1
|
Sabbir MG, Swanson M, Speth RC, Albensi BC. Hippocampal versus cortical deletion of cholinergic receptor muscarinic 1 in mice differentially affects post-translational modifications and supramolecular assembly of respiratory chain-associated proteins, mitochondrial ultrastructure, and respiration: implications in Alzheimer's disease. Front Cell Dev Biol 2023; 11:1179252. [PMID: 37293125 PMCID: PMC10246746 DOI: 10.3389/fcell.2023.1179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: In a previous retrospective study using postmortem human brain tissues, we demonstrated that loss of Cholinergic Receptor Muscarinic 1 (CHRM1) in the temporal cortex of a subset of Alzheimer's patients was associated with poor survival, whereas similar loss in the hippocampus showed no such association. Mitochondrial dysfunction underlies Alzheimer's pathogenesis. Therefore, to investigate the mechanistic basis of our findings, we evaluated cortical mitochondrial phenotypes in Chrm1 knockout (Chrm1-/-) mice. Cortical Chrm1 loss resulted in reduced respiration, reduced supramolecular assembly of respiratory protein complexes, and caused mitochondrial ultrastructural abnormalities. These mouse-based findings mechanistically linked cortical CHRM1 loss with poor survival of Alzheimer's patients. However, evaluation of the effect of Chrm1 loss on mouse hippocampal mitochondrial characteristics is necessary to fully understand our retrospective human tissue-based observations. This is the objective of this study. Methods: Enriched hippocampal and cortical mitochondrial fractions (EHMFs/ECMFs, respectively) derived from wild-type and Chrm1-/- mice were used to measure respiration by quantifying real-time oxygen consumption, supramolecular assembly of oxidative phosphorylation (OXPHOS)-associated proteins by blue native polyacrylamide gel electrophoresis, post-translational modifications (PTMs) by isoelectric focusing (IEF), and mitochondrial ultrastructure by electron microscopy. Results: In contrast to our previous observations in Chrm1-/- ECMFs, EHMFs of Chrm1-/- mice significantly increased respiration with a concomitant increase in the supramolecular assembly of OXPHOS-associated proteins, specifically Atp5a and Uqcrc2, with no mitochondrial ultrastructural alterations. IEF of ECMFs and EHMFs from Chrm1-/- mice showed a decrease and an increase, respectively in a negatively charged (pH∼3) fraction of Atp5a relative to the wild-type mice, with a corresponding decrease or increase in the supramolecular assembly of Atp5a and respiration indicating a tissue-specific signaling effect. Discussion: Our findings indicate that loss of Chrm1 in the cortex causes structural, and physiological alterations to mitochondria that compromise neuronal function, whereas Chrm1 loss in the hippocampus may benefit neuronal function by enhancing mitochondrial function. This brain region-specific differential effect of Chrm1 deletion on mitochondrial function supports our human brain region-based findings and Chrm1-/- mouse behavioral phenotypes. Furthermore, our study indicates that Chrm1-mediated brain region-specific differential PTMs of Atp5a may alter complex-V supramolecular assembly which in turn regulates mitochondrial structure-function.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Alzo Biosciences Inc., San Diego, CA, United States
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mamiko Swanson
- Alzo Biosciences Inc., San Diego, CA, United States
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Robert C. Speth
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, United States
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Fatti E, Hirth A, Švorinić A, Günther M, Stier G, Cruciat CM, Acebrón SP, Papageorgiou D, Sinning I, Krijgsveld J, Höfer T, Niehrs C. DEAD box RNA helicases act as nucleotide exchange factors for casein kinase 2. Sci Signal 2023; 16:eabp8923. [PMID: 37098120 DOI: 10.1126/scisignal.abp8923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
DDX RNA helicases promote RNA processing, but DDX3X also activates casein kinase 1 (CK1ε). We show that other DDX proteins also stimulate the protein kinase activity of CK1ε and that this extends to casein kinase 2 (CK2). CK2 enzymatic activity was stimulated by various DDX proteins at high substrate concentrations. DDX1, DDX24, DDX41, and DDX54 were required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X indicated that CK1 and CK2 kinase stimulation engages its RNA binding but not catalytic motifs. Mathematical modeling of enzyme kinetics and stopped-flow spectroscopy showed that DDX proteins function as nucleotide exchange factors toward CK2 and reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as important for kinase regulation and as a generic function of DDX proteins.
Collapse
Affiliation(s)
- Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Sergio P Acebrón
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
3
|
LiPS-A3S, a human genomic site for robust expression of inserted transgenes. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e394. [PMID: 27898090 PMCID: PMC5155331 DOI: 10.1038/mtna.2016.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
Abstract
Transgenesis of human pluripotent stem cells (hPSCs) can enable and empower a variety of studies in stem cell research, including lineage tracing and functional genetics studies. While in recent years much progress has been made in the development of tools for gene targeting, little attention has been given to the identification of sites in the human genome where transgenes can be inserted and reliably expressed. In order to find human genomic sites capable of supporting long-term and high-level transgene expression in hPSCs, we performed a lentiviral screen in human induced pluripotent stem cells (iPSCs). We isolated 40 iPSC clones each harboring a single vector copy and characterized the level of transgene expression afforded by each unique integration site. We selected one clone, LiPS-A3 with an integration site in chromosome 15 maintaining robust expression without silencing and demonstrate that different transgenes can be inserted therein rapidly and efficiently through recombinase-mediated cassette exchange (RMCE). The LiPS-A3 line can greatly facilitate the insertion of reporter and other genes in hPSCs. Targeting transgenes in the LiPS-A3S genomic locus can find broad applications in stem cell research and possibly cell and gene therapy.
Collapse
|
4
|
Condie BG. The untapped potential of the GENSAT mice-A valuable resource for developmental biology. Genesis 2016; 54:245-56. [PMID: 27074373 DOI: 10.1002/dvg.22942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Gene Expression Nervous System Atlas (GENSAT) transgenic mice express EGFP, tdTomato, or Cre recombinase in a wide range of cell types. The mice and the bacterial artificial chromosome transgenes are available from repositories (MMRRC or CHORI), thereby making these resources readily available to the research community. This resource of 1,386 transgenic lines was developed and validated for neuroscience research. However, GENSAT mice have many potential applications in other contexts including studies of development outside of the CNS. The cell type-specific expression of fluorescent proteins in these mice has been used to identify cells in living embryos, in living embryo explants, and in stem or progenitor cell populations in postnatal tissues. The large number of fluorescent protein driver lines generated by GENSAT greatly expands the range of cell type markers that can be used for live cell sorting. In addition, the GENSAT project has generated 278 new Cre driver lines. This review provides an overview of the GENSAT lines and information for identifying lines that may be useful for a particular application. I also provide a review of the few published cases in which GENSAT mice have been used for studies of embryonic development or analysis of stem/progenitor cells in nonneural tissues. genesis 54:245-256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brian G Condie
- Department of Genetics, Developmental Biology Alliance, University of Georgia, Athens, Georgia
| |
Collapse
|
5
|
Tyson JA, Goldberg EM, Maroof AM, Xu Q, Petros TJ, Anderson SA. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development 2016; 142:1267-78. [PMID: 25804737 DOI: 10.1242/dev.111526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ethan M Goldberg
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19083, USA Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19083, USA
| | - Asif M Maroof
- Harvard University Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
| | - Qing Xu
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy J Petros
- Department of Neuroscience, NYU Langone Medical Center, New York, NY 10016, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA
| |
Collapse
|
6
|
DeBoer EM, Anderson SA. Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells. Brain Res 2015; 1655:277-282. [PMID: 26723568 DOI: 10.1016/j.brainres.2015.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 01/26/2023]
Abstract
Cortical GABAergic interneurons modulate cortical excitation, and their dysfunction is implicated in a multitude of neuropsychiatric disorders including autism, schizophrenia and epilepsy. Consequently, the study of cortical interneuron development, and their derivation from stem cells for transplantation therapy, has garnered intense scientific interest. In this review, we discuss some of the molecular signals involved in cortical interneuron fate determination, and describe how this has informed the use of mouse and human embryonic stem cell biology in generating cortical interneurons in vitro. We highlight the tremendous progress that has been made recently using stem cells to derive cortical interneurons, as well as challenges that have arisen. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erik M DeBoer
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| | - Stewart A Anderson
- Department of Psychiatry, Children׳s Hospital of Philadelphia, University of Pennsylvania, School of Medicine, 3615 Civic Center Blvd, ARC 517, Philadelphia, PA 19104-5127, USA.
| |
Collapse
|
7
|
Gilbert MA, Lin B, Peterson J, Jang W, Schwob JE. Neuregulin1 and ErbB expression in the uninjured and regenerating olfactory mucosa. Gene Expr Patterns 2015; 19:108-19. [PMID: 26474499 DOI: 10.1016/j.gep.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
Neuregulin1, a protein involved in signaling through the ErbB receptors, is required for the proper development of multiple organ systems. A complete understanding of the expression profile of Neuregulin1 is complicated by the presence of multiple isoform variants that result from extensive alternative splicing. Remarkably, these numerous protein products display a wide range of divergent functional roles, making the characterization of tissue-specific isoforms critical to understanding signaling. Recent evidence suggests an important role for Neuregulin1 signaling during olfactory epithelium development and regeneration. In order to understand the physiological consequences of this signaling, we sought to identify the isoform-specific and cell type-specific expression pattern of Neuregulin1 in the adult olfactory mucosa using a combination of RT-qPCR, FACS, and immunohistochemistry. To complement this information, we also analyzed the cell-type specific expression patterns of the ErbB receptors using immunohistochemistry. We found that multiple Neuregulin1 isoforms, containing predominantly the Type I and Type III N-termini, are expressed in the uninjured olfactory mucosa. Specifically, we found that Type III Neuregulin1 is highly expressed in mature olfactory sensory neurons and Type I Neuregulin1 is highly expressed in duct gland cells. Surprisingly, the divergent localization of these Neuregulin isoforms and their corresponding ErbB receptors does not support a role for active signaling during normal turnover and maintenance of the olfactory mucosa. Conversely, we found that injury to the olfactory epithelium specifically upregulates the Neuregulin1 Type I isoform bringing the expression pattern adjacent to cells expressing both ErbB2 and ErbB3 which is compatible with active signaling, supporting a functional role for Neuregulin1 specifically during regeneration.
Collapse
Affiliation(s)
- M A Gilbert
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - B Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - J Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - W Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - J E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Identification of transcriptional regulatory elements for Ntng1 and Ntng2 genes in mice. Mol Brain 2014; 7:19. [PMID: 24642214 PMCID: PMC4000137 DOI: 10.1186/1756-6606-7-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/09/2014] [Indexed: 11/17/2022] Open
Abstract
Background Higher brain function is supported by the precise temporal and spatial regulation of thousands of genes. The mechanisms that underlie transcriptional regulation in the brain, however, remain unclear. The Ntng1 and Ntng2 genes, encoding axonal membrane adhesion proteins netrin-G1 and netrin-G2, respectively, are paralogs that have evolved in vertebrates and are expressed in distinct neuronal subsets in a complementary manner. The characteristic expression patterns of these genes provide a part of the foundation of the cortical layer structure in mammals. Results We used gene-targeting techniques, bacterial artificial chromosome (BAC)-aided transgenesis techniques, and in vivo enhancer assays to examine transcriptional mechanisms in vivo to gain insight into how the characteristic expression patterns of these genes are acquired. Analysis of the gene expression patterns in the presence or absence of netrin-G1 and netrin-G2 functional proteins allowed us to exclude the possibility that a feedback or feedforward mechanism mediates their characteristic expression patterns. Findings from the BAC deletion series revealed that widely distributed combinations of cis-regulatory elements determine the differential gene expression patterns of these genes and that major cis-regulatory elements are located in the 85–45 kb upstream region of Ntng2 and in the 75–60 kb upstream region and intronic region of Ntng1. In vivo enhancer assays using 2-kb evolutionarily conserved regions detected enhancer activity in the distal upstream regions of both genes. Conclusions The complementary expression patterns of Ntng1 and Ntng2 are determined by transcriptional cis-regulatory elements widely scattered in these loci. The cis-regulatory elements characterized in this study will facilitate the development of novel genetic tools for functionally dissecting neural circuits to better understand vertebrate brain function.
Collapse
|
9
|
Petros TJ, Maurer CW, Anderson SA. Enhanced derivation of mouse ESC-derived cortical interneurons by expression of Nkx2.1. Stem Cell Res 2013; 11:647-56. [PMID: 23672829 DOI: 10.1016/j.scr.2013.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/14/2023] Open
Abstract
Forebrain GABAergic interneurons are divided into subgroups based on their neurochemical markers, connectivity and physiological properties. Abnormal interneuron function is implicated in the pathobiology of neurological disorders such as schizophrenia, autism, and epilepsy. Studies on interneuron development and their role in disease would benefit from an efficient mechanism for the production and selection of specific interneuron subgroups. In this study, we engineered a mouse embryonic stem cell (mESC) line for doxycycline-inducible expression of Nkx2.1, a required transcription factor for cortical interneurons derived from the medial ganglionic eminence (MGE). This mESC line was modified to express GFP in Lhx6(+) cells, a marker of newly postmitotic and mature MGE-derived cortical interneurons. The addition of doxycycline to differentiating ESCs efficiently induced Nkx2.1 protein and increased the production of GFP(+) cells. Transplantation of GFP(+) putative interneuron precursors resulted in migratory, morphological, and neurochemical features consistent with cortical interneuron fates. To test the hypothesis that Sonic hedgehog (Shh) primarily influences cortical interneuron fate determination through the induction of Nkx2.1, ESCs were grown with doxycycline and the Shh antagonist cyclopamine. We found induced Nkx2.1 renders Shh signaling dispensable for the generation of MGE-derived interneurons. These results demonstrate that inducible expression of fate determining genes in embryonic stem cells can be used to study fate determination of the developing forebrain.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Psychiatry, Weill Cornell Medical College, Box 244, 1300 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
10
|
Ganat YM, Calder EL, Kriks S, Nelander J, Tu EY, Jia F, Battista D, Harrison N, Parmar M, Tomishima MJ, Rutishauser U, Studer L. Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. J Clin Invest 2012; 122:2928-39. [PMID: 22751106 DOI: 10.1172/jci58767] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/16/2012] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.
Collapse
Affiliation(s)
- Yosif M Ganat
- Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petros TJ, Tyson JA, Anderson SA. Pluripotent stem cells for the study of CNS development. Front Mol Neurosci 2011; 4:30. [PMID: 22016722 PMCID: PMC3191505 DOI: 10.3389/fnmol.2011.00030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/23/2011] [Indexed: 11/13/2022] Open
Abstract
The mammalian central nervous system is a complex neuronal network consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into diverse neuronal subtypes remains a significant challenge. The advent of pluripotent stem cell (PSC) technology allows researchers to generate diverse neural populations in vitro. Although the primary focus of PSC-derived neural cells has been their therapeutic potential, utilizing PSCs to study neurodevelopment is another frequently overlooked and equally important application. In this review, we explore the potential for utilizing PSCs to study neural development. We introduce the types of neurodevelopmental questions that PSCs can help to address, and we discuss the different strategies and technologies that researchers use to generate diverse subtypes of PSC-derived neurons. Additionally, we highlight the derivation of several thoroughly characterized neural subtypes; spinal motoneurons, midbrain dopaminergic neurons and cortical neurons. We hope that this review encourages researchers to develop innovative strategies for using PSCs for the study of mammalian, and specifically human, neurodevelopment.
Collapse
Affiliation(s)
- Timothy J. Petros
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jennifer A. Tyson
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
- Program in Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | | |
Collapse
|
12
|
Vilas-Boas F, Fior R, Swedlow JR, Storey KG, Henrique D. A novel reporter of notch signalling indicates regulated and random Notch activation during vertebrate neurogenesis. BMC Biol 2011; 9:58. [PMID: 21880129 PMCID: PMC3201213 DOI: 10.1186/1741-7007-9-58] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Building the complex vertebrate nervous system involves the regulated production of neurons and glia while maintaining a progenitor cell population. Neurogenesis starts asynchronously in different regions of the embryo and occurs over a long period of time, allowing progenitor cells to be exposed to multiple extrinsic signals that regulate the production of different cell types. Notch-mediated cell-cell signalling is one of the mechanisms that maintain the progenitor pool, however, little is known about how the timing of Notch activation is related to the cell cycle and the distinct modes of cell division that generate neurons. An essential tool with which to investigate the role of Notch signalling on cell by cell basis is the development a faithful reporter of Notch activity. RESULTS Here we present a novel reporter for Notch activity based on the promoter of the well characterised Notch target chick Hes5-1, coupled with multiple elements that confer instability, including a destabilized nuclear Venus fluorescent protein and the 3' untranslated region (UTR) of Hes5-1. We demonstrate that this reporter faithfully recapitulates the endogenous expression of Hes5-1 and that it robustly responds to Notch activation in the chick neural tube. Analysis of the patterns of Notch activity revealed by this reporter indicates that although Notch is most frequently activated prior to mitosis it can be activated at any time within the cell cycle. Notch active progenitors undergoing mitosis generate two daughters that both continue to experience Notch signalling. However, cells lacking Notch activity before and during mitosis generate daughters with dissimilar Notch activity profiles. CONCLUSIONS A novel Notch reporter with multiple destabilisation elements provides a faithful read-out of endogenous Notch activity on a cell-by-cell basis, as neural progenitors progress through the cell cycle in the chick neural tube. Notch activity patterns in this cell population provide evidence for distinct Notch signalling dynamics underlying different cell division modes and for the involvement of random initiation of Notch signalling within the neuroepithelium. These findings highlight the importance of single-cell analysis in the study of the complexity of Notch activity and provide new insights into the mechanisms underlying cell fate decisions in neural progenitors.
Collapse
Affiliation(s)
- Filipe Vilas-Boas
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Av Prof, Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
13
|
Papapetrou EP, Sadelain M. Derivation of genetically modified human pluripotent stem cells with integrated transgenes at unique mapped genomic sites. Nat Protoc 2011; 6:1274-89. [PMID: 21886096 DOI: 10.1038/nprot.2011.362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Many applications in human pluripotent stem cell (PSC) research require the genetic modification of PSCs to express a transgene in a stable and dependable manner. Random transgene integration commonly results in unpredictable and heterogeneous expression. We describe a protocol for the derivation of clonal populations of human embryonic stem cells or induced pluripotent stem cells (iPSCs) expressing a transgene from a single copy of an integrated lentiviral vector that is mapped to the genome. Using optimized transduction conditions, followed by single-cell subcloning and a round of antibiotic selection, we find that approximately half of the colonies retrieved contain a single vector copy. After expansion, the majority of these are confirmed to be clonal. The vector/genomic DNA junction is sequenced and the unique integration site is mapped to the genome. This protocol enables the efficient derivation of genetically modified PSCs containing an integrated transgene at a known genomic site in ∼7 weeks.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
14
|
Kawase S, Imai T, Miyauchi-Hara C, Yaguchi K, Nishimoto Y, Fukami SI, Matsuzaki Y, Miyawaki A, Itohara S, Okano H. Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells. Mol Brain 2011; 4:14. [PMID: 21486496 PMCID: PMC3108301 DOI: 10.1186/1756-6606-4-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 01/18/2023] Open
Abstract
Background The specific genetic regulation of neural primordial cell determination is of great interest in stem cell biology. The Musashi1 (Msi1) protein, which belongs to an evolutionarily conserved family of RNA-binding proteins, is a marker for neural stem/progenitor cells (NS/PCs) in the embryonic and post-natal central nervous system (CNS). Msi1 regulates the translation of its downstream targets, including m-Numb and p21 mRNAs. In vitro experiments using knockout mice have shown that Msi1 and its isoform Musashi2 (Msi2) keep NS/PCs in an undifferentiated and proliferative state. Msi1 is expressed not only in NS/PCs, but also in other somatic stem cells and in tumours. Based on previous findings, Msi1 is likely to be a key regulator for maintaining the characteristics of self-renewing stem cells. However, the mechanisms regulating Msi1 expression are not yet clear. Results To identify the DNA region affecting Msi1 transcription, we inserted the fusion gene ffLuc, comprised of the fluorescent Venus protein and firefly Luciferase, at the translation initiation site of the mouse Msi1 gene locus contained in a 184-kb bacterial artificial chromosome (BAC). Fluorescence and Luciferase activity, reflecting the Msi1 transcriptional activity, were observed in a stable BAC-carrying embryonic stem cell line when it was induced toward neural lineage differentiation by retinoic acid treatment. When neuronal differentiation was induced in embryoid body (EB)-derived neurosphere cells, reporter signals were detected in Msi1-positive NSCs and GFAP-positive astrocytes, but not in MAP2-positive neurons. By introducing deletions into the BAC reporter gene and conducting further reporter experiments using a minimized enhancer region, we identified a region, "D5E2," that is responsible for Msi1 transcription in NS/PCs. Conclusions A regulatory element for Msi1 transcription in NS/PCs is located in the sixth intron of the Msi1 gene. The 595-bp D5E2 intronic enhancer can transactivate Msi1 gene expression with cell-type specificity markedly similar to the endogenous Msi1 expression patterns.
Collapse
Affiliation(s)
- Satoshi Kawase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Noisa P, Urrutikoetxea-Uriguen A, Cui W. Generation of human embryonic stem cells carrying lineage specific reporters. Methods Mol Biol 2011; 690:95-106. [PMID: 21042987 DOI: 10.1007/978-1-60761-962-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The distinctive properties of human embryonic stem cells (hESCs) enable them to provide unique models to study the network of signaling pathways that regulate organogenesis, generate disease models, produce cells and tissues for therapies, and identify new drugs for treatment. Genetic modification of hESCs is a powerful tool to assist the above studies. Generation of lineage-specific fluorescent protein reporter hESC lines will greatly benefit investigators to monitor specific cell lineages in a live, easy, and timely manner. This technique will facilitate high throughput screening to identify molecules important in regulating specific cell fate commitment. In addition, such reporter cell lines enable researchers to enrich certain cell populations by fluorescent activated cell sorting (FACS) for either downstream biological analysis or in vivo applications. We have shown that hESCs can be stably transfected with a plasmid in which expression of the green fluorescent protein (GFP) is under the control of the Oct-4 promoter using chemical transfection. The expression pattern of transgenic Oct-4-GFP reflects that of endogenous Oct-4.
Collapse
Affiliation(s)
- Parinya Noisa
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | | | | |
Collapse
|
16
|
Maroof AM, Brown K, Shi SH, Studer L, Anderson SA. Prospective isolation of cortical interneuron precursors from mouse embryonic stem cells. J Neurosci 2010; 30:4667-75. [PMID: 20357117 PMCID: PMC2868507 DOI: 10.1523/jneurosci.4255-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 11/21/2022] Open
Abstract
Despite their therapeutic potential, progress in generating fully differentiated forebrain neurons from embryonic stem cells (ESCs) has lagged behind that from more caudal regions of the neuraxis. GABAergic interneuron precursors have the remarkable ability to migrate extensively and survive after transplantation into postnatal cortex, making them an attractive candidate for use in cell-based therapy for seizures or other neuropsychiatric disorders. We have modified a mouse ESC line with an Lhx6-GFP reporter construct that allows for the isolation of newly generated cortical interneuron precursors. When transplanted into postnatal cortex, these cells can migrate into the cortical parenchyma, survive for months, and display morphological, neurochemical, and electrophysiological properties characteristic of mature interneurons. This work demonstrates that forebrain neuronal subtypes with complex traits can be generated from embryonic stem cells, and provides a novel approach to the study of cortical interneuron development and to the establishment of cell-based therapies for neurological disease.
Collapse
Affiliation(s)
- Asif Mirza Maroof
- Program in Neuroscience, Weill Cornell Graduate School of Medical Sciences
- Sloan Kettering Institute, and
- Department of Psychiatry, Weill Cornell Medical College, New York, New York 10065
| | - Keith Brown
- Program in Neuroscience, Weill Cornell Graduate School of Medical Sciences
- Sloan Kettering Institute, and
| | | | | | - Stewart A. Anderson
- Department of Psychiatry, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
17
|
Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Lee H, Harrison N, Tabar V, Studer L. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 2009; 27:521-32. [PMID: 19074416 DOI: 10.1634/stemcells.2008-0884] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) have enormous potential for applications in basic biology and regenerative medicine. However, harnessing the potential of hESCs toward generating homogeneous populations of specialized cells remains challenging. Here we describe a novel technology for the genetic identification of defined hESC-derived neural cell types using bacterial artificial chromosome (BAC) transgenesis. We generated hESC lines stably expressing Hes5::GFP, Dll1::GFP, and HB9::GFP BACs that yield green fluorescent protein (GFP)(+) neural stem cells, neuroblasts, and motor neurons, respectively. Faithful reporter expression was confirmed by cell fate analysis and appropriate transgene regulation. Prospective isolation of HB9::GFP(+) cells yielded purified human motor neurons with proper marker expression and electrophysiological activity. Global mRNA and microRNA analyses of Hes5::GFP(+) and HB9::GFP(+) populations revealed highly specific expression signatures, suggesting that BAC transgenesis will be a powerful tool for establishing expression libraries that define the human neural lineage and for accessing defined cell types in applications of human disease.
Collapse
Affiliation(s)
- Dimitris G Placantonakis
- Department of Neurosurgery, Sloan-Kettering Institute for Cancer Research, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 2009; 16:404-14. [PMID: 19177134 DOI: 10.1038/gt.2008.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Stem cells from a patient with a genetic disease could be used for cell therapy if it were possible to insert a functional copy of the defective gene. In this study, we investigate the transfection and subsequent integration of large genomic fragments into human cord blood-derived multipotent stem cells. We describe for the first time the creation of clonal stem cells carrying a human bacterial artificial chromosome (BAC) containing the Friedreich ataxia locus with an enhanced green fluorescent protein (EGFP) reporter gene fused to exon 5a of the frataxin (FXN) gene. Integration of the BAC into the host cell genome was confirmed by PCR, Southern blot and fluorescent in situ hybridization analysis. Reverse transcription-PCR and flow cytometry confirmed expression of FXN-EGFP. Correct mitochondrial localization of the protein was confirmed using fluorescent microscopy. The transfected stem cells also retained the ability to differentiate into cells from all three germline layers, as demonstrated by the capacity to form neuron-specific beta-tubulin-expressing cells, Alizarin Red S-positive bone-like cells, and epithelial-like cells expressing surfactant protein C. This is the first study to demonstrate that cord blood-derived multipotent stem cells may be useful targets for gene therapy applications using large genomic loci.
Collapse
Affiliation(s)
- F Zaibak
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27:275-80. [PMID: 19252484 PMCID: PMC2756723 DOI: 10.1038/nbt.1529] [Citation(s) in RCA: 2659] [Impact Index Per Article: 166.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 02/05/2009] [Indexed: 02/06/2023]
Abstract
Current neural induction protocols for human embryonic stem (hES) cells rely on embryoid body formation, stromal feeder co-culture or selective survival conditions. Each strategy has considerable drawbacks, such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient to induce rapid and complete neural conversion of >80% of hES cells under adherent culture conditions. Temporal fate analysis reveals the appearance of a transient FGF5(+) epiblast-like stage followed by PAX6(+) neural cells competent to form rosettes. Initial cell density determines the ratio of central nervous system and neural crest progeny. Directed differentiation of human induced pluripotent stem (hiPS) cells into midbrain dopamine and spinal motoneurons confirms the robustness and general applicability of the induction protocol. Noggin/SB431542-based neural induction should facilitate the use of hES and hiPS cells in regenerative medicine and disease modeling and obviate the need for protocols based on stromal feeders or embryoid bodies.
Collapse
Affiliation(s)
- Stuart M Chambers
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave., New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2009; 2:422-33. [PMID: 18462693 DOI: 10.1016/j.stem.2008.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Directed differentiation of human embryonic stem cells (hESCs) may yield models to study organogenesis, produce cells and tissues for therapies, and identify clinically relevant compounds for disease treatment. Optimal conditions for specific differentiation of hESCs are still being determined. Incorporation of fluorescent reporter genes will enable high-throughput screening to identify fate-specifying molecules. Ectopic expression, or silencing, of key developmental genes can also direct differentiation toward specific lineages. Here, we briefly overview various genetic modifications used to generate useful hESC lines. We identify strengths and limitations to each method and propose the most suitable approaches for different applications.
Collapse
Affiliation(s)
- Antonietta Giudice
- Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
21
|
Chen J, Sai SYT, Vazin T, Coggiano M, Freed WJ. Human embryonic stem cells which express hrGFP in the undifferentiated state and during dopaminergic differentiation. Restor Neurol Neurosci 2009; 27:359-70. [PMID: 19738328 PMCID: PMC2952420 DOI: 10.3233/rnn-2009-0521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Human embryonic stem cells (hESCs) which express a reporter gene consistently during all phases of differentiation would be valuable for basic research on cell transplantation. In this study, we describe karyotypically-abnormal variant hESCs, BGO1V2-EFG, which express hrGFP driven by the EF1 promoter. METHODS BGO1V2-EFG cells were analyzed by using immunocytochemistry, single cell-based confocal image, and in vitro differentiation, including dopaminergic differentiation. RESULTS Undifferentiated BGO1V2-EFG cells expressed pluripotent ESC markers and retained the ability to differentiate into cell types of all three germ layers. BGO1V2-EFG cells maintained stable and robust hrGFP expression in vitro in the undifferentiated state and during differentiation. The EF1 promoter retained activity during dopaminergic differentiation, as 76% of tyrosine hydroxlase (TH)-positive cells co-expressed hrGFP by confocal analysis. Treated with sodium butyrate (0.02 mM to 2.0 mM), an inhibitor of histone deacetylase (HDAC), during differentiation did not affect hrGFP expression, although TH expression was reduced by higher concentrations of sodium butyrate. CONCLUSION BGO1V2-EFG cells maintain stable and robust hrGFP expression in the undifferentiated state and during neural differentiation. Especially, the EF1 promoter was effective in driving hrGFP expression during dopaminergic differentiation. BGO1V2-EFG cells may be useful for transplantation studies in Parkinson disease animal models.
Collapse
Affiliation(s)
- Jia Chen
- Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
22
|
Protocols for generating ES cell-derived dopamine neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:101-11. [PMID: 19731555 DOI: 10.1007/978-1-4419-0322-8_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Bosio A, Huppert V, Donath S, Hennemann P, Malchow M, Heinlein UAO. Isolation and enrichment of stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:23-72. [PMID: 19347268 DOI: 10.1007/10_2008_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stem cells have the potential to revolutionize tissue regeneration and engineering. Both general types of stem cells, those with pluripotent differentiation potential as well as those with multipotent differentiation potential, are of equal interest. They are important tools to further understanding of general cellular processes, to refine industrial applications for drug target discovery and predictive toxicology, and to gain more insights into their potential for tissue regeneration. This chapter provides an overview of existing sorting technologies and protocols, outlines the phenotypic characteristics of a number of different stem cells, and summarizes their potential clinical applications.
Collapse
Affiliation(s)
- Andreas Bosio
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429, Bergisch Gladbach, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR. Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 2008; 3:e2532. [PMID: 18596956 PMCID: PMC2430532 DOI: 10.1371/journal.pone.0002532] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/23/2008] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. METHODOLOGY Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. CONCLUSIONS Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library.
Collapse
Affiliation(s)
- Edward C Hsiao
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, Studer L. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2008; 2:602-12. [PMID: 18522853 PMCID: PMC2756729 DOI: 10.1016/j.stem.2008.05.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 04/01/2008] [Accepted: 05/13/2008] [Indexed: 12/24/2022]
Abstract
High-throughput screening (HTS) of chemical libraries has become a critical tool in basic biology and drug discovery. However, its implementation and the adaptation of high-content assays to human embryonic stem cells (hESCs) have been hampered by multiple technical challenges. Here we present a strategy to adapt hESCs to HTS conditions, resulting in an assay suitable for the discovery of small molecules that drive hESC self-renewal or differentiation. Use of this new assay has led to the identification of several marketed drugs and natural compounds promoting short-term hESC maintenance and compounds directing early lineage choice during differentiation. Global gene expression analysis upon drug treatment defines known and novel pathways correlated to hESC self-renewal and differentiation. Our results demonstrate feasibility of hESC-based HTS and enhance the repertoire of chemical compounds for manipulating hESC fate. The availability of high-content assays should accelerate progress in basic and translational hESC biology.
Collapse
Affiliation(s)
- Sabrina C. Desbordes
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
- Department of Neurological Surgery, Weill Cornell Medical College, 525 E68th Street, New York, NY 10021, USA
| | - Anthony Ciro
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| | - Nicholas D. Socci
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| | - Gabsang Lee
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| | - Hakim Djaballah
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| | - Lorenz Studer
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
26
|
In Vitro hESC Technology: State of the Art and Future Perspectives. Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Perez-Campo FM, Spencer HL, Elder RH, Stern PL, Ward CM. Novel vectors for homologous recombination strategies in mouse embryonic stem cells: an ES cell line expressing EGFP under control of the 5T4 promoter. Exp Cell Res 2007; 313:3604-3615. [PMID: 17765223 DOI: 10.1016/j.yexcr.2007.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 01/28/2023]
Abstract
The use of gene mutation/knock-out strategies in mouse embryonic stem (ES) cells has revolutionized the study of gene function in ES cells and embryonic development. However, the construction of vectors for homologous recombination strategies requires considerable expertise and time. We describe two novel vectors that can generate site specific knock-out or EGFP knock-in ES cells within 6 weeks from construct design to identification of positive ES cell clones. As proof-of-principle, we have utilized the knock-out targeting vector to modify the NEIL2 locus in ES cells. In addition, using the knock-in vector, we have inserted EGFP downstream of the 5T4 oncofetal antigen promoter in ES cells (5T4-GFP ES cells). Undifferentiated 5T4-GFP ES cells lack EGFP and maintain expression of the pluripotent markers OCT-4 and NANOG. Upon differentiation, EGFP expression is increased in 5T4-GFP ES cells and this correlates with 5T4 transcript expression of the unmodified allele, loss of Nanog and Oct-4 transcripts and upregulation of differentiation-associated transcripts. Furthermore, we demonstrate that fluorescent activated cell sorting of 5T4-GFP ES cells allows isolation of pluripotent or differentiated cells from a heterogeneous population. These vectors provide researchers with a rapid method of modifying specific ES cell genes to study cellular differentiation and embryonic development.
Collapse
Affiliation(s)
- Flor M Perez-Campo
- Stem Cell Biology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
The primary characteristics of adult stem cells are maintaining prolonged quiescence, ability to self-renew and plasticity to differentiate into multiple cell types. These properties are evolutionarily conserved from fruit fly to humans. Similar to normal tissue repair in organs, the stem cell concept is inherently impregnated in the etiology of cancer. Tumors contain a minor population of tumor-initiating cells, called "cancer stem cells". The cancer stem cells maintain some similarities in self-renewal and differentiation features of normal adult stem cells. Therefore, various methods developed originally for the analysis and characterization of adult stem cells are being extended to evaluate cancer stem cells. Relevant methods that are used generally across normal stem cells as well as cancer stem cells are summarized. Combination of two or more of these methods for validation of cancer stem cells appears to be a promising approach for the precise isolation and analysis of cancer stem cells.
Collapse
|