1
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
2
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
3
|
Lebrusant-Fernandez M, Ap Rees T, Jimeno R, Angelis N, Ng JC, Fraternali F, Li VSW, Barral P. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep 2024; 43:114948. [PMID: 39580798 DOI: 10.1016/j.celrep.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal homeostasis is maintained through the combined functions of epithelial and immune cells that collaborate to preserve the integrity of the intestinal barrier. However, the mechanisms by which immune cell populations regulate intestinal epithelial cell (IEC) homeostasis remain unclear. Here, we use a multi-omics approach to study the immune-epithelial crosstalk and identify CD1d-restricted natural killer T (NKT) cells as key regulators of IEC biology. We find that NKT cells are abundant in the proximal small intestine and show hallmarks of activation at steady state. Subsequently, NKT cells regulate the survival and the transcriptional and cellular composition landscapes of IECs in intestinal organoids, through interferon-γ (IFN-γ) and interleukin-4 secretion. In vivo, lack of NKT cells results in an increase in IEC turnover, while NKT cell activation leads to IFN-γ-dependent epithelial apoptosis. Our findings propose NKT cells as potent producers of cytokines that contribute to the regulation of IEC homeostasis.
Collapse
Affiliation(s)
- Marta Lebrusant-Fernandez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Tom Ap Rees
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | | | - Joseph C Ng
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Bao B, Wang Y, Boudreau P, Song X, Wu M, Chen X, Patik I, Tang Y, Ouahed J, Ringel A, Barends J, Wu C, Balskus E, Thiagarajah J, Liu J, Wessels MR, Lencer WI, Kasper DL, An D, Horwitz BH, Snapper SB. Bacterial Sphingolipids Exacerbate Colitis by Inhibiting ILC3-derived IL-22 Production. Cell Mol Gastroenterol Hepatol 2024; 18:101350. [PMID: 38704148 PMCID: PMC11222953 DOI: 10.1016/j.jcmgh.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.
Collapse
Affiliation(s)
- Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | - Youyuan Wang
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pavl Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, Massachusetts; Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, China
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amit Ringel
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Jay Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Wayne Isaac Lencer
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Dingding An
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Bruce Harold Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Lin Q, Kuypers M, Baglaenko Y, Cao E, Hezaveh K, Despot T, de Amat Herbozo C, Cruz Tleugabulova M, Umaña JM, McGaha TL, Philpott DJ, Mallevaey T. The intestinal microbiota modulates the transcriptional landscape of iNKT cells at steady-state and following antigen exposure. Mucosal Immunol 2024; 17:226-237. [PMID: 38331095 DOI: 10.1016/j.mucimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. This study, shows that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their T cell receptors. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Center for Autoimmune Genomics and Etiology, Division of Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Eric Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tijana Despot
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lee SW, Park HJ, Van Kaer L, Hong S. Role of CD1d and iNKT cells in regulating intestinal inflammation. Front Immunol 2024; 14:1343718. [PMID: 38274786 PMCID: PMC10808723 DOI: 10.3389/fimmu.2023.1343718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a subset of unconventional T cells that recognize glycolipid antigens in a CD1d-dependent manner, are crucial in regulating diverse immune responses such as autoimmunity. By engaging with CD1d-expressing non-immune cells (such as intestinal epithelial cells and enterochromaffin cells) and immune cells (such as type 3 innate lymphoid cells, B cells, monocytes and macrophages), iNKT cells contribute to the maintenance of immune homeostasis in the intestine. In this review, we discuss the impact of iNKT cells and CD1d in the regulation of intestinal inflammation, examining both cellular and molecular factors with the potential to influence the functions of iNKT cells in inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Yoo JS, Oh SF. Unconventional immune cells in the gut mucosal barrier: regulation by symbiotic microbiota. Exp Mol Med 2023; 55:1905-1912. [PMID: 37696893 PMCID: PMC10545787 DOI: 10.1038/s12276-023-01088-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mammalian gut is the most densely colonized organ by microbial species, which are in constant contact with the host throughout life. Hosts have developed multifaceted cellular and molecular mechanisms to distinguish and respond to benign and pathogenic bacteria. In addition to relatively well-characterized innate and adaptive immune cells, a growing body of evidence shows additional important players in gut mucosal immunity. Among them, unconventional immune cells, including innate lymphoid cells (ILCs) and unconventional T cells, are essential for maintaining homeostasis. These cells rapidly respond to bacterial signals and bridge the innate immunity and adaptive immunity in the mucosal barrier. Here, we focus on the types and roles of these immune cells in physiological and pathological conditions as prominent mechanisms by which the host immune system communicates with the gut microbiota in health and diseases.
Collapse
Affiliation(s)
- Ji-Sun Yoo
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sungwhan F Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Graduate Program in Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Brailey PM, Evans L, López-Rodríguez JC, Sinadinos A, Tyrrel V, Kelly G, O'Donnell V, Ghazal P, John S, Barral P. CD1d-dependent rewiring of lipid metabolism in macrophages regulates innate immune responses. Nat Commun 2022; 13:6723. [PMID: 36344546 PMCID: PMC9640663 DOI: 10.1038/s41467-022-34532-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Alterations in cellular metabolism underpin macrophage activation, yet little is known regarding how key immunological molecules regulate metabolic programs in macrophages. Here we uncover a function for the antigen presenting molecule CD1d in the control of lipid metabolism. We show that CD1d-deficient macrophages exhibit a metabolic reprogramming, with a downregulation of lipid metabolic pathways and an increase in exogenous lipid import. This metabolic rewiring primes macrophages for enhanced responses to innate signals, as CD1d-KO cells show higher signalling and cytokine secretion upon Toll-like receptor stimulation. Mechanistically, CD1d modulates lipid import by controlling the internalization of the lipid transporter CD36, while blocking lipid uptake through CD36 restores metabolic and immune responses in macrophages. Thus, our data reveal CD1d as a key regulator of an inflammatory-metabolic circuit in macrophages, independent of its function in the control of T cell responses.
Collapse
Affiliation(s)
- Phillip M Brailey
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Lauren Evans
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | - Anthony Sinadinos
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
- The Francis Crick Institute, London, UK
| | | | | | | | - Peter Ghazal
- School of Medicine, Cardiff University, Cardiff, UK
| | - Susan John
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
12
|
Chen MJ, Feng Y, Gao L, Lin MX, Wang SD, Tong ZQ. Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR + ILC3. Chin J Integr Med 2022; 29:424-433. [PMID: 35412217 DOI: 10.1007/s11655-022-3317-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model. METHODS The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively. RESULTS The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function. CONCLUSION CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.
Collapse
Affiliation(s)
- Ming-Jun Chen
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yang Feng
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Lu Gao
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Ming-Xiong Lin
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Shi-da Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zhan-Qi Tong
- Department of Traditional Chinese Medicine, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Min KY, Koo J, Noh G, Lee D, Jo MG, Lee JE, Kang M, Hyun SY, Choi WS, Kim HS. CD1d hiPD-L1 hiCD27 + Regulatory Natural Killer Subset Suppresses Atopic Dermatitis. Front Immunol 2022; 12:752888. [PMID: 35069528 PMCID: PMC8766675 DOI: 10.3389/fimmu.2021.752888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Jimo Koo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center Cheju Halla General Hospital, Jeju, South Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Ji Eon Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea.,Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea
| |
Collapse
|
14
|
Kumar A, Patel VS, Harding JN, You D, Cormier SA. Exposure to combustion derived particulate matter exacerbates influenza infection in neonatal mice by inhibiting IL22 production. Part Fibre Toxicol 2021; 18:43. [PMID: 34906172 PMCID: PMC8670221 DOI: 10.1186/s12989-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) are formed during various combustion processes, including the thermal remediation of hazardous wastes. Exposure to PM adversely affects respiratory health in infants and is associated with increased morbidity and mortality due to acute lower respiratory tract infections. We previously reported that early-life exposure to PM damages the lung epithelium and suppresses immune responses to influenza virus (Flu) infection, thereby enhancing Flu severity. Interleukin 22 (IL22) is important in resolving lung injury following Flu infection. In the current study, we determined the effects of PM exposure on pulmonary IL22 responses using our neonatal mouse model of Flu infection. Results Exposure to PM resulted in an immediate (0.5–1-day post-exposure; dpe) increase in IL22 expression in the lungs of C57BL/6 neonatal mice; however, this IL22 expression was not maintained and failed to increase with either continued exposure to PM or subsequent Flu infection of PM-exposed mice. This contrasts with increased IL22 expression in age-matched mice exposed to vehicle and Flu infected. Activation of the aryl hydrocarbon receptor (AhR), which mediates the induction and release of IL22 from immune cells, was also transiently increased with PM exposure. The microbiome plays a major role in maintaining epithelial integrity and immune responses by producing various metabolites that act as ligands for AhR. Exposure to PM induced lung microbiota dysbiosis and altered the levels of indole, a microbial metabolite. Treatment with recombinant IL22 or indole-3-carboxaldehyde (I3A) prevented PM associated lung injury. In addition, I3A treatment also protected against increased mortality in Flu-infected mice exposed to PMs. Conclusions Together, these data suggest that exposure to PMs results in failure to sustain IL22 levels and an inability to induce IL22 upon Flu infection. Insufficient levels of IL22 may be responsible for aberrant epithelial repair and immune responses, leading to increased Flu severity in areas of high PM.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA
| | - Vivek S Patel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA. .,Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Natural Killer T (NKT) Cells and Periodontitis: Potential Regulatory Role of NKT10 Cells. Mediators Inflamm 2021; 2021:5573937. [PMID: 34594157 PMCID: PMC8478603 DOI: 10.1155/2021/5573937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.
Collapse
|
16
|
Tuganbaev T, Honda K. Non-zero-sum microbiome immune system interactions. Eur J Immunol 2021; 51:2120-2136. [PMID: 34242413 PMCID: PMC8457126 DOI: 10.1002/eji.202049065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Fundamental asymmetries between the host and its microbiome in enzymatic activities and nutrient storage capabilities have promoted mutualistic adaptations on both sides. As a result, the enteric immune system has evolved so as not to cause a zero‐sum sterilization of non‐self, but rather achieve a non‐zero‐sum self‐reinforcing cooperation with its evolutionary partner the microbiome. In this review, we attempt to integrate the accumulated knowledge of immune—microbiome interactions into an evolutionary framework and trace the pattern of positive immune—microbiome feedback loops across epithelial, enteric nervous system, innate, and adaptive immune circuits. Indeed, the immune system requires commensal signals for its development and function, and reciprocally protects the microbiome from nutrient shortage and pathogen outgrowth. In turn, a healthy microbiome is the result of immune system curatorship as well as microbial ecology. The paradigms of host–microbiome asymmetry and the cooperative nature of their interactions identified in the gut are applicable across all tissues influenced by microbial activities. Incorporation of immune system influences into models of microbiome ecology will be a step forward toward defining what constitutes a healthy human microbiome and guide discoveries of novel host–microbiome mutualistic adaptations that may be harnessed for the promotion of human health.
Collapse
Affiliation(s)
- Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
17
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Park HJ, Lee SW, Van Kaer L, Hong S. CD1d-Dependent iNKT Cells Control DSS-Induced Colitis in a Mouse Model of IFNγ-Mediated Hyperinflammation by Increasing IL22-Secreting ILC3 Cells. Int J Mol Sci 2021; 22:1250. [PMID: 33513946 PMCID: PMC7866066 DOI: 10.3390/ijms22031250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that CD1d-restricted iNKT cells suppress dysregulated IFNγ expression and intestinal inflammation in Yeti mice on the C57BL/6 background. Since type 3 innate lymphoid cells (ILC3s) in mesenteric lymph nodes (MLN) protect against intestinal inflammation in a CD1d-associated manner, we investigated whether crosstalk between iNKT cells and MLN ILC3s controls IFNγ-mediated intestinal inflammation in Yeti mice. We found that Yeti mice display increased levels of ILC3s and that iNKT cell deficiency in Yeti/CD1d KO mice decreases levels of IL22-producing ILC3s during DSS-induced colitis. This finding indicates that iNKT cells and ILC3s cooperate to regulate intestinal inflammation in Yeti mice. Yeti iNKT cells displayed a pronounced anti-inflammatory (IL4- or IL9-producing) phenotype during colitis. Their adoptive transfer to iNKT cell-deficient animals induced a significant increase in IL22 production by ILC3s, indicating that crosstalk between iNKT cells and ILC3s plays a critical role in modulating colitis in Yeti mice. Moreover, we showed that the IL9-producing subset of iNKT cells potently enhances IL22-producing ILC3s in vivo. Taken together, our results identify a central role of the iNKT cell-ILC3 axis in ameliorating IFNγ-mediated intestinal inflammation.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea; (H.J.P.); (S.W.L.)
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea; (H.J.P.); (S.W.L.)
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Korea; (H.J.P.); (S.W.L.)
| |
Collapse
|
19
|
Xian Y, Lv X, Xie M, Xiao F, Kong C, Ren Y. Physiological function and regulatory signal of intestinal type 3 innate lymphoid cell(s). Life Sci 2020; 262:118504. [PMID: 32991877 DOI: 10.1016/j.lfs.2020.118504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Of the three groups of innate lymphoid cells, the type 3 innate lymphoid cell(s) (ILC3) include the subgroup of enteric ILC3 that participates in many physiological functions of the organism, such as promoting the repair of damaged mucosa, maintaining the homeostasis of gut symbiotic microorganisms, and presenting specific antigens. ILC3 also includes splenic and decidual ILC3. Like other physiological processes in the organism, enteric ILC3 functions are precisely regulated at the endogenous and exogenous levels. However, there has been no review on the physiological functions and regulatory signals of intestinal ILC3. In this paper, based on the current research on the physiological functions of enteric ILC3 in animals and the human, we summarize the signals that regulate cytokine secretion, antigen presentation and the quantity of ILC3 under normal intestinal conditions. We discuss for the first time the classification of the promoting mechanism of secretagogues of ILC3 into direct and indirect types. We also propose that ILC3 can promote intestinal homeostasis, and intestinal homeostasis can ensure the physiological phenotype of ILC3. If homeostasis is disturbed, ILC3 may participate in intestinal pathological changes. Therefore, regulating ILC3 and maintaining intestinal homeostasis are critical to the body.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Minjia Xie
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Fuyang Xiao
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Chenyang Kong
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, PR China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China.
| |
Collapse
|
20
|
Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13:732-742. [PMID: 32651476 DOI: 10.1038/s41385-020-0320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.
Collapse
Affiliation(s)
- Marie Cherrier
- Laboratoire d'Immunité Intestinale, Institut Imagine, INSERM U1163, Université Sorbonne Paris Cité, Paris, France.
| | - Gayetri Ramachandran
- Host-Microbiota Interaction, Institut Necker Enfants Malades, INSERM U1151, Université Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Institut Pasteur, Paris, France. .,INSERM U1223, Paris, France. .,Université de Paris, F-75006, Paris, France.
| |
Collapse
|
21
|
Seo GY, Giles DA, Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol 2020; 13:399-412. [PMID: 32047273 PMCID: PMC7186215 DOI: 10.1038/s41385-020-0265-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) are a lymphocyte population that is mostly resident at mucosal surfaces. They help to induce an appropriate immune response to the microbiome at homeostasis. In healthy people, the mucosal immune system works symbiotically with organisms that make up the microbiota. ILCs play a critical role in orchestrating this balance, as they can both influence and in turn be influenced by the microbiome. ILCs also are important regulators of the early response to infections by diverse types of pathogenic microbes at mucosal barriers. Their rapid responses initiate inflammatory programs, production of antimicrobial products and repair processes. This review will focus on the role of ILCs in response to the microbiota and to microbial infections of the lung and intestine.
Collapse
Affiliation(s)
- Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Daniel A Giles
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA,Division of Biology, University of California San Diego, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
22
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
23
|
de Aguiar CF, Castoldi A, Amano MT, Ignacio A, Terra FF, Cruz M, Felizardo RJF, Braga TT, Davanzo GG, Gambarini V, Antonio T, Antiorio ATFB, Hiyane MI, Morais da Fonseca D, Andrade-Oliveira V, Câmara NOS. Fecal IgA Levels and Gut Microbiota Composition Are Regulated by Invariant Natural Killer T Cells. Inflamm Bowel Dis 2020; 26:697-708. [PMID: 31819985 DOI: 10.1093/ibd/izz300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The gut microbiota is a key element to support host homeostasis and the development of the immune system. The relationship between the microbiota and immunity is a 2-way road, in which the microbiota contributes to the development/function of immune cells and immunity can affect the composition of microbes. In this context, natural killer T cells (NKT cells) are distinct T lymphocytes that play a role in gut immunity and are influenced by gut microbes. In our work, we investigated the involvement of invariant NKT cells (iNKT) in intestinal homeostasis. RESULTS We found that iNKT-deficient mice (iNKT-KO) had reduced levels of fecal IgA and an altered composition of the gut microbiota, with increased Bacteroidetes. The absence of iNKT cells also affected TGF-β1 levels and plasma cells, which were significantly reduced in knockout (KO) mice. In addition, when submitted to dextran sodium sulfate colitis, iNKT-KO mice had worsening of colitis when compared with wild-type (WT) mice. To further address iNKT cell contribution to intestinal homeostasis, we adoptively transferred iNKT cells to KO mice, and they were submitted to colitis. Transfer of iNKT cells improved colitis and restored fecal IgA levels and gut microbiota. CONCLUSIONS Our results indicate that intestinal NKT cells are important modulators of intestinal homeostasis and that gut microbiota composition may be a potential target in the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristhiane Favero de Aguiar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Mariane T Amano
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo-SP, Brazil
| | - Aline Ignacio
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Mario Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Raphael J F Felizardo
- Division of Nephrology, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo-SP, Brazil
| | - Tárcio Teodoro Braga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Victor Gambarini
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Tiago Antonio
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Tada Fonseca Brasil Antiorio
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André-SP, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Division of Nephrology, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo-SP, Brazil
| |
Collapse
|
24
|
Brailey PM, Lebrusant‐Fernandez M, Barral P. NKT cells and the regulation of intestinal immunity: a two‐way street. FEBS J 2020; 287:1686-1699. [PMID: 32022989 DOI: 10.1111/febs.15238] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
The mammalian gastrointestinal compartment is colonised by millions of microorganisms that have a central influence on human health. Intestinal homeostasis requires a continuous dialogue between the commensal bacteria and intestinal immune cells. While interactions between host and commensal bacteria are normally beneficial, allowing training and functional tuning of immune cells, dysregulated immune system-microbiota crosstalk can favour the development of chronic inflammatory diseases, as it is the case for inflammatory bowel disease (IBD). Natural killer T (NKT) cells, which recognise CD1-restricted microbial and self-lipids, contribute to the regulation of mucosal immunity by controlling intestinal homeostasis and participating in the development of IBD. Here, we provide an overview of the recently identified pathways underlying the crosstalk between commensal bacteria and NKT cells and discuss the effect of these interactions in intestinal health and disease.
Collapse
Affiliation(s)
- Phillip M. Brailey
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| | - Marta Lebrusant‐Fernandez
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology King’s College London UK
- The Francis Crick Institute London UK
| |
Collapse
|
25
|
Domingues RG, Hepworth MR. Immunoregulatory Sensory Circuits in Group 3 Innate Lymphoid Cell (ILC3) Function and Tissue Homeostasis. Front Immunol 2020; 11:116. [PMID: 32117267 PMCID: PMC7015949 DOI: 10.3389/fimmu.2020.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen a revolution in our understanding of how cells of the immune system are modulated and regulated not only via complex interactions with other immune cells, but also through a range of potent inputs derived from diverse and varied biological systems. Within complex tissue environments, such as the gastrointestinal tract and lung, these systems act to orchestrate and temporally align immune responses, regulate cellular function, and ensure tissue homeostasis and protective immunity. Group 3 Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical regulators of host-commensal mutualism—and respond rapidly to damage, inflammation and infection to restore tissue health. Recent findings place ILC3s as strategic integrators of environmental signals. As a consequence, ILC3s are ideally positioned to detect perturbations in cues derived from the environment—such as the diet and microbiota—as well as signals produced by the host nervous, endocrine and circadian systems. Together these cues act in concert to induce ILC3 effector function, and form critical sensory circuits that continually function to reinforce tissue homeostasis. In this review we will take a holistic, organismal view of ILC3 biology and explore the tissue sensory circuits that regulate ILC3 function and align ILC3 responses with changes within the intestinal environment.
Collapse
Affiliation(s)
- Rita G Domingues
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Matthew R Hepworth
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, Adam S, Wu J, Lu L, Chen R, Lemmer A, Camargo J, Hundeyin M, Diskin B, Aykut B, Kurz E, Kochen Rossi JA, Khan M, Liria M, Sanchez G, Wu N, Su W, Adams S, Haq MIU, Farooq MS, Vasudevaraja V, Leinwand J, Miller G. γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology 2020; 71:477-494. [PMID: 31529720 DOI: 10.1002/hep.30952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The recruitment and activation of inflammatory cells in the liver delineates the transition from hepatic steatosis to steatohepatitis (SH). APPROACH AND RESULTS We found that in SH, γδT cells are recruited to the liver by C-C chemokine receptor (CCR) 2, CCR5, and nucleotide-binding oligomerization domain-containing protein 2 signaling and are skewed toward an interleukin (IL)-17A+ phenotype in an inducible costimulator (ICOS)/ICOS ligand-dependent manner. γδT cells exhibit a distinct Vγ4+ , PD1+ , Ly6C+ CD44+ phenotype in SH. Moreover, γδT cells up-regulate both CD1d, which is necessary for lipid-based antigens presentation, and the free fatty acid receptor, CD36. γδT cells are stimulated to express IL-17A by palmitic acid and CD1d ligation. Deletion, depletion, and targeted interruption of γδT cell recruitment protects against diet-induced SH and accelerates disease resolution. CONCLUSIONS We demonstrate that hepatic γδT cells exacerbate SH, independent of IL-17 expression, by mitigating conventional CD4+ T-cell expansion and modulating their inflammatory program by CD1d-dependent vascular endothelial growth factor expression.
Collapse
Affiliation(s)
| | - Wei Wang
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Yuri Nikiforov
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Karla Tejada
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Luisana Torres
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Aleksandr Kalabin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Salma Adam
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Jingjing Wu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Lu Lu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Ruonan Chen
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Aaron Lemmer
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Jimmy Camargo
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mautin Hundeyin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Brian Diskin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Berk Aykut
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Emma Kurz
- Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Juan A Kochen Rossi
- Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mohammed Khan
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Miguel Liria
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Gustavo Sanchez
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Nan Wu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Wenyu Su
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Steven Adams
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Muhammad Israr Ul Haq
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mohammad Saad Farooq
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Varshini Vasudevaraja
- Department of Pathology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Joshua Leinwand
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - George Miller
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY.,Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| |
Collapse
|
27
|
Jimeno R, Lebrusant-Fernandez M, Margreitter C, Lucas B, Veerapen N, Kelly G, Besra GS, Fraternali F, Spencer J, Anderson G, Barral P. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. eLife 2019; 8:51663. [PMID: 31841113 PMCID: PMC6930077 DOI: 10.7554/elife.51663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022] Open
Abstract
Tissue homeostasis is critically dependent on the function of tissue-resident lymphocytes, including lipid-reactive invariant natural killer T (iNKT) cells. Yet, if and how the tissue environment shapes the antigen specificity of iNKT cells remains unknown. By analysing iNKT cells from lymphoid tissues of mice and humans we demonstrate that their T cell receptor (TCR) repertoire is highly diverse and is distinct for cells from various tissues resulting in differential lipid-antigen recognition. Within peripheral tissues iNKT cell recent thymic emigrants exhibit a different TCR repertoire than mature cells, suggesting that the iNKT population is shaped after arrival to the periphery. Consistent with this, iNKT cells from different organs show distinct basal activation, proliferation and clonal expansion. Moreover, the iNKT cell TCR repertoire changes following immunisation and is shaped by age and environmental changes. Thus, post-thymic modification of the TCR-repertoire underpins the distinct antigen specificity for iNKT cells in peripheral tissues
Collapse
Affiliation(s)
- Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Marta Lebrusant-Fernandez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Christian Margreitter
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Natacha Veerapen
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Jo Spencer
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
28
|
Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019; 19:599-613. [PMID: 31350531 PMCID: PMC6982279 DOI: 10.1038/s41577-019-0194-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are enriched at barrier surfaces of the mammalian body where they rapidly respond to host, microbial or environmental stimuli to promote immunity or tissue homeostasis. Furthermore, ILCs are dysregulated in multiple human diseases. Over the past decade, substantial advances have been made in identifying the heterogeneity and functional diversity of ILCs, which have revealed striking similarities to T cell subsets. However, emerging evidence indicates that ILCs also have a complex role in directly influencing the adaptive immune response in the context of development, homeostasis, infection or inflammation. In turn, adaptive immunity reciprocally regulates ILCs, which indicates that these interactions are a crucial determinant of immune responses within tissues. Here, we summarize our current understanding of functional interactions between ILCs and the adaptive immune system, discuss limitations and future areas of investigation, and consider the potential for these interactions to be therapeutically harnessed to benefit human health.
Collapse
|
29
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
30
|
Abstract
Innate lymphoid cells (ILC) are a recently identified group of innate lymphocytes that are preferentially located at barrier surfaces. Barrier surfaces are in direct contact with complex microbial ecosystems, collectively referred to as the microbiota. It is now believed that the interplay of the microbiota with host components (i.e. epithelial cells and immune cells) promotes host fitness by regulating organ homeostasis, metabolism, and host defense against pathogens. In this review, we will give an overview of this multifaceted interplay between ILC and components of the microbiota.
Collapse
Affiliation(s)
- Liudmila Britanova
- Research Centre Immunotherapy and Institute of Microbiology and Hygiene, Mainz, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Charité - Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
31
|
Hapil FZ, Wingender G. The interaction between invariant Natural Killer T cells and the mucosal microbiota. Immunology 2018; 155:164-175. [PMID: 29893412 DOI: 10.1111/imm.12958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian bodies is colonized by a multitude of microbial organisms, which under normal conditions support the host and are considered beneficial commensals. This requires, however, that the composition of the commensal microbiota is tightly controlled and regulated. The host immune system plays an important role in the maintenance of this microbiota composition. Here we focus on the contribution of one particular immune cell type, invariant Natural Killer T (iNKT) cells, in this process. The iNKT cells are a unique subset of T cells characterized by two main features. First, they express an invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a non-polymorphic major histocompatibility complex class I-like molecule. Second, iNKT cells develop as effector/memory cells and swiftly exert effector functions, like cytokine production and cytotoxicity, after activation. We outline the influence that the mucosal microbiota can have on iNKT cells, and how iNKT cells contribute to the maintenance of the microbiota composition.
Collapse
Affiliation(s)
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center, Balcova/Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
32
|
Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 2018; 40:357-370. [PMID: 29737384 PMCID: PMC6060788 DOI: 10.1007/s00281-018-0687-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.
Collapse
|
33
|
Neill DR, Flynn RJ. Origins and evolution of innate lymphoid cells: Wardens of barrier immunity. Parasite Immunol 2018; 40. [PMID: 28423191 DOI: 10.1111/pim.12436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
The identification, in the late 2000s, of innate lymphoid cells (ILCs) as a new class of non-B, non-T lymphocytes has led to global efforts to understand their functions, plasticity and evolutionary origins and to define their place within the leucocyte family. Although this work has uncovered striking similarities in the developmental cues, lineage-specific transcription factors and functional capacities of innate and adaptive lymphocytes, it has become clear that ILCs play a unique and defining role as stewards of barrier defence and that this sets them apart from their adaptive cousins. This review will explore how the dynamic environment of barrier surfaces has shaped ILC evolution and functionality. We highlight the critical importance of the microbiome and the unique role of ILCs as environmental sensors. We reflect on how these factors may have influenced the development of ILC2s and barrier immunity in the context of exposure to helminth parasites that have been driving forces of our evolution throughout human history. Finally, we argue that the plasticity of ILC function reflects their role as first responders to environmental change.
Collapse
Affiliation(s)
- D R Neill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - R J Flynn
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Sáez de Guinoa J, Jimeno R, Gaya M, Kipling D, Garzón MJ, Dunn-Walters D, Ubeda C, Barral P. CD1d-mediated lipid presentation by CD11c + cells regulates intestinal homeostasis. EMBO J 2018; 37:embj.201797537. [PMID: 29378774 PMCID: PMC5830915 DOI: 10.15252/embj.201797537] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d‐restricted microbial lipids and self‐lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid‐dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.
Collapse
Affiliation(s)
- Julia Sáez de Guinoa
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.,The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, UK.,The Francis Crick Institute, London, UK
| | - Mauro Gaya
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - María José Garzón
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain
| | | | - Carles Ubeda
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain.,Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK .,The Francis Crick Institute, London, UK
| |
Collapse
|
35
|
Hardman CS, Chen YL, Salimi M, Jarrett R, Johnson D, Järvinen VJ, Owens RJ, Repapi E, Cousins DJ, Barlow JL, McKenzie ANJ, Ogg G. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci Immunol 2017; 2:eaan5918. [PMID: 29273672 PMCID: PMC5826589 DOI: 10.1126/sciimmunol.aan5918] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023]
Abstract
Group 2 innate lymphoid cells (ILC2) are effectors of barrier immunity, with roles in infection, wound healing, and allergy. A proportion of ILC2 express MHCII (major histocompatibility complex II) and are capable of presenting peptide antigens to T cells and amplifying the subsequent adaptive immune response. Recent studies have highlighted the importance of CD1a-reactive T cells in allergy and infection, activated by the presentation of endogenous neolipid antigens and bacterial components. Using a human skin challenge model, we unexpectedly show that human skin-derived ILC2 can express CD1a and are capable of presenting endogenous antigens to T cells. CD1a expression is up-regulated by TSLP (thymic stromal lymphopoietin) at levels observed in the skin of patients with atopic dermatitis, and the response is dependent on PLA2G4A. Furthermore, this pathway is used to sense Staphylococcus aureus by promoting Toll-like receptor-dependent CD1a-reactive T cell responses to endogenous ligands. These findings define a previously unrecognized role for ILC2 in lipid surveillance and identify shared pathways of CD1a- and PLA2G4A-dependent ILC2 inflammation amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Clare S Hardman
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Maryam Salimi
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachael Jarrett
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Department of Plastic and Reconstructive Surgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Valtteri J Järvinen
- Oxford Protein Production Facility-UK, Harwell and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Raymond J Owens
- Oxford Protein Production Facility-UK, Harwell and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - David J Cousins
- Department of Infection, Immunity and Inflammation, NIHR Leicester Respiratory Biomedical Research Unit, University of Leicester, Leicester, UK
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | | | | | - Graham Ogg
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Withers DR, Hepworth MR. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System. Front Immunol 2017; 8:1298. [PMID: 29085366 PMCID: PMC5649144 DOI: 10.3389/fimmu.2017.01298] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.
Collapse
Affiliation(s)
- David R Withers
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy (III), University of Birmingham, Birmingham, United Kingdom
| | - Matthew R Hepworth
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Geremia A, Arancibia-Cárcamo CV. Innate Lymphoid Cells in Intestinal Inflammation. Front Immunol 2017; 8:1296. [PMID: 29081776 PMCID: PMC5645495 DOI: 10.3389/fimmu.2017.01296] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn's disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of developing colorectal cancer. ILC may play an important amplifying role in IBD and IBD-associated cancer, through secretion of inflammatory cytokines and interaction with other immune and non-immune cells. Here, we will review the evidence indicating a role for ILC in the pathogenesis of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Melo-Gonzalez F, Hepworth MR. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. Immunology 2017; 150:265-275. [PMID: 27935637 PMCID: PMC5290240 DOI: 10.1111/imm.12697] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR+ ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets.
Collapse
Affiliation(s)
- Felipe Melo-Gonzalez
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Matthew R Hepworth
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Saez de Guinoa J, Jimeno R, Farhadi N, Jervis PJ, Cox LR, Besra GS, Barral P. CD1d-mediated activation of group 3 innate lymphoid cells drives IL-22 production. EMBO Rep 2017; 18:39-47. [PMID: 27799287 PMCID: PMC5210076 DOI: 10.15252/embr.201642412] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid-dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid-presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)-CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T-cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL-22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d-mediated immunity, which can modulate tissue homeostasis and inflammatory responses.
Collapse
Affiliation(s)
| | - Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Nazanin Farhadi
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| |
Collapse
|