reperfusion, each subcluster of astrocytes is characteristic in terms of function and communication with surrounding cells, which is based on the activation genes and transcription molecules that we have revealed with subcluster characteristics. Our results provide a basis for revealing the anti-injury response of astrocytes to cerebral ischemia-reperfusion, which involves coordination of different subclusters and the coordination of astrocytes with surrounding brain cells.
Collapse
Affiliation(s)
- YongHong Wu
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China
| | - Lei Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong Province 515041, China
| | - Jing Sun
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qing Wang
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - WangXiao Xia
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province 430060, China.
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China.
| | - XingChun Gou
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
3
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young‐Pearse TL. Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease. Glia 2025; 73:1166-1187. [PMID: 39901616 PMCID: PMC12012329 DOI: 10.1002/glia.24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Richard V. Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra M. Lish
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Zachary M. Augur
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Pallavi Gaur
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Earvin S. Tio
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Felsky
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tracy L. Young‐Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
4
|
Lawrence AB, Brown SM, Bradford BM, Mabbott NA, Bombail V, Rutherford KMD. Non-neuronal brain biology and its relevance to animal welfare. Neurosci Biobehav Rev 2025; 173:106136. [PMID: 40185375 DOI: 10.1016/j.neubiorev.2025.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-neuronal cells constitute a significant portion of brain tissue and are seen as having key roles in brain homeostasis and responses to challenges. This review illustrates how non-neuronal biology can bring new perspectives to animal welfare through understanding mechanisms that determine welfare outcomes and highlighting interventions to improve welfare. Most obvious in this respect is the largely unrecognised relevance of neuroinflammation to animal welfare which is increasingly found to have roles in determining how animals respond to challenges. We start by introducing non-neuronal cells and review their involvement in affective states and cognition often seen as core psychological elements of animal welfare. We find that the evidence for a causal involvement of glia in cognition is currently more advanced than the corresponding evidence for affective states. We propose that translational research on affective disorders could usefully apply welfare science derived approaches for assessing affective states. Using evidence from translational research, we illustrate the involvement of non-neuronal cells and neuroinflammatory processes as mechanisms modulating resilience to welfare challenges including disease, pain, and social stress. We review research on impoverished environments and environmental enrichment which suggests that environmental conditions which improve animal welfare also improve resilience to challenges through balancing pro- and anti-inflammatory non-neuronal processes. We speculate that non-neuronal biology has relevance to animal welfare beyond neuro-inflammation including facilitating positive affective states. We acknowledge the relevance of neuronal biology to animal welfare whilst proposing that non-neuronal biology provides additional and relevant insights to improve animals' lives.
Collapse
Affiliation(s)
- Alistair B Lawrence
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK.
| | - Sarah M Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | | |
Collapse
|
5
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
8
|
Xiang R, Wang J, Chen Z, Tao J, Peng Q, Ding R, Zhou T, Tu Z, Wang S, Yang T, Chen J, Jia Z, Li X, Zhang X, Chen S, Cheng N, Zhao M, Li J, Xue Q, Zhang H, Jiang C, Xing N, Ouyang K, Pekny A, Michalowska MM, de Pablo Y, Wilhelmsson U, Mitsios N, Liu C, Xu X, Fan X, Pekna M, Pekny M, Chen X, Liu L, Mulder J, Wang M, Wang J. Spatiotemporal transcriptomic maps of mouse intracerebral hemorrhage at single-cell resolution. Neuron 2025:S0896-6273(25)00309-5. [PMID: 40412375 DOI: 10.1016/j.neuron.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/24/2025] [Accepted: 04/25/2025] [Indexed: 05/27/2025]
Abstract
Intracerebral hemorrhage (ICH) is a prevalent disease with high mortality. Despite advances in clinical care, the prognosis of ICH remains poor due to an incomplete understanding of the complex pathological processes. To address this challenge, we generated single-cell-resolution spatiotemporal transcriptomic maps of the mouse brain following ICH. This dataset is the most extensive resource available, providing detailed information about the temporal expression of genes along with a high-resolution cellular profile and preserved cellular organization. We identified 100 distinct cell subclasses, 17 of which were found to play significant roles in the pathophysiology of ICH. We also report similarities and differences between two experimental ICH models and human postmortem ICH brain tissue. This study advances the understanding of the local and global responses of brain cells to ICH. It provides a valuable resource that can facilitate future research and aid the development of novel therapies for this devastating condition.
Collapse
Affiliation(s)
- Rong Xiang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Chen
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zhou
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhencheng Tu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoshuai Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zihan Jia
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueping Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Chen
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengke Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qidi Xue
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Houlian Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kang Ouyang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Albert Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Malgorzata M Michalowska
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Chuanyu Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 40530, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden; University of Newcastle, Newcastle, NSW 2308, Australia; Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Shen T, Tai W, Jiang D, Ma S, Zhong X, Zou Y, Zhang CL. GADD45G operates as a pathological sensor orchestrating reactive gliosis and neurodegeneration. Neuron 2025:S0896-6273(25)00345-9. [PMID: 40409253 DOI: 10.1016/j.neuron.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Reactive gliosis is a hallmark of neuropathology and offers a potential target for addressing numerous neurological diseases. Here, we show that growth arrest and DNA damage inducible gamma (GADD45G), a stress sensor in astrocytes, is a nodal orchestrator of reactive gliosis and neurodegeneration. GADD45G expression in astrocytes is sufficient to incite astrogliosis, microgliosis, synapse loss, compromised animal behavior, and the aggravation of Alzheimer's disease (AD). Conversely, silencing GADD45G specifically in astrocytes preserves synapses and rescues the histological and behavioral phenotypes of AD. Mechanistically, GADD45G controls the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) and neuroimmune signaling pathways, including nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to profound molecular changes and the secretion of various factors that regulate both cell-autonomous and cell-nonautonomous reactive gliosis and glia-neuron interactions. These results uncover GADD45G signaling as a promising therapeutic target for AD and potentially for numerous other neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongfang Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Verstappen K, Klymov A, Marques PAAP, Leeuwenburgh SCG, Walboomers XF. Incorporation of graphene oxide into collagenous biomaterials attenuates scar-forming phenotype transition of reactive astrocytes in vitro. Brain Res Bull 2025; 227:111380. [PMID: 40383237 DOI: 10.1016/j.brainresbull.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The integrin-mediated interaction between collagen type I and reactive astrocytes was recently shown to induce a detrimental, scar-forming phenotype transformation following spinal cord injury (SCI), which severely limits the therapeutic potential of commonly used collagen-based biomaterials. Graphene oxide (GO) is a promising candidate to disrupt the collagen-integrin interaction, since it is capable of altering the surface topography of biomaterials applied as SCI treatment. Moreover, free GO contributes towards potassium and glutamate transport, which is often implicated following SCI. However, it remains unclear whether both the integrin-mediated binding and astrocytic transport of potassium and glutamate are affected by GO, when inserted into collagenous biomaterials. Therefore, in the current study GO was incorporated into collagen-based hydrogels in an attempt to prevent the scar-forming phenotype transition and promote the expression of astrocytic potassium channels and glutamate transporters. Primary astrocytes were cultured either on top of or embedded within GO-enriched collagen type I or adipose tissue-derived extracellular matrix (ECM) gels. The impact of GO incorporation on integrin β1-mediated binding, astrocyte phenotype and potassium and glutamate transport was assessed by gene expression analysis and immunofluorescence studies. Upon GO incorporation into ECM gels, expression of integrin β1 and N-cadherin was significantly decreased. Moreover, GO decreased proteoglycan-associated gene expression by four-fold. Finally, GO incorporation led to a decrease in expression of both potassium channels and glutamate transporters. In conclusion, the incorporation of GO into collagen-based materials attenuated the transition of reactive astrocytes into a scar-forming phenotype.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - X Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| |
Collapse
|
11
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
12
|
Wang X, Zhang H, Wan Z, Li X, Ibáñez CF, Xie M. A single-cell transcriptomic atlas of all cell types in the brain of 5xFAD Alzheimer mice in response to dietary inulin supplementation. BMC Biol 2025; 23:124. [PMID: 40346662 PMCID: PMC12065180 DOI: 10.1186/s12915-025-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is a major threat to the aging population. Due to lack of effective therapy, preventive treatments are important strategies to limit AD onset and progression, of which dietary regimes have been implicated as a key factor. Diet with high fiber content is known to have beneficial effects on cognitive decline in AD. However, a global survey on microbiome and brain cell dynamics in response to high fiber intake at single-cell resolution in AD mouse models is still missing. RESULTS Here, we show that dietary inulin supplementation synergized with AD progression to specifically increase the abundance of Akkermansia muciniphila in gut microbiome of 5 × Familial AD (FAD) mice. By performing single-nucleus RNA sequencing on different regions of the whole brain with three independent biological replicates, we reveal region-specific changes in the proportion of neuron, astrocyte, and granule cell subpopulations upon inulin supplementation in 5xFAD mice. In addition, we find that astrocytes have more pronounced region-specific diversity than microglia. Intriguingly, such dietary change reduces amyloid-β plaque burden and alleviates microgliosis in the forebrain region, without affecting the spatial learning and memory. CONCLUSIONS These results provide a comprehensive overview on the transcriptomic changes in individual cells of the entire mouse brain in response to high fiber intake and a resourceful foundation for future mechanistic studies on the influence of diet and gut microbiome on the brain during neurodegeneration.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhou Wan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Carlos F Ibáñez
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Department of Neuroscience, Karolinska Institute, 17165, Stockholm, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
- Department of Medicine Huddinge, Karolinska Institute, 14183, Stockholm, Sweden.
| |
Collapse
|
13
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Wang T, Wang X, Liu S, Li M, Wan K, Zheng J, Liao K, Wang J, Zou K, Wang L, Xu H, Lei W, Chen G, Li W. Transcription Factor-Based Gene Therapy Enables Functional Repair of Rat Following Chronic Ischemic Stroke. CNS Neurosci Ther 2025; 31:e70448. [PMID: 40401537 PMCID: PMC12096174 DOI: 10.1111/cns.70448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
OBJECTIVE In vivo transcription factor (TF) -mediated gene therapy through astrocyte-to-neuron (AtN) conversion has shown therapeutic effects on rodent and non-human primate cortical ischemic injury in the subacute phase. However, in the clinic, subcortical regions including striatum as well as white matter are vulnerable regions of stroke, with millions of patients beyond subacute phase. In this study, we investigate whether TF-mediated AtN conversion therapy can be extended to treat chronic-phase ischemic stroke involving subcortical regions (e.g., striatum) and white matter, beyond cortical injuries. METHODS Rat middle cerebral artery occlusion (MCAO)-like models were established to induce broad ischemic injuries including cortical and striatal regions. Then multiple rounds of TF-mediated gene therapy treatments through adeno-associated virus (AAV) system to cover the large-scaled infarct areas were conducted in the chronic phase of the stroke models. Magnetic resonance imaging (MRI), [18F] FDG-PET/CT, behavioral tests, immunohistochemistry and bulk-RNA seq were applied to evaluate the AtN conversion, tissue repair and functional recovery. RESULTS Our results revealed that administrated in the chronic phase of ischemic stroke, TF-mediated gene therapy can efficiently regenerate new neurons in both cortical and striatal regions, and promote tissue repair in both grey and white matter. Compared with single round of AAV administration, multiple rounds of treatment regenerated more neurons and led to a significant functional recovery. CONCLUSIONS Our study demonstrates that TF-mediated gene therapy has a broad therapeutic time window and can be applied multiple rounds to treat severe ischemic stroke, making it an attractive therapeutic intervention in the chronic phase after stroke, when current approaches are largely ineffective.
Collapse
Affiliation(s)
- Tao Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Xu Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Shanggong Liu
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Menglei Li
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kaiying Wan
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Jiajun Zheng
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kai Liao
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jinyu Wang
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Kaiming Zou
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
| | - Lu Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Hao Xu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non‐Human Primate Research, GHM Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Wenliang Lei
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| | - Gong Chen
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| | - Wen Li
- Guangdong‐Hong Kong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsJinan UniversityGuangzhouChina
- Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan UniversityGuangzhouChina
| |
Collapse
|
15
|
Carrasco RA, Jang J, Jung J, McCosh RB, Kreisman MJ, Breen KM. Prostaglandin synthesis mediates the suppression of arcuate Kiss1 neuron activation and pulsatile luteinizing hormone secretion during immune/inflammatory stress in female mice. J Neuroendocrinol 2025; 37:e70004. [PMID: 40058772 PMCID: PMC12045731 DOI: 10.1111/jne.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Stress induces a series of compensatory mechanisms with the objective of restoration or adaptation of physiological function. A common casualty of the response to stress is impaired reproduction via the inhibition of pulsatile luteinizing hormone (LH) secretion; however, how stressors convey LH inhibition remains unclear and may be dependent on stress type. Immune/inflammatory stress, modeled with peripheral lipopolysaccharide (LPS) exposure, induces a systemic inflammatory response which may contrast with the neural mechanisms employed by psychosocial stressors. We examined the suppressive effect of LPS versus psychosocial stress, modeled with restraint, on pulsatile LH secretion and investigated the neural mechanisms underlying LPS-induced LH suppression in ovariectomized (OVX) female mice. We observed that both LPS and restraint significantly suppressed mean LH concentrations; however, the dynamics of pulse suppression displayed stress-type dependency. LPS induced a reduction in both LH pulse frequency and amplitude, whereas restraint suppressed LH pulse frequency without compromising pulse amplitude. Next, we investigated the mediatory role of immune/inflammatory signaling for LPS to impair LH secretion and upstream arcuate Kiss1 cell function. Peripheral administration of flurbiprofen, a prostaglandin synthesis inhibitor, blocked the suppressive effect of LPS on LH pulse frequency and amplitude. Interestingly, flurbiprofen only partially prevented the suppressive effect of LPS on arcuate Kiss1 cell activity, as measured by c-Fos expression. These data demonstrate that immune/inflammatory stress inhibits the activity of the LH pulse generator, in part, via a prostaglandin-dependent pathway and supports the role of differential neural mechanisms mediating LH pulse suppression during stress.
Collapse
Affiliation(s)
- Rodrigo A. Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Jessica Jang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Jacklyn Jung
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | | | - Michael J. Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Kellie M. Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
16
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
17
|
Kapapa T, Pfnür A, Halbgebauer R, Broer P, Halbgebauer S, Tumani H, Friedrichs AK, Huber-Lang M, Dörfer L. Biomarkers in Aneurysmatic and Spontaneous Subarachnoid Haemorrhage: A Clinical Prospective Multicentre Biomarker Panel Study of S100B, Claudin-5, Interleukin-10, TREM-1, TREM-2 and Neurofilament Light Chain As Well As Immunoglobulin G and M. Mol Neurobiol 2025:10.1007/s12035-025-04889-3. [PMID: 40295361 DOI: 10.1007/s12035-025-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Following aneurysmatic subarachnoid haemorrhage (SAH), complex pathophysiological processes take place which result in ischaemia, dysfunction of the blood-brain barrier and the clinical development of vasospasms and delayed cerebral ischaemia (DCI). The aim of this study was to present a biomarker panel that can be used for temporal assignment in the pathophysiological process after haemorrhage, a prediction of vasospasm, DCI or outcome. In a prospective multicentre approach, complex laboratory chemistry tests were used to determine the value of the biomarkers S100B, Claudin-5, Interleukin (IL) -10, Triggering receptor expresses on myeloid cells (TREM)-1 and TREM-2, and neurofilament light chain (NfL) as well as IgG and IgM in plasma and Cerebro-spinal-fluid (CSF) in SAH patients. The predictive power of mentioned biomarkers with regard to the occurrence of vasospasms, DCI and the outcome (Glasgow Outcome Scale) were defined by using sophisticated statistical methods with the level of significance at p ≤ 0.05. Mean age of the 12 patients included was 56 (SD:14) years with 67% female patients and that of the 11 control subjects was 74 (SD:3) years with 55% female subjects. S100B showed higher concentrations compared to the control patients on the first four days (p ≤ 0.0141). For IL-10, the CSF concentrations showed a continuous increase: day 2 (p = 0.0074), day 4 (p = 0.0012), and day 5 (p < 0.0001). Regarding the TREM1 and TREM2 balance, CSF concentrations of TREM1 increased until day eight (p ≤ 0.0055). TREM-2 plasma concentrations decreased below the levels of control patients and appeared unchanged for the further course. The greatest difference in the CSF concentration of NfL between the patients and the control group was seen on day 8 (p = 0.0104). The differentiation between patients with and without DCI showed different concentration curves of the TREM1 CSF-plasma index with increasing concentrations for patients with DCI. The TREM 2 CSF-plasma index showed higher concentrations for patients with DCI. Patients without DCI showed a decreasing concentration of the NfL CSF-plasma index compared to an increase when vasospasm was detected. NfL, TREM-1 and TREM-2 have the potential to be relevant biomarkers for SAH in the intermediate and delayed injury phase.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, Ulm, 89081, Germany.
| | - Andreas Pfnür
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, Ulm, 89081, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstraße 8/1, Ulm, 89081, Germany
| | - Patrik Broer
- Department of Intensive Care Medicine, Hospital Winterthur, Brauerstrasse 15, Winterthur, 8401, Austria
| | - Steffen Halbgebauer
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| | - Ann-Kathrin Friedrichs
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstraße 8/1, Ulm, 89081, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstraße 8/1, Ulm, 89081, Germany
| | - Lena Dörfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstraße 8/1, Ulm, 89081, Germany
| |
Collapse
|
18
|
Liu X, Xia J, Shao W, Li X, Yuan D, Xie J, Zhang L, Tang Y, Zhao H, Wu P. Adhesion-Related Pathways and Functional Polarization of Astrocytes in Traumatic Brain Injury: Insights from Single-cell RNA Sequencing. Neuromolecular Med 2025; 27:30. [PMID: 40287916 DOI: 10.1007/s12017-025-08858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Traumatic brain injury (TBI) induces profound functional heterogeneity in astrocytes, yet the regulatory mechanisms underlying this diversity remain poorly understood. In this study, we analyzed single-cell RNA sequencing data from the cortex and hippocampus of TBI mouse models to characterize astrocyte subtypes and their functional dynamics. We identified two major reactive subtypes: A1 astrocytes, enriched in inflammatory response, synaptic regulation, and neurodegenerative disease-related pathways; and A2 astrocytes, enriched in lipid metabolism, extracellular matrix (ECM) remodeling, and phagosome formation pathways. These functional differences were consistently observed across datasets with varying injury severities. Notably, adhesion-related pathways-including gap junctions, adherens junctions, and calcium-dependent adhesion-showed significant subtype-specific expression patterns and temporal shifts. Pseudotime trajectory analysis further suggested a potential transition between A1 and A2 states, accompanied by dynamic regulation of adhesion-related genes. Our findings highlight the complex and context-dependent roles of astrocytes in TBI and propose cell adhesion as a key modulator of astrocyte functional polarization.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Ji Xia
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Wenjing Shao
- Department of Anesthesiology, Chongqing Huamei Plastic Surgery Hospital, Chongqing, 400015, China
| | - Xiaoming Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Danfeng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Jingru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Yuqian Tang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Pengfei Wu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China.
| |
Collapse
|
19
|
Vellucci L, Mazza B, Barone A, Nasti A, De Simone G, Iasevoli F, de Bartolomeis A. The Role of Astrocytes in the Molecular Pathophysiology of Schizophrenia: Between Neurodevelopment and Neurodegeneration. Biomolecules 2025; 15:615. [PMID: 40427508 DOI: 10.3390/biom15050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Schizophrenia is a chronic and severe psychiatric disorder affecting approximately 1% of the global population, characterized by disrupted synaptic plasticity and brain connectivity. While substantial evidence supports its classification as a neurodevelopmental disorder, non-canonical neurodegenerative features have also been reported, with increasing attention given to astrocytic dysfunction. Overall, in this study, we explore the role of astrocytes as a structural and functional link between neurodevelopment and neurodegeneration in schizophrenia. Specifically, we examine how astrocytes contribute to forming an aberrant substrate during early neurodevelopment, potentially predisposing individuals to later neurodegeneration. Astrocytes regulate neurotransmitter homeostasis and synaptic plasticity, influencing early vulnerability and disease progression through their involvement in Ca2⁺ signaling and dopamine-glutamate interaction-key pathways implicated in schizophrenia pathophysiology. Astrocytes differentiate via nuclear factor I-A, Sox9, and Notch pathways, occurring within a neuronal environment that may already be compromised in the early stages due to the genetic factors associated with the 'two-hits' model of schizophrenia. As a result, astrocytes may contribute to the development of an altered neural matrix, disrupting neuronal signaling, exacerbating the dopamine-glutamate imbalance, and causing excessive synaptic pruning and demyelination. These processes may underlie both the core symptoms of schizophrenia and the increased susceptibility to cognitive decline-clinically resembling neurodegeneration but driven by a distinct, poorly understood molecular substrate. Finally, astrocytes are emerging as potential pharmacological targets for antipsychotics such as clozapine, which may modulate their function by regulating glutamate clearance, redox balance, and synaptic remodeling.
Collapse
Affiliation(s)
- Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Anita Nasti
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona. c. Villarroel, 170, 08036 Barcelona, Spain
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Wang X, Zhou Z, Zhang Y, Liu J, Qin T, Zhou W, Li Q, Wu X, Xue K, Cao H, Su Y, Zhao S, Lu C, Jiang T, Yin G, Chen J. Exosome-shuttled miR-5121 from A2 astrocytes promotes BSCB repair after traumatic SCI by activating autophagy in vascular endothelial cells. J Nanobiotechnology 2025; 23:291. [PMID: 40229869 PMCID: PMC11998472 DOI: 10.1186/s12951-025-03365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that significantly impacts patients' quality of life. Following SCI, the blood-spinal cord barrier (BSCB) is destroyed, leading to ischemia and hypoxia, which further exacerbates the imbalance in the spinal cord microenvironment. A2-type astrocytes, which arise under ischemic and hypoxic conditions, have been reported to promote SCI repair. However, the roles of exosomes derived from A2 astrocytes (A2-Exos) in SCI have not been explored. This study aims to investigate the role of A2-Exos in SCI repair, particularly in BSCB restoration, and to elucidate its potential mechanisms. GEO database analysis, western blotting, and immunofluorescence were used to detect A2 astrocyte polarization after SCI in mice. In vitro, A2 astrocytes were obtained through hypoxia induction, and A2-Exos were extracted via ultracentrifugation. An in vivo SCI model and a series of in vitro experiments demonstrated the reparative effects of A2-Exos on BSCB following SCI. Furthermore, miRNA sequencing analysis and rescue experiments confirmed the role of miRNAs in A2-Exos-mediated BSCB repair. Finally, luciferase assays and western blotting were performed to investigate the underlying mechanisms. The results showed that A2-Exos promote motor function recovery and BSCB repair in mice following SCI. In vitro, A2-Exos facilitated BSCB reconstruction and endothelial cell autophagy. miRNA sequencing identified miR-5121 as the most significantly enriched miRNA in A2-Exos, suggesting its involvement in BSCB repair and autophagy regulation. AKT2 was identified as a potential downstream target of miR-5121. Functional gain- and loss-of-function experiments further validated the miR-5121/AKT2 axis. Finally, we demonstrated that the AKT2/mTOR/p70S6K pathway may mediate the effects of miR-5121 in A2-Exos on BSCB repair.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
- Department of Orthopedics, Maanshan People's Hospital, Maanshan, Anhui, 243000, China
| | - Zihan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Jiayun Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Qingqing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Xincan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Kaixiao Xue
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Heng Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Yunxin Su
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China.
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Jiangsu Provincial Clinical Research Institute, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
22
|
D'Sa K, Choi ML, Wagen AZ, Setó-Salvia N, Kopach O, Evans JR, Rodrigues M, Lopez-Garcia P, Lachica J, Clarke BE, Singh J, Ghareeb A, Bayne J, Grant-Peters M, Garcia-Ruiz S, Chen Z, Rodriques S, Athauda D, Gustavsson EK, Gagliano Taliun SA, Toomey C, Reynolds RH, Young G, Strohbuecker S, Warner T, Rusakov DA, Patani R, Bryant C, Klenerman DA, Gandhi S, Ryten M. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. SCIENCE ADVANCES 2025; 11:eadp8504. [PMID: 40215316 PMCID: PMC11988446 DOI: 10.1126/sciadv.adp8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
RNA editing is a posttranscriptional mechanism that targets changes in RNA transcripts to modulate innate immune responses. We report the role of astrocyte-specific, ADAR1-mediated RNA editing in neuroinflammation in Parkinson's disease (PD). We generated human induced pluripotent stem cell-derived astrocytes, neurons and cocultures and exposed them to small soluble alpha-synuclein aggregates. Oligomeric alpha-synuclein triggered an inflammatory glial state associated with Toll-like receptor activation, viral responses, and cytokine secretion. This reactive state resulted in loss of neurosupportive functions and the induction of neuronal toxicity. Notably, interferon response pathways were activated leading to up-regulation and isoform switching of the RNA deaminase enzyme, ADAR1. ADAR1 mediates A-to-I RNA editing, and increases in RNA editing were observed in inflammatory pathways in cells, as well as in postmortem human PD brain. Aberrant, or dysregulated, ADAR1 responses and RNA editing may lead to sustained inflammatory reactive states in astrocytes triggered by alpha-synuclein aggregation, and this may drive the neuroinflammatory cascade in Parkinson's.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Minee L. Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Brain & Cognitive Sciences, KAIST, 921 Dehak-ro, Daejeon, Republic of Korea
| | - Aaron Z. Wagen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuroscience and Cell Biology Research Institute, City St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Patricia Lopez-Garcia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joanne Lachica
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benjamin E. Clarke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jaijeet Singh
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ali Ghareeb
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - James Bayne
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Melissa Grant-Peters
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sonia Garcia-Ruiz
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Zhongbo Chen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Samuel Rodriques
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- FutureHouse, 1405 Minnesota Street, San Francisco, CA 94107, USA
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emil K. Gustavsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah A. Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christina Toomey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Regina H. Reynolds
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - George Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Stephanie Strohbuecker
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thomas Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
23
|
Ibork H, Ait Lhaj Z, Boualam K, El Idrissi S, B Ortaakarsu A, Hajji L, Manalo Morgan A, Khallouki F, Taghzouti K, Abboussi O. Cannabidiol-Rich Cannabis sativa L. Extract Alleviates LPS-Induced Neuroinflammation Behavioral Alterations, and Astrocytic Bioenergetic Impairment in Male Mice. J Neurosci Res 2025; 103:e70035. [PMID: 40195769 DOI: 10.1002/jnr.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Neuroinflammation is a hallmark of various neurodegenerative disorders, yet effective treatments remain limited. This study investigates the neuroprotective potential of a cannabidiol (CBD)-Rich Cannabis sativa L. (CS) extract in a lipopolysaccharide (LPS)-induced neuroinflammation mouse model. The effects on anxiety-like behavior, cognitive function, and locomotor activity were assessed using behavioral tests (open field, elevated plus maze, novel object recognition, and Morris water maze). Antioxidant activity was measured by assaying glutathione (GSH) levels and lipid peroxidation by-products (TBARs). Anti-inflammatory properties were evaluated using quantitative reverse transcription polymerase chain reaction (QRt-PCR) for proinflammatory cytokines (IL-6 and TNF-α), glial fibrillary acidic protein (GFAP), and cannabinoid receptor 1 (CB1) mRNAs in the prefrontal cortex (PFC). Astrocytic bioenergetics were analyzed using extracellular flux assays. Additionally, computational inference with a deep learning approach was conducted to evaluate the synergistic interactions among CS phytocompounds on the CB1 receptors. Compared with synthetic CBD, the CS extract (20.0 mg/kg) demonstrated superior efficacy in mitigating LPS-induced anxiety-like behavior, cognitive deficits, and locomotor impairments. It also significantly mitigated oxidative stress (increased GSH, reduced TBARs) and suppressed proinflammatory cytokines and GFAP mRNAs, indicating potent anti-inflammatory properties. The extract modulated CB1 receptor expression and preserved metabolic homeostasis in cortical astrocytes, preventing their shift from glycolysis to oxidative phosphorylation under neuroinflammatory conditions. Computational modeling highlighted conformational changes in CB1 receptor residues induced by Delta-9-THC that enhanced CBD binding. These findings underscore the potential of CS extract as a therapeutic candidate for managing neuroinflammation and its associated neurodegenerative consequences, warranting further clinical exploration.
Collapse
Affiliation(s)
- Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Khadija Boualam
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmet B Ortaakarsu
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Lhoussain Hajji
- Bioactives, Health and Environmental Laboratory, Epigenetics Research Team, Moulay Ismail University, Meknes, Morocco
| | | | - Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Biology Department, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
24
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Pérez-Núñez R, González MF, Avalos AM, Leyton L. Impacts of PI3K/protein kinase B pathway activation in reactive astrocytes: from detrimental effects to protective functions. Neural Regen Res 2025; 20:1031-1041. [PMID: 38845231 PMCID: PMC11438337 DOI: 10.4103/nrr.nrr-d-23-01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system. Upon injury and inflammation, astrocytes become reactive and undergo morphological and functional changes. Depending on their phenotypic classification as A1 or A2, reactive astrocytes contribute to both neurotoxic and neuroprotective responses, respectively. However, this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries. Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles, which emphasizes the heterogeneous nature of their reactivity. Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types, releasing cytokines, and influencing the immune response. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior, as evidenced by in silico , in vitro , and in vivo results. In astrocytes, inflammatory cues trigger a cascade of molecular events, where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses. Here, we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation. We highlight the involvement of various signaling pathways that regulate astrocyte reactivity, including the PI3K/AKT/mammalian target of rapamycin (mTOR), α v β 3 integrin/PI3K/AKT/connexin 43, and Notch/PI3K/AKT pathways. While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage, evidence suggests that activating this pathway could also yield beneficial outcomes. This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation. The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior. The findings should then be validated using in vivo models to ensure real-life relevance. The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage, although further studies are required to fully comprehend its role due to varying factors such as different cell types, astrocyte responses to inflammation, and disease contexts. Specific strategies are clearly necessary to address these variables effectively.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Fernanda González
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Tao X, Chen H, Zhu Z, Ren T, Zhen H, Sun X, Song Y, Xu X, Song Z, Liu J. Astrocyte-conditional knockout of MOB2 inhibits the phenotypic conversion of reactive astrocytes from A1 to A2 following spinal cord injury in mice. Int J Biol Macromol 2025; 300:140289. [PMID: 39863205 DOI: 10.1016/j.ijbiomac.2025.140289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice. MOB2 modulated A1/A2 transformation in a primary astrocyte reactive cell model. Therefore, we constructed MOB2 conditional knockout mice (MOB2GFAP-CKO) and discovered that conditional knockout of MOB2 inhibited the conversion of reactive astrocytes from A1 to A2 and hindered spinal cord function recovery. Mechanistically, MOB2 increased the activation of PI3K-AKT signaling to promote A1/A2 transformation in vitro, whereas sc79 (an AKT activator) reversed the subtype transformation of reactive astrocytes and improved functional recovery in MOB2GFAP-CKO mice after SCI. Taken together, study provides the first insights into how MOB2 acts as a novel regulator to promote the conversion this of the reactive astrocyte phenotype from A1 to A2, showing great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Xin Tao
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China; Department of Orthopedics, The People's Hospital of Liyang, Liyang 213300, Jiangsu, People's Republic of China
| | - Haining Chen
- Department of Orthopedics, The First Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, People's Republic of China
| | - Zhenghuan Zhu
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Tianran Ren
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Hongming Zhen
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xiaoliang Sun
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Zheng P, Qi Z, Gao B, Yao Y, Chen J, Cong H, Huang Y, Shi FD. SERPINA3 predicts long-term neurological outcomes and mortality in patients with intracerebral hemorrhage. Cell Death Dis 2025; 16:218. [PMID: 40157917 PMCID: PMC11954896 DOI: 10.1038/s41419-025-07551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and disability rates, and long-term outcomes among survivors remain unpredictable due to the lack of reliable biomarkers. In this study, spatial transcriptomics was used to analyze molecular profiles in autopsy brain tissues from chronic ICH patients, revealing distinct transcriptomic features in the thalamus and cortex, with common inflammatory characteristics such as gliosis, apoptosis, and immune activation. Serine proteinase inhibitor NA3 (SERPINA3) was significantly upregulated in both regions and co-expressed with astrocytes in the thalamus. Pathological studies in postmortem human tissues and mouse models confirmed elevated SERPINA3 expression, with murine Serpina3n showing a similar pattern in mice. Plasma analysis of 250 ICH patients and 250 healthy controls revealed significantly higher SERPINA3 levels in ICH patients, correlating with hemorrhage severity, National Institutes of Health Stroke Scale (NIHSS), and Glasgow Coma Scale (GCS) scores, and long-term functional outcomes. Higher SERPINA3 levels within 72 hours of hemorrhage onset were independently associated with worse functional recovery (mRS ≥ 3) and increased all-cause mortality at 6 and 12 months. Additionally, SERPINA3 levels at 7 days post-ictus correlated with white matter hyperintensities and poor cognitive performance at 6 months. These findings highlight SERPINA3 as a potential prognostic biomarker for ICH, warranting further investigation into its role in long-term neurological dysfunction and validation in larger prospective cohorts.
Collapse
Affiliation(s)
- Pei Zheng
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihui Qi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Gao
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Yao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingshan Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengri Cong
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Tiantan Brain Bank, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
28
|
O'Neill K, Shaw R, Bolger I, Tam OH, Phatnani H, Gale Hammell M. ALS molecular subtypes are a combination of cellular and pathological features learned by deep multiomics classifiers. Cell Rep 2025; 44:115402. [PMID: 40067829 PMCID: PMC12011103 DOI: 10.1016/j.celrep.2025.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex syndrome with multiple genetic causes and wide variation in disease presentation. Despite this heterogeneity, large-scale genomics studies revealed that ALS postmortem samples can be grouped into a small number of subtypes, defined by transcriptomic signatures of mitochondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia), or TDP-43 pathology and associated transposable elements (ALS-TE). In this study, we present a deep ALS neural net classifier (DANCer) for ALS molecular subtypes. Applying DANCer to an expanded cohort from the NYGC ALS Consortium highlights two subtypes that strongly correlate with disease duration: ALS-TE in cortex and ALS-Glia in spinal cord. Finally, single-nucleus transcriptomes demonstrate that ALS subtypes are recapitulated in neurons and glia, with both ALS-wide and subtype-specific alterations in all cell types. In summary, ALS molecular subtypes represent a combination of cellular and pathological features that correlate with clinical features of ALS.
Collapse
Affiliation(s)
- Kathryn O'Neill
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Regina Shaw
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Isobel Bolger
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Oliver H Tam
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Hemali Phatnani
- New York Genome Center, New York, NY 10013, USA; Department of Neurology, Columbia University, New York, NY 10032, USA.
| | - Molly Gale Hammell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Neuroscience & Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
29
|
Mongi-Bragato B, Sánchez MA, Avalos MP, Boezio MJ, Guzman AS, Rigoni D, Perassi EM, Mas CR, Bisbal M, Bollati FA, Cancela LM. Activation of Nuclear Factor-kappa B in the nucleus accumbens core is necessary for chronic stress-induced glutamate and neuro-immune alterations that facilitate cocaine self-administration. Brain Behav Immun 2025; 128:1-15. [PMID: 40139275 DOI: 10.1016/j.bbi.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Stressful events are associated with impaired glutamate signaling and neuroimmune adaptations that may increase the vulnerability of individuals to cocaine addiction. We previously demonstrated that chronic stress induced reactive microglia and increased TNF-α expression in the nucleus accumbens core (NAcore), both alterations strongly linked with impaired glutamate homeostasis and the facilitation of cocaine self-administration. The nuclear factor kappa-B (NF-κB) is a critical regulator of many immune- and addiction-related genes, such as the gene coding for glutamate transporter (GLT-1), and it is considered a master regulator of inflammation, reported to be a key driver of microglia activation in psychiatric diseases. However, no studies have examined the role of NF-κB signaling within the NAcore in the neuroimmune and glutamate mechanism, underpinning stress-induced vulnerability to cocaine self-administration. Here we investigate whether viral dominant negative inhibition of I kappa B kinase (IKKdn), a signaling molecule responsible for NF-κB activation, would prevent stress-induced facilitation to cocaine self-administration and associated changes in accumbal GLT-1 and TNF-α expression. We also explore N-myc proto-oncogene protein (N-myc) levels as a link between NF-κB and stress-induced GLT-1 downregulation. For seven days (days 1-7), adult male rats were restrained for 2 h/day. Animals were administered an intra-NAcore with IKKdn or empty lentiviruses on day 14 after the first restraint stress session. Marked activation of NF-κB was detected in the NAcore of stressed subjects, along with increased NF-κB expression in astrocytes. Consistently, viral NF-κB inhibition prevented stress-induced facilitation of cocaine self-administration. Moreover, NF-κB blockade results in the restoration of stress-induced reduction in GLT-1 levels and was effective in suppressing stress-induced TNF-α within the NAcore. These findings suggest that accumbal NF-κB signaling exerts a central control over stress-altered downstream neuroimmune and glutamate function underlying vulnerability to cocaine use disorders.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| | - Marianela Adela Sánchez
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - María Paula Avalos
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - María Julieta Boezio
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Andrea Susana Guzman
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Diana Rigoni
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Eduardo Marcelo Perassi
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Carlos Ruben Mas
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Departamento de Química Bilógica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Friuli 2434, Colinas de Vélez Sarsfield (5016) Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Flavia Andrea Bollati
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| | - Liliana Marina Cancela
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET, Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba, Argentina.
| |
Collapse
|
30
|
Wang Z, Tian Y, Fu T, Yang F, Li J, Yang L, Zhang W, Zheng W, Jiang X, Xu Z, You Y, Li X, Liu G, Xie Y, Yang Z, Qi D, Zhang Z. Coordinated regulation of cortical astrocyte maturation by OLIG1 and OLIG2 through BMP7 signaling modulation. J Genet Genomics 2025:S1673-8527(25)00081-5. [PMID: 40139307 DOI: 10.1016/j.jgg.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Astrocyte maturation is crucial for brain function, yet the mechanisms regulating this process remain poorly understood. In this study, we identify the bHLH transcription factors Olig1 and Olig2 as essential coordinators of cortical astrocyte maturation. We demonstrate that Olig1 and Olig2 work synergistically to regulate cortical astrocyte maturation by modulating Bmp7 expression. Genetic ablation of both Olig1 and Olig2 results in defective astrocyte morphology, including reduced process complexity and an immature gene expression profile. Single-cell RNA sequencing reveals a shift towards a less mature astrocyte state, marked by elevated levels of HOPX and GFAP, resembling human astrocytes. Mechanistically, Olig1 and Olig2 bind directly to the Bmp7 enhancer, repressing its expression to promote astrocyte maturation. Overexpression of Bmp7 in vivo replicates the astrocyte defects seen in Olig1/2 double mutants, confirming the critical role of BMP7 signaling in this process. These findings provide insights into the transcriptional and signaling pathways regulating astrocyte development and highlight Olig1 and Olig2 as key regulators of cortical astrocyte maturation, with potential implications for understanding glial dysfunction in neurological diseases.
Collapse
Affiliation(s)
- Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Tongye Fu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Feihong Yang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Li
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Wen Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Wenhui Zheng
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Xin Jiang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Guoping Liu
- Neurovascular Center, Changhai Hospital, Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai 200433, China
| | - Yunli Xie
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China
| | - Dashi Qi
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200030, China.
| |
Collapse
|
31
|
Wu J, Li R, Wang J, Zhu H, Ma Y, You C, Shu K. Reactive Astrocytes in Glioma: Emerging Opportunities and Challenges. Int J Mol Sci 2025; 26:2907. [PMID: 40243478 PMCID: PMC11989224 DOI: 10.3390/ijms26072907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Gliomas are the most prevalent malignant tumors in the adult central nervous system (CNS). Glioblastoma (GBM) accounts for approximately 60-70% of primary gliomas. It is a great challenge to human health because of its high degree of malignancy, rapid progression, short survival time, and susceptibility to recurrence. Owing to the specificity of the CNS, the glioma microenvironment often contains numerous glial cells. Astrocytes are most widely distributed in the human brain and form reactive astrocyte proliferation regions around glioma tissue. In addition, astrocytes are activated under pathological conditions and regulate tumor and microenvironmental cells through cell-to-cell contact or the secretion of active substances. Therefore, astrocytes have attracted attention as important components of the glioma microenvironment. Here, we focus on the mechanisms of reactive astrocyte activation under glioma conditions, their contribution to the mechanisms of glioma genesis and progression, and their potential value as targets for clinical intervention in gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Avenue, Qiao Kou District, Wuhan 430030, China; (J.W.); (J.W.); (H.Z.); (Y.M.)
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Avenue, Qiao Kou District, Wuhan 430030, China; (J.W.); (J.W.); (H.Z.); (Y.M.)
| |
Collapse
|
32
|
Ammothumkandy A, Cayce A, Shariq M, Bonaguidi MA. Astroglia's role in synchronized spontaneous neuronal activity: from physiology to pathology. Front Cell Neurosci 2025; 19:1544460. [PMID: 40177583 PMCID: PMC11961896 DOI: 10.3389/fncel.2025.1544460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The nervous system relies on a balance of excitatory and inhibitory signals. Aberrant neuronal hyperactivity is a pathological phenotype associated with several neurological disorders, with its most severe effects observed in epilepsy patients. This review explores the literature on spontaneous synchronized neuronal activity, its physiological role, and its aberrant forms in disease. Emphasizing the importance of targeting underlying disease mechanisms beyond traditional neuron-focused therapies, the review delves into the role of astroglia in epilepsy progression. We detail how astroglia transitions from a normal to a pathological state, leading to epileptogenic seizures and cognitive decline. Astroglia activity is correlated with epileptiform activity in both animal models and human tissue, indicating their potential role in seizure induction and modulation. Understanding astroglia's dual beneficial and detrimental roles could lead to novel treatments for epilepsy and other neurological disorders with aberrant neuronal activity as the underlying disease substrate.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Mohammad Shariq
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Gerontology, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Thau-Habermann N, Gschwendtberger T, Bodemer C, Petri S. Parthenolide regulates microglial and astrocyte function in primary cultures from ALS mice and has neuroprotective effects on primary motor neurons. PLoS One 2025; 20:e0319866. [PMID: 40100917 PMCID: PMC11918366 DOI: 10.1371/journal.pone.0319866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Over the last twenty years, the role of microgliosis and astrocytosis in the pathophysiology of neurodegenerative diseases has increasingly been recognized. Dysregulation of microglial and astrocyte properties and function has been described also in the fatal degenerative motor neuron disease amyotrophic lateral sclerosis (ALS). Microglia cells, the immune cells of the nervous system, can either have an immunonegative neurotoxic or immunopositive neuroprotective phenotype. The feverfew plant (Tanacetum parthenium) derived compound parthenolide has been found to be capable of interfering with microglial phenotype and properties. Positive treatment effects were shown in animal models of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Now we were able to show that PTL has a modulating effect on primary mouse microglia cells, both wild type and SOD1, causing them to adopt a more neuroprotective potential. Furthermore, we were able to show that PTL, through its positive effect on microglia, also has an indirect positive impact on motor neurons, although PTL itself has no direct effect on these primary motor neurons. The results of our study give reason to consider PTL as a drug candidate for ALS.
Collapse
Affiliation(s)
| | | | - Colin Bodemer
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
34
|
Cooper ML, Gildea HK, Selles MC, Katafygiotou E, Liddelow SA, Chao MV. Astrocytes in the mouse brain respond bilaterally to unilateral retinal neurodegeneration. Proc Natl Acad Sci U S A 2025; 122:e2418249122. [PMID: 40063795 PMCID: PMC11929491 DOI: 10.1073/pnas.2418249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Glaucomatous optic neuropathy, or glaucoma, is the world's primary cause of irreversible blindness. Glaucoma is comorbid with other neurodegenerative diseases, but how it might impact the environment of the full central nervous system to increase neurodegenerative vulnerability is unknown. Two neurodegenerative events occur early in the optic nerve, the structural link between the retina and brain: loss of anterograde transport in retinal ganglion cell (RGC) axons and early alterations in astrocyte structure and function. Here, we used whole-mount tissue clearing of full mouse brains to image RGC anterograde transport function and astrocyte responses across retinorecipient regions early in a unilateral microbead occlusion model of glaucoma. Using light sheet imaging, we found that RGC projections terminating specifically in the accessory optic tract are the first to lose transport function. Although degeneration was induced in one retina, astrocytes in both brain hemispheres responded to transport loss in a retinotopic pattern that mirrored the degenerating RGCs. A subpopulation of these astrocytes in contact with large descending blood vessels were immunopositive for LCN2, a marker associated with astrocyte reactivity. Together, these data suggest that even early stages of unilateral glaucoma have broad impacts on the health of astrocytes across both hemispheres of the brain, implying a glial mechanism behind neurodegenerative comorbidity in glaucoma.
Collapse
Affiliation(s)
- Melissa L. Cooper
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Holly K. Gildea
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Maria Clara Selles
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Eleni Katafygiotou
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Shane A. Liddelow
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Ophthalmology, New York University Langone Health, New York, NY10016
| | - Moses V. Chao
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Psychiatry, New York University Langone Health, New York, NY10016
| |
Collapse
|
35
|
Tang W, Wang A, Liu S, Wen G, Qi H, Gu Y, Xu C, Ren S, Zhang S, He Y. Calycosin regulates astrocyte reactivity and astrogliosis after spinal cord injury by targeting STAT3 phosphorylation. J Neuroimmunol 2025; 400:578535. [PMID: 39954615 DOI: 10.1016/j.jneuroim.2025.578535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Astrocytes are the most populous glial cells in the central nervous system (CNS), which can exert detrimental effects through a process of reactive astrogliosis. Our previous study has indicated the potential effect of Calycosin in preventing spinal cord injury (SCI). This study aims to investigate the mechanism by which calycosin regulates the polarization of A1 astrocytes, a neurotoxic subtype of reactive astrocytes, in SCI models. MATERIALS AND METHODS The SCI model was induced by applying mechanical compression to the spinal cord using vascular clamps. A1 astrocyte differentiation was induced by treating astrocytes with microglia supernatant obtained after Lipopolysaccharide (LPS) stimulation. Key protein expression levels were analyzed by Western blotting, and astrocyte markers such as CS56, GFAP, C3, S100A10 were assessed through immunofluorescence staining. RESULTS Calycosin treatment significantly reduced glial scar formation and C3 expression in SCI rats. However, S100A10 expression remained unchanged. Further analysis showed that Calycosin inhibited A1 astrocyte activation, migration, and invasion, which was associated with STAT3 phosphorylation. Calycosin downregulated p-STAT3 levels in both A1 astrocytes and SCI rats. These effects were reversed by Colivelin (a STAT3 activator) in A1 astrocytes. CONCLUSION Calycosin treatment can modulate p-STAT3 expression, thereby altering the functionality of astrocytes during the recovery phase and positively impacting the treatment and rehabilitation of SCI.
Collapse
Affiliation(s)
- Wenhai Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Aitao Wang
- Department of Anesthesiology, Hohhot First Hospital, Hohhot 010030, China
| | - Shengxing Liu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Guangyu Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Hao Qi
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuntao Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Chunzhao Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shanwu Ren
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shunli Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China.
| | - Yongxiong He
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
36
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
38
|
Qu Y, Yi L, Tang Y, Yang F, Pan BF, Shi S, Qu C, Li F, Wen S, Pan Y. TSG-6 Protects Against Cerebral Ischemia-Reperfusion Injury via Upregulating Hsp70-1B in Astrocytes. CNS Neurosci Ther 2025; 31:e70354. [PMID: 40130432 PMCID: PMC11933850 DOI: 10.1111/cns.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS This study aimed to investigate the relationship between tumor necrosis factor alpha-induced protein (TNFAIP6/TSG-6) and astrocytes in cerebral ischemia/reperfusion (I/R) injury. METHODS Utilizing in vivo and in vitro cerebral I/R models, cerebral infarct volumes, neurobehavioral outcomes, blood-brain barrier (BBB) permeability, as well as indicators of astrocyte apoptosis, reactivity, and A1 phenotype were assessed to evaluate the effects of recombinant rattus TSG-6 (rrTSG-6) on astrocytes in acute cerebral I/R injury. Following mRNA sequencing of all astrocyte groups, astrocyte apoptosis and reactivity were analyzed through a combined intervention of rrTSG-6 and Apoptozole, a heat shock protein 70-1B (Hsp70-1B) inhibitor, in vitro. RESULTS The findings demonstrated that rrTSG-6 significantly reduced cerebral infarct volumes by nearly half, improved neurobehavioral outcomes, mitigated BBB damage, and suppressed the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. mRNA sequencing revealed that the Hsp70-1B protein level increased to approximately 1.6 times that of the rrTSG-6 non-intervention group. Furthermore, Apoptozole impeded the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. CONCLUSION TSG-6 inhibited nuclear factor kappa-B (NF-κB) phosphorylation by upregulating Hsp70-1B in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocytes, thereby exerting a protective effect through anti-apoptotic mechanisms and the suppression of astrocyte reactivity and A1 transformation following cerebral I/R injury.
Collapse
Affiliation(s)
- Yewei Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- NHC Key Laboratory of Cell TransplantationFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Lian Yi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yushi Tang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fan Yang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Byron Fei Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shanshan Shi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Changda Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fangqin Li
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shirong Wen
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yujun Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
39
|
Chen W, Mao T, Ma R, Xiong Y, Han R, Wang L. The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 2025; 55:49. [PMID: 39930815 PMCID: PMC11781528 DOI: 10.3892/ijmm.2025.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.
Collapse
Affiliation(s)
- Weixin Chen
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Tangyou Mao
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Rui Ma
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Yuxuan Xiong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Ran Han
- Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Le Wang
- Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
40
|
Zhang L, Xu Z, Jia Z, Cai S, Wu Q, Liu X, Hu X, Bai T, Chen Y, Li T, Liu Z, Wu B, Zhu J, Zhou H. Modulating mTOR-dependent astrocyte substate transitions to alleviate neurodegeneration. NATURE AGING 2025; 5:468-485. [PMID: 39779911 DOI: 10.1038/s43587-024-00792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway. In Alzheimer's disease (AD) and aging, we observed an imbalance in neurotoxic and neuroprotective astrocytes in animal models and human patients. Moreover, targeting mTOR in astrocytes with rapamycin or shRNA mitigated astrocyte neurotoxic effects in neurodegenerative mouse models. Overall, our study uncovers a mechanism through which astrocytes exhibit neuroprotective functions before becoming neurotoxic under neuroinflammatory conditions and highlights mTOR modulation specifically in astrocytes as a potential therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Zhengzheng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shicheng Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinde Hu
- Genemagic Biosciences Co., Ltd., Shanghai, China
| | - Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yongyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Li
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Bin Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
41
|
Choi HN, Kim SH, Jo MG, Lee B, Kim YJ, Lee SE, Lee JH, Seong HM, Kim SJ, Park SW, Kim HJ, Kang H, Lee CH, Lee MY, Yun SP, Kim M. A2-Astrocyte Activation by Short-Term Hypoxia Rescues α-Synuclein Pre-Formed-Fibril-Induced Neuronal Cell Death. Biomedicines 2025; 13:604. [PMID: 40149582 PMCID: PMC11940376 DOI: 10.3390/biomedicines13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a neuro-degenerative disease for which a radical cure is not available, only symptomatic control. Studies have shown that hypoxia may have disease-modifying effects on PD. Methods: Herein, we investigated whether short-term hypoxia activates astrocytes and whether it has a protective effect on pre-formed fibril (PFF)-treated primary cortical neurons. Results: Long-term hypoxia suppresses astrocyte activation and induces cell death, whereas short-term hypoxia activates astrocytes without affecting cellular apoptosis or viability. Short-term hypoxia restored the cellular apoptosis and viability of PFF-treated neurons and reduced toxic phospho-α-synuclein (p-α-syn) aggregation. Similarly, the short-term hypoxia-exposed astrocyte-conditioned medium rescued cellular apoptosis and the viability of PFF-treated neurons and p-α-syn expression. Quantitative polymerase chain reaction revealed that short-term hypoxia promotes protective A2 astrocytes and suppresses toxic A1 astrocytes. Conclusions: Our findings suggest that short-term hypoxia has a neuro-protective effect against PD by activating protective A2 astrocytes, which rescue PFF-induced neuronal cell death. This provides insights into the clinical implications of short-term hypoxia as a disease-modifying PD strategy.
Collapse
Affiliation(s)
- Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Min Seong
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
- Department of Neurology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chan Hyun Lee
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| |
Collapse
|
42
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
43
|
Tinston J, Hudson MR, Harutyunyan A, Chen Z, Jones NC. Forty-hertz sensory entrainment impedes kindling epileptogenesis and reduces amyloid pathology in an Alzheimer disease mouse model. Epilepsia 2025; 66:886-898. [PMID: 39737719 DOI: 10.1111/epi.18222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVE The 5xFAD mouse model of Alzheimer disease (AD) recapitulates amyloid-beta (Aβ) deposition and pronounced seizure susceptibility observed in patients with AD. Forty-hertz audiovisual stimulation is a noninvasive technique that entrains gamma neural oscillations and can reduce Aβ pathology and modulate glial expression in AD models. We hypothesized that 40-Hz sensory stimulation would improve seizure susceptibility in 5xFAD mice and this would be associated with reduction of plaques and modulation of glial phenotypes. METHODS 5xFAD mice and wild-type (WT) littermates received 1 h/day 40-Hz audiovisual stimulation or sham (n = 7-11/group), beginning 2 weeks before and continuing throughout amygdala kindling epileptogenesis. Postmortem analyses included Aβ pathology and morphology of astrocytes and microglia. RESULTS 5xFAD mice exhibited enhanced susceptibility to seizures compared to WT, evidenced by fewer stimulations to reach kindling endpoint (incidence rate ratio [IRR] = 1.46, p < .0001) and a trend to higher seizure severity (odds ratio [OR] = .34, p = .059). Forty-hertz stimulation reduced the behavioral severity of the first seizure (OR = 4.04, p = .02) and delayed epileptogenesis, increasing the number of stimulations required to reach kindling endpoint (IRR = .82, p = .01) compared to sham, regardless of genotype. 5xFAD mice receiving sensory stimulation exhibited ~50% reduction in amyloid pathology compared to sham. Furthermore, markers of astrocytes and microglia were upregulated in both genotypes receiving 40-Hz stimulation. SIGNIFICANCE Forty-hertz sensory entrainment slows epileptogenesis in the mouse amygdala kindling model. Although this intervention improves Aβ pathology in 5xFAD mice, the observed antiepileptogenic effect may also relate to effects on glia, because mice without Aβ plaques (i.e., WT) also experienced antiepileptogenic effects of the intervention.
Collapse
Affiliation(s)
- Jennifer Tinston
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna Harutyunyan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Santos DE, Silva Lima SA, Moreira LS, Lima Costa S, de Sampaio Schitine C. New perspectives on heterogeneity in astrocyte reactivity in neuroinflammation. Brain Behav Immun Health 2025; 44:100948. [PMID: 40028234 PMCID: PMC11871470 DOI: 10.1016/j.bbih.2025.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The inflammatory response is a fundamental aspect of all insults to the central nervous system (CNS), which includes acute trauma, infections, and chronic neurodegenerative conditions. As methods for investigating astrocytes have progressed, recent findings indicate that astrocytes can react to a diverse spectrum of insults affecting the central nervous system. Astrocytes respond to external and internal stimuli from the nervous system in a process called glial reactivity. Astrocyte reactivity, previously considered uniform and functionally inactive, is currently a very diverse event in different inflammatory processes. These differences can occur due to the nature, the intensity of the stimulus, the brain region involved and can range from subtle changes in astrocytic morphology to protein expression alteration, gene transcription profile shifts, and variations in the secretory pattern of molecules. The elucidation of the diverse roles of astrocytes in both normal and pathological conditions has led to increased interest in the notion that various astrocyte subtypes may exist, each contributing with distinct functions. Our study will prioritize the characterization of astrocytic response patterns in the context of the development and progression of neurodegenerative diseases, particularly Alzheimer's and Parkinson's. In addition, we will investigate the astrocyte's response during bacterial and viral infections, given the potential to enhance specific therapeutic interventions based on the reactivity profiles of astrocytes.
Collapse
Affiliation(s)
| | | | - Leticia Santos Moreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Clarissa de Sampaio Schitine
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| |
Collapse
|
45
|
Wagemann O, Nübling G, Martínez‐Murcia FJ, Wlasich E, Loosli SV, Sandkühler K, Stockbauer A, Prix C, Katzdobler S, Petrera A, Hauck SM, Fortea J, Romero‐Zaliz R, Jiménez‐Mesa C, Górriz Sáez JM, Höglinger G, Levin J. Exploratory analysis of the proteomic profile in plasma in adults with Down syndrome in the context of Alzheimer's disease. Alzheimers Dement 2025; 21:e70040. [PMID: 40110647 PMCID: PMC11923571 DOI: 10.1002/alz.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Adults with Down syndrome (DS) show increased risk for Alzheimer's disease (AD) due to the triplication of chromosome 21 encoding the amyloid precursor protein gene. Further, this triplication possibly contributes to dysregulation of the immune system, furthering AD pathophysiology. METHODS Using Olink Explore 3072, we measured ∼3000 proteins in plasma from 73 adults with DS and 15 euploid, healthy controls (HC). Analyses for differentially expressed proteins (DEP) were carried out, and pathway and protein network enrichment using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING database was investigated. Within DS, the LASSO (least absolute shrinkage and selection operator) feature selection was applied. RESULTS We identified 253 DEP between DS and HC and 142 DEP between symptomatic and asymptomatic DS. Several pathways regarding inflammatory and neurodevelopmental processes were dysregulated in both analyses. LASSO feature selection within DS returned 15 proteins as potential blood markers. DISCUSSION This exploratory proteomic analysis found potential new blood biomarkers for diagnosing DS-AD in need of further investigation. HIGHLIGHTS Inflammatory pathways are dysregulated in symptomatic versus asymptomatic DS. NFL and GFAP are confirmed as powerful biomarkers in DS with clinical and/or cognitive decline. Further circulating proteins were identified as potential blood biomarkers for symptomatic DS.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Georg Nübling
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Francisco Jesús Martínez‐Murcia
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Elisabeth Wlasich
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sandra V. Loosli
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Katja Sandkühler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Anna Stockbauer
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Catharina Prix
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sabrina Katzdobler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Agnese Petrera
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Juan Fortea
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNEDMadridSpain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de DownBarcelonaSpain
| | - Rocío Romero‐Zaliz
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
- Information and Communication Technologies Research Centre (CITIC‐UGR)University of Calle Periodista Rafael Gómez MonteroGranadaSpain
| | - Carmen Jiménez‐Mesa
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Juan M. Górriz Sáez
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Günter Höglinger
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Johannes Levin
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
46
|
Chen J, Shi G, Yu L, Shan W, Sun J, Guo A, Wu J, Tang T, Zhang X, Wang Q. 3-HKA Promotes Vascular Remodeling After Stroke by Modulating the Activation of A1/A2 Reactive Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412667. [PMID: 39854137 PMCID: PMC11923925 DOI: 10.1002/advs.202412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified. Supplementation with 3-HKA improved long-term neurological recovery, reduced infarct volume, and increased ipsilateral cerebral blood flow after distal middle cerebral artery occlusion (MCAO). 3-HKA promoted angiogenesis, functional blood vessel formation, and blood-brain barrier (BBB) repair. Moreover, 3-HKA inhibited A1-like (neurotoxic) astrocyte activation but promoted A2-like (neuroprotective) astrocyte polarization. Proteomic analysis revealed that 3-HKA inhibited AIM2 inflammasome activation after stroke, and co-labeling studies indicated that AIM2 expression typically increased in astrocytes at 7 and 14 days after stroke. Consistently, in co-cultures of primary mouse brain microvascular endothelial cells and astrocytes, 3-HKA promoted angiogenesis after oxygen-glucose deprivation (OGD). AIM2 overexpression in astrocytes abrogated 3-HKA-driven vascular remodeling in vitro and in vivo, suggesting that 3-HKA may regulate astrocyte-mediated vascular remodeling by impeding AIM2 inflammasome activation. In conclusion, 3-HKA may promote post-stroke vascular remodeling by regulating A1/A2 astrocyte activation, thereby improving long-term neurological recovery, suggesting that supplementation with 3-HKA may be an efficient therapy for stroke.
Collapse
Affiliation(s)
- Jun‐Min Chen
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Guang Shi
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Lu‐Lu Yu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
| | - Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| | - Jing‐Yu Sun
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - An‐Chen Guo
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular DiseasesBeijing100070China
| | - Jian‐Ping Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
| | - Tie‐Shan Tang
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Xiang‐Jian Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
47
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
48
|
Wang DX, Huang WT, Shi JF, Liu F, Jiang WY, Chen KY, Zhang SY, Li XK, Lin L. FGF21, a modulator of astrocyte reactivity, protects against ischemic brain injury through anti-inflammatory and neurotrophic pathways. Acta Pharmacol Sin 2025:10.1038/s41401-024-01462-x. [PMID: 40021824 DOI: 10.1038/s41401-024-01462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 03/03/2025]
Abstract
Ischemic stroke is a frequent cause of mortality and disability, and astrocyte reactivity is closely associated with injury outcomes. Fibroblast growth factor 21 (FGF21), an endogenous regulator, has been shown to perform pleiotropic functions in central nervous system (CNS) disorders. However, studies on neurological diseases have paid little attention to the effects and detailed mechanisms of FGF21 in astrocytes. Here, we found elevated serum levels of FGF21 in stroke patients and transient middle cerebral artery occlusion (tMCAO) mice. In the peri-infarct cortex, microglia and astrocytes serve as sources of FGF21 in addition to neurons. MRI and neurobehavioral assessments of wild-type (WT) and FGF21-/- tMCAO model mice revealed a deteriorated consequence of the loss of FGF21, with exacerbated brain infarction and neurological deficits. Additionally, combined with the pharmacological treatment of WT mice with recombinant human FGF21 (rhFGF21) after tMCAO, FGF21 was identified to suppress astrocytic activation and astrocyte-mediated inflammatory responses after brain ischemia and participated in controlling the infiltration of peripheral inflammatory cells (including macrophages, neutrophils, monocytes, and T cells) by modulating chemokines expression (such as Ccl3, Cxcl1, and Cxcl2) in astrocytes. Furthermore, rhFGF21 was shown to boost the production of neurotrophic factors (BDNF and NGF) in astrocytes, and by which rescued neuronal survival and promoted synaptic protein expression (postsynaptic density protein-95 (PSD-95), synaptotagmin 1 (SYT1), and synaptophysin) in neurons after ischemic injury. Overall, our findings implicate that FGF21 acts as a suppressor of astrocyte activation, and exerts anti-inflammatory and neurotrophic effects after ischemic brain injury through its action on astrocytes, offering an alternative therapeutic target.
Collapse
Affiliation(s)
- Dong-Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yi Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ke-Yang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
49
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
50
|
Almeida ÁMAN, dos Santos CC, Takahashi D, da Silva LP, de Sousa VM, de Santana MR, Del Arco AE, dos Santos BL, David JM, da Silva VDA, Braga-de-Souza S, Costa SL. The Biflavonoid Agathisflavone Regulates Microglial and Astrocytic Inflammatory Profiles via Glucocorticoid Receptor. Molecules 2025; 30:1014. [PMID: 40076239 PMCID: PMC11901960 DOI: 10.3390/molecules30051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Nuclear receptors such as glucocorticoid receptors (GRs) are transcription factors with prominent regulatory effects on neuroinflammation. Agathisflavone is a biflavonoid that demonstrates neurogenic, neuroprotective, anti-inflammatory, antioxidant, and pro-myelinogenic effects in vitro. This study investigated whether the control of glial reactivity by agathisflavone is mediated by GRs. Primary cultures of astrocytes and microglia were induced to neuroinflammation by lipopolysaccharides (LPSs) and exposed to agathisflavone or not in the presence or absence of mifepristone, a GR antagonist. The microglia morphology and reactivity were evaluated by immunofluorescence against calcium-binding ionized adapter (Iba-1) and CD68. The astrocyte morphology and reactivity were evaluated by immunofluorescence against glial fibrillary acidic protein (GFAP). The inflammatory profile was evaluated by RT-qPCR. Molecular docking was performed to characterize agathisflavone and GR interactions. Microglial branching was increased in response to agathisflavone, an effect that was inhibited by mifepristone. CD68 and GFAP expression was decreased by agathisflavone but not in the presence of mifepristone. Agathisflavone decreased the expression of the pro-inflammatory cytokine IL-1β and increased the expression of the regulatory cytokine IL-10. The increase in IL-10 mRNA was inhibited by the GR antagonist. The in silico analysis showed that agathisflavone binds to a pocket at the glucocorticoid receptor. These interactions were stronger than mifepristone, dexamethasone, and the agathisflavone monomer apigenin. These results indicate that the GR is involved in the regulatory effects of agathisflavone on microglia and astrocyte inflammation, contributing to the elucidation of the molecular mechanisms of agathisflavone's effects in the nervous system.
Collapse
Affiliation(s)
- Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Daniele Takahashi
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Larissa Pereira da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Verônica Moreira de Sousa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Monique Reis de Santana
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Ana Elisa Del Arco
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- Laboratory of Biochemistry and Veterinary Immunology, Center for Agrarian, Environmental, and Biological Sciences, Federal University of Recôncavo of Bahia, Cruz das Almas 44380-000, Brazil
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, Brazil;
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Suzana Braga-de-Souza
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|