1
|
Chaichana C, Pramyothin P, Treesuwan W, Jangtawee P, Yindeengam A, Kaewmanee S, Vanavichit A, Krittayaphong R. Impact of 3 G rice on plasma glucose, insulin, and gastrointestinal hormones in patients with obesity or type 2 diabetes: A non-randomized experimental study. Obes Res Clin Pract 2025; 19:101-107. [PMID: 40037945 DOI: 10.1016/j.orcp.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE To evaluate the effects of a novel grain variety 3 G rice compared to traditional white rice on postprandial glycemia, insulinemia, and gastrointestinal hormones in individuals with obesity and type 2 diabetes (T2D). METHODS A non-randomized experimental study was conducted with 20 participants with obesity (without diabetes) and 20 patients with T2D. Each participant consumed meals containing 50 g of carbohydrates from either 3 G rice or white rice. Plasma glucose, insulin, and gastrointestinal hormone levels were measured at baseline and intervals up to 120 min post-consumption. RESULTS Among participants with obesity, plasma glucose levels were significantly lower at 90 and 120 after 3 G compared to white rice (0.52 ± 0.04 vs. 2.58 ± 0.37 mmol/L, p < 0.001 at 90 min and 0.06 ± 0.02 vs. 1.47 ± 0.26 mmol/L, p = 0.003 at 120 min). In contrast, plasma insulin levels were markedly higher following 3 G rice consumption at 90-120 min (p = 0.003). Gastrointestinal hormones were significantly elevated after 3 G rice intake compared to white rice, with GLP-1 levels showing sustained increases from 60 to 120 min (p = 0.019). In T2D patients, 3 G rice consumption led to a modest reduction in plasma glucose at 120 min (5.15 ± 0.49 mmol/L for white rice vs. 3.57 ± 0.35 mmol/L for 3 G rice, p = 0.0262) without significant effect on other parameters. CONCLUSION 3 G rice significantly improved postprandial glycemic control and enhanced gastrointestinal hormone responses in individuals with obesity. These findings highlight the promise of 3 G rice as a dietary intervention for managing postprandial glycemia and insulin sensitivity.
Collapse
Affiliation(s)
- Chartchai Chaichana
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Witcha Treesuwan
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Preechaya Jangtawee
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ahthit Yindeengam
- Her Majesty's Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saroch Kaewmanee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom, Thailand
| | - Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Mezza T, Wewer Albrechtsen NJ, Di Giuseppe G, Ferraro PM, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Nista EC, Gasbarrini A, Tondolo V, Mari A, Pontecorvi A, Giaccari A, Holst JJ. Human subjects with impaired beta-cell function and glucose tolerance have higher levels of intra-islet intact GLP-1. Metabolism 2025; 163:156087. [PMID: 39626843 DOI: 10.1016/j.metabol.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
AIMS A number of studies have suggested that pancreatic α cells produce intact GLP-1, thereby constituting a gut-independent paracrine incretin system. However, the debate on whether human α cells contain intact GLP-1 and whether this relates to the presence of diabetes is still ongoing. This study aimed to determine the presence of proglucagon-derived peptides, including GLP-1 isoforms, in pancreas biopsies obtained during partial pancreatectomy from metabolically profiled human donors, stratified according to pre-surgery glucose tolerance. METHODS We enrolled 61 individuals with no known history of type 2 diabetes (31F/30M, age 64.6 ± 10.6 yrs., BMI 24.2 ± 3.68 kg/m2) scheduled for partial pancreatectomy for periampullary neoplasm. Differences in glucose tolerance and insulin secretion/sensitivity were assessed using preoperative 2 h OGTT, 4 h-Mixed Meal Test and Hyperinsulinemic Euglycemic Clamp. Subjects were subsequently classified as normal glucose tolerant (NGT, n = 19), impaired glucose tolerant (IGT, n = 20) or newly diagnosed diabetes (DM) (n = 22). We measured total GLP-1, intact GLP-1, glucagon, insulin, and C-peptide in pancreas biopsies and plasma from these subjects and correlated the results with their secretory and metabolic parameters. RESULTS Extractable levels of total GLP-1 were 23.9 ± 2.66 pmol/g, while intact GLP-1 levels were 1.15 ± 0.18 pmol/g. When we examined proglucagon derived peptides (adjusted for glucagon levels), in subjects classified according to glucose tolerance, we observed similar levels of total GLP-1, however, intact GLP-1 was significantly increased in IGT and DM groups and inversely associated with beta cell glucose sensitivity and insulin secretion in vivo. CONCLUSIONS Our data show that development of glucose intolerance and beta cell dysfunction are significantly associated with increased levels of intra-islet intact GLP-1, a potentially beneficial adaptation of the paracrine regulation of insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Teresa Mezza
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Pietro Manuel Ferraro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Sezione di Nefrologia, Dipartimento di Medicina, Università degli Studi di Verona, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Michela Brunetti
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Enrico Celestino Nista
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Tondolo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Digestive Surgery Unit, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Council of Research - Padua (IT), Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zäh M, Brandenbusch C, Artusio F, Sadowski G, Pisano R. DSC reveals the excipient impact on aggregation propensity of pharmaceutical peptides during freezing. Eur J Pharm Sci 2025; 204:106954. [PMID: 39489188 DOI: 10.1016/j.ejps.2024.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Pharmaceutical peptides are susceptible to aggregation in solution, making stabilization by addition of suitable excipients essential. To investigate this stabilization, lengthy and cost-intensive experiments are often necessary. In this work, a differential scanning calorimetry (DSC) based method was developed that allows a rapid assessment of the stabilization properties of excipients regarding the aggregation of pharmaceutical peptides. The stabilization properties of investigated excipients are derived from the thermal behavior around Tg', the glass-transition temperature of the excipient-rich phase after freezing, as a function of repeated freeze-thaw cycles. The pharmaceutical peptide glucagon was investigated in combination with the excipients trehalose and lactose. In addition to the type of excipient, the concentration ratio of peptide/excipient was also varied. Lactose proved to better stabilize glucagon solutions compared to trehalose. On the one hand, the onset of aggregation could be delayed and after aggregation started the aggregation kinetics were slowed down. In addition, it was shown that a high excipient to peptide ratio, regardless of the type of excipient tested, reduces the aggregation tendency of glucagon.
Collapse
Affiliation(s)
- Maximilian Zäh
- TU Dortmund University, Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Christoph Brandenbusch
- TU Dortmund University, Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Emil-Figge-Str. 70, 44227, Dortmund, Germany.
| | - Fiora Artusio
- Politecnico di Torino, Molecular Engineering Lab, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gabriele Sadowski
- TU Dortmund University, Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Roberto Pisano
- Politecnico di Torino, Molecular Engineering Lab, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| |
Collapse
|
4
|
De Cristofaro M, Lenzi A, Ghimenti S, Biagini D, Bertazzo G, Vivaldi FM, Armenia S, Pugliese NR, Masi S, Di Francesco F, Lomonaco T. Decoding the Challenges: navigating Intact Peptide Mass Spectrometry-Based Analysis for Biological Applications. Crit Rev Anal Chem 2024:1-23. [PMID: 39556023 DOI: 10.1080/10408347.2024.2427140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Quantitative analysis of peptides in biological fluids offers a high diagnostic and prognostic tool to reflect the pathophysiological condition of the patient. Recently, methods based on liquid chromatography coupled with mass spectrometry (LC-MS) for the quantitative determination of intact peptides have been replacing traditionally used ligand-binding assays, which suffer from cross-reactivity issues. The use of "top-down" analysis of peptides is rapidly increasing since it does not undergo incomplete or non-reproducible digestion like "bottom-up" approaches. However, the low abundance of peptides and their peculiar characteristics, as well as the complexity of biological fluids, make their quantification challenging. Herein, the analytical pitfalls that may be encountered during the development of an LC-MS method for the analysis of intact peptides in biological fluids are discussed. Challenges in the pre-analytical phase, stability after sampling and sample processing, significantly impact the accuracy of peptide quantification. Emerging techniques, such as microextractions, are becoming crucial for improved sample cleanup and enrichment of target analytes. A comparison between the roles of high-resolution and low-resolution mass spectrometry in the quantification of intact peptides, as well as the introduction of supercharging reagents to enhance ionization, will be discussed.
Collapse
Affiliation(s)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Giulia Bertazzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Soto-Mota A, Brookler K, Elliott BT. Ketosis Suppression and Ageing (KetoSAge) Part 2: The Effect of Suppressing Ketosis on Biomarkers Associated with Ageing, HOMA-IR, Leptin, Osteocalcin, and GLP-1, in Healthy Females. Biomedicines 2024; 12:1553. [PMID: 39062126 PMCID: PMC11274887 DOI: 10.3390/biomedicines12071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunctions are among the best documented hallmarks of ageing. Cardiovascular disease, Alzheimer's disease, cancer, type 2 diabetes mellitus, metabolic-dysfunction-associated steatosis liver disease, and fragility fractures are diseases of hyperinsulinaemia that reduce life and healthspan. We studied the effect of suppressing ketosis in 10 lean (BMI 20.5 kg/m2 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9 years) maintaining nutritional ketosis (NK) for an average of 3.9 years (± 2.3) who underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Ketosis suppression significantly increased insulin, 1.83-fold (p = 0.0006); glucose, 1.17-fold (p = 0.0088); homeostasis model assessment for insulin resistance (HOMA-IR), 2.13-fold (p = 0.0008); leptin, 3.35-fold (p = 0.0010); total osteocalcin, 1.63-fold (p = 0.0138); and uncarboxylated osteocalcin, 1.98-fold (p = 0.0417) and significantly decreased beta-hydroxybutyrate, 13.50-fold (p = 0.0012) and glucagon-like peptide-1 (GLP-1), 2.40-fold (p = 0.0209). Sustained NK showed no adverse health effects and may mitigate hyperinsulinemia. All biomarkers returned to basal P1 levels after removing the intervention for SuK, indicating that metabolic flexibility was maintained with long-term euketonaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- School of Medicine, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (B.T.E.)
| |
Collapse
|
6
|
Smits MM, Galsgaard KD, Jepsen SL, Albrechtsen NW, Hartmann B, Holst JJ. In Vivo Inhibition of Dipeptidyl Peptidase 4 Allows Measurement of GLP-1 Secretion in Mice. Diabetes 2024; 73:671-681. [PMID: 38295385 DOI: 10.2337/db23-0848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mark M Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Lind Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Rasmussen C, Richter MM, Jensen NJ, Heinz N, Hartmann B, Holst JJ, Kjeldsen SAS, Wewer Albrechtsen NJ. Preanalytical impact on the accuracy of measurements of glucagon, GLP-1 and GIP in clinical trials. Scand J Clin Lab Invest 2023; 83:591-598. [PMID: 38127365 DOI: 10.1080/00365513.2023.2294470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Plasma concentrations of glucagon, GLP-1 and GIP are reported in numerous clinical trials as outcome measures but preanalytical guidelines are lacking. We addressed the impact of commonly used blood containers in metabolic research on measurements of glucagon, GLP-1 and GIP in humans. METHODS Seventeen overweight individuals were subjected to an overnight fast followed by an intravenous infusion of amino acids to stimulate hormonal secretion. Blood was sampled into five containers: EDTA-coated tubes supplemented with DMSO (control), a neprilysin inhibitor, aprotinin (a kallikrein inhibitor) or a DPP-4 inhibitor, and P800 tubes. Plasma was kept on ice before and after centrifugation and stored at -80 Celsius until batch analysis using validated sandwich ELISAs or radioimmunoassays (RIA). RESULTS Measures of fasting plasma glucagon did not depend on sampling containers, whether measured by ELISA or RIA. Amino acid-induced hyperglucagonemia was numerically higher when blood was collected into P800 tubes or tubes with aprotinin. The use of p800 tubes resulted in higher concentrations of GLP-1 by RIA compared to control tubes but not for measurements with sandwich ELISA. Plasma concentrations of GIP measured by ELISA were higher in control tubes and negatively affected by P800 and the addition of aprotinin. CONCLUSIONS The choice of blood containers impacts on measurements of plasma concentrations of glucagon, GLP-1 and GIP, and based on this study, we recommend using EDTA-coated tubes without protease inhibitors or P800 tubes for measurements of glucagon, GLP-1 and GIP in clinical trials.
Collapse
Affiliation(s)
- Christine Rasmussen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Niklas Heinz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Legaard GE, Lyngbæk MPP, Almdal TP, Karstoft K, Bennetsen SL, Feineis CS, Nielsen NS, Durrer CG, Liebetrau B, Nystrup U, Østergaard M, Thomsen K, Trinh B, Solomon TPJ, Van Hall G, Brønd JC, Holst JJ, Hartmann B, Christensen R, Pedersen BK, Ried-Larsen M. Effects of different doses of exercise and diet-induced weight loss on beta-cell function in type 2 diabetes (DOSE-EX): a randomized clinical trial. Nat Metab 2023; 5:880-895. [PMID: 37127822 PMCID: PMC10229430 DOI: 10.1038/s42255-023-00799-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Diet-induced weight loss is associated with improved beta-cell function in people with type 2 diabetes (T2D) with remaining secretory capacity. It is unknown if adding exercise to diet-induced weight loss improves beta-cell function and if exercise volume is important for improving beta-cell function in this context. Here, we carried out a four-armed randomized trial with a total of 82 persons (35% females, mean age (s.d.) of 58.2 years (9.8)) with newly diagnosed T2D (<7 years). Participants were randomly allocated to standard care (n = 20), calorie restriction (25% energy reduction; n = 21), calorie restriction and exercise three times per week (n = 20), or calorie restriction and exercise six times per week (n = 21) for 16 weeks. The primary outcome was beta-cell function as indicated by the late-phase disposition index (insulin secretion multiplied by insulin sensitivity) at steady-state hyperglycemia during a hyperglycemic clamp. Secondary outcomes included glucose-stimulated insulin secretion and sensitivity as well as the disposition, insulin sensitivity, and secretion indices derived from a liquid mixed meal tolerance test. We show that the late-phase disposition index during the clamp increases more in all three intervention groups than in standard care (diet control group, 58%; 95% confidence interval (CI), 16 to 116; moderate exercise dose group, 105%; 95% CI, 49 to 182; high exercise dose group, 137%; 95% CI, 73 to 225) and follows a linear dose-response relationship (P > 0.001 for trend). We report three serious adverse events (two in the control group and one in the diet control group), as well as adverse events in two participants in the diet control group, and five participants each in the moderate and high exercise dose groups. Overall, adding an exercise intervention to diet-induced weight loss improves glucose-stimulated beta-cell function in people with newly diagnosed T2D in an exercise dose-dependent manner (NCT03769883).
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mark P P Lyngbæk
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Camilla S Feineis
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Nina S Nielsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrikke Nystrup
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Martin Østergaard
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Katja Thomsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Beckey Trinh
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | | | - Gerrit Van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jan Christian Brønd
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark.
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Holst JJ. Glucagon 100 years. Important, but still enigmatic. Peptides 2023; 161:170942. [PMID: 36626940 DOI: 10.1016/j.peptides.2023.170942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Glucagon was discovered in 1923 as a contaminant of early insulin preparations, and its hormonal status was not established until its structure was established in the 1950 s and when the first radioimmunoassay was developed by Roger Unger, providing information about its secretion. Its role in hepatic glucose production was soon established and it was proposed as an essential factor in diabetic hyperglycemia. However, even today a number of issues remain unsolved. For instance, the assays for glucagon are not straightforward, although the development of sandwich ELISAs allowed reasonably accurate measurements also in rodents. The tools for evaluation of glucagon physiology include pancreatectomy, but studies in both humans and experimental animals pointed towards extrapancreatic sources of glucagon. It was demonstrated that glucagon receptor knockout animals do not develop diabetes upon destruction of their beta cells with streptozotocin. However, in patients with type 1 diabetes, glucagon antagonists do not normalize glucose levels; but antagonists do lower glucose levels in patients with in type 2 diabetes. Recent studies in animals and humans have confirmed the essential role of glucagon in glucose metabolism, but have suggested that it may be at least equally important for amino acid and lipid metabolism. In spite of the 100 years, glucagon research is very much alive.
Collapse
Affiliation(s)
- Jens Juul Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
10
|
Salman AA, Salman MA, Said M, El Sherbiny M, Elkassar H, Hassan MB, Marwan A, Morad MA, Ashoush O, Labib S, Aon MH, Awad A, Sayed M, Taha AE, Moustafa A, Shaaban HED, Khater A, Elewa A, Khalaf AM, Mostafa AA, Matter M, Youssef A. Improvement of Pancreatic Steatosis and Indices of Insulin Resistance After Metabolic Surgery. Front Med (Lausanne) 2022; 9:894465. [PMID: 35733870 PMCID: PMC9207952 DOI: 10.3389/fmed.2022.894465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Obesity is associated with fat accumulation in ectopic sites such as the pancreas, the so-called pancreatic steatosis (PS). Bariatric surgery has been shown to be associated with reducing pancreatic fat. This study investigated the effect of laparoscopic sleeve gastrectomy (LSG) on pancreatic volume and its fat content and glucose homeostasis. METHODS The study enrolled 54 patients subjected to LSG. Metabolic variables and pancreatic exocrine function were assessed immediately before surgery and 12 months after. MRI of the abdomen was performed to measure pancreatic fat content and its total volume and visceral adipose tissue (VAT). RESULTS Surgery resulted in a significant reduction in body weight and BMI. HbA1c, fasting insulin, C-peptide levels, HOMA-IR, and Hs-CRP levels decreased significantly. Surgery resulted in significant improvement in lipid profile except for HDL-cholesterol and liver function tests. Total VAT volume decreased significantly. Total pancreas volume decreased by a mean of 9.0 cm3 (95% CI: 6.6-11.3). The median change of pancreatic fat was -26.1% (range: -55.6 to 58.3%). Pancreatic lipase decreased significantly (P < 0.001). There was a positive correlation between the percentage of total weight loss and decrease in pancreatic fat volume (r = 0.295, P = 0.030). CONCLUSION Weight loss after LSG is associated with a reduction of total VAT volume, total pancreatic volume, and pancreatic fat content. These changes are associated with improved glucose homeostasis, reduced systemic inflammation, and decreased pancreatic lipase secretion.
Collapse
Affiliation(s)
| | | | - Mostafa Said
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammad El Sherbiny
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Elkassar
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Badr Hassan
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Marwan
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Omar Ashoush
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Labib
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Aon
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abeer Awad
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Sayed
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed E. Taha
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Moustafa
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam El-Din Shaaban
- Tropical and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Amir Khater
- Tropical and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Ahmed Elewa
- General Surgery Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Adel M. Khalaf
- Department of General Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Mostafa
- Department of General Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed Matter
- Radiodiagnosis Department, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Ahmed Youssef
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
12
|
Meier JJ, Quast DR, Nauck MA, Schenker N, Deacon CF, Holst JJ, Plum-Mörschel L, Kapitza C. Acute effects of linagliptin on intact and total glucagon-like peptide-1 and gastric inhibitory polypeptide levels in insulin-dependent type 2 diabetes patients with and without moderate renal impairment. Diabetes Obes Metab 2022; 24:806-815. [PMID: 34984794 DOI: 10.1111/dom.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the effect of renal impairment on incretin metabolism in patients with type 2 diabetes mellitus (T2DM) before and after treatment with the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin. MATERIALS AND METHODS Long-standing T2DM patients with normal (estimated glomerular filtration rate [eGFR] >90 mL/min/1.73m2 ) and impaired (eGFR <60 mL/min/1.73m2 ) renal function on stable treatment with insulin were included. Before and after 8 days of treatment with 5 mg linagliptin once daily, patients underwent a 75-g oral glucose tolerance test (OGTT) and total and intact glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), glucose, insulin, C-peptide and glucagon concentrations were measured. The primary outcome was the difference between the study groups in change of intact GLP-1 concentrations. RESULTS Of 115 patients screened, 29 were analysed (15 [51.7%] with and 14 [48.3%] without renal impairment). Renal function differed significantly between the groups (101 ± 11 vs. 47 ± 13 mL/min/1.73m2 ; P < 0.0001), while glycaemic control was similar (glycated haemoglobin 68 ± 5 vs. 66 ± 5 mmol/mol; P = 0.45). Baseline GLP-1 and GIP levels were comparable. Glucose concentrations during the OGTT were significantly lowered by linagliptin treatment in patients with renal impairment (P = 0.017), but not in those with normal renal function (P = 0.17). Treatment with linagliptin resulted in a significant increase in intact GLP-1 and GIP levels in patients with normal (P = 0.048 and P = 0.0001, respectively) and impaired (P = 0.040 and P = 0.0011, respectively) renal function during the OGTT. However, the primary outcome (difference between the groups in change of intact GLP-1 concentrations) was not significant (P = 0.22). Overall, linagliptin was well tolerated. CONCLUSIONS Treatment with linagliptin increases intact incretin levels in patients with T2DM. Impaired renal function does not compromise the effects of linagliptin on active or total incretin levels as well as on glucagon secretion. Thus, treatment with linagliptin is suitable for patients with T2DM, independently of renal function.
Collapse
Affiliation(s)
- Juris J Meier
- Diabetes Division, St Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Internal Medicine, Gastroenterology and Diabetes, Augusta Clinic Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, St Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division, St Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, St Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carolyn F Deacon
- Department of Biomedical Sciences and NovoNordisk Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and NovoNordisk Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Perakakis N, Kalra B, Angelidi AM, Kumar A, Gavrieli A, Yannakoulia M, Mantzoros CS. Methods paper: Performance characteristics of novel assays for circulating levels of proglucagon-derived peptides and validation in a placebo controlled cross-over randomized clinical trial. Metabolism 2022; 129:155157. [PMID: 35114286 DOI: 10.1016/j.metabol.2022.155157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The measurement of proglucagon-derived peptides (PGDPs) is a challenging task mainly due to major overlaps in their molecular sequence in addition to their low circulating levels. Here, we present the technical characteristics of novel ELISA assays measuring C-peptide and all six PGDPs including, for the first time, major proglucagon fragment (MPGF), and we validate them by performing a pilot in vivo cross-over randomized clinical trial on whether coffee consumption may affect levels of circulating PGDPs. METHODS The performance and technical characteristics of novel ELISA assays from Ansh measuring GLP-1, GLP-2, oxyntomodulin, glicentin, glucagon, MPGF and C-peptide were first evaluated in vitro in procured samples from a commercial vendor as well as in deidentified human samples from three previously performed clinical studies. Their performance was further evaluated in vivo in the context of a cross-over randomized controlled trial, in which 33 subjects consumed in random order and together with a standardized meal, 200 ml of either (a) instant coffee with 3 mg/kg caffeine, or (b) instant coffee with 6 mg/kg caffeine, (c) or water. RESULTS All assays demonstrated high accuracy (spike and recovery and average linearity recovery ±15%), precision (inter-assay CV ≤ 6.4%), specificity (no significant cross-reactivities) and they were sensitive in low concentrations. Measurements of glicentin in archived random human samples using the Ansh assay correlated strongly with the glicentin measurements of Mercodia assay (r = 0.968) and of GLP-1 modestly with Millipore GLP-1 assay (r = 0.440). Oxyntomodulin, glicentin and glucagon concentrations were 2-5 fold higher in plasma compared to serum and serum concentrations correlated modestly (for oxyntomodulin and glicentin) or poorly (for glucagon) with the plasma concentrations. The evaluated assays detected a postprandial increase of gut-secreted PGDPs (GLP-1, GLP-2, oxyntomodulin and glicentin) and a postprandial decrease of pancreas-secreted PGDPs (glucagon, MPGF) in response to consuming coffee in comparison to consuming water with breakfast (enter here composition of breakfast). Only coffee consumption at the high dose alter levels of gut-secreted PGDPs and both at low and high dose to lower levels of pancreas-secreted PGDPs compared to water consumption during breakfast. CONCLUSION Accurate, precise and specific measurement of six PGDPs is possible with novel assays. A randomized controlled trial demonstrated in vivo utility of those assays and supports the notion that coffee may exert part of its beneficial effects on glucose homeostasis in the short term through the regulation of PGDPs.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | | | - Angeliki M Angelidi
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | | | - Anna Gavrieli
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | - Mary Yannakoulia
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules 2022; 12:biom12030466. [PMID: 35327658 PMCID: PMC8946514 DOI: 10.3390/biom12030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Methods for glucagon analysis suffered in the past from lack of specificity and a narrow sensitivity range, which has led to inaccurate results and to the suggestion that type 1 diabetes (T1D) and type 2 diabetes (T2D) patients have elevated fasting glucagon levels. However, the availability of more specific and more sensitive methods to detect intact glucagon has shown that actual glucagon levels are lower than previously assumed. This study aimed to characterize fasting plasma glucagon levels in healthy individuals and T1D and T2D patients with two different glucagon assays. The study included 20 healthy individuals, 20 T1D and 20 T2D patients. Blood was collected under fasting conditions. A double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) and a conventional radioimmunoassay (RIA) were used. A significant difference in fasting glucagon levels between healthy individuals and T2D was observed by ELISA, but not by RIA. ELISA also yielded lower glucagon levels in healthy individuals than in T1D and T2D patients which RIA did not. RIA produced significantly (p = 0.0001) higher overall median glucagon values than ELISA in a pooled analysis. These results underline the notion that the choice of selective laboratory methods is highly relevant for mechanistic endocrine research.
Collapse
|
15
|
Rodgers RL. Reply to Wewer Albrechtsen: The glucose-mobilizing effect of glucagon at fasting is mediated by cyclic AMP. Am J Physiol Endocrinol Metab 2021; 321:E580. [PMID: 34369822 DOI: 10.1152/ajpendo.00272.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Robert L Rodgers
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
16
|
Wewer Albrechtsen NJ. The glucose-mobilizing effect of glucagon at fasting is mediated by cyclic AMP. Am J Physiol Endocrinol Metab 2021; 321:E571-E574. [PMID: 34369821 DOI: 10.1152/ajpendo.00172.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet & Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Wewer Albrechtsen NJ. Reply to Rodgers: The hepatic glucose-mobilizing effect of glucagon is not mediated by cyclic AMP most of the time. Am J Physiol Endocrinol Metab 2021; 321:E579. [PMID: 34486402 DOI: 10.1152/ajpendo.00304.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Pandey S, Malviya G, Chottova Dvorakova M. Role of Peptides in Diagnostics. Int J Mol Sci 2021; 22:ijms22168828. [PMID: 34445532 PMCID: PMC8396325 DOI: 10.3390/ijms22168828] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The specificity of a diagnostic assay depends upon the purity of the biomolecules used as a probe. To get specific and accurate information of a disease, the use of synthetic peptides in diagnostics have increased in the last few decades, because of their high purity profile and ability to get modified chemically. The discovered peptide probes are used either in imaging diagnostics or in non-imaging diagnostics. In non-imaging diagnostics, techniques such as Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow devices (i.e., point-of-care testing), or microarray or LC-MS/MS are used for direct analysis of biofluids. Among all, peptide-based ELISA is considered to be the most preferred technology platform. Similarly, peptides can also be used as probes for imaging techniques, such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The role of radiolabeled peptides, such as somatostatin receptors, interleukin 2 receptor, prostate specific membrane antigen, αβ3 integrin receptor, gastrin-releasing peptide, chemokine receptor 4, and urokinase-type plasminogen receptor, are well established tools for targeted molecular imaging ortumor receptor imaging. Low molecular weight peptides allow a rapid clearance from the blood and result in favorable target-to-non-target ratios. It also displays a good tissue penetration and non-immunogenicity. The only drawback of using peptides is their potential low metabolic stability. In this review article, we have discussed and evaluated the role of peptides in imaging and non-imaging diagnostics. The most popular non-imaging and imaging diagnostic platforms are discussed, categorized, and ranked, as per their scientific contribution on PUBMED. Moreover, the applicability of peptide-based diagnostics in deadly diseases, mainly COVID-19 and cancer, is also discussed in detail.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Correspondence:
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G611BD, UK;
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic;
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| |
Collapse
|
19
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
20
|
Hillebrand JJ, Wickenhagen WV, Heijboer AC. Improving Science by Overcoming Laboratory Pitfalls With Hormone Measurements. J Clin Endocrinol Metab 2021; 106:e1504-e1512. [PMID: 33382880 PMCID: PMC7993596 DOI: 10.1210/clinem/dgaa923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Despite all the effort taken, there is often surprisingly little attention paid to the hormone analyses involved in research studies. Thinking carefully about the quality of the hormone measurements in these studies is, however, of major importance, as this attention to methods may prevent false conclusions and inappropriate follow-up studies. We discuss issues regarding hormone measurements that one should consider, ideally prior to starting, or otherwise, as they arise during a scientific study: quality of the technique, expertise, matrices, timing and storage conditions, freeze-thaw cycles, lot-to-lot and day-to-day variation, analyses per batch or sample-wise, singlicate or duplicate measurements, combining methods, and standardization. This article and the examples mentioned herein aim to clarify the need to pay attention to the hormone analyses, and to help in making decisions. In addition, these examples help editors and reviewers of scientific journals to pay attention to the methods section in the submitted manuscripts and ask the right critical questions when needed.
Collapse
Affiliation(s)
- Jacquelien J Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam and University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, Netherlands
| | - Wjera V Wickenhagen
- Amsterdam UMC, Vrije Universiteit Amsterdam and University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, Netherlands
| | - Annemieke C Heijboer
- Amsterdam UMC, Vrije Universiteit Amsterdam and University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, Netherlands
- Correspondence: Annemieke C. Heijboer, Amsterdam UMC, Endocrine Laboratory (K2-283), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Johansen MY, Karstoft K, MacDonald CS, Hansen KB, Ellingsgaard H, Hartmann B, Wewer Albrechtsen NJ, Vaag AA, Holst JJ, Pedersen BK, Ried-Larsen M. Effects of an intensive lifestyle intervention on the underlying mechanisms of improved glycaemic control in individuals with type 2 diabetes: a secondary analysis of a randomised clinical trial. Diabetologia 2020; 63:2410-2422. [PMID: 32816096 DOI: 10.1007/s00125-020-05249-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS The aim was to investigate whether an intensive lifestyle intervention, with high volumes of exercise, improves beta cell function and to explore the role of low-grade inflammation and body weight. METHODS This was a randomised, assessor-blinded, controlled trial. Ninety-eight individuals with type 2 diabetes (duration <10 years), BMI of 25-40 kg/m2, no use of insulin and taking fewer than three glucose-lowering medications were randomised (2:1) to either the standard care plus intensive lifestyle group or the standard care alone group. Standard care consisted of individual guidance on disease management, lifestyle advice and blinded regulation of medication following a pre-specified algorithm. The intensive lifestyle intervention consisted of aerobic exercise sessions that took place 5-6 times per week, combined with resistance exercise sessions 2-3 times per week, with a concomitant dietary intervention aiming for a BMI of 25 kg/m2. In this secondary analysis beta cell function was assessed from the 2 h OGTT-derived disposition index, which is defined as the product of the Matsuda and the insulinogenic indices. RESULTS At baseline, individuals were 54.8 years (SD 8.9), 47% women, type 2 diabetes duration 5 years (IQR 3-8) and HbA1c was 49.3 mmol/mol (SD 9.2); 6.7% (SD 0.8). The intensive lifestyle group showed 40% greater improvement in the disposition index compared with the standard care group (ratio of geometric mean change [RGM] 1.40 [95% CI 1.01, 1.94]) from baseline to 12 months' follow-up. Plasma concentration of IL-1 receptor antagonist (IL-1ra) decreased 30% more in the intensive lifestyle group compared with the standard care group (RGM 0.70 [95% CI 0.58, 0.85]). Statistical single mediation analysis estimated that the intervention effect on the change in IL-1ra and the change in body weight explained to a similar extent (59%) the variance in the intervention effect on the disposition index. CONCLUSIONS/INTERPRETATION Our findings show that incorporating an intensive lifestyle intervention, with high volumes of exercise, in individuals with type 2 diabetes has the potential to improve beta cell function, associated with a decrease in low-grade inflammation and/or body weight. TRIAL REGISTRATION ClinicalTrials.gov NCT02417012 Graphical abstract.
Collapse
Affiliation(s)
- Mette Y Johansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Christopher S MacDonald
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- CopenRehab, University of Copenhagen, Copenhagen, Denmark
| | - Katrine B Hansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| |
Collapse
|
22
|
Ellingsgaard H, Seelig E, Timper K, Coslovsky M, Soederlund L, Lyngbaek MP, Wewer Albrechtsen NJ, Schmidt-Trucksäss A, Hanssen H, Frey WO, Karstoft K, Pedersen BK, Böni-Schnetzler M, Donath MY. GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia 2020; 63:362-373. [PMID: 31796986 DOI: 10.1007/s00125-019-05045-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS IL-6 is a cytokine with various effects on metabolism. In mice, IL-6 improved beta cell function and glucose homeostasis via upregulation of glucagon-like peptide 1 (GLP-1), and IL-6 release from muscle during exercise potentiated this beneficial increase in GLP-1. This study aimed to identify whether exercise-induced IL-6 has a similar effect in humans. METHODS In a multicentre, double-blind clinical trial, we randomly assigned patients with type 2 diabetes or obesity to intravenous tocilizumab (an IL-6 receptor antagonist) 8 mg/kg every 4 weeks, oral sitagliptin (a dipeptidyl peptidase-4 inhibitor) 100 mg daily or double placebos (a placebo saline infusion every 4 weeks and a placebo pill once daily) during a 12 week training intervention. The primary endpoints were the difference in change of active GLP-1 response to an acute exercise bout and change in the AUC for the concentration-time curve of active GLP-1 during mixed meal tolerance tests at baseline and after the training intervention. RESULTS Nineteen patients were allocated to tocilizumab, 17 to sitagliptin and 16 to placebos. During the acute exercise bout active GLP-1 levels were 26% lower with tocilizumab (multiplicative effect: 0.74 [95% CI 0.56, 0.98], p = 0.034) and 53% higher with sitagliptin (1.53 [1.15, 2.03], p = 0.004) compared with placebo. After the 12 week training intervention, the active GLP-1 AUC with sitagliptin was about twofold that with placebo (2.03 [1.56, 2.62]; p < 0.001), while GLP-1 AUC values showed a small non-significant decrease of 13% at 4 weeks after the last tocilizumab infusion (0.87 [0.67, 1.12]; p = 0.261). CONCLUSIONS/INTERPRETATION IL-6 is implicated in the regulation of GLP-1 in humans. IL-6 receptor blockade lowered active GLP-1 levels in response to a meal and an acute exercise bout in a reversible manner, without lasting effects beyond IL-6 receptor blockade. TRIAL REGISTRATION Clinicaltrials.gov NCT01073826. FUNDING Danish National Research Foundation. Danish Council for Independent Research. Novo Nordisk Foundation. Danish Centre for Strategic Research in Type 2 Diabetes. European Foundation for the Study of Diabetes. Swiss National Research Foundation.
Collapse
Affiliation(s)
- Helga Ellingsgaard
- Centre of Inflammation and Metabolism (CIM)/ Centre for Physical Activity Research (CFAS), Rigshospitalet 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Eleonora Seelig
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Katharina Timper
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland
- Max Planck Institute for Metabolism Research Cologne, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Michael Coslovsky
- Department of Clinical Research, CTU, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Line Soederlund
- Centre of Inflammation and Metabolism (CIM)/ Centre for Physical Activity Research (CFAS), Rigshospitalet 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Mark P Lyngbaek
- Centre of Inflammation and Metabolism (CIM)/ Centre for Physical Activity Research (CFAS), Rigshospitalet 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | | | - Arno Schmidt-Trucksäss
- Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Walter O Frey
- Balgrist MoveMed, Swiss Olympic Medical Center, University Hospital Balgrist, Zurich, Switzerland
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism (CIM)/ Centre for Physical Activity Research (CFAS), Rigshospitalet 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism (CIM)/ Centre for Physical Activity Research (CFAS), Rigshospitalet 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | | | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland
- Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Jørgensen MB, Idorn T, Rydahl C, Hansen HP, Bressendorff I, Brandi L, Wewer Albrechtsen NJ, van Hall G, Hartmann B, Holst JJ, Knop FK, Hornum M, Feldt-Rasmussen B. Effect of the Incretin Hormones on the Endocrine Pancreas in End-Stage Renal Disease. J Clin Endocrinol Metab 2020; 105:5586894. [PMID: 31608934 DOI: 10.1210/clinem/dgz048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT The insulin-stimulating and glucagon-regulating effects of the 2 incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), contribute to maintain normal glucose homeostasis. Impaired glucose tolerance occurs with high prevalence among patients with end-stage renal disease (ESRD). OBJECTIVE To evaluate the effect of the incretin hormones on endocrine pancreatic function in patients with ESRD. DESIGN AND SETTING Twelve ESRD patients on chronic hemodialysis and 12 matched healthy controls, all with normal oral glucose tolerance test, were included. On 3 separate days, a 2-hour euglycemic clamp followed by a 2-hour hyperglycemic clamp (3 mM above fasting level) was performed with concomitant infusion of GLP-1 (1 pmol/kg/min), GIP (2 pmol/kg/min), or saline administered in a randomized, double-blinded fashion. A 30% lower infusion rate was used in the ESRD group to obtain comparable incretin hormone plasma levels. RESULTS During clamps, comparable plasma glucose and intact incretin hormone concentrations were achieved. The effect of GLP-1 to increase insulin concentrations relative to placebo levels tended to be lower during euglycemia in ESRD and was significantly reduced during hyperglycemia (50 [8-72]%, P = 0.03). Similarly, the effect of GIP relative to placebo levels tended to be lower during euglycemia in ESRD and was significantly reduced during hyperglycemia (34 [13-50]%, P = 0.005). Glucagon was suppressed in both groups, with controls reaching lower concentrations than ESRD patients. CONCLUSIONS The effect of incretin hormones to increase insulin release is reduced in ESRD, which, together with elevated glucagon levels, could contribute to the high prevalence of impaired glucose tolerance among ESRD patients.
Collapse
Affiliation(s)
- Morten B Jørgensen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Idorn
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Casper Rydahl
- Department of Nephrology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Henrik P Hansen
- Department of Nephrology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Iain Bressendorff
- Department of Cardiology, Endocrinology and Nephrology, Nordsjællands Hospital, University of Copenhagen, Hillerød, Denmark
| | - Lisbet Brandi
- Department of Cardiology, Endocrinology and Nephrology, Nordsjællands Hospital, University of Copenhagen, Hillerød, Denmark
| | | | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Feldt-Rasmussen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Clarke SJ, Giblett JP, Yang LL, Hubsch A, Zhao T, Aetesam-Ur-Rahman M, West NEJ, O'Sullivan M, Figg N, Bennett M, Wewer Albrechtsen NJ, Deacon CF, Cheriyan J, Hoole SP. GLP-1 Is a Coronary Artery Vasodilator in Humans. J Am Heart Assoc 2019; 7:e010321. [PMID: 30571482 PMCID: PMC6404441 DOI: 10.1161/jaha.118.010321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The mechanism underlying the beneficial cardiovascular effects of the incretin GLP‐1 (glucagon‐like peptide 1) and its analogues in humans is elusive. We hypothesized that activating receptors located on vascular smooth muscle cells to induce either peripheral or coronary vasodilatation mediates the cardiovascular effect of GLP‐1. Methods and Results Ten stable patients with angina awaiting left anterior descending artery stenting underwent forearm blood flow measurement using forearm plethysmography and post–percutaneous coronary intervention coronary blood flow measurement using a pressure‐flow wire before and after peripheral GLP‐1 administration. Coronary sinus and artery bloods were sampled for GLP‐1 levels. A further 11 control patients received saline rather than GLP‐1 in the coronary blood flow protocol. GLP‐1 receptor (GLP‐1R) expression was assessed by immunohistochemistry using a specific GLP‐1R monoclonal antibody in human tissue to inform the physiological studies. There was no effect of GLP‐1 on absolute forearm blood flow or forearm blood flow ratio after GLP‐1, systemic hemodynamics were not affected, and no binding of GLP‐1R monoclonal antibody was detected in vascular tissue. GLP‐1 reduced resting coronary transit time (mean [SD], 0.87 [0.39] versus 0.63 [0.27] seconds; P=0.02) and basal microcirculatory resistance (mean [SD], 76.3 [37.9] versus 55.4 [30.4] mm Hg/s; P=0.02), whereas in controls, there was an increase in transit time (mean [SD], 0.48 [0.24] versus 0.83 [0.41] seconds; P<0.001) and basal microcirculatory resistance (mean [SD], 45.9 [34.7] versus 66.7 [37.2] mm Hg/s; P=0.02). GLP‐1R monoclonal antibody binding was confirmed in ventricular tissue but not in vascular tissue, and transmyocardial GLP‐1 extraction was observed. Conclusions GLP‐1 causes coronary microvascular dilation and increased flow but does not influence peripheral tone. GLP‐1R immunohistochemistry suggests that GLP‐1 coronary vasodilatation is indirectly mediated by ventricular‐coronary cross talk.
Collapse
Affiliation(s)
- Sophie J Clarke
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Joel P Giblett
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Lucy L Yang
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Annette Hubsch
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Tian Zhao
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Muhammad Aetesam-Ur-Rahman
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nick E J West
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Michael O'Sullivan
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nichola Figg
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Martin Bennett
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Nicolai J Wewer Albrechtsen
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark.,5 Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Denmark
| | - Carolyn F Deacon
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark
| | - Joseph Cheriyan
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Stephen P Hoole
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| |
Collapse
|
25
|
Jorsal T, Wewer Albrechtsen NJ, Christensen MM, Mortensen B, Wandall E, Langholz E, Friis S, Worm D, Ørskov C, Støving RK, Andries A, Juhl CB, Sørensen F, Forman JL, Falkenhahn M, Musholt PB, Theis S, Larsen PJ, Holst JJ, Vrang N, Jelsing J, Vilsbøll T, Knop FK. Investigating Intestinal Glucagon After Roux-en-Y Gastric Bypass Surgery. J Clin Endocrinol Metab 2019; 104:6403-6416. [PMID: 31276156 DOI: 10.1210/jc.2019-00062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/01/2019] [Indexed: 02/02/2023]
Abstract
CONTEXT After Roux-en-Y gastric bypass (RYGB) surgery, postprandial plasma glucagon concentrations have been reported to increase. This occurs despite concomitant improved glucose tolerance and increased circulating plasma concentrations of insulin and the glucagon-inhibiting hormone glucagon-like peptide 1 (GLP-1). OBJECTIVE To investigate whether RYGB-induced hyperglucagonemia may be derived from the gut. DESIGN AND SETTING Substudy of a prospective cross-sectional study at a university hospital in Copenhagen, Denmark. PARTICIPANTS Morbidly obese individuals undergoing RYGB (n = 8) with or without type 2 diabetes. INTERVENTIONS Three months before and after RYGB, participants underwent upper enteroscopy with retrieval of gastrointestinal mucosal biopsy specimens. Mixed-meal tests were performed 1 week and 3 months before and after RYGB. MAIN OUTCOME MEASURES The 29-amino acid glucagon concentrations in plasma and in mucosal gastrointestinal biopsy specimens were assessed using mass spectrometry-validated immunoassays, and a new monoclonal antibody reacting with immunoreactive glucagon was used for immunohistochemistry. RESULTS Postprandial plasma concentrations of glucagon after RYGB were increased. Expression of the glucagon gene in the small intestine increased after surgery. Glucagon was identified in the small-intestine biopsy specimens obtained after, but not before, RYGB. Immunohistochemically, mucosal biopsy specimens from the small intestine harbored cells costained for GLP-1 and immunoreactive glucagon. CONCLUSION Increased concentrations of glucagon were observed in small-intestine biopsy specimens and postprandially in plasma after RYGB. The small intestine harbored cells immunohistochemically costaining for GLP-1 and glucagon-like immunoreactivity after RYGB. Glucagon derived from small-intestine enteroendocrine l cells may contribute to postprandial plasma concentrations of glucagon after RYGB.
Collapse
Affiliation(s)
- Tina Jorsal
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie M Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Brynjulf Mortensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Erik Wandall
- Endoscopic Unit, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ebbe Langholz
- Endoscopic Unit, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Steffen Friis
- Endoscopic Unit, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Dorte Worm
- Department of Medicine, Amager Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René K Støving
- Elite Research Center for Medical Endocrinology & Center for Eating Disorders, Odense University Hospital, Odense, Denmark
| | - Alin Andries
- Surgical Unit, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Claus B Juhl
- Surgical Unit, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Frederik Sørensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Janus C, Vistisen D, Amadid H, Witte DR, Lauritzen T, Brage S, Bjerregaard AL, Hansen T, Holst JJ, Jørgensen ME, Pedersen O, Færch K, Torekov SS. Habitual physical activity is associated with lower fasting and greater glucose-induced GLP-1 response in men. Endocr Connect 2019; 8:1607-1617. [PMID: 31804964 PMCID: PMC6933827 DOI: 10.1530/ec-19-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE The hormone glucagon-like peptide-1 (GLP-1) decreases blood glucose and appetite. Greater physical activity (PA) is associated with lower incidence of type 2 diabetes. While acute exercise may increase glucose-induced response of GLP-1, it is unknown how habitual PA affects GLP-1 secretion. We hypothesised that habitual PA associates with greater glucose-induced GLP-1 responses in overweight individuals. METHODS Cross-sectional analysis of habitual PA levels and GLP-1 concentrations in 1326 individuals (mean (s.d.) age 66 (7) years, BMI 27.1 (4.5) kg/m2) from the ADDITION-PRO cohort. Fasting and oral glucose-stimulated GLP-1 responses were measured using validated radioimmunoassay. PA was measured using 7-day combined accelerometry and heart rate monitoring. From this, energy expenditure (PAEE; kJ/kg/day) and fractions of time spent in activity intensities (h/day) were calculated. Cardiorespiratory fitness (CRF; mL O2/kg/min) was calculated using step tests. Age-, BMI- and insulin sensitivity-adjusted associations between PA and GLP-1, stratified by sex, were evaluated by linear regression analysis. RESULTS In 703 men, fasting GLP-1 concentrations were 20% lower (95% CI: -33; -3%, P = 0.02) for every hour of moderate-intensity PA performed. Higher CRF and PAEE were associated with 1-2% lower fasting GLP-1 (P = 0.01). For every hour of moderate-intensity PA, the glucose-stimulated GLP-1 response was 16% greater at peak 30 min (1; 33%, P rAUC0-30 = 0.04) and 20% greater at full response (3; 40%, P rAUC0-120 = 0.02). No associations were found in women who performed PA 22 min/day vs 32 min/day for men. CONCLUSION Moderate-intensity PA is associated with lower fasting and greater glucose-induced GLP-1 responses in overweight men, possibly contributing to improved glucose and appetite regulation with increased habitual PA.
Collapse
Affiliation(s)
- Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | | | - Hanan Amadid
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Public Health, Research Unit of Epidemiology, Aarhus University, Aarhus, Denmark
| | - Daniel R Witte
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
- Department of Public Health, Research Unit of Epidemiology, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Research Unit of Epidemiology, Aarhus University, Aarhus, Denmark
| | - Søren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Louise Bjerregaard
- Department of Public Health, Research Unit of Epidemiology, Aarhus University, Aarhus, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to S S Torekov:
| |
Collapse
|
27
|
Holst JJ, Wewer Albrechtsen NJ. Methods and Guidelines for Measurement of Glucagon in Plasma. Int J Mol Sci 2019; 20:E5416. [PMID: 31671667 PMCID: PMC6862148 DOI: 10.3390/ijms20215416] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
Glucagon circulates in concentrations in the low picomolar range, which is demanding regarding the sensitivity of the methods for quantification applied. In addition, the differential and tissue specific proteolytic processing of the glucagon precursor and the presence in of several glucagon-like sequences, not only in the precursor of glucagon, but also in a number of other peptides of the glucagon-secretin family of peptides, put special demands on the specificity of the assays. Finally, experience has shown that unspecific interference of plasma components has presented additional problems. All of these problems have resulted in a lot of diverging results concerning measured and reported glucagon responses in both humans and experimental animals that have and still are causing considerable debate and controversy. There is very solid evidence that glucagon is an important hormone in human and mammalian metabolism, but its precise physiological role in glucose and lipid metabolism and in metabolic disease has been difficult to establish, not least because of these difficulties. It was our purpose with this review to discuss the methods of glucagon quantification and discuss pitfalls and sources of error. We also reviewed some of the dogmas regarding glucagon secretion in the light of the methodological difficulties.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
28
|
Lehrskov LL, Christensen RH, Wedell-Neergaard AS, Legaard GE, Dorph E, Larsen MK, Henneberg M, Launbo N, Fagerlind SR, Seide SK, Nymand S, Ball M, Vinum N, Dahl C, Wewer Albrechtsen NJ, Holst JJ, Ried-Larsen M, Rosenmeier JB, Krogh-Madsen R, Karstoft K, Pedersen BK, Ellingsgaard H. Effects of Exercise Training and IL-6 Receptor Blockade on Gastric Emptying and GLP-1 Secretion in Obese Humans: Secondary Analyses From a Double Blind Randomized Clinical Trial. Front Physiol 2019; 10:1249. [PMID: 31636570 PMCID: PMC6787899 DOI: 10.3389/fphys.2019.01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Interleukin-6 (IL-6) is released from skeletal muscle during exercise and systemic IL-6 levels therefore increase acutely in response to a single bout of exercise. We recently showed that an acute increase in IL-6 delayed gastric emptying rate and improved postprandial glycemia. Here we investigate whether repeated increases in IL-6, induced by exercise training, influence gastric emptying rate and moreover if IL-6 is required for exercise-induced adaptations in glycemic control including secretion of glucagon and glucagon-like peptide-1 (GLP-1). Methods A total of 52 abdominally obese non-diabetic men and women were randomly assigned into four groups performing 12 weeks of endurance exercise or no exercise with or without IL-6 receptor blockade (tocilizumab). The primary endpoint was change in gastric emptying rate in response to the intervention and other endpoints included changes in glycemic control, glucagon, and GLP-1 secretion. Results There was no change in gastric emptying rate in any of the four groups following the intervention and comparing differences in change between groups also revealed no difference. Postprandial glucose remained unchanged in all groups but the exercise + tocilizumab group, which improved postprandial glucose in response to the intervention. The area under the curve for meal-stimulated glucagon, active and total GLP-1 increased in response to IL-6 receptor blockade, this effect was independent of exercise. Conclusion Exercise training and long-term IL-6 receptor blockade did not change gastric emptying rates in obese humans. IL-6 receptor blockade increased glucagon and GLP-1 secretion and implicate IL-6 in the regulation of the human alpha and L cells.
Collapse
Affiliation(s)
- Louise Lang Lehrskov
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Regitse Højgaard Christensen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sophie Wedell-Neergaard
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Grit Elster Legaard
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Emma Dorph
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Monica Korsager Larsen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie Henneberg
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Natja Launbo
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina Ravn Fagerlind
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sidsel Kofoed Seide
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Nymand
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria Ball
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Vinum
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Dahl
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Department of Biomedical Sciences, NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jaya Birgitte Rosenmeier
- Department of Cardiology, Bispebjerg Hospital, Capital Region of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helga Ellingsgaard
- Centre of Inflammation and Metabolism, Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Christiansen CB, Lind SJ, Svendsen B, Balk-Møller E, Dahlby T, Kuhre RE, Hartmann B, Mandrup-Poulsen T, Deacon CF, Wewer Albrechtsen NJ, Holst JJ. Acute administration of interleukin-6 does not increase secretion of glucagon-like peptide-1 in mice. Physiol Rep 2019; 6:e13788. [PMID: 29981198 PMCID: PMC6035335 DOI: 10.14814/phy2.13788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Interleukin 6 (IL‐6) is a cytokine secreted from skeletal muscle in response to exercise which, based on animal and cell studies, has been suggested to contribute to glucose metabolism by increasing secretion of the incretin hormone glucagon‐like peptide‐1 (GLP‐1) and affecting secretion of insulin and glucagon from the pancreatic islets. We investigated the effect of IL‐6 on GLP‐1 secretion in GLP‐1 producing cells (GLUTag) and using the perfused mouse small intestine (harboring GLP‐1 producing cells). Furthermore, the direct effect of IL‐6 on insulin and glucagon secretion was studied using isolated perfused mouse pancreas. Incubating GLUTag cells with 1000 ng/mL of IL‐6 for 2 h did not significantly increase secretion of GLP‐1 whereas 10 mmol/L glucose (positive control) did. Similarly, IL‐6 (100 ng/mL) had no effect on GLP‐1 secretion from perfused mouse small intestine whereas bombesin (positive control) increased secretion. Finally, administering IL‐6 (100 ng/mL) to perfused mouse pancreases did not significantly increase insulin or glucagon secretion regardless of perfusate glucose levels (3.5 vs. 12 mmol/L glucose). Acute effects of IL‐6 therefore do not seem to include a stimulatory effect on GLP‐1 secretion in mice.
Collapse
Affiliation(s)
- Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara J Lind
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Emous M, van den Broek M, Wijma RB, de Heide LJM, van Dijk G, Laskewitz A, Totté E, Wolffenbuttel BHR, van Beek AP. Prevalence of hypoglycaemia in a random population after Roux-en-Y gastric bypass after a meal test. Endocr Connect 2019; 8:969-978. [PMID: 31234142 PMCID: PMC6612232 DOI: 10.1530/ec-19-0268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) is an effective way to induce sustainable weight loss and can be complicated by postprandial hyperinsulinaemic hypoglycaemia (PHH). To study the prevalence and the mechanisms behind the occurrence of hypoglycaemia after a mixed meal tolerance test (MMTT) in patients with primary RYGB. DESIGN This is a cross-sectional study of patients 4 years after primary RYGB. METHODS From a total population of 550 patients, a random sample of 44 patients completed the total test procedures. A standardized mixed meal was used as stimulus. Venous blood samples were collected at baseline, every 10 min during the first half hour and every 30 min until 210 min after the start. Symptoms were assessed by questionnaires. Hypoglycaemia is defined as a blood glucose level below 3.3 mmol/L. RESULTS The prevalence of postprandial hypoglycaemia was 48% and was asymptomatic in all patients. Development of hypoglycaemia was more frequent in patients with lower weight at surgery (P = 0.045), with higher weight loss after surgery (P = 0.011), and with higher insulin sensitivity calculated by the homeostasis model assessment indexes (HOMA2-IR, P = 0.014) and enhanced beta cell function (insulinogenic index at 20 min, P = 0.001). CONCLUSION In a randomly selected population 4 years after primary RYGB surgery, 48% of patients developed a hypoglycaemic event during an MMTT without symptoms, suggesting the presence of hypoglycaemia unawareness in these patients. The findings in this study suggest that the pathophysiology of PHH is multifactorial.
Collapse
Affiliation(s)
- Marloes Emous
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
- Correspondence should be addressed to M Emous:
| | - Merel van den Broek
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Ragnhild B Wijma
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Loek J M de Heide
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Gertjan van Dijk
- GELIFES-Neurobiology, Department of Behavioral Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Anke Laskewitz
- Certe Laboratories, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Erik Totté
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - André P van Beek
- Centre for Obesity Northern-Netherlands (CON), Medical Centre Leeuwarden, Leeuwarden, The Netherlands
- Department of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Otten J, Ryberg M, Mellberg C, Andersson T, Chorell E, Lindahl B, Larsson C, Holst JJ, Olsson T. Postprandial levels of GLP-1, GIP and glucagon after 2 years of weight loss with a Paleolithic diet: a randomised controlled trial in healthy obese women. Eur J Endocrinol 2019; 180:417-427. [PMID: 31042670 PMCID: PMC6528411 DOI: 10.1530/eje-19-0082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
Objective To investigate how weight loss by different diets impacts postprandial levels of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Methods In this single-centre, parallel group 2-year trial, 70 healthy postmenopausal obese women were randomised to the Paleolithic diet or a healthy control diet based on Nordic Nutrition Recommendations. Both diets were without calorie restriction. The primary outcome was the change in fat mass. Here, secondary analyses on GLP-1, GIP and glucagon measured during an OGTT are described. Results In the Paleolithic diet group, mean weight loss compared to baseline was 11% at 6 months and 10% at 24 months. In the control diet group, mean weight loss was 6% after 6 and 24 months (P = 0.0001 and P = 0.049 for the comparison between groups at 6 and 24 months respectively). Compared to baseline, the mean incremental area under the curve (iAUC) for GLP-1 increased by 34 and 45% after 6 and 24 months in the Paleolithic diet group and increased by 59% after 24 months in the control diet group. The mean iAUC for GIP increased only in the Paleolithic diet group. The area under the curve (AUC) for glucagon increased during the first 6 months in both groups. The fasting glucagon increase correlated with the β-hydroxybutyrate increase. Conclusions Weight loss caused an increase in postprandial GLP-1 levels and a further rise occurred during weight maintenance. Postprandial GIP levels increased only after the Paleolithic diet. Reduced postprandial glucagon suppression may be caused by a catabolic state.
Collapse
Affiliation(s)
- Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Correspondence should be addressed to J Otten;
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Caroline Mellberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Tomas Andersson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Christel Larsson
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Jens Juul Holst
- NNF Center for Basal Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Wewer Albrechtsen NJ, Mark PD, Terzic D, Hansen LH, Andersen UØ, Hartmann B, Carr RD, Gustafsson F, Deacon CF, Holst JJ, Goetze JP, Plomgaard P. Sacubitril/valsartan augments postprandial plasma concentrations of active GLP-1 when combined with sitagliptin in men. J Clin Endocrinol Metab 2019; 104:3868-3876. [PMID: 31074791 DOI: 10.1210/jc.2019-00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Combined inhibition of neprilysin and dipeptidyl peptidase 4 (DPP-4) has been shown to augment plasma concentrations of glucagon-like peptide-1(GLP-1) in animal models, but whether this occurs in humans is unknown. OBJECTIVE To investigate the effects of inhibition of neprilysin by sacubitril/valsartan alone or in combination with a DPP-4 inhibitor (sitagliptin) on plasma concentrations of GLP-1 in healthy men. DESIGN Two open-labeled crossover studies were performed in human subjects. SETTING General community. PARTICIPANTS Nine and 10 healthy young males were included in study 1 and study 2, respectively. INTERVENTION Study participants received a standardized meal (34% carbohydrates, 45% fat, 21% protein, total caloric content of 2106kJ) combined with a prior dose of either sacubitril/valsartan (194/206mg) or control in study 1, and in study 2, with a prior dose of sitagliptin (2x100mg, given ∼10 hours apart) either alone or with sacubitril/valsartan (194/206mg). MAIN OUTCOME MEASURES Plasma concentrations of total and intact GLP-1. RESULTS Sacubitril/valsartan increased postprandial plasma concentrations of total GLP-1 by 67% (tAUC0-240min: 3929±344 vs. 2348±181 min × pmol/L P=0.0023), and increased concentrations of intact GLP-1 plasma concentrations more than sitagliptin alone (tAUC0-240min: 1021±114 vs. 660±80 min × pmol/L, P=0.01). Plasma concentrations of glucose, insulin, and GIP were not significantly (P>0.10) changed upon sacubitril/valsartan treatment. CONCLUSIONS Sacubitril/valsartan combined with a DPP-4 inhibitor lead to markedly higher concentrations of intact GLP-1 than DPP-4 inhibition alone, supporting a role for both neprilysin and DPP-4 in the metabolism of GLP-1 in humans, a finding which may have therapeutic implications.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter D Mark
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Ø Andersen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard D Carr
- MSD, Copenhagen, Denmark
- University College London, London, UK
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Hasegawa T, Komagata M, Hamasaki A, Harada N, Seino Y, Inagaki N. Solid-phase extraction treatment is required for measurement of active glucagon-like peptide-1 by enzyme-linked immunosorbent assay kit affected by heterophilic antibodies. J Diabetes Investig 2019; 10:302-308. [PMID: 29993194 PMCID: PMC6400240 DOI: 10.1111/jdi.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION It is reported that interfering substances in the blood might influence the value for measurement of active glucagon-like peptide-1 (GLP-1) in human plasma. Solid phase extraction (SPE) pretreatment is recommended to reduce their influence, but it requires a lot of cost and time. However, there is little investigation about causative inhibitory substances and about methods that can replace solid phase extraction. In the present study, we aimed to seek the candidate of the substances that might interfere with an active GLP-1 enzyme-linked immunosorbent assay (ELISA). MATERIALS AND METHODS Two kinds of active GLP-1 ELISA kits using different antibodies, plural extraction carriers and elution solutions were used to evaluate the SPE method. Active GLP-1 concentration was compared with or without SPE, and with or without a heterophilic blocking tube. RESULTS Active GLP-1 values were often higher without SPE compared with those with SPE pretreatment. This difference was eliminated by pretreatment with a heterophilic blocking tube or ELISA kits that did not use a mouse monoclonal antibody, and was independent of SPE. CONCLUSIONS Substances absorbed to a heterophilic blocking tube carrier might interfere with an active GLP-1 immunoassay. Solid-phase extraction treatment is required for measurement of active GLP-1 by an ELISA kit affected by heterophilic antibodies.
Collapse
Affiliation(s)
| | | | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
- Center for Diabetes and EndocrinologyTazuke Kofukai Medical Research Institute Kitano HospitalOsakaJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Seino
- Kansai Electric Power Medical Research InstituteOsakaJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
34
|
Bioanalytical method development and validation for determination of fibroblast growth factor peptide and its application to pharmacokinetic studies. Eur J Pharm Biopharm 2019; 135:83-93. [PMID: 30582960 DOI: 10.1016/j.ejpb.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor peptide (FGF-P) is a polypeptide analog of FGF-2 that could be a potential mitigation and treatment agent for radiation syndromes. Prior to conducting preclinical pharmacokinetics, we developed and validated the LC-MS/MS bioanalytical method for determination of FGF-P in rat plasma for the first time. FGF-P was extracted from rat plasma using the protein precipitation technique followed liquid-liquid extraction using dichloromethane as a solvent. The mobile phases consisted of two components: (a) 0.1% formic acid in water; and (b) acetonitrile: 0.1% formic acid in water (95:5) under gradient elution. The validated method was also successfully applied to a pharmacokinetic study of FGF-P (10 mg/kg, intravenous) in Wistar rats. The method proved to be specific, accurate, precise, and linear over the concentration range of 2-500 ng/mL with coefficient of determination greater than 0.99 in all validation batches. The within-run and between-run accuracy was 87.97-115.00% with a precision of less than 14%. The mean recoveries ranged from 88.14% to 101.73%. The stability of the compound in plasma samples was proven under various storage conditions. After intravenous administration of FGF-P (10 mg/kg) the C0 was 70.4 µg/mL and the AUC was 86.2 µg*min/mL.
Collapse
|
35
|
Quist JS, Blond MB, Gram AS, Steenholt CB, Janus C, Holst JJ, Rehfeld JF, Sjödin A, Stallknecht B, Rosenkilde M. Effects of active commuting and leisure-time exercise on appetite in individuals with overweight and obesity. J Appl Physiol (1985) 2019; 126:941-951. [PMID: 30605397 DOI: 10.1152/japplphysiol.00239.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute exercise is associated with a transient suppression of appetite. The effects of regular exercise on appetite are not well understood. We aimed to determine the effects of active commuting and leisure-time exercise on appetite. One hundred thirty physically inactive women and men (20-45 yr) with overweight and obesity were randomized to 6 mo of habitual lifestyle (CON, n = 18), active commuting (BIKE, n = 35), or leisure-time exercise of moderate [MOD, 50% peak oxygen uptake (V̇o2peak)-reserve, n = 39] or vigorous (VIG, 70% V̇o2peak-reserve, n = 38) intensity. Appetite ratings, acylated ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and glucagon were assessed in the basal state and in response to meal and exercise challenges at baseline and 3 and 6 mo. Ad libitum energy intake was determined during test meals. Data from 90 participants (per protocol) were available, and results are comparisons with CON. At 3 mo, ad libitum energy intake was lower in VIG (-22%, P < 0.01), basal glucagon was lower in BIKE ( P < 0.05) and VIG ( P = 0.01), and postprandial ratings of prospective food consumption were lower in MOD ( P = 0.02) and VIG ( P < 0.001). In VIG, ratings of hunger ( P = 0.01) and prospective food consumption ( P = 0.03) were lower after acute exercise at 3 mo. At 6 mo, basal and postprandial GLP-1 were higher ( P ≤ 0.04) whereas postexercise PYY was lower ( P = 0.03) in VIG and postexercise CCK was lower in BIKE ( P = 0.03). Vigorous-intensity exercise training leads to a transient suppression of energy intake and subjective appetite (3 mo) but a more long-term increase in basal and postprandial GLP-1 (6 mo) in individuals with overweight and obesity. NEW & NOTEWORTHY This is the first randomized controlled trial, to our knowledge, investigating long-term effects of exercise domain and intensity on subjective and hormonal markers of appetite and ad libitum energy intake in individuals with overweight and obesity. Appetite was assessed in response to meal and exercise challenges at baseline and at 3 and 6 mo. Anorexigenic effects of exercise vary with the duration of intervention and are restricted to regular leisure-time exercise of vigorous intensity in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Jonas Salling Quist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Martin Bæk Blond
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anne Sofie Gram
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Carina Bjørnskov Steenholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Copenhagen University Hospital , Copenhagen , Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen , Copenhagen , Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mads Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
36
|
SGLT2 inhibition and glucagon secretion in humans. DIABETES & METABOLISM 2018; 44:383-385. [DOI: 10.1016/j.diabet.2018.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
|
37
|
Wijma RB, Emous M, van den Broek M, Laskewitz A, Kobold ACM, van Beek AP. Prevalence and pathophysiology of early dumping in patients after primary Roux-en-Y gastric bypass during a mixed-meal tolerance test. Surg Obes Relat Dis 2018; 15:73-81. [PMID: 30446401 DOI: 10.1016/j.soard.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Early dumping is a poorly defined and incompletely understood complication after Roux-en-Y gastric (RYGB). OBJECTIVE We performed a mixed-meal tolerance test in patients after RYGB to address the prevalence of early dumping and to gain further insight into its pathophysiology. SETTING The study was conducted in a regional hospital in the northern part of the Netherlands. METHODS From a random sample of patients who underwent primary RYGB between 2008 and 2011, 46 patients completed the mixed-meal tolerance test. The dumping severity score for early dumping was assessed every 30 minutes. A sum score at 30 or 60 minutes of ≥5 and an incremental score of ≥3 points were defined as indicating a high suspicion of early dumping. Blood samples were collected at baseline, every 10 minutes during the first half hour, and at 60 minutes after the start. RESULTS The prevalence of a high suspicion of early dumping was 26%. No differences were seen for absolute hematocrit value, inactive glucagon-like peptide-1, and vasoactive intestinal peptide between patients with or without early dumping. Patients at high suspicion of early dumping had higher levels of active glucagon-like peptide-1 and peptide YY. CONCLUSION The prevalence of complaints at high suspicion of early dumping in a random population of patients after RYGB is 26% in response to a mixed-meal tolerance test. Postprandial increases in both glucagon-like peptide-1 and peptide YY are associated with symptoms of early dumping, suggesting gut L-cell overactivity in this syndrome.
Collapse
Affiliation(s)
- Ragnhild B Wijma
- Department of Bariatric and Metabolic Surgery, Heelkunde Friesland Groep, Medical Center Leeuwarden, Leewarden, the Netherlands
| | - Marloes Emous
- Department of Bariatric and Metabolic Surgery, Heelkunde Friesland Groep, Medical Center Leeuwarden, Leewarden, the Netherlands.
| | - Merel van den Broek
- Department of Endocrinology, Medical Center Leeuwarden, Leewarden, the Netherlands
| | - Anke Laskewitz
- Certe Laboratories, Medical Center Leeuwarden, Leewarden, the Netherlands
| | - Anneke C Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- Department of Bariatric and Metabolic Surgery, Heelkunde Friesland Groep, Medical Center Leeuwarden, Leewarden, the Netherlands; Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
38
|
Lautenbach A, Wernecke M, Riedel N, Veigel J, Yamamura J, Keller S, Jung R, Busch P, Mann O, Knop FK, Holst JJ, Meier JJ, Aberle J. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss. Diabetes Metab Res Rev 2018; 34:e3025. [PMID: 29768729 DOI: 10.1002/dmrr.3025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following Roux-en-Y gastric bypass (RYGB). Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. METHODS Eleven patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during oral glucose tolerance test. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio; beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. RESULTS Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm3 (mean [95% CI], P = .001). The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (P = .03). This was consistent with a reduction in the estimated beta-cell area and mass. CONCLUSIONS Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible; however, future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB.
Collapse
Affiliation(s)
- A Lautenbach
- Department for Endocrinology and Diabetology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - M Wernecke
- Department for Endocrinology and Diabetology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - N Riedel
- Department for Endocrinology and Diabetology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - J Veigel
- Department for Endocrinology and Diabetology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - J Yamamura
- Department for Diagnostic and Interventional Radiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - S Keller
- Department for Diagnostic and Interventional Radiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - R Jung
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - P Busch
- General, Visceral and Thoracic Surgery Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - O Mann
- General, Visceral and Thoracic Surgery Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - F K Knop
- Centre for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - J J Holst
- NNF Centre for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - J J Meier
- Diabetes Division, Department of Medicine I, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - J Aberle
- Department for Endocrinology and Diabetology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Lewicky JD, Martel AL, Fraleigh NL, Boraman A, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Le HT. Strengthening peptide-based drug activity with novel glyconanoparticle. PLoS One 2018; 13:e0204472. [PMID: 30260999 PMCID: PMC6160049 DOI: 10.1371/journal.pone.0204472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of peptide-based drugs is significantly limited by the rapid proteolytic degradation that occurs when in blood. Encapsulation of these peptide structures within a delivery system, such as liposomes, can greatly improve both stability and target delivery. As part of our work focused on novel ambiphilic mannosylated neoglycolipids as targeted drug delivery systems, we have developed a C14-alkyl-mannopyranoside that forms self-assembled monodisperse liposomes. Herein, these glycoliposomes are investigated as a potential method to improve the plasma stability of peptide-based drugs. Reversed phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) methods were developed to assess the in vitro plasma stability of two structurally diverse peptides, including the kappa opioid receptor selective antagonist dynantin, and the NOD2 innate immune receptor ligand muramyl dipeptide (MDP). The RP-HPLC methods developed were able to resolve the peptides from background plasma contaminants and provided suitable response levels and linearity over an appropriate concentration range. Both compounds were found to be significantly degraded in rat plasma. Increasing degrees of both entrapment and stabilization were noted when dynantin was combined with the C14-alkyl-mannopyranoside in increasing peptide:glycoside ratios. The combination of MDP with the glycolipid also led to peptide entrapment, which greatly improved the plasma stability of the peptide. Overall, the results clearly indicate that the stability of peptide-based structures, which are subject to degradation in plasma, can be greatly improved via entrapment within C14-alkyl-mannopyranoside-bearing glycoliposomes.
Collapse
Affiliation(s)
| | | | - Nya L. Fraleigh
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Thi M.-D. Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | | | - René Roy
- Glycovax Pharma Inc., Montreal, Quebec, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Medicinal Sciences Division, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
40
|
Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bülow J. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep 2018; 5:5/3/e13073. [PMID: 28174344 PMCID: PMC5309569 DOI: 10.14814/phy2.13073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022] Open
Abstract
In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg-1 min-1) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production. Cell Rep 2018; 21:1452-1460. [PMID: 29117552 PMCID: PMC5695911 DOI: 10.1016/j.celrep.2017.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/01/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.
Collapse
|
42
|
Lang Lehrskov L, Lyngbaek MP, Soederlund L, Legaard GE, Ehses JA, Heywood SE, Wewer Albrechtsen NJ, Holst JJ, Karstoft K, Pedersen BK, Ellingsgaard H. Interleukin-6 Delays Gastric Emptying in Humans with Direct Effects on Glycemic Control. Cell Metab 2018; 27:1201-1211.e3. [PMID: 29731416 DOI: 10.1016/j.cmet.2018.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Gastric emptying is a critical regulator of postprandial glucose and delayed gastric emptying is an important mechanism of improved glycemic control achieved by short-acting glucagon-like peptide-1 (GLP-1) analogs in clinical practice. Here we report on a novel regulatory mechanism of gastric emptying in humans. We show that increasing interleukin (IL)-6 concentrations delays gastric emptying leading to reduced postprandial glycemia. IL-6 furthermore reduces insulin secretion in a GLP-1-dependent manner while effects on gastric emptying are GLP-1 independent. Inhibitory effects of IL-6 on gastric emptying were confirmed following exercise-induced increases in IL-6. Importantly, gastric- and insulin-reducing effects were maintained in individuals with type 2 diabetes. These data have clinical implications with respect to the use of IL-6 inhibition in autoimmune/inflammatory disease, and identify a novel target that could be exploited pharmacologically to delay gastric emptying and spare insulin, which may be beneficial for the beta cell in type 2 diabetes.
Collapse
Affiliation(s)
- Louise Lang Lehrskov
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mark Preben Lyngbaek
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Line Soederlund
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Grit Elster Legaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jan Adam Ehses
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Sarah Elizabeth Heywood
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
43
|
van den Broek M, de Heide LJM, Emous M, Wijma RB, Veeger NJGM, Wolthuis A, Laskewitz AJ, Heiner-Fokkema MR, Muller Kobold AC, Wolffenbuttel BHR, van Beek AP. Satiety and gastrointestinal hormones during a Mixed Meal Tolerance Test after gastric bypass surgery: association with plasma amino acid concentrations. Surg Obes Relat Dis 2018; 14:1106-1117. [PMID: 29937240 DOI: 10.1016/j.soard.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Circulating amino acids have been associated with both appetite and the secretion of anorexigenic hormones in healthy and obese populations. This effect has not been investigated in subjects having undergone Roux-en-Y gastric bypass surgery (RYGB). OBJECTIVE To investigate the association between postprandial plasma concentrations of amino acids and the anorexigenic hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY), the orexigenic hormone ghrelin, and satiety and hunger in post-RYGB subjects. SETTING A Dutch surgical department. METHODS Participants after primary RYGB were studied during a Mixed Meal Tolerance Test (MMTT). Satiety and hunger were assessed every 30 minutes on visual analogue scales. Blood samples were collected at baseline, every 10 minutes during the first half hour and every 30 minutes until 210 minutes after the start. The samples were assessed for 24 amino acids and 3 gastrointestinal hormones. Incremental areas under the curve (iAUCs) were calculated. Exploratory analyses were performed in which subjects were divided into high and low responders depending on the median iAUC. RESULTS 42 subjects, aged 48 ± 11 (mean ± SD) years, 31 to 76 months post-RYGB and with total weight loss of 30 ± 9% completed the MMTT. Subjects with high satiety scores had more than a 25% higher net iAUC of PYY and GLP-1 and at least a 10% higher net iAUC of 10 amino acids compared to subjects with low scores (P < 0.05). The net iAUC of five of these amino acids (i.e. arginine, asparagine, histidine, serine and threonine) was more than 10% higher in subjects with high responses on GLP-1 and/or PYY (P < 0.05). CONCLUSIONS Certain postprandial amino acids were associated with satiety and anorexigenic hormones and could therefore play a role in appetite regulation after RYGB; either by a direct effect on satiety, indirectly through gastrointestinal hormones, or both.
Collapse
Affiliation(s)
- Merel van den Broek
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands.
| | - Loek J M de Heide
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Marloes Emous
- Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Ragnhild B Wijma
- Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Nic J G M Veeger
- Department of Epidemiology, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Wolthuis
- Department of Clinical Chemistry, CERTE, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Anke J Laskewitz
- Department of Clinical Chemistry, CERTE, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anneke C Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André P van Beek
- Centre for Obesity Netherlands (CON), Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
de Laat MA, Fitzgerald DM, Sillence MN, Spence RJ. Glucagon‐like peptide‐2: A potential role in equine insulin dysregulation. Equine Vet J 2018; 50:842-847. [DOI: 10.1111/evj.12825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- M. A. de Laat
- Science and Engineering Faculty Queensland University of Technology (QUT) Brisbane Queensland Australia
| | - D. M. Fitzgerald
- Science and Engineering Faculty Queensland University of Technology (QUT) Brisbane Queensland Australia
| | - M. N. Sillence
- Science and Engineering Faculty Queensland University of Technology (QUT) Brisbane Queensland Australia
| | - R. J. Spence
- Science and Engineering Faculty Queensland University of Technology (QUT) Brisbane Queensland Australia
| |
Collapse
|
45
|
Wewer Albrechtsen NJ, Færch K, Jensen TM, Witte DR, Pedersen J, Mahendran Y, Jonsson AE, Galsgaard KD, Winther-Sørensen M, Torekov SS, Lauritzen T, Pedersen O, Knop FK, Hansen T, Jørgensen ME, Vistisen D, Holst JJ. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia 2018; 61:671-680. [PMID: 29305624 DOI: 10.1007/s00125-017-4535-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The secretion of glucagon is controlled by blood glucose and inappropriate secretion of glucagon contributes to hyperglycaemia in diabetes. Besides its role in glucose regulation, glucagon regulates amino acid metabolism in hepatocytes by increasing ureagenesis. Disruption of this mechanism causes hyperaminoacidaemia, which in turn increases glucagon secretion. We hypothesised that hepatic insulin resistance (secondary to hepatic steatosis) via defective glucagon signalling/glucagon resistance would lead to impaired ureagenesis and, hence, increased plasma concentrations of glucagonotropic amino acids and, subsequently, glucagon. METHODS To examine the association between glucagon and amino acids, and to explore whether this relationship was modified by hepatic insulin resistance, we studied a well-characterised cohort of 1408 individuals with normal and impaired glucose regulation. In this cohort, we have previously reported insulin resistance to be accompanied by increased plasma concentrations of glucagon. We now measure plasma levels of amino acids in the same cohort. HOMA-IR was calculated as a marker of hepatic insulin resistance. RESULTS Fasting levels of glucagonotropic amino acids and glucagon were significantly and inversely associated in linear regression models (persisting after adjustment for age, sex and BMI). Increasing levels of hepatic, but not peripheral insulin resistance (p > 0.166) attenuated the association between glucagon and circulating levels of alanine, glutamine and tyrosine, and was significantly associated with hyperaminoacidaemia and hyperglucagonaemia. A doubling of the calculated glucagon-alanine index was significantly associated with a 30% increase in hepatic insulin resistance, a 7% increase in plasma alanine aminotransferase levels, and a 14% increase in plasma γ-glutamyltransferase levels. CONCLUSIONS/INTERPRETATION This cross-sectional study supports the existence of a liver-alpha cell axis in humans: glucagon regulates plasma levels of amino acids, which in turn feedback to regulate the secretion of glucagon. With hepatic insulin resistance, reflecting hepatic steatosis, the feedback cycle is disrupted, leading to hyperaminoacidaemia and hyperglucagonaemia. The glucagon-alanine index is suggested as a relevant marker for hepatic glucagon signalling.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Daniel R Witte
- The Danish Diabetes Academy, Odense, Denmark
- Department of Public Health, Section of General Practice, Aarhus University, Aarhus, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuvaraj Mahendran
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, Aarhus University, Aarhus, Denmark
| | - Oluf Pedersen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Yu S, Wu Y, Xu P, Wang S, Zhangsun D, Luo S. Effects of serum, enzyme, thiol, and forced degradation on the stabilities of αO-Conotoxin GeXIVA[1,2] and GeXIVA [1,4]. Chem Biol Drug Des 2018; 91:1030-1041. [DOI: 10.1111/cbdd.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/22/2017] [Accepted: 12/17/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Shurun Yu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| | - Pan Xu
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education; Hainan University; Haikou China
- Key Laboratory for Marine Drugs of Haikou; Hainan University; Haikou China
| |
Collapse
|
47
|
Galsgaard KD, Winther-Sørensen M, Ørskov C, Kissow H, Poulsen SS, Vilstrup H, Prehn C, Adamski J, Jepsen SL, Hartmann B, Hunt J, Charron MJ, Pedersen J, Wewer Albrechtsen NJ, Holst JJ. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver-alpha-cell axis. Am J Physiol Endocrinol Metab 2018; 314:E93-E103. [PMID: 28978545 PMCID: PMC6048389 DOI: 10.1152/ajpendo.00198.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucagon secreted from the pancreatic alpha-cells is essential for regulation of blood glucose levels. However, glucagon may play an equally important role in the regulation of amino acid metabolism by promoting ureagenesis. We hypothesized that disruption of glucagon receptor signaling would lead to an increased plasma concentration of amino acids, which in a feedback manner stimulates the secretion of glucagon, eventually associated with compensatory proliferation of the pancreatic alpha-cells. To address this, we performed plasma profiling of glucagon receptor knockout ( Gcgr-/-) mice and wild-type (WT) littermates using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and tissue biopsies from the pancreas were analyzed for islet hormones and by histology. A principal component analysis of the plasma metabolome from Gcgr-/- and WT littermates indicated amino acids as the primary metabolic component distinguishing the two groups of mice. Apart from their hyperaminoacidemia, Gcgr-/- mice display hyperglucagonemia, increased pancreatic content of glucagon and somatostatin (but not insulin), and alpha-cell hyperplasia and hypertrophy compared with WT littermates. Incubating cultured α-TC1.9 cells with a mixture of amino acids (Vamin 1%) for 30 min and for up to 48 h led to increased glucagon concentrations (~6-fold) in the media and cell proliferation (~2-fold), respectively. In anesthetized mice, a glucagon receptor-specific antagonist (Novo Nordisk 25-2648, 100 mg/kg) reduced amino acid clearance. Our data support the notion that glucagon secretion and hepatic amino acid metabolism are linked in a close feedback loop, which operates independently of normal variations in glucose metabolism.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Hendrik Vilstrup
- Department of Hepato-Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum, German Research Center for Environmental Health, München-Neuerberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum, German Research Center for Environmental Health, München-Neuerberg, Germany
- Lehrstul für Experimentelle Genetik, Technishe Universität München, Freising- Weihenstephan , Germany
- German Center for Diabetes Research, München-Nueherberg, Germany
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jenna Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Maureen J Charron
- Departments of Biochemistry, Obstetrics and Gynecology and Women's Health, and Medicine, Albert Einstein College of Medicine , New York, New York
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
48
|
Bremholm L, Andersen UB, Hornum M, Hilsted L, Veedfald S, Hartmann B, Holst JJ. Acute effects of glucagon-like peptide-1, GLP-1 9-36 amide, and exenatide on mesenteric blood flow, cardiovascular parameters, and biomarkers in healthy volunteers. Physiol Rep 2017; 5:5/4/e13102. [PMID: 28235974 PMCID: PMC5328764 DOI: 10.14814/phy2.13102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Glucagon‐like peptide‐1 (GLP‐1, GLP‐17–36amide) and its sister peptide glucagon‐like peptide 2 (GLP‐2) influence numerous intestinal functions and GLP‐2 greatly increases intestinal blood flow. We hypothesized that GLP‐1 also stimulates intestinal blood flow and that this would impact on the overall digestive and cardiovascular effects of the hormone. To investigate the influence of GLP‐1 receptor agonism on mesenteric and renal blood flow and cardiovascular parameters, we carried out a double‐blinded randomized clinical trial. A total of eight healthy volunteers received high physiological subcutaneous injections of GLP‐1, GLP‐19–36 amide (bioactive metabolite), exenatide (stable GLP‐1 agonist), or saline on four separate days. Blood flow in mesenteric, celiac, and renal arteries was measured by Doppler ultrasound. Blood pressure, heart rate, cardiac output, and stroke volume were measured continuously using an integrated system. Plasma was analyzed for glucose, GLP‐1 (intact and total), exenatide and Pancreatic polypeptide (PP), and serum for insulin and C‐peptide. Neither GLP‐1, GLP‐19–36 amide, exenatide nor saline elicited any changes in blood flow parameters in the mesenteric or renal arteries. GLP‐1 significantly increased heart rate (two‐way ANOVA, injection [P = 0.0162], time [P = 0.0038], and injection × time [P = 0.082]; Tukey post hoc GLP‐1 vs. saline and GLP‐19–36amide [P < 0.011]), and tended to increase cardiac output and decrease stroke volume compared to GLP‐19–36 amide and saline. Blood pressures were not affected. As expected, glucose levels fell and insulin secretion increased after infusion of both GLP‐1 and exenatide.
Collapse
Affiliation(s)
- Lasse Bremholm
- Department of Medicine (Gastroenterology Section), Koege Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik B Andersen
- Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet (Glostrup Section), University of Copenhagen, Copenhagen, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences & NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences & NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences & NNF Center for Basic Metabolic Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Windeløv JA, Wewer Albrechtsen NJ, Kuhre RE, Jepsen SL, Hornburg D, Pedersen J, Jensen EP, Galsgaard KD, Winther-Sørensen M, Ørgaard A, Deacon CF, Mann M, Kissow H, Hartmann B, Holst JJ. Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia 2017; 60:2066-2075. [PMID: 28669086 DOI: 10.1007/s00125-017-4347-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS In humans, glucagon-like peptide-1 (GLP-1) is rapidly degraded by dipeptidyl peptidase-4 to a relatively stable metabolite, GLP-1(9-36)NH2, which allows measurement of GLP-1 secretion. However, little is known about the kinetics of the GLP-1 metabolite in mice. We hypothesised that the GLP-1 metabolite is rapidly degraded in this species by neutral endopeptidase(s) (NEP[s]). METHODS We administered glucose, mixed meal or water orally to 256 mice, and took blood samples before and 2, 6, 10, 20, 30, 60 or 90 min after stimulation. To study the metabolism of the GLP-1 metabolite, i.v. GLP-1(9-36)NH2 (800 fmol) or saline (154 mmol/l NaCl) was administered to 160 mice, some of which had a prior injection of a selective NEP 24.11 ± inhibitor (candoxatril, 5 mg/kg) or saline. Blood was collected before and 1, 2, 4 and 12 min after GLP-1/saline injection. Plasma GLP-1 levels were analysed using a customised single-site C-terminal ELISA, two different two-site ELISAs and MS. RESULTS GLP-1 secretion profiles after oral glucose administration differed markedly when assayed by C-terminal ELISA compared with sandwich ELISAs, with the former showing a far higher peak value and AUC. In mice injected with GLP-1(9-36)NH2, immunoreactive GLP-1 plasma levels peaked at approximately 75 pmol/l at 1 min when measured with sandwich ELISAs, returning to baseline (~20 pmol/l) after 12 min, but remained elevated using the C-terminal ELISA (~90 pmol/l at 12 min). NEP 24.11 inhibition by candoxatril significantly attenuated GLP-1(9-36)NH2 degradation in vivo and in vitro. MS identified GLP-1 fragments consistent with NEP 24.11 degradation. CONCLUSIONS/INTERPRETATION In mice, the GLP-1 metabolite is eliminated within a few minutes owing to endoproteolytic cleavage by NEP 24.11. Therefore, accurate measurement of GLP-1 secretion in mice requires assays for NEP 24.11 metabolites. Conventional sandwich ELISAs are inadequate because of endoproteolytic cleavage of the dipeptidyl peptidase-4-generated metabolite.
Collapse
Affiliation(s)
- Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ørgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Wewer Albrechtsen NJ, Asmar A, Jensen F, Törang S, Simonsen L, Kuhre RE, Asmar M, Veedfald S, Plamboeck A, Knop FK, Vilsbøll T, Madsbad S, Nauck MA, Deacon CF, Bülow J, Holst JJ, Hartmann B. A sandwich ELISA for measurement of the primary glucagon-like peptide-1 metabolite. Am J Physiol Endocrinol Metab 2017; 313:E284-E291. [PMID: 28420649 DOI: 10.1152/ajpendo.00005.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/21/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from the gastrointestinal tract. It is best known for its glucose-dependent insulinotropic effects. GLP-1 is secreted in its intact (active) form (7-36NH2) but is rapidly degraded by the dipeptidyl peptidase 4 (DPP-4) enzyme, converting >90% to the primary metabolite (9-36NH2) before reaching the targets via the circulation. Although originally thought to be inactive or antagonistic, GLP-1 9-36NH2 may have independent actions, and it is therefore relevant to be able to measure it. Because reliable assays were not available, we developed a sandwich ELISA recognizing both GLP-1 9-36NH2 and nonamidated GLP-1 9-37. The ELISA was validated using analytical assay validation guidelines and by comparing it to a subtraction-based method, hitherto employed for estimation of GLP-1 9-36NH2 Its accuracy was evaluated from measurements of plasma obtained during intravenous infusions (1.5 pmol × kg-1 × min-1) of GLP-1 7-36NH2 in healthy subjects and patients with type 2 diabetes. Plasma levels of the endogenous GLP-1 metabolite increased during a meal challenge in patients with type 2 diabetes, and treatment with a DPP-4 inhibitor fully blocked its formation. Accurate measurements of the GLP-1 metabolite may contribute to understanding its physiology and role of GLP-1 in diabetes.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Frederik Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Törang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Plamboeck
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark; and
| | - Michael A Nauck
- Division of Diabetology, Department of Medicine I, St. Josef Hospital, Ruhr University of Bochum, Bochum, Germany
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|