1
|
González-Gutiérrez A, Gaete J, Esparza A, Ibacache A, Contreras EG, Sierralta J. Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood-Brain Barrier. Glia 2025. [PMID: 40241296 DOI: 10.1002/glia.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood-brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In Drosophila melanogaster, carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of Drosophila monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of Drosophila larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.
Collapse
Affiliation(s)
- Andrés González-Gutiérrez
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| | - Jorge Gaete
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Esparza
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Andrés Ibacache
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
| | - Esteban G Contreras
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jimena Sierralta
- Department of Neuroscience, School of Medicine, University of Chile, Independencia, Chile
- Institute of Biomedical Neurosciences (BNI), School of Medicine, University of Chile, Independencia, Chile
| |
Collapse
|
2
|
Xiao M, Tang C, Wang T, He M, Li Y, Li X. Uncovering proteome variations and concomitant quality changes of different drying methods Cordyceps sinensis by 4D-DIA structural proteomics. Front Nutr 2025; 12:1463780. [PMID: 39973924 PMCID: PMC11835701 DOI: 10.3389/fnut.2025.1463780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Cordyceps sinensis is a fungus, serves dual purposes as both a medicinal herb and a food source. Due to its high water content, fresh Cordyceps sinensis is difficult to preserve, necessitating the drying necessary to process Cordyceps sinensis. Methods Using 4D-DIA proteomics, researchers analyzed the proteome profiles of fresh Cordyceps sinensis (CK) under three different drying conditions: vacuum freeze-drying (FD), oven-drying (OD), and air-drying (AD). In addition, it was found that the protein and free sulfhydryl content of Cordyceps sinensis decreased significantly and the disulfide bond content increased after different drying methods. Results and discussion A total of 3762 proteins were identified, showing variations between groups and high protein content. In the control groups consisting of fresh Cordyceps sinensis samples and the three drying methods, FD. vs CK exhibited the fewest differentially abundant proteins, with the majority being upregulated. On the other hand, CK vs OD displayed the greatest amount of distinct proteins, with a significant rise in both up-regulated and down-regulated proteins. Analysis of KEGG indicated that the distinct proteins were predominantly concentrated in pathways like the ribosome, synthesis of coenzymes, and metabolism of amino sugar and nucleotide sugar. Notably, there was a significant overlap between ribosome and ribosome biogenesis in eukaryotes pathways. The process of drying Cordyceps sinensis resulted in a significant upregulation of the expression of proteins linked to various metabolic pathways. This observation suggests that the drying treatment might activate or enhance certain biochemical processes within the organism, potentially influencing its overall metabolic activity. This finding highlights the importance of post-harvest dry methods on the biochemical properties of Cordyceps sinensis, which could have implications for its nutritional and medicinal value.This study provides a theoretical basis for the realization of Cordyceps sinensis resource utilization and storage methods, and provides theoretical support for guaranteeing the sustainable development of Cordyceps sinensis resources.
Collapse
Affiliation(s)
| | | | | | | | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| |
Collapse
|
3
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mitochondrial DNA expression require motor neuron to muscle TGF-β/Activin signaling in Drosophila. iScience 2025; 28:111611. [PMID: 39850360 PMCID: PMC11754121 DOI: 10.1016/j.isci.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, loss of Actβ reduces levels of nuclearly encoded genes required for mtDNA replication, transcription, and translation and mtDNA levels. Direct RNAi knockdown of nuclearly encoded mtDNA expression factors in muscle also results in decreased glycogen stores. Lastly, expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis, and mtDNA expression factors.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Henne WM, Ugrankar-Banerjee R, Tran S, Bowerman J, Paul B, Zacharias L, Mathews T, DeBerardinis R. Metabolic rewiring in fat-depleted Drosophila reveals triglyceride:glycogen crosstalk and identifies cDIP as a new regulator of energy metabolism. RESEARCH SQUARE 2024:rs.3.rs-4505077. [PMID: 39483909 PMCID: PMC11527204 DOI: 10.21203/rs.3.rs-4505077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tissues store excess nutrients as triglyceride or glycogen, but how these reserves are sensed and communicate remains poorly understood. Here we identify molecular players orchestrating this metabolic balance during fat depletion. We show fat body (FB)-specific depletion of fatty acyl-CoA synthase FASN1 in Drosophila causes near-complete fat loss and metabolic remodeling that dramatically elevates glycogen storage and carbohydrate metabolism. Proteomics and metabolomics identify key factors necessary for rewiring including glycolysis enzymes and target-of-brain-insulin (tobi). FASN1-deficient flies are viable but starvation sensitive, oxidatively stressed, and infertile. We also identify CG10824/cDIP as upregulated in FASN1-depleted Drosophila. cDIP is a leucine-rich-repeat protein with homology to secreted adipokines that fine-tune energy signaling, and is required for fly development in the absence of FASN1. Collectively, we show fat-depleted Drosophila rewire their metabolism to complete development, and identify cDIP as a putative new cytokine that signals fat insufficiency and may regulate energy homeostasis.
Collapse
|
5
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
6
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
7
|
Ogunsuyi OB, Olagoke OC, Famutimi ME, Olatunde DM, Souza DOG, Oboh G, Barbosa NV, Rocha JBT. Neural acetylcholinesterase and monoamine oxidase deregulation during streptozotocin-induced behavioral, metabolic and redox modification in Nauphoeta cinerea. BMC Neurosci 2024; 25:42. [PMID: 39210265 PMCID: PMC11363635 DOI: 10.1186/s12868-024-00890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic and environmental factors have been linked with neurodegeneration, especially in the elderly. Yet, efforts to impede neurodegenerative processes have at best addressed symptoms instead of underlying pathologies. The gap in the understanding of neuro-behavioral plasticity is consistent from insects to mammals, and cockroaches have been proven to be effective models for studying the toxicity mechanisms of various chemicals. We therefore used head injection of 74 and 740 nmol STZ in Nauphoeta cinerea to elucidate the mechanisms of chemical-induced neurotoxicity, as STZ is known to cross the blood-brain barrier. Neurolocomotor assessment was carried out in a new environment, while head homogenate was used to estimate metabolic, neurotransmitter and redox activities, followed by RT-qPCR validation of relevant cellular signaling. STZ treatment reduced the distance and maximum speed travelled by cockroaches, and increased glucose levels while reducing triglyceride levels in neural tissues. The activity of neurotransmitter regulators - AChE and MAO was exacerbated, with concurrent upregulation of glucose sensing and signaling, and increased mRNA levels of redox regulators and inflammation-related genes. Consequently, STZ neurotoxicity is conserved in insects, with possible implications for using N. cinerea to target the multi-faceted mechanisms of neurodegeneration and test potential anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olawande C Olagoke
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Translational Research and Technology Innovation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Physiology, Kampala International University, Ishaka-Bushenyi, Uganda.
| | - Mayokun E Famutimi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Damilola M Olatunde
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Diogo O G Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
8
|
Malik DM, Rhoades SD, Zhang SL, Sengupta A, Barber A, Haynes P, Arnadottir ES, Pack A, Kibbey RG, Kain P, Sehgal A, Weljie AM. Glucose Challenge Uncovers Temporal Fungibility of Metabolic Homeostasis over a day:night cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564837. [PMID: 37961230 PMCID: PMC10634956 DOI: 10.1101/2023.10.30.564837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Rhythmicity is a cornerstone of behavioral and biological processes, especially metabolism, yet the mechanisms behind metabolite cycling remain elusive. This study uncovers a robust oscillation in key metabolite pathways downstream of glucose in humans. A purpose-built 13C6-glucose isotope tracing platform was used to sample Drosophila every 4h and probe these pathways, revealing a striking peak in biosynthesis shortly after lights-on in wild-type flies. A hyperactive mutant (fumin) demonstrates increased Krebs cycle labelling and dawn-specific glycolysis labelling. Surprisingly, neither underlying feeding rhythms nor the presence of food availability explain the rhythmicity of glucose processing across genotypes, suggesting a robust internal mechanism for metabolic control of glucose processing. These results align with clinical data highlighting detrimental effects of mistimed energy intake. Our approach offers a unique insight into the dynamic range of daily metabolic processing and provides a mechanistic foundation for exploring circadian metabolic homeostasis in disease contexts.
Collapse
Affiliation(s)
- Dania M. Malik
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- These authors contributed equally
| | - Seth D. Rhoades
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Fulgens Consulting, LLC, Cambridge, Massachusetts 02142, USA
- These authors contributed equally
| | - Shirley L. Zhang
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
| | - Annika Barber
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, USA
| | - Paula Haynes
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erna Sif Arnadottir
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Allan Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Richard G. Kibbey
- Department of Internal Medicine, Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Pinky Kain
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mtDNA expression require motor neuron to muscle TGFβ/Activin Signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600699. [PMID: 39131342 PMCID: PMC11312462 DOI: 10.1101/2024.06.25.600699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, Actβ loss reduces levels of mtDNA and nuclearly encoded genes required for mtDNA replication, transcription and translation. Direct RNAi mediated knockdown of these same nuclearly encoded mtDNA expression factors also results in decreased glycogen stores. Lastly, we find that expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis and mtDNA expression.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
10
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
11
|
Dos Santos CH, Gustani EC, Machado LPDB, Mateus RP. Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae). NEOTROPICAL ENTOMOLOGY 2024; 53:578-595. [PMID: 38687423 DOI: 10.1007/s13744-024-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.
Collapse
Affiliation(s)
- Camila Heloise Dos Santos
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | | | - Luciana Paes de Barros Machado
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil
| | - Rogério Pincela Mateus
- Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
- Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.
| |
Collapse
|
12
|
Ho SM, Tsai WH, Lai CH, Chiang MH, Lee WP, Wu HY, Bai PY, Wu T, Wu CL. Probiotic Lactobacillus spp. improves Drosophila memory by increasing lactate dehydrogenase levels in the brain mushroom body neurons. Gut Microbes 2024; 16:2316533. [PMID: 38372783 PMCID: PMC10877976 DOI: 10.1080/19490976.2024.2316533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Probiotics are live microorganisms that offer potential benefits to their hosts and can occasionally influence behavioral responses. However, the detailed mechanisms by which probiotics affect the behavior of their hosts and the underlying biogenic effects remain unclear. Lactic acid bacteria, specifically Lactobacillus spp. are known probiotics. Drosophila melanogaster, commonly known as the fruit fly, is a well-established model organism for investigating the interaction between the host and gut microbiota in translational research. Herein, we showed that 5-day administration of Lactobacillus acidophilus (termed GMNL-185) or Lacticaseibacillus rhamnosus (termed GMNL-680) enhances olfactory-associative memory in Drosophila. Moreover, a combined diet of GMNL-185 and GMNL-680 demonstrated synergistic effects on memory functions. Live brain imaging revealed a significant increase in calcium responses to the training odor in the mushroom body β and γ lobes of flies that underwent mixed feeding with GMNL-185 and GMNL-680. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and whole-mount brain immunohistochemistry revealed significant upregulation of lactate dehydrogenase (LDH) expression in the fly brain following the mixed feeding. Notably, the genetic knockdown of Ldh in neurons, specifically in mushroom body, ameliorated the beneficial effects of mixed feeding with GMNL-185 and GMNL-680 on memory improvement. Altogether, our results demonstrate that supplementation with L. acidophilus and L. rhamnosus enhances memory functions in flies by increasing brain LDH levels.
Collapse
Affiliation(s)
- Shuk-Man Ho
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Chih-Ho Lai
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wang-Po Lee
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Yi Bai
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry, Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Suyama R, Cetraro N, Yew JY, Kai T. Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways. Commun Biol 2023; 6:1287. [PMID: 38123715 PMCID: PMC10733356 DOI: 10.1038/s42003-023-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Mirzoyan Z, Valenza A, Zola S, Bonfanti C, Arnaboldi L, Ferrari N, Pollard J, Lupi V, Cassinelli M, Frattaroli M, Sahin M, Pasini ME, Bellosta P. A Drosophila model targets Eiger/TNFα to alleviate obesity-related insulin resistance and macrophage infiltration. Dis Model Mech 2023; 16:dmm050388. [PMID: 37828911 PMCID: PMC10651092 DOI: 10.1242/dmm.050388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Obesity is associated with various metabolic disorders, such as insulin resistance and adipose tissue inflammation (ATM), characterized by macrophage infiltration into adipose cells. This study presents a new Drosophila model to investigate the mechanisms underlying these obesity-related pathologies. We employed genetic manipulation to reduce ecdysone levels to prolong the larval stage. These animals are hyperphagic and exhibit features resembling obesity in mammals, including increased lipid storage, adipocyte hypertrophy and high circulating glucose levels. Moreover, we observed significant infiltration of immune cells (hemocytes) into the fat bodies, accompanied by insulin resistance. We found that attenuation of Eiger/TNFα signaling reduced ATM and improved insulin sensitivity. Furthermore, using metformin and the antioxidants anthocyanins, we ameliorated both phenotypes. Our data highlight evolutionarily conserved mechanisms allowing the development of Drosophila models for discovering therapeutic pathways in adipose tissue immune cell infiltration and insulin resistance. Our model can also provide a platform to perform genetic screens or test the efficacy of therapeutic interventions for diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Alice Valenza
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Sheri Zola
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Carola Bonfanti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Nicholas Ferrari
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - John Pollard
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Lupi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | | | - Mehtap Sahin
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Biology, University of Ankara, 06110 Ankara, Turkey
| | | | - Paola Bellosta
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- Department of Medicine, NYU Langone Medical Center, 10016 New York, USA
| |
Collapse
|
15
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
16
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Drosophila suzukii energetic pathways are differently modulated by nutritional geometry in males and females. Sci Rep 2022; 12:21194. [PMID: 36476948 PMCID: PMC9729594 DOI: 10.1038/s41598-022-25509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
As a polyphagous pest, Drosophila suzukii has a variety of host fruits available for feeding and oviposition, but how the nutritional geometry of different hosts influences its metabolism is still poorly understood. This work aimed to evaluate how D. suzukii metabolic and transcriptional pathways are influenced by feeding on different host fruits, and how sex influences these responses. Adult flies were allowed to feed on five different fruit-based media. Lipids, glucose, glycogen, and energy pathways-associated gene expression, were quantified. Females showed an energetic metabolism easily adaptable to the food's nutritional characteristics; in contrast, males' energetic metabolism was particularly influenced by food, predominantly those fed on raspberry media who showed changes in glucose levels and in the expression of genes associated with metabolic pathways, suggesting activation of gluconeogenesis and trehaloneogenesis as a result of nutritional deficiency. Here we present novel insight into how D. suzukii's energetic pathways are modulated depending on fruits' nutritional geometry and sex. While the females showed high adaptability in their energetic metabolism to the diet, males were more feeding-sensitive. These findings might be used not only to control this pest population but to better advise producers to invest in less suitable fruits based on the hosts' nutritional geometry.
Collapse
|
18
|
Abe M, Kamiyama T, Izumi Y, Qian Q, Yoshihashi Y, Degawa Y, Watanabe K, Hattori Y, Uemura T, Niwa R. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J Exp Biol 2022; 225:jeb244423. [PMID: 36226701 PMCID: PMC9687539 DOI: 10.1242/jeb.244423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
Organisms can generally be divided into two nutritional groups: generalists that consume various types of food and specialists that consume specific types of food. However, it remains unclear how specialists adapt to only limited nutritional conditions in nature. In this study, we addressed this question by focusing on Drosophila fruit flies. The generalist Drosophila melanogaster can consume a wide variety of foods that contain high glucose levels. In contrast, the specialist Drosophila sechellia consumes only the Indian mulberry, known as noni (Morinda citrifolia), which contains relatively little glucose. We showed that the lifespan of D. sechellia was significantly shortened under a high-glucose diet, but this effect was not observed for D. melanogaster. In D. sechellia, a high-glucose diet induced disorganization of the gut epithelia and visceral muscles, which was associated with abnormal digestion and constipation. RNA-sequencing analysis revealed that many immune-responsive genes were suppressed in the gut of D. sechellia fed a high-glucose diet compared with those fed a control diet. Consistent with this difference in the expression of immune-responsive genes, high glucose-induced phenotypes were restored by the addition of tetracycline or scopoletin, a major nutritional component of noni, each of which suppresses gut bacterial growth. We propose that, in D. sechellia, a high-glucose diet impairs gut immune function, which leads to a change in gut microbiota, disorganization of the gut epithelial structure and a shortened lifespan.
Collapse
Affiliation(s)
- Maiko Abe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Qingyin Qian
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuma Yoshihashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Sugadairakogen 1278-294, Nagano 386-2204, Japan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, AMED, Otemachi 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
19
|
Wang Q, Yang Z, Zhuang J, Zhang J, Shen F, Yu P, Zhong H, Feng F. Antiaging function of Chinese pond turtle (Chinemys reevesii) peptide through activation of the Nrf2/Keap1 signaling pathway and its structure-activity relationship. Front Nutr 2022; 9:961922. [PMID: 35938097 PMCID: PMC9355154 DOI: 10.3389/fnut.2022.961922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese pond turtle is a traditional nourishing food with high nutritional value and bioactivity and has been considered a dietary remedy for prolonging the lifespan since ancient times. However, only limited information about their effects on longevity is available. This study was performed to assess the antioxidant activities and antiaging potential of Chinese pond turtle peptide (CPTP) using Drosophila melanogaster model and uncover the possible mechanisms underlying the beneficial effects. CPTP exhibited excellent antioxidant capability in vitro with IC50 values of 3.31, 1.93, and 9.52 mg/ml for 1,1-diphenyl-2-pycryl-hydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl radical scavenging, respectively. In vivo, 0.8% of CPTP significantly extended the mean and median lifespan of female flies by 7.66 and 7.85%, followed by enhanced resistance to oxidative and heat stress. Besides, CPTP remarkably increased the antioxidant enzyme activities and diminished the peroxide product accumulation. Furthermore, CPTP upregulated the relative mRNA expression of antioxidant-related genes, including nuclear factor-erythroid-2-like 2 (Nrf2) and its downstream target genes, while downregulated the expression of Kelch-like ECH-associated protein 1 (Keap1). Taken together, CPTP displayed promising potential in both antioxidant and antiaging effects on flies by targeting the Nrf2/Keap1 pathway. Further peptide sequence determination revealed that 89.23% of peptides from the identified sequences in CPTP could exert potential inhibitory effects on Keap1. Among these peptides, ten representative peptide sequences could actively interact with the binding sites of Keap1-Nrf2 interaction through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. Conclusively, CPTP could be utilized as health-promoting bioactive peptide with antioxidant and antiaging capacities.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zherui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Hao Zhong,
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Fengqin Feng,
| |
Collapse
|
20
|
Tafesh-Edwards G, Kalukin A, Eleftherianos I. Zika Virus Induces Sex-Dependent Metabolic Changes in Drosophila melanogaster to Promote Viral Replication. Front Immunol 2022; 13:903860. [PMID: 35844546 PMCID: PMC9280044 DOI: 10.3389/fimmu.2022.903860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Zika is a member of the Flaviviridae virus family that poses some of the most significant global health risks, causing neurologic complications that range from sensory neuropathy and seizures to congenital Zika syndrome (microcephaly) in infants born to mothers infected during pregnancy. The recent outbreak of Zika virus (ZIKV) and its serious health threats calls for the characterization and understanding of Zika pathogenesis, as well as host antiviral immune functions. Although ZIKV has been associated with activating the RNA interference (RNAi) immune pathway and altering host metabolism, in-depth studies are still required to uncover the specifics of the complex host-virus interactions and provide additional insights into the molecular components that determine the outcome of this disease. Previous research establishes the fruit fly Drosophila melanogaster as a reliable model for studying viral pathogens, as it shares significant similarities with that of vertebrate animal systems. Here, we have developed an in vivo Drosophila model to investigate ZIKV-mediated perturbed metabolism in correlation to the RNAi central mediator Dicer-2. We report that ZIKV infection reprograms glucose and glycogen metabolism in Dicer-2 mutants to maintain efficient replication and successful propagation. Flies that exhibit these metabolic effects also show reduced food intake, which highlights the complicated neurological defects associated with ZIKV. We show that ZIKV infection significantly reduces insulin gene expression in Dicer-2 mutants, suggesting an insulin antiviral role against ZIKV and a direct connection to RNAi immunity. Moreover, we find that the insulin receptor substrate chico is crucial to the survival of ZIKV-infected flies. These observations are remarkably more severe in adult female flies compared to males, indicating possible sex differences in the rates of infection and susceptibility to the development of disease. Such findings not only demonstrate that metabolic alterations can be potentially exploited for developing immune therapeutic strategies but also that preventive measures for disease development may require sex-specific approaches. Therefore, further studies are urgently needed to explore the molecular factors that could be considered as targets to inhibit ZIKV manipulation of host cell metabolism in females and males.
Collapse
|
21
|
Zhou H, Dong Y, Alhaskawi A, Lai J, Wang Z, Ezzi SHA, Kota VG, Abdulla MHAH, Sun Z, Lu H. The Roles of TNF Signaling Pathways in Metabolism of Bone Tumors. Front Pharmacol 2022; 13:907629. [PMID: 35847045 PMCID: PMC9277014 DOI: 10.3389/fphar.2022.907629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
The metabolism of bone tumors is extraordinarily complex and involves many signaling pathways and processes, including the tumor necrosis factor (TNF) signaling pathway, which consists of TNF factors and the TNF receptors that belong to the TNF receptor superfamily (TNFRSF). It is appreciated that signaling events and pathways involving TNFRSF components are essential in coordinating the functions of multiple cell types that act as a host defense network against pathogens and malignant cells, the implications of TNFRSF-related signaling pathways on bone tumor metabolism remain to be summarized, which is one of the significant obstacles to the application of TNF-related treatment modalities in the domain of bone oncology. This review will discuss and summarize the anti-tumor properties of important TNFRSF components concerning osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Zhenyu Sun
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
23
|
Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022; 11:1798. [PMID: 35681493 PMCID: PMC9180301 DOI: 10.3390/cells11111798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Pooja Yadav
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Mayur Kajla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| |
Collapse
|
24
|
Strilbytska O, Strutynska T, Semaniuk U, Burdyliyk N, Bubalo V, Lushchak O. Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila. SCIENTIFICA 2022; 2022:7262342. [PMID: 35547569 PMCID: PMC9085363 DOI: 10.1155/2022/7262342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Varied nutritional interventions affect lifespan and metabolic health. Abundant experimental evidence indicates that the carbohydrate restriction in the diet induces changes to support long-lived phenotypes. Reactive oxygen species (ROS) are among the main mechanisms that mediate the effect of nutrient consumption on the aging process. Here, we tested the influence of sucrose concentration in the diet on stress resistance, antioxidant defense systems, and oxidative stress markers in D. melanogaster. We found that high sucrose concentration in the fly medium leads to enhanced resistance to starvation, oxidative, heat, and cold stresses. However, flies that were raised on low sucrose food displayed increased levels of low-molecular-mass thiols, lipid peroxides in females, and higher activity of antioxidant enzymes, indicating that the consumption of a low carbohydrate diet could induce oxidative stress in the fruit fly. We found that the consumption of sucrose-enriched diet increased protein carbonyl level, which may indicate about the activation of glycation processes. The results highlight a strong dependence of oxidative metabolism in D. melanogaster from dietary carbohydrates.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Tetiana Strutynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia Burdyliyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, Kyiv, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk 76018, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
25
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
26
|
Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David F, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O’Brien LE, Dow JAT, Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc'hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung RJ, Jan YN, Jaszczak JS, Jefferis GSXE, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JSS, Li K, et alLi H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David F, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O’Brien LE, Dow JAT, Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc'hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung RJ, Jan YN, Jaszczak JS, Jefferis GSXE, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JSS, Li K, Li K, Li L, Li T, Litovchenko M, Liu HH, Liu Y, Lu TC, Manning J, Mase A, Matera-Vatnick M, Matias NR, McDonough-Goldstein CE, McGeever A, McLachlan AD, Moreno-Roman P, Neff N, Neville M, Ngo S, Nielsen T, O'Brien CE, Osumi-Sutherland D, Özel MN, Papatheodorou I, Petkovic M, Pilgrim C, Pisco AO, Reisenman C, Sanders EN, Dos Santos G, Scott K, Sherlekar A, Shiu P, Sims D, Sit RV, Slaidina M, Smith HE, Sterne G, Su YH, Sutton D, Tamayo M, Tan M, Tastekin I, Treiber C, Vacek D, Vogler G, Waddell S, Wang W, Wilson RI, Wolfner MF, Wong YCE, Xie A, Xu J, Yamamoto S, Yan J, Yao Z, Yoda K, Zhu R, Zinzen RP. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022; 375:eabk2432. [PMID: 35239393 PMCID: PMC8944923 DOI: 10.1126/science.abk2432] [Show More Authors] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For more than 100 years, the fruit fly Drosophila melanogaster has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula Drosophilae, that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the Drosophila community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Maxime De Waegeneer
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sai Saroja Kolluru
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Fabrice David
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Maria Brbić
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Katina Spanier
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Colleen N. McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert C. Jones
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Katja Brueckner
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea 04763
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115; Howard Hughes Medical Institute, Boston, MA, USA
| | - Frank Schnorrer
- Aix-Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living systems, 13009 Marseille, France
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany,Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Todd G. Nystul
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Soumitra Pal
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Sharvani Mahadevaraju
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa M. Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Aaron M. Allen
- Centre for Neural Circuits & Behaviour, University of Oxford, Tinsley Building, Mansfield road, Oxford, OX1 3SR, UK
| | - Stephen F. Goodwin
- Centre for Neural Circuits & Behaviour, University of Oxford, Tinsley Building, Mansfield road, Oxford, OX1 3SR, UK
| | - Cameron W. Berry
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T. Fuller
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Helen White-Cooper
- Molecular Biosciences Division, Cardiff University, Cardiff, CF10 3AX UK
| | - Erika L. Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen DiNardo
- Perelman School of Medicine, The University of Pennsylvania, and The Penn Institute for Regenerative Medicine Philadelphia, PA 19104, USA
| | - Anthony Galenza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Lucy Erin O’Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - FCA Consortium
- FCA Consortium: All authors listed before Acknowledgements, and all contributions and affiliations listed in the Supplementary Materials
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115; Howard Hughes Medical Institute, Boston, MA, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Stephen R. Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford CA USA, and Chan Zuckerberg Biohub, San Francisco CA, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium,corresponding authors: (N.P.), (B.D.), (S.R.Q.), (L.L.), (S.A.)
| | - Devika Agarwal
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | | - Michelle Arbeitman
- Biomedical Sciences Department, Florida State University, Tallahassee, FL, USA
| | - Majd M Ariss
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Kumar Ayush
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Catherine C Baker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torsten Banisch
- Skirball Institute and HHMI, New York University Langone Medical Center, New York City, NY 10016, USA
| | - Katja Birker
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Benjamin Bolival
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children (SickKids), Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyu Tracy Cai
- Immunology Discovery, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Rita Cardoso-Figueiredo
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Seville 41013, Spain
| | - Amy Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sheela Crasta
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Darshan B Dhakan
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Stefanie Engert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Swann Floc'hlay
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven 3000, Belgium.,Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Amanda J González-Segarra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew K Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Gumbin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanmeng Guo
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Devon E Harris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yael Heifetz
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephen L Holtz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Horns
- Department of Bioengineering and Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, INSERM, iBV, France
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Jacob S Jaszczak
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | | | | | - Timothy L Karr
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | | | - James Kezos
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,University of California, Santa Barbara, CA 93106, USA.,Uppsala University, Sweden
| | - Seung K Kim
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikolaos Konstantinides
- Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR 7592, Université Paris Diderot, Paris, France
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Andrew Thomas Labott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meghan Laturney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ruth Lehmann
- Skirball Institute, Department of Cell Biology and HHMI, New York University Langone Medical Center, New York City, NY 10016
| | - Sarah Leinwand
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiefu Li
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua Shing Shun Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kai Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Ke Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Liying Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Tun Li
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Maria Litovchenko
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Han-Hsuan Liu
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Manning
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | | | - Neuza Reis Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin E McDonough-Goldstein
- Department of Biology, Syracuse University, Syracuse, NY, USA.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | - Alex D McLachlan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Paola Moreno-Roman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Megan Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Caitlin E O'Brien
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL/EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Maja Petkovic
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Clare Pilgrim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Carolina Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gilberto Dos Santos
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aparna Sherlekar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Shiu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Sims
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Rene V Sit
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Maija Slaidina
- Skirball Institute, Faculty of Medicine, New York University, New York, NY 10016
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Sterne
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Sutton
- Graduate Program in Genetics and Genomics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Marco Tamayo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Ibrahim Tastekin
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Christoph Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - David Vacek
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yiu-Cheung E Wong
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony Xie
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kazuki Yoda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruijun Zhu
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Robert P Zinzen
- Laboratory for Systems Biology of Neural Tissue Differentiation, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrueck Centre for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Roessle-Strasse 12, 13125 Berlin, Germany
| |
Collapse
|
27
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
28
|
Cotsworth S, Jackson CJ, Hallson G, Fitzpatrick KA, Syrzycka M, Coulthard AB, Bejsovec A, Marchetti M, Pimpinelli S, Wang SJH, Camfield RG, Verheyen EM, Sinclair DA, Honda BM, Hilliker AJ. Characterization of Gfat1 ( zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells 2022; 11:448. [PMID: 35159258 PMCID: PMC8834284 DOI: 10.3390/cells11030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.
Collapse
Affiliation(s)
- Shawn Cotsworth
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Catherine J. Jackson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Department of Plastic and Reconstructive Surgery, Institute for Surgical Research, University of Oslo, N-0424 Oslo, Norway
- The Department of Medical Biochemistry, Oslo University Hospital, N-0424 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, N-0424 Oslo, Norway
| | - Graham Hallson
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Kathleen A. Fitzpatrick
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
- Allergan Canada, 500-85 Enterprise Blvd, Markham, ON L6G 0B5, Canada
| | | | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Marcella Marchetti
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Sergio Pimpinelli
- Department of Biology and Biotechnology “C. Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.M.); (S.P.)
| | - Simon J. H. Wang
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Robert G. Camfield
- BC Genome Science Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada;
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Donald A. Sinclair
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry (MBB), Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada; (S.C.); (C.J.J.); (G.H.); (K.A.F.); (M.S.); (S.J.H.W.); (E.M.V.); (D.A.S.); (B.M.H.)
| | | |
Collapse
|
29
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
30
|
Maslov DL, Zemskaya NV, Trifonova OP, Lichtenberg S, Balashova EE, Lisitsa AV, Moskalev AA, Lokhov PG. Comparative Metabolomic Study of Drosophila Species with Different Lifespans. Int J Mol Sci 2021; 22:ijms222312873. [PMID: 34884677 PMCID: PMC8657752 DOI: 10.3390/ijms222312873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
Collapse
Affiliation(s)
- Dmitry L. Maslov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Correspondence: ; Tel.: +7-499-246-6980
| | - Nadezhda V. Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Oxana P. Trifonova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Steven Lichtenberg
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Metabometrics Inc., 651 N Broad Street, Suite 205 #1370, Middletown, DE 19709, USA
| | - Elena E. Balashova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Andrey V. Lisitsa
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Petr G. Lokhov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| |
Collapse
|
31
|
Tapia A, Palomino-Schätzlein M, Roca M, Lahoz A, Pineda-Lucena A, López del Amo V, Galindo MI. Mild Muscle Mitochondrial Fusion Distress Extends Drosophila Lifespan through an Early and Systemic Metabolome Reorganization. Int J Mol Sci 2021; 22:ijms222212133. [PMID: 34830014 PMCID: PMC8618903 DOI: 10.3390/ijms222212133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
In a global aging population, it is important to understand the factors affecting systemic aging and lifespan. Mitohormesis, an adaptive response caused by different insults affecting the mitochondrial network, triggers a response from the nuclear genome inducing several pathways that promote longevity and metabolic health. Understanding the role of mitochondrial function during the aging process could help biomarker identification and the development of novel strategies for healthy aging. Herein, we interfered the muscle expression of the Drosophila genes Marf and Opa1, two genes that encode for proteins promoting mitochondrial fusion, orthologues of human MFN2 and OPA1. Silencing of Marf and Opa1 in muscle increases lifespan, improves locomotor capacities in the long term, and maintains muscular integrity. A metabolomic analysis revealed that muscle down-regulation of Marf and Opa1 promotes a non-autonomous systemic metabolome reorganization, mainly affecting metabolites involved in the energetic homeostasis: carbohydrates, lipids and aminoacids. Interestingly, the differences are consistently more evident in younger flies, implying that there may exist an anticipative adaptation mediating the protective changes at the older age. We demonstrate that mild mitochondrial muscle disturbance plays an important role in Drosophila fitness and reveals metabolic connections between tissues. This study opens new avenues to explore the link of mitochondrial dynamics and inter-organ communication, as well as their relationship with muscle-related pathologies, or in which muscle aging is a risk factor for their appearance. Our results suggest that early intervention in muscle may prevent sarcopenia and promote healthy aging.
Collapse
Affiliation(s)
- Andrea Tapia
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
| | | | - Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.R.); (A.L.)
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.R.); (A.L.)
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona Spain;
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA
- Correspondence: (V.L.d.A.); (M.I.G.)
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain
- UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
- Correspondence: (V.L.d.A.); (M.I.G.)
| |
Collapse
|
32
|
Chauve L, Hodge F, Murdoch S, Masoudzadeh F, Mann HJ, Lopez-Clavijo AF, Okkenhaug H, West G, Sousa BC, Segonds-Pichon A, Li C, Wingett SW, Kienberger H, Kleigrewe K, de Bono M, Wakelam MJO, Casanueva O. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans. PLoS Biol 2021; 19:e3001431. [PMID: 34723964 PMCID: PMC8585009 DOI: 10.1371/journal.pbio.3001431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/11/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-β)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.
Collapse
Affiliation(s)
- Laetitia Chauve
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Francesca Hodge
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Sharlene Murdoch
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Greg West
- Babraham Institute, Cambridge, United Kingdom
| | | | | | - Cheryl Li
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | | | | | - Karin Kleigrewe
- Bavarian Centre for Biomolecular Mass Spectrometry, Freising, Germany
| | - Mario de Bono
- Institute of Science and Technology, Klosterneuburg, Austria
| | | | - Olivia Casanueva
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
33
|
Bai Y, Caussinus E, Leo S, Bosshardt F, Myachina F, Rot G, Robinson MD, Lehner CF. A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells. BMC Genomics 2021; 22:771. [PMID: 34711176 PMCID: PMC8555087 DOI: 10.1186/s12864-021-08057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08057-4.
Collapse
Affiliation(s)
- Yu Bai
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefano Leo
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fritz Bosshardt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Faina Myachina
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gregor Rot
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
34
|
Xu KK, Yan Y, Yan SY, Xia PL, Yang WJ, Li C, Yang H. Disruption of the Serine/Threonine Kinase Akt Gene Affects Ovarian Development and Fecundity in the Cigarette Beetle, Lasioderma serricorne. Front Physiol 2021; 12:765819. [PMID: 34690822 PMCID: PMC8529032 DOI: 10.3389/fphys.2021.765819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Serine/threonine kinase Akt, an important component of the insulin signaling pathway, plays an essential role in many physiological processes. In this study, we identified and characterized an Akt gene (designated LsAkt) from the cigarette beetle, Lasioderma serricorne. LsAkt contains a 1614 bp open reading frame encoding a 537 amino acid protein that possesses a conserved pleckstrin homology domain and a serine/threonine kinase domain. The expression of LsAkt was high in pupal stages and peaked in day-4 female pupae. In adult tissues, LsAkt was highly expressed in the thorax, ovary, and midgut. The expression of LsAkt was induced by methoprene or bovine insulin in vivo, but significantly decreased by 20-hydroxyecdysone. RNA interference-mediated knockdown of LsAkt resulted in severely blocked ovarian development and reduced fecundity and hatchability. The vitellogenin (Vg) content and juvenile hormone (JH) titers of LsAkt-depletion beetles were decreased, and expressions of Vg and four JH signaling and biosynthetic genes were significantly decreased. Silencing of LsAkt reduced the amounts of glucose, glycogen, and trehalose in female adults and affected the expressions of seven key carbohydrate metabolic genes. Taken together, it is inferred that Akt implicates in L. serricorne reproduction by modification of Vg synthesis, juvenile hormone production and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shu-Yan Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | | | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
35
|
Rivera MJ, Contreras A, Nguyen LT, Eldon ED, Klig LS. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biol Open 2021; 10:272639. [PMID: 34710213 PMCID: PMC8565467 DOI: 10.1242/bio.058833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI). It is involved in many essential cellular processes including signal transduction, energy metabolism, endoplasmic reticulum stress, and osmoregulation. Inositol is synthesized from glucose-6-phosphate by myo-inositol-3-phosphate synthase (MIPSp). The Drosophila melanogaster Inos gene encodes MIPSp. Abnormalities in myo-inositol metabolism have been implicated in type 2 diabetes, cancer, and neurodegenerative disorders. Obesity and high blood (hemolymph) glucose are two hallmarks of diabetes, which can be induced in Drosophila melanogaster third-instar larvae by high-sucrose diets. This study shows that dietary inositol reduces the obese-like and high-hemolymph glucose phenotypes of third-instar larvae fed high-sucrose diets. Furthermore, this study demonstrates Inos mRNA regulation by dietary inositol; when more inositol is provided there is less Inos mRNA. Third-instar larvae with dysregulated high levels of Inos mRNA and MIPSp show dramatic reductions of the obese-like and high-hemolymph glucose phenotypes. These strains, however, also display developmental defects and pupal lethality. The few individuals that eclose die within two days with striking defects: structural alterations of the wings and legs, and heads lacking proboscises. This study is an exciting extension of the use of Drosophila melanogaster as a model organism for exploring the junction of development and metabolism. Summary: Inositol reduces obesity and high blood (hemolymph) glucose, but can cause dramatic developmental defects. This study uses the model organism Drosophila melanogaster to explore the junction of development and metabolism.
Collapse
Affiliation(s)
- Maria J Rivera
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - LongThy T Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Elizabeth D Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
36
|
Abstract
Tumour necrosis factor (TNF) is a classical, pleiotropic pro-inflammatory cytokine. It is also the first 'adipokine' described to be produced from adipose tissue, regulated in obesity and proposed to contribute to obesity-associated metabolic disease. In this review, we provide an overview of TNF in the context of metabolic inflammation or metaflammation, its discovery as a metabolic messenger, its sites and mechanisms of action and some critical considerations for future research. Although we focus on TNF and the studies that elucidated its immunometabolic actions, we highlight a conceptual framework, generated by these studies, that is equally applicable to the complex network of pro-inflammatory signals, their biological activity and their integration with metabolic regulation, and to the field of immunometabolism more broadly.
Collapse
Affiliation(s)
- Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard-MIT Broad Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
- The Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
37
|
Kokki K, Lamichane N, Nieminen AI, Ruhanen H, Morikka J, Robciuc M, Rovenko BM, Havula E, Käkelä R, Hietakangas V. Metabolic gene regulation by Drosophila GATA transcription factor Grain. PLoS Genet 2021; 17:e1009855. [PMID: 34634038 PMCID: PMC8530363 DOI: 10.1371/journal.pgen.1009855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/21/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.
Collapse
Affiliation(s)
- Krista Kokki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicole Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anni I. Nieminen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Jack Morikka
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marius Robciuc
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohdana M. Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Nazario-Yepiz NO, Fernández Sobaberas J, Lyman R, Campbell MR, Shankar V, Anholt RRH, Mackay TFC. Physiological and metabolomic consequences of reduced expression of the Drosophila brummer triglyceride Lipase. PLoS One 2021; 16:e0255198. [PMID: 34547020 PMCID: PMC8454933 DOI: 10.1371/journal.pone.0255198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Disruption of lipolysis has widespread effects on intermediary metabolism and organismal phenotypes. Defects in lipolysis can be modeled in Drosophila melanogaster through genetic manipulations of brummer (bmm), which encodes a triglyceride lipase orthologous to mammalian Adipose Triglyceride Lipase. RNAi-mediated knock-down of bmm in all tissues or metabolic specific tissues results in reduced locomotor activity, altered sleep patterns and reduced lifespan. Metabolomic analysis on flies in which bmm is downregulated reveals a marked reduction in medium chain fatty acids, long chain saturated fatty acids and long chain monounsaturated and polyunsaturated fatty acids, and an increase in diacylglycerol levels. Elevated carbohydrate metabolites and tricarboxylic acid intermediates indicate that impairment of fatty acid mobilization as an energy source may result in upregulation of compensatory carbohydrate catabolism. bmm downregulation also results in elevated levels of serotonin and dopamine neurotransmitters, possibly accounting for the impairment of locomotor activity and sleep patterns. Physiological phenotypes and metabolomic changes upon reduction of bmm expression show extensive sexual dimorphism. Altered metabolic states in the Drosophila model are relevant for understanding human metabolic disorders, since pathways of intermediary metabolism are conserved across phyla.
Collapse
Affiliation(s)
- Nestor O. Nazario-Yepiz
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Jaime Fernández Sobaberas
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Roberta Lyman
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Marion R. Campbell
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Vijay Shankar
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Robert R. H. Anholt
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Trudy F. C. Mackay
- Department of Biochemistry and Genetics and Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| |
Collapse
|
39
|
A nutrient-responsive hormonal circuit mediates an inter-tissue program regulating metabolic homeostasis in adult Drosophila. Nat Commun 2021; 12:5178. [PMID: 34462441 PMCID: PMC8405823 DOI: 10.1038/s41467-021-25445-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.
Collapse
|
40
|
Glial glucose fuels the neuronal pentose phosphate pathway for long-term memory. Cell Rep 2021; 36:109620. [PMID: 34433052 PMCID: PMC8411112 DOI: 10.1016/j.celrep.2021.109620] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Brain function relies almost solely on glucose as an energy substrate. The main model of brain metabolism proposes that glucose is taken up and converted into lactate by astrocytes to fuel the energy-demanding neuronal activity underlying plasticity and memory. Whether direct neuronal glucose uptake is required for memory formation remains elusive. We uncover, in Drosophila, a mechanism of glucose shuttling to neurons from cortex glia, an exclusively perisomatic glial subtype, upon formation of olfactory long-term memory (LTM). In vivo imaging reveals that, downstream of cholinergic activation of cortex glia, autocrine insulin signaling increases glucose concentration in glia. Glucose is then transferred from glia to the neuronal somata in the olfactory memory center to fuel the pentose phosphate pathway and allow LTM formation. In contrast, our results indicate that the increase in neuronal glucose metabolism, although crucial for LTM formation, is not routed to glycolysis. Neuronal glucose metabolism is increased upon long-term memory formation Glial cells shuttle glucose to neurons following insulin signaling activation Glucose fuels the neuronal pentose phosphate pathway
Collapse
|
41
|
Cross-talk of insulin-like peptides, juvenile hormone, and 20-hydroxyecdysone in regulation of metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:2023470118. [PMID: 33526700 DOI: 10.1073/pnas.2023470118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes feed sequentially on carbohydrates (nectar) and proteins (blood) during each gonadotrophic cycle to become reproductively competent and effective disease vectors. Accordingly, metabolism is synchronized to support this reproductive cyclicity. However, regulatory pathways linking metabolism to reproductive cycles are not fully understood. Two key hormones, juvenile hormone (JH) and ecdysteroids (20-hydroxyecdysone, 20E, is the most active form) govern female mosquito reproduction. Aedes aegypti genome codes for eight insulin-like peptides (ILPs) that are critical for controlling metabolism. We examined the effects of the JH and 20E pathways on mosquito ILP expression to decipher regulation of metabolism in a reproducing female mosquito. Chromatin immunoprecipitation assays showed genomic interactions between ilp genes and the JH receptor, methoprene-tolerant, a transcription factor, Krüppel homolog 1 (Kr-h1), and two isoforms of the ecdysone response early gene, E74. The luciferase reporter assays showed that Kr-h1 activates ilps 2, 6, and 7, but represses ilps 4 and 5 The 20E pathway displayed the opposite effect in the regulation of ilps E74B repressed ilps 2 and 6, while E74A activated ilps 4 and 5 Combining RNA interference, CRISPR gene tagging and enzyme-linked immunosorbent assay, we have shown that the JH and 20E regulate protein levels of all eight Ae. aegypti ILPs. Thus, we have established a regulatory axis between ILPs, JH, and 20E in coordination of metabolism during gonadotrophic cycles of Ae. aegypti.
Collapse
|
42
|
Qu Z, Fu Y, Lin Y, Zhao Z, Zhang X, Cheng J, Xie J, Chen T, Li B, Jiang D. Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. J Fungi (Basel) 2021; 7:493. [PMID: 34206246 PMCID: PMC8303302 DOI: 10.3390/jof7070493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
The infection by a single-stranded DNA virus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), causes hypovirulence, a reduced growth rate, and other colony morphological changes in its host Sclerotinia sclerotiorum strain DT-8. However, the mechanisms of the decline are still unclear. Using digital RNA sequencing, a transcriptome analysis was conducted to elucidate the phenotype-related genes with expression changes in response to SsHADV-1 infection. A total of 3110 S. sclerotiorum differentially expressed genes (DEGs) were detected during SsHADV-1 infection, 1741 of which were up-regulated, and 1369 were down-regulated. The identified DEGs were involved in several important pathways. DNA replication, DNA damage response, carbohydrate and lipid metabolism, ribosomal assembly, and translation were the affected categories in S. sclerotiorum upon SsHADV-1 infection. Moreover, the infection of SsHADV-1 also suppressed the expression of antiviral RNA silencing and virulence factor genes. These results provide further detailed insights into the effects of SsHADV-1 infection on the whole genome transcription in S. sclerotiorum.
Collapse
Affiliation(s)
- Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Zhenzhen Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xuekun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (Z.Z.); (X.Z.); (J.C.); (J.X.); (T.C.); (B.L.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
43
|
van de Leemput J, Han Z. Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2. Cell Biosci 2021; 11:110. [PMID: 34120640 PMCID: PMC8200282 DOI: 10.1186/s13578-021-00621-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The COVID-19 pandemic is having a tremendous impact on humanity. Although COVID-19 vaccines are showing promising results, they are not 100% effective and resistant mutant SARS-CoV-2 strains are on the rise. To successfully fight against SARS-CoV-2 and prepare for future coronavirus outbreaks, it is essential to understand SARS-CoV-2 protein functions, their host interactions, and how these processes convey pathogenicity at host tissue, organ and systemic levels. In vitro models are valuable but lack the physiological context of a whole organism. Current animal models for SARS-CoV-2 research are exclusively mammals, with the intrinsic limitations of long reproduction times, few progeny, ethical concerns and high maintenance costs. These limitations make them unsuitable for rapid functional investigations of virus proteins as well as genetic and pharmacological screens. Remarkably, 90% of the SARS-CoV-2 virus-host interacting proteins are conserved between Drosophila and humans. As a well-established model system for studying human diseases, the fruit fly offers a highly complementary alternative to current mammalian models for SARS-CoV-2 research, from investigating virus protein function to developing targeted drugs. Herein, we review Drosophila's track record in studying human viruses and discuss the advantages and limitations of using fruit flies for SARS-CoV-2 research. We also review studies that already used Drosophila to investigate SARS-CoV-2 protein pathogenicity and their damaging effects in COVID-19 relevant tissues, as well as studies in which the fly was used as an efficient whole animal drug testing platform for targeted therapeutics against SARS-CoV-2 proteins or their host interacting pathways.
Collapse
Affiliation(s)
- Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
44
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
45
|
Differential Gene Expression in the Heads of Behaviorally Divergent Culex pipiens Mosquitoes. INSECTS 2021; 12:insects12030271. [PMID: 33806861 PMCID: PMC8005152 DOI: 10.3390/insects12030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
Host preferences of Cx. pipiens, a bridge vector for West Nile virus to humans, have the potential to drive pathogen transmission dynamics. Yet much remains unknown about the extent of variation in these preferences and their molecular basis. We conducted host choice assays in a laboratory setting to quantify multi-day human and avian landing rates for Cx. pipiens females. Assayed populations originated from five above-ground and three below-ground breeding and overwintering habitats. All three below-ground populations were biased toward human landings, with rates of human landing ranging from 69-85%. Of the five above-ground populations, four had avian landing rates of >80%, while one landed on the avian host only 44% of the time. Overall response rates and willingness to alternate landing on the human and avian hosts across multiple days of testing also varied by population. For one human- and one avian-preferring population, we examined patterns of differential expression and splice site variation at genes expressed in female heads. We also compared gene expression and splice site variation within human-seeking females in either gravid or host-seeking physiological states to identify genes that may regulate blood feeding behaviors. Overall, we identified genes with metabolic and regulatory function that were differentially expressed in our comparison of gravid and host-seeking females. Differentially expressed genes in our comparison of avian- and human-seeking females were enriched for those involved in sensory perception. We conclude with a discussion of specific sensory genes and their potential influence on the divergent behaviors of avian- and human-seeking Cx. pipiens.
Collapse
|
46
|
Currin-Ross D, Husdell L, Pierens GK, Mok NE, O'Neill SL, Schirra HJ, Brownlie JC. The Metabolic Response to Infection With Wolbachia Implicates the Insulin/Insulin-Like-Growth Factor and Hypoxia Signaling Pathways in Drosophila melanogaster. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, are best known for their ability to manipulate insect-host reproduction systems that enhance their vertical transmission within host populations. Increasingly, Wolbachia have been shown to depend on their hosts' metabolism for survival and in turn provision metabolites to their host. Wolbachia depends completely on the host for iron and as such iron has been speculated to be a fundamental aspect of Wolbachia-host interplay. However, the mechanisms by which dietary iron levels, Wolbachia, and its host interact remain to be elucidated. To understand the metabolic dependence of Wolbachia on its host, the possibility of metabolic provisioning and extraction, and the interplay with available dietary iron, we have used NMR-based metabolomics and compared metabolite profiles of Wolbachia-infected and uninfected Drosophila melanogaster flies raised on varying levels of dietary iron. We observed marked metabolite differences in the affected metabolite pathways between Wolbachia-infected and uninfected Drosophila, which were dependent on the dietary iron levels. Excess iron led to lipid accumulation, whereas iron deficiency led to changes in carbohydrate levels. This represents a major metabolic shift triggered by alterations in iron levels. Lipids, some amino acids, carboxylic acids, and nucleosides were the major metabolites altered by infection. The metabolic response to infection showed a reprogramming of the mitochondrial metabolism in the host. Based on these observations, we developed a physiological model which postulates that the host's insulin/insulin-like-growth factor pathway is depressed and the hypoxia signaling pathway is activated upon Wolbachia infection. This reprogramming leads to predominantly non-oxidative metabolism in the host, whereas Wolbachia maintains oxidative metabolism. Our data also support earlier predictions of the extraction of alanine from the host while provisioning riboflavin and ATP to the host.
Collapse
|
47
|
Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 2021; 4:384. [PMID: 33753888 PMCID: PMC7985136 DOI: 10.1038/s42003-021-01892-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.
Collapse
Affiliation(s)
- Silu Lin
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Jana Werle
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Judith Korb
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Lourido F, Quenti D, Salgado-Canales D, Tobar N. Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster. Sci Rep 2021; 11:3263. [PMID: 33547367 PMCID: PMC7864986 DOI: 10.1038/s41598-021-82944-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a hallmark of type 2 diabetes resulting from the confluence of several factors, including genetic susceptibility, inflammation, and diet. Under this pathophysiological condition, the dysfunction of the adipose tissue triggered by the excess caloric supply promotes the loss of sensitivity to insulin at the local and peripheral level, a process in which different signaling pathways are involved that are part of the metabolic response to the diet. Besides, the dysregulation of insulin signaling is strongly associated with inflammatory processes in which the JAK/STAT pathway plays a central role. To better understand the role of JAK/STAT signaling in the development of insulin resistance, we used a simple organism, Drosophila melanogaster, as a type 2 diabetes model generated by the consumption of a high-sugar diet. In this model, we studied the effects of inhibiting the expression of the JAK/STAT pathway receptor Domeless, in fat body, on adipose metabolism and glycemic control. Our results show that the Domeless receptor loss in fat body cells reverses both hyperglycemia and the increase in the expression of the insulin resistance marker Nlaz, observed in larvae fed a high sugar diet. This effect is consistent with a significant reduction in Dilp2 mRNA expression and an increase in body weight compared to wild-type flies fed high sugar diets. Additionally, the loss of Domeless reduced the accumulation of triglycerides in the fat body cells of larvae fed HSD and also significantly increased the lifespan of adult flies. Taken together, our results show that the loss of Domeless in the fat body reverses at least in part the dysmetabolism induced by a high sugar diet in a Drosophila type 2 diabetes model.
Collapse
Affiliation(s)
- Fernanda Lourido
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Quenti
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Salgado-Canales
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Nicolás Tobar
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile.
| |
Collapse
|
49
|
Leitão AB, Arunkumar R, Day JP, Geldman EM, Morin-Poulard I, Crozatier M, Jiggins FM. Constitutive activation of cellular immunity underlies the evolution of resistance to infection in Drosophila. eLife 2020; 9:59095. [PMID: 33357377 PMCID: PMC7785293 DOI: 10.7554/elife.59095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Organisms rely on inducible and constitutive immune defences to combat infection. Constitutive immunity enables a rapid response to infection but may carry a cost for uninfected individuals, leading to the prediction that it will be favoured when infection rates are high. When we exposed populations of Drosophila melanogaster to intense parasitism by the parasitoid wasp Leptopilina boulardi, they evolved resistance by developing a more reactive cellular immune response. Using single-cell RNA sequencing, we found that immune-inducible genes had become constitutively upregulated. This was the result of resistant larvae differentiating precursors of specialized immune cells called lamellocytes that were previously only produced after infection. Therefore, populations evolved resistance by genetically hard-wiring the first steps of an induced immune response to become constitutive.
Collapse
Affiliation(s)
- Alexandre B Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Emma M Geldman
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ismaël Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, University Paul Sabatier, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, University Paul Sabatier, Toulouse, France
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Ding YJ, Li GY, Xu CD, Wu Y, Zhou ZS, Wang SG, Li C. Regulatory Functions of Nilaparvata lugens GSK-3 in Energy and Chitin Metabolism. Front Physiol 2020; 11:518876. [PMID: 33324230 PMCID: PMC7723894 DOI: 10.3389/fphys.2020.518876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.
Collapse
Affiliation(s)
- Yan-Juan Ding
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|