1
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Martinand-Mari C, Debiais-Thibaud M, Potier E, Gasset E, Dutto G, Leurs N, Lallement S, Farcy E. Estradiol-17β and bisphenol A affect growth and mineralization in early life stages of seabass. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109921. [PMID: 38609061 DOI: 10.1016/j.cbpc.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17β (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 μg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France.
| | - Melanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Eric Potier
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Eric Gasset
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Gilbert Dutto
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Stéphane Lallement
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Emilie Farcy
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France.
| |
Collapse
|
4
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Romero-Gavilán F, García-Arnáez I, Cerqueira A, Arias-Mainer C, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Using osteogenic medium in the in vitro evaluation of bone biomaterials: Artefacts due to a synergistic effect. Biochimie 2024; 216:24-33. [PMID: 37716498 DOI: 10.1016/j.biochi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
In vitro tests using bone cells to evaluate the osteogenic potential of biomaterials usually employ the osteogenic medium (OM). The lack of correlation frequently reported between in vitro and in vivo studies in bone biomaterials, makes necessary the evaluation of the impact of osteogenic supplements on these results. This study analysed the proteomic profiles of human osteoblasts (HOb) cultured in the media with and without osteogenic agents (ascorbic acid and β-glycerol phosphate). The cells were incubated for 1 and 7 days, on their own or in contact with Ti. The comparative Perseus analysis identified 2544 proteins whose expression was affected by osteogenic agents. We observed that the OM strongly alters protein expression profiles with a complex impact on multiple pathways associated with adhesion, immunity, oxidative stress, coagulation, angiogenesis and osteogenesis. OM-triggered changes in the HOb intracellular energy production mechanisms, with key roles in osteoblast maturation. HOb cultured with and without Ti showed enrichment in the skeletal system development function due to the OM. However, differentially expressed proteins with key regenerative functions were associated with a synergistic effect of OM and Ti. This synergy, caused by the Ti-OM interaction, could complicate the interpretation of in vitro results, highlighting the need to analyse this phenomenon in biomaterial testing.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
6
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
7
|
Zhu Q, Tan M, Wang C, Chen Y, Wang C, Zhang J, Gu Y, Guo Y, Han J, Li L, Jiang R, Fan X, Xie H, Wang L, Gu Z, Liu D, Shi J, Feng X. Single-cell RNA sequencing analysis of the temporomandibular joint condyle in 3 and 4-month-old human embryos. Cell Biosci 2023; 13:130. [PMID: 37468984 DOI: 10.1186/s13578-023-01069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is a complex joint consisting of the condyle, the temporal articular surface, and the articular disc. Functions such as mastication, swallowing and articulation are accomplished by the movements of the TMJ. To date, the TMJ has been studied more extensively, but the types of TMJ cells, their differentiation, and their interrelationship during growth and development are still unclear and the study of the TMJ is limited. The aim of this study was to establish a molecular cellular atlas of the human embryonic temporomandibular joint condyle (TMJC) by single-cell RNA sequencing, which will contribute to understanding and solving clinical problems. RESULTS Human embryos at 3 and 4 months of age are an important stage of TMJC development. We performed a comprehensive transcriptome analysis of TMJC tissue from human embryos at 3 and 4 months of age using single-cell RNA sequencing. A total of 16,624 cells were captured and the gene expression profiles of 15 cell clusters in human embryonic TMJC were determined, including 14 known cell types and one previously unknown cell type, "transition state cells (TSCs)". Immunofluorescence assays confirmed that TSCs are not the same cell cluster as mesenchymal stem cells (MSCs). Pseudotime trajectory and RNA velocity analysis revealed that MSCs transformed into TSCs, which further differentiated into osteoblasts, hypertrophic chondrocytes and tenocytes. In addition, chondrocytes (CYTL1high + THBS1high) from secondary cartilage were detected only in 4-month-old human embryonic TMJC. CONCLUSIONS Our study provides an atlas of differentiation stages of human embryonic TMJC tissue cells, which will contribute to an in-depth understanding of the pathophysiology of the TMJC tissue repair process and ultimately help to solve clinical problems.
Collapse
Affiliation(s)
- Qianqi Zhu
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Miaoying Tan
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Chengniu Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Chenfei Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Junqi Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Yijun Gu
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Yuqi Guo
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Jianpeng Han
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Lei Li
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Rongrong Jiang
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Xudong Fan
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Liang Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China.
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases Second Affiliated Hospital Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
9
|
Bergamo AZN, Madalena IR, Omori MA, Ramazzotto LA, Nelson-Filho P, Baratto-Filho F, Proff P, Kirschneck C, Küchler EC. Estrogen deficiency during puberty affects the expression of microRNA30a and microRNA503 in the mandibular condyle. Ann Anat 2021; 240:151865. [PMID: 34813926 DOI: 10.1016/j.aanat.2021.151865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was investigated if estrogen deficiency during puberty affects the expression of miRNA30a and miRNA503 in maxillary and mandibular growth centers, and also evaluated if ERα and ERβ are correlated with miRNA30a and miRNA503 expressions. METHODS Samples from 12 female Wistar rats randomized into experimental group (OVX) and control group (SHAM). At an age of 45 days animals were euthanized for miRNA expression analyses. RT-qPCR was performed to determine miRNA30a and miRNA503 expression in growth sites: midpalatal suture, condyle, mandibular angle, symphysis/parasymphysis and coronoid process. The data was carried out using the parametric tests at 5% of significance level. RESULTS miRNA 30a and miRNA503 presented higher levels in the condylar site in SHAM group when compared with OVX (p = 0.002 and p = 0.020, respectively). In the growth centers, a statistical significant difference was observed only for miRNA30a (p = 0.004), when compared mandibular angle with condyle the in OVX group (p = 0.001). A strong positive correlation between miRNA503 and ERα in the condyle of OVX group was observed (r = 0.90; p = 0.039 and it also between miRNA503 and ERβ in the coronoid process of the OVX group (r = 0.88; p = 0.05). CONCLUSION The results suggested that estrogen regulates specific miRNAs in maxillary and mandibular growth centers, which may participate in posttranscriptional regulation of estrogen-regulated genes.
Collapse
Affiliation(s)
- Ana Zilda Nazar Bergamo
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Ribeiro Madalena
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Dentistry, University of the Region of Joinville, Joinville, SC, Brazil; Department of Restorative Dentistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marjorie Ayumi Omori
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Alexandre Ramazzotto
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Biotechnology Graduation, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flares Baratto-Filho
- Department of Dentistry, University of the Region of Joinville, Joinville, SC, Brazil
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | | | |
Collapse
|
10
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
11
|
Wang S, Pu WT. Calcific aortic valve disease: turning therapeutic discovery up a notch. Nat Rev Cardiol 2021; 18:309-310. [PMID: 33608670 DOI: 10.1038/s41569-021-00528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity. BMC Ecol Evol 2021; 21:62. [PMID: 33888061 PMCID: PMC8061045 DOI: 10.1186/s12862-021-01787-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. Results We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus. Conclusion This study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that – on the basis of an ancestral gill arch network—transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01787-9.
Collapse
|
13
|
Yang Y, Li S, Li B, Li Y, Xia K, Aman S, Yang Y, Ahmad B, Zhao B, Wu H. FBXL10 promotes ERRα protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRα. Cancer Lett 2021; 502:108-119. [PMID: 33450359 DOI: 10.1016/j.canlet.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The underlying mechanism of orphan nuclear receptor estrogen-related receptor α (ERRα) in breast cancer was investigated by identifying its interaction partners using mass spectrometry. F-box and leucine-rich repeat protein 10 (FBXL10), which modulates various physiological processes, may interact with ERRα in breast cancer. Here, we investigated the interaction between FBXL10 and ERRα, and their protein expression and correlation in breast cancer. Mechanical studies revealed that FBXL10 stabilized ERRα protein levels by reducing its poly-ubiquitylation and promoting its mono-ubiquitylation. The reporter gene assay and examination of ERRα target genes validated the increased transcriptional activity of ERRα due to its increased protein levels by FBXL10. FBXL10 also increased ERRα enrichment at the promoter region of its target genes. Functionally, FBXL10 facilitated the ERRα/peroxisome proliferator-activated receptor gamma coactivator 1 β (PGC1β)-mediated proliferation and tumorigenesis of breast cancer cells in vitro and in vivo. Our results uncovered a molecular mechanism linking the mono-ubiquitylation and protein stability of ERRα to functional interaction with FBXL10. Moreover, a novel regulatory axis of FBXL10 and ERRα regulating the proliferation and tumorigenesis of breast cancer cells was established.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bashir Ahmad
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
14
|
Theodoris CV, Zhou P, Liu L, Zhang Y, Nishino T, Huang Y, Kostina A, Ranade SS, Gifford CA, Uspenskiy V, Malashicheva A, Ding S, Srivastava D. Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease. Science 2021; 371:eabd0724. [PMID: 33303684 PMCID: PMC7880903 DOI: 10.1126/science.abd0724] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.
Collapse
Affiliation(s)
- Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Program in Developmental and Stem Cell Biology (DSCB), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Lei Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Yu Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Aleksandra Kostina
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sanjeev S Ranade
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA
| |
Collapse
|
15
|
Huang X, Cen X, Zhang B, Liao Y, Zhu G, Liu J, Zhao Z. Prospect of circular RNA in osteogenesis: A novel orchestrator of signaling pathways. J Cell Physiol 2019; 234:21450-21459. [PMID: 31131457 DOI: 10.1002/jcp.28866] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) were initially regarded as by-products of aberrant splicing. But now, there are substantial evidence on their various roles in the regulation of genes during the development of organs and diseases. Consistent with these breakthroughs, it is experiencing rapid growth that circRNAs function as the important checkpoints during the osteogenesis. Therefore, characterizing the roles of circRNAs is useful and critical to better understanding the process of osteogenic differentiation, which could provide new avenues for the diagnosis and treatment of bone diseases, such as bone defects and osteoporosis. In this review, we presented a map of the interaction between circRNAs and the molecules of signaling pathways associated with osteogenesis, summarized the current knowledge of the biological functions of circRNAs during the osteogenic differentiation, figured out the limits of existing research works, and provided a novel look on the diagnostic and therapeutic methods of bone diseases based on circRNAs.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Chen S, Yang L, He S, Yang J, Liu D, Bao Q, Qin H, Du W, Zhong X, Chen C, Zong Z. Preactivation of β-catenin in osteoblasts improves the osteoanabolic effect of PTH in type 1 diabetic mice. J Cell Physiol 2019; 235:1480-1493. [PMID: 31301073 DOI: 10.1002/jcp.29068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1-3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.
Collapse
Affiliation(s)
- Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Orthopedics, The 118th Hospital of the Chinese People's Liberation Army, Zhejiang, Wenzhou, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenqiong Du
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Xin Zhong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Can Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Ghanbari F, Hebert-Losier A, Barry J, Poirier D, Giguere V, Mader S, Philip A. Isolation and functional characterization of a novel endogenous inverse agonist of estrogen related receptors (ERRs) from human pregnancy urine. J Steroid Biochem Mol Biol 2019; 191:105352. [PMID: 30954508 DOI: 10.1016/j.jsbmb.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/04/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
Estrogen-receptor related receptors (ERRs) which consists of ERRα, ERRβ and ERRγ belong to the orphan nuclear receptor subfamily 3, group B (NR3B) subfamily, and are constitutively active. ERRs have been shown to actively modulate estrogenic responses, and to play an essential role in pregnancy, and are implicated in breast cancer progression. Despite intensive efforts, no endogenous ligand other than the ubiquitous sterol, cholesterol which binds ERRα, has been identified for ERRs so far. The discovery of ligands that bind these orphan receptors will allow the manipulation of this pathway and may lead to novel strategies for the treatment of cancer and other diseases. We previously reported the identification of a novel endogenous estradienolone-like steroid (ED) that is strongly bound to sex hormone binding globulin, in pregnant women. Our recent results show that ED acts as an inverse agonist of ERRα and ERRγ by directly interacting with these receptors, and inhibiting their transcriptional activity. We also demonstrate that ED inhibits the growth of both estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells in a dose dependent manner, while of displaying a little effect on normal epithelial breast cells. Furthermore, the anti-mitogenic effect of ED in breast cancer cells is ERRα-dependent. These data suggest that ED-ERR interaction may represent a novel physiologically relevant hormone response pathway in the human. The finding that ED inhibits both ER negative and ER positive breast cancer cell growth may have important implications in pathophysiology breast cancer.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Andrea Hebert-Losier
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Janelle Barry
- Department of Medicine, McGill University, Montreal, Canada
| | - Donald Poirier
- Department of Molecular Medicine, and Centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
| | | | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
18
|
Zhang L, Zhu Y, Cheng H, Zhang J, Zhu Y, Chen H, Chen L, Qi H, Ren G, Tang J, Zhong M, Hua W, Shi X, Li Q. The Increased Expression of Estrogen-Related Receptor α Correlates with Wnt5a and Poor Prognosis in Patients with Glioma. Mol Cancer Ther 2019; 18:173-184. [PMID: 30322948 DOI: 10.1158/1535-7163.mct-17-0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Malignant glioma is an often fatal type of cancer. Elevated expression of the orphan nuclear receptor estrogen-related receptor alpha (ERRα) is an unfavorable factor for malignant progression and poor prognosis in several cancers, although the mechanism by which this receptor affects the pathophysiology of cancers remains obscure. However, few studies have been conducted in regard to the role of ERRα in glioma. In the current study, we found that elevated expression of ERRα was observed in 107 glioma cases by means of IHC. Clinically, high expression of ERRα was associated with later stages of disease progression and clinical outcome of patients with glioma. ERRα had the ability to promote cell proliferation and migration in glioma cell lines. Moreover, in a xenograft model, we also found that silencing ERRα had an inhibitory effect on the growth of glioma. Further investigation confirmed that ERRα was involved in the carcinogenesis of glioma via the regulation of the Wnt5a signal pathway in vitro and in vivo Our study was first to show the overexpression of ERRα in glioma tissues and a direct correlation between ERRα expression and clinical prognosis of glioma. Together, these data reveal that ERRα has prognostic significance in glioma, and targeting ERRα may provide a reliable therapeutic strategy for the treatment for human glioma.
Collapse
Affiliation(s)
- Liudi Zhang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqian Zhu
- Department of Neurosurgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haifei Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Lu Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Huijie Qi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
| | - Guoqiang Ren
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jianmin Tang
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai, China.
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wei XF, Chen QL, Fu Y, Zhang QK. Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2. J Cell Biochem 2018; 120:6515-6527. [PMID: 30450775 DOI: 10.1002/jcb.27942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Osteoblast differentiation, defined as the process whereby a relatively unspecialized cell acquires the specialized features of an osteoblast, is directly linked to multiple myeloma (MM) bone disease. Wnt and bone morphogenetic protein (BMP) are proved to be implicated in the pathological or defective osteoblast differentiation process. This study aims to test the involvement of Wnt, bone morphogenetic proteins (BMP) pathways, and empty spiracles homeobox 2 (EMX2) in osteoblast differentiation and MM development. Initially, differentially expressed genes in bone marrow mesenchymal stem cells (MSCs) from MM patients and healthy donors were identified using microarray-based gene expression profiling. The functional role of Wnt and BMP in MM was determined. Next, we focused on the co-operative effects of Wnt and BMP on calcium deposition, alkaline phosphatase (ALP) activity, the number of mineralized nodules, and osteocalcin (OCN) content in MSCs. The expression patterns of Wnt and BMP pathway-related genes, EMX2 and osteoblast differentiation-related factors were determined to assess their effects on osteoblast differentiation. Furthermore, regulation of Wnt and BMP in ectopic osteogenesis was also investigated in vivo. An integrated genomic screen suggested that Wnt and BMP regularly co-operate to regulate EMX2 and affect MM. EMX2 was downregulated in MSCs. The activated Wnt and BMP resulted in more calcium salt deposits, mineralized nodules, and a noted increased in ALP activity and OCN content by upregulating EMX2, leading to induced differentiation of MSCs into osteoblasts. Collectively, this study demonstrated that Wnt and BMP pathways could co-operatively stimulate differentiation of MSCs into osteoblasts and inhibit MM progression, representing potential targets for MM treatment.
Collapse
Affiliation(s)
- Xiao-Fang Wei
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Qiao-Lin Chen
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuan Fu
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| | - Qi-Ke Zhang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
20
|
Lin Y, Xiao L, Zhang Y, Li P, Wu Y, Lin Y. MiR-26b-3p regulates osteoblast differentiation via targeting estrogen receptor α. Genomics 2018; 111:1089-1096. [PMID: 29981839 DOI: 10.1016/j.ygeno.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Understanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases. METHODS MC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay. RESULTS miR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p. CONCLUSION Our study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.
Collapse
Affiliation(s)
- Yu Lin
- Department of Orthopaedics, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, PR China.
| | - Lili Xiao
- Department of Orthopaedics, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, PR China
| | - Yiyuan Zhang
- Department of Orthopaedics, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, PR China
| | - Ping Li
- Department of Orthopaedics, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou 350007, PR China
| | - Yinsheng Wu
- Institute of osteopathy, Fujian Traditional Chinese Medicine University Integrated Traditional Chinese, Western Medicine Research Institute, Fuzhou 350102, PR China
| | - Yanping Lin
- Institute of osteopathy, Fujian Traditional Chinese Medicine University Integrated Traditional Chinese, Western Medicine Research Institute, Fuzhou 350102, PR China.
| |
Collapse
|
21
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
22
|
He X, Ma S, Tian Y, Wei C, Zhu Y, Li F, Zhang P, Wang P, Zhang Y, Zhong H. ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog 2017; 13:e1006347. [PMID: 28591144 PMCID: PMC5476288 DOI: 10.1371/journal.ppat.1006347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy.
Collapse
Affiliation(s)
- Xiang He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Shengli Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yinyin Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Congwen Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yongjie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
- Institute of Healthy Science, Anhui University, Hefei, Anhui, P.R. China
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Penghao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Yanhong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| | - Hui Zhong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P.R. China
| |
Collapse
|
23
|
Saul MC, Seward CH, Troy JM, Zhang H, Sloofman LG, Lu X, Weisner PA, Caetano-Anolles D, Sun H, Zhao SD, Chandrasekaran S, Sinha S, Stubbs L. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 2017; 27:959-972. [PMID: 28356321 PMCID: PMC5453329 DOI: 10.1101/gr.214221.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Informatics Institute, Urbana, Illinois 61801, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laura G Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaochen Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Patricia A Weisner
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Derek Caetano-Anolles
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hao Sun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Computer Science
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
24
|
Li Q, Zhu L, Zhang L, Chen H, Zhu Y, Du Y, Zhong W, Zhong M, Shi X. Inhibition of estrogen related receptor α attenuates vascular smooth muscle cell proliferation and migration by regulating RhoA/p27 Kip1 and β-Catenin/Wnt4 signaling pathway. Eur J Pharmacol 2017; 799:188-195. [PMID: 28213288 DOI: 10.1016/j.ejphar.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
RhoA/p27Kip1 and β-Catenin/Wnt4 signaling processes play central roles in proliferation and migration in vascular smooth muscle cells (VSMCs). ERRα, a member of orphan nuclear receptors, is a potent prognostic factor in breast, ovarian, colon and other types of tumors. However, biological significance of ERRα in VSMCs as well as the molecular mechanisms remains largely unknown. Therefore, the present study was designed to investigate whether ERRα is involved in the proliferation and migration of VSMCs in vitro and neointimal formation in vivo. The specific ERRα inverse agonist XCT790 (or ERRα shRNA) resulted in a significant inhibition of proliferation and phenotypic switch in cultured rat aortic SMCs (RASMCs). Furthermore, cycle progression, cell cycle protein transcription as well as hyperphosphorylation of the retinoblastoma protein (Rb) in RASMCs were prevented by downregulation of ERRα. Transwell assay demonstrated that migratory capacity of RASMCs was also inhibited the treatment of XCT790 (or ERRα shRNA). At the molecular levels, RhoA/p27Kip1 and β-Catenin/Wnt4 signaling pathways are involved in ERRα-mediated RASMCs growth and migration. Finally, inhibition of ERRα significantly attenuated neointimal formation in rat artery after balloon injury. These results help to further understand vascular remodeling and suggest that ERRα might be a potential target for the treatment of vascular proliferative diseases.
Collapse
Affiliation(s)
- Qunyi Li
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| | - Lei Zhu
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Wanxian Zhong
- Department of Pharmacy, Jinshan Branch of the Sixth People's Hospital, Affiliated with Shanghai Jiaotong University, Shanghai 201500, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China; Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| |
Collapse
|
25
|
Fradet A, Bouchet M, Delliaux C, Gervais M, Kan C, Benetollo C, Pantano F, Vargas G, Bouazza L, Croset M, Bala Y, Leroy X, Rosol TJ, Rieusset J, Bellahcène A, Castronovo V, Aubin JE, Clézardin P, Duterque-Coquillaud M, Bonnelye E. Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone. Oncotarget 2016; 7:77071-77086. [PMID: 27776343 PMCID: PMC5363569 DOI: 10.18632/oncotarget.12787] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFβ1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated withERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events.
Collapse
Affiliation(s)
- Anais Fradet
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Mathilde Bouchet
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Carine Delliaux
- CNRS-UMR8161, F-59021 Lille, France
- Université-Lille, F-59000 Lille, France
| | - Manon Gervais
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Casina Kan
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Claire Benetollo
- Université-Lyon1, F-69008 Lyon, France
- InsermU1028-CNRS-UMR5292, Lyon, France
| | | | - Geoffrey Vargas
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Lamia Bouazza
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Martine Croset
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | - Yohann Bala
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | | | | | | | | | | | - Jane E Aubin
- University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philippe Clézardin
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| | | | - Edith Bonnelye
- InsermUMR1033, F-69372 Lyon, France
- Université-Lyon1, F-69008 Lyon, France
| |
Collapse
|
26
|
Feng C, Hu J, Liu C, Liu S, Liao G, Song L, Zeng X. Association of 17-β Estradiol with Adipose-Derived Stem Cells: New Strategy to Produce Functional Myogenic Differentiated Cells with a Nano-Scaffold for Tissue Engineering. PLoS One 2016; 11:e0164918. [PMID: 27783699 PMCID: PMC5081199 DOI: 10.1371/journal.pone.0164918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
The increased incidence of stress urinary incontinence (SUI) in postmenopausal women has been proposed to be associated with a reduction in the level of 17-β estradiol (E2). E2 has also been shown to enhance the multi-differentiation ability of adipose-derived stem cells (ASCs) in vitro. However, studies on the potential value of E2 for tissue engineering in SUI treatment are rare. In the present study, we successfully fabricated myogenically differentiated ASCs (MD-ASCs), which were seeded onto a Poly(l-lactide)/Poly(e-caprolactone) electrospinning nano-scaffold, and incorporated E2 into the system, with the aim of improving the proliferation and myogenic differentiation of ASCs. ASCs were collected from the inguinal subcutaneous fat of rats. The proliferation and myogenic differentiation of ASCs, as well as the nano-scaffold biocompatibility of MD-ASCs, with or without E2 supplementation, were investigated. We demonstrated that E2 incorporation enhanced the proliferation of ASCs in vitro, and the most optimal concentration was 10-9 M. E2 also led to modulation of the MD-ASCs phenotype toward a concentrated type with smooth muscle-inductive medium. The expression of early (alpha-smooth muscle actin), mid (calponin), and late-stage (myosin heavy chain) contractile markers in MD-ASCs was enhanced by E2 during the different differentiation stages. Furthermore, the nano-scaffold was biocompatible with MD-ASCs, and cell proliferation was significantly enhanced by E2. Taken together, these results demonstrate that E2 can enhance the proliferation and myogenic differentiation of ASCs and can be used to construct a biocompatible cell/nano-scaffold. These scaffolds with desirable differentiation cells show promising applications for tissue engineering.
Collapse
Affiliation(s)
- Chunxiang Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinqian Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiliang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiying Liao
- School of Material Science and Chemistry Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei, China
| | - Linjie Song
- School of Material Science and Chemistry Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei, China
| | - Xiaoyong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
27
|
Carnesecchi J, Vanacker JM. Estrogen-Related Receptors and the control of bone cell fate. Mol Cell Endocrinol 2016; 432:37-43. [PMID: 26206717 DOI: 10.1016/j.mce.2015.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
Abstract
Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
28
|
Pashay Ahi E, Walker BS, Lassiter CS, Jónsson ZO. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development. PeerJ 2016; 4:e1878. [PMID: 27069811 PMCID: PMC4824909 DOI: 10.7717/peerj.1878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E 2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E 2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E 2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E 2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E 2 during larval head development.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavik , Iceland
| | | | | | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland; Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
29
|
Abstract
Stimulating bone growth and regeneration, especially in patients with delayed union or non-union of bone, is a challenge for orthopaedic surgeons. Treatments employed for bone regeneration are based on the use of cells, biomaterials and factors. Among these therapies, cell treatment with mesenchymal stem cells (MSCs) has a number of advantages as MSCs: (1) are multipotent cells that can migrate to sites of injury; (2) are capable of suppressing the local immune response; and (3) are available in large quantities from the patients themselves. MSC therapies have been used for stimulating bone regeneration in animal models and in patients. Methods of application range from direct MSC injection, seeding MSCs on synthetic scaffolds, the use of gene-modified MSCs, and hetero-MSCs application. However, only a small number of these cell-based strategies are in clinical use, and none of these treatments has become the gold standard treatment for delayed or non-union of bone.
Collapse
Affiliation(s)
- Yunhao Qin
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Guan
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| | - Changqing Zhang
- Shanghai Sixth People's Hospital affiliated to Department of Orthopaedic, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Abstract
Breast cancer is one of the most common malignancies of women. The majority of breast cancers express estrogen and/or progesterone receptors, permitting anticancer targeting strategies to reduce estrogen signaling in the cancer cells and thereby lowering the risk of breast cancer recurrence. The development of the selective estrogen receptor modulator (SERM) tamoxifen marked a significant milestone in breast cancer care that transcended older estrogen ablative strategies such as oophorectomy and ovarian irradiation. An unintended benefit of tamoxifen in postmenopausal women was bone density preservation. The third generation of aromatase inhibitors (AIs) have demonstrated superior efficacy to tamoxifen in improving disease-free survival in postmenopausal women. However, the AIs significantly increase bone resorption, reduce bone mineral density, and increase the risk of fracture above that of tamoxifen. As a consequence of this, clinical oncologists have assumed a larger role in the screening and treatment of the skeletal complications of breast cancer therapies. The key features of managing bone health in women with early stage breast cancer receiving adjuvant endocrine therapy are reviewed here.
Collapse
Affiliation(s)
- Gregory A Clines
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA,
| | | | | |
Collapse
|
31
|
Sui B, Hu C, Jin Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 2015; 17:267-79. [DOI: 10.1007/s10522-015-9609-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
|
32
|
Wergedal JE, Kesavan C, Brommage R, Das S, Mohan S. Role of WNT16 in the regulation of periosteal bone formation in female mice. Endocrinology 2015; 156:1023-32. [PMID: 25521583 PMCID: PMC4330302 DOI: 10.1210/en.2014-1702] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading-induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-μe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (-0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%-70%) reductions in the expression levels of markers of canonical (β-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size.
Collapse
Affiliation(s)
- Jon E Wergedal
- Musculoskeletal Disease Center (J.E.W., C.K., S.D., S.M.), VA Loma Linda Healthcare System, Loma Linda, California 92354; Departments of Medicine (J.E.W., C.K., S.M.), Biochemistry (J.E.W., S.M.), and Physiology (S.M.), Loma Linda University, Loma Linda, California 92357; and Metabolism (R.B.), Lexicon Pharmaceuticals, The Woodlands, Texas 77381
| | | | | | | | | |
Collapse
|
33
|
Reiner G, Dreher F, Drungowski M, Hoeltig D, Bertsch N, Selke M, Willems H, Gerlach GF, Probst I, Tuemmler B, Waldmann KH, Herwig R. Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 2014; 25:600-17. [DOI: 10.1007/s00335-014-9536-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022]
|
34
|
Song L, Zhao J, Jin X, Li Z, Newton IP, Liu W, Xiao H, Zhao M. The organochlorine p,p'-dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/β-catenin signaling. Toxicol Lett 2014; 229:284-91. [PMID: 24968063 DOI: 10.1016/j.toxlet.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 01/30/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT), an organochlorine pollutant, is associated with several types of cancer. However, the relationship between DDT and colorectal cancer is uncertain. In this study, the impact of p,p'-DDT on colorectal cancer growth was evaluated using both in vitro and in vivo models. Our results indicated that the proliferation of human colorectal adenocarcinoma DLD1 cells was significantly promoted after exposed to low concentrations of p,p'-DDT ranging from 10(-12) to 10(-7) M for 96 h. Exposure to p,p'-DDT from 10(-10) to 10(-8) M led to upregulation of phospho-GSK3β (Ser9), β-catenin, c-Myc and cyclin D1 in DLD1 cells. RNA interference of β-catenin inhibited the proliferation of DLD1 cells stimulated by p,p'-DDT. Inhibiting of estrogen receptors (ERs) had no significant effect on the action of p,p'-DDT. Treatment with p,p'-DDT induced production of intracellular reactive oxygen species (ROS) and inhibited superoxide dismutase (SOD) activity in DLD1 cells. Treatment with N-acetyl-L-cysteine (NAC), a ROS inhibitor, suppressed the induction of Wnt/β-catenin signaling and DLD1 cell proliferation by p,p'-DDT. Moreover, in a mouse xenograft model, 5 nmol/kg p,p'-DDT resulted in increased tumor size, oxidative stress and Wnt/β-catenin signaling. These results indicated that low concentrations of p,p'-DDT promoted colorectal cancer growth through Wnt/β-catenin signaling, which was mediated by oxidative stress. The finding suggests an association between low concentrations of p,p'-DDT exposure and colorectal cancer progression.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junyu Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoting Jin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ian P Newton
- Division of Cell & Developmental Biology, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Weiping Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Xiao
- Department of Parthology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Meirong Zhao
- Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
35
|
Sapir-Koren R, Livshits G. Is interaction between age-dependent decline in mechanical stimulation and osteocyte-estrogen receptor levels the culprit for postmenopausal-impaired bone formation? Osteoporos Int 2013; 24:1771-89. [PMID: 23229466 DOI: 10.1007/s00198-012-2208-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Declining estrogen levels during menopause are widely considered to be a major cause of age-dependent bone loss, which is primarily manifested by increased bone resorption by osteoclasts. We present accumulating evidence supporting another aspect of metabolic bone loss, suggesting that the combined interaction between age-dependent factors, namely, estrogen deficiency and reduced day-by-day activity/mechanical stimulation, directly leads to a reduction in anabolic processes. Such decreased bone formation results in diminished bone strength and failure to maintain the load-bearing competence of a healthy skeleton and to postmenopausal osteoporosis disorder. Estrogen receptors (ERs), as mediators of estrogenic actions, are essential components of bone osteocyte and osteoblast mechano-adaptive responses. ER expression appears to be upregulated by adequate circulating estrogen levels. ERα signaling pathways participate in the mechanotransduction response through obligatory "non-genomic" actions that occur independently of estrogen binding to ER and by a potentially "genomic", estrogen-dependent mode. The experimental data indicate that cross talk between the ERα-"non-genomic" and Wnt/β-catenin signaling pathways constitutes the major regulatory mechanism. This interaction uses mechanically and ER-induced prostaglandin E2 as a mediator for the downregulation of osteocyte production of sclerostin. Sclerostin suppression, in turn, is a central prerequisite for load-induced formation and mineralization of the bone matrix. It is therefore plausible that future strategies for preventing and treating postmenopausal osteoporosis may use estrogenic compounds (such as selective estrogen receptor modulators or phytoestrogens) with physical activity, to complement antiresorptive therapy, aimed at stopping further bone loss and possibly even reversing it by stimulation of bone gain.
Collapse
Affiliation(s)
- R Sapir-Koren
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
36
|
Cai C, Yuan GJ, Huang Y, Yang N, Chen X, Wen L, Wang X, Zhang L, Ding Y. Estrogen-related receptor α is involved in the osteogenic differentiation of mesenchymal stem cells isolated from human periodontal ligaments. Int J Mol Med 2013; 31:1195-201. [PMID: 23525223 DOI: 10.3892/ijmm.2013.1305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 11/06/2022] Open
Abstract
Recently, it has been reported that the orphan nuclear receptor estrogen-related receptor α (ERRα) is involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Moreover, ERRα has been identified as a novel therapeutic target for treating osteoporosis and other bone diseases. Human periodontal ligament tissue-derived mesenchymal stem cells (hPDLSCs) have recently been used in stem cell-mediated therapies because of their multipotency, particularly toward osteogenic differentiation. However, it is still unclear whether ERRα can regulate the osteogenic differentiation of hPDLSCs. In the present study, we investigated the role of ERRα in the osteogenic differentiation of hPDLSCs in vitro. We isolated hPDLSCs and confirmed their capacity for multipotent differentiation. Furthermore, we examined ERRα expression in hPDLSCs by RT-PCR and immunocytochemistry. We found that the expression of ERRα mRNA was significantly increased during the late stage of osteogenic differentiation of hPDLSCs. Moreover, transfection of recombinant lentiviral-mediated miRNA targeting ERRα significantly suppressed ALP activity, mineralization capacity, and the mRNA expression of osteogenesis-related genes (ALP, OCN, RUNX2 and OPN) in hPDLSCs. Our results indicate that ERRα may promote the osteogenic differentiation of hPDLSCs in vitro.
Collapse
Affiliation(s)
- Chuan Cai
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bonnelye E, Aubin JE. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage. J Bone Miner Res 2013; 28:225-33. [PMID: 23212690 DOI: 10.1002/jbmr.1836] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 01/07/2023]
Abstract
Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process.
Collapse
|
38
|
Gallet M, Saïdi S, Haÿ E, Photsavang J, Marty C, Sailland J, Carnesecchi J, Tribollet V, Barenton B, Forcet C, Birling MC, Sorg T, Chassande O, Cohen-Solal M, Vanacker JM. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency. PLoS One 2013; 8:e54837. [PMID: 23359549 PMCID: PMC3554601 DOI: 10.1371/journal.pone.0054837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023] Open
Abstract
ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Soraya Saïdi
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Eric Haÿ
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Johann Photsavang
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Caroline Marty
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Juliette Sailland
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Tania Sorg
- Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Olivier Chassande
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
39
|
Chang CY, McDonnell DP. Molecular pathways: the metabolic regulator estrogen-related receptor α as a therapeutic target in cancer. Clin Cancer Res 2012; 18:6089-95. [PMID: 23019305 PMCID: PMC3500439 DOI: 10.1158/1078-0432.ccr-11-3221] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The estrogen-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily of transcription factors whose activity is regulated by the expression level and/or activity of its obligate coregulators, peroxisome proliferator-activated receptor γ coactivator-1 α and β (PGC-1α or PGC-1β). Under normal physiologic conditions, and in responding to different environmental stimuli, the ERRα/PGC-1 complex is involved in regulating metabolic homeostasis under conditions of high energy demand in brown adipocytes, proliferating T cells, and muscle. Interestingly, increased expression and activity of the ERRα/PGC-1 axis has also been shown to correlate with unfavorable clinical outcomes in both breast and ovarian tumors. The observation that ERRα activity is manifest in all breast tumor subtypes with particularly high activity being evident in ERα-negative, HER2-positive, and triple-negative breast cancers has raised significant interest in targeting this receptor for the treatment of those breast cancers for which therapeutic options are limited.
Collapse
Affiliation(s)
- Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res 2012; 28:71-6. [PMID: 22787479 PMCID: PMC3389841 DOI: 10.5625/lar.2012.28.2.71] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023] Open
Abstract
Estrogens, a class of steroid hormones, regulate the growth, development, and physiology of the human reproductive system. Estrogens also involve in the neuroendocrine, skeletal, adipogenesis, and cardiovascular systems. Estrogen signaling pathways are selectively stimulated or inhibited depending on a balance between the activities of estrogen receptor (ER) α or ERβ in target organs. ERs belong to the steroid hormone superfamily of nuclear receptors, which act as transcription factors after binding to estrogen. The gene expression regulation by ERs is to modulate biological activities, such as reproductive organ development, bone modeling, cardiovascular system functioning, metabolism, and behavior in both females and males. Understanding of the general physiological roles of ERs has been gained when estrogen levels were ablated by ovariectomy and then replenished by treatment with exogenous estrogen. This technique is not sufficient to fully determine the exact function of estrogen signaling in general processes in living tissues. However, a transgenic mouse model has been useful to study gene-specific functions. ERα and ERβ have different biological functions, and knockout and transgenic animal models have distinct phenotypes. Analysis of ERα and ERβ function using knockout mouse models has identified the roles of estrogen signaling in general physiologic processes. Although transgenic mouse models do not always produce consistent results, they are the useful for studying the functions of these genes under specific pathological conditions.
Collapse
|