1
|
Romero I, Mandina Cardoso T, Cabitto M, Deminge M, Rearte JF, Vaquero H, Farias de Lima F, Esposito Mendes M, Melo Silva L, Lafuente-Álvarez EF, Rada-Tarifa A, Verdejo V, Radl A, Saavedra N, Santibañez M, Brenes Obando N, Chaves-Campos FA, Ortíz F, Valle L, González Mesa JE, Bastidas A, Muñoz-Velástegui G, Arceo-Maldonado C, Guerrero-Carbajal YC, Aguilar-Coronel S, Monjagata N, Espinoza-Zevallos M, Martínez-López W, Mechoso B, Di Tomaso MV, Falcón de Vargas A, García Lima O. LBDNet inter-laboratory comparison at high doses of ionizing radiation using the dicentric plus caffeine assay. Int J Radiat Biol 2025; 101:636-651. [PMID: 40323900 DOI: 10.1080/09553002.2025.2494554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE To assess the performance of the LBDNet laboratories in estimating dose over 5 Gy of ionizing radiation using the dicentric chromosome plus caffeine assay. MATERIALS AND METHODS Dose-response curve fitting: Peripheral blood was irradiated in vitro between 5 and 25 Gy. Then, the DC plus caffeine assay was carried out. Thirteen laboratories received and analyzed metaphase images. The linear dose-response curve was fitted for each laboratory. Dose estimation was performed analyzing coded metaphase images from three different irradiated samples (7.5, 15, 20 Gy) and using the fitted curve from every laboratory. RESULTS The dose estimation accuracy was within the expected dose ranges. The 76.9%, 84.6% and 69.2% of the estimated doses fell into the ± 20% of the true radiation dose. The 92.3%, 92.3%, and 61.5% of the 95% of the confidence interval of the estimated doses included the true radiation dose. The trueness was 0.9%, 4.4% and 9.6%. The Coefficients of Variation of the estimated doses were 14.5%, 16.1% and 17.8%. Results from only one laboratory were deemed questionable for dose estimation, based on the Z-score derived from robust methods. CONCLUSION The intercomparison study yielded satisfactory results; however, dose estimation accuracy tended to decrease, and variability between laboratory results increased as the dose level rose.
Collapse
Affiliation(s)
- Ivonne Romero
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Tania Mandina Cardoso
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | - Mariana Cabitto
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Mayra Deminge
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | | | - Hernan Vaquero
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Fabiana Farias de Lima
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
| | - Mariana Esposito Mendes
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
| | - Laís Melo Silva
- Biological Dosimetry Laboratory, Centro Regional de Ciências Nucleares do Nordeste CRCN-NE/CNEN, Recife, Brazil
- Universidade Federal de Pernambuco, Recife, Brasil
| | - Erika Flavia Lafuente-Álvarez
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Ana Rada-Tarifa
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Valentina Verdejo
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Analia Radl
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Nicolás Saavedra
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Santibañez
- Laboratorio de Radiaciones Ionizantes, Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile
| | - Nelson Brenes Obando
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | | | - Fernando Ortíz
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | - Luisa Valle
- Cytogenetics Laboratory, Health Research Institute, (INISA), San Pedro, Costa Rica
| | | | - Angela Bastidas
- Hospital de Especialidades Carlos Andrade Marín, Quito, Ecuador
| | | | - Carolina Arceo-Maldonado
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | - Marco Espinoza-Zevallos
- Cytogenetics and Radiobiology Laboratory, Directorate of Services, Peruvian Nuclear Energy Institute, Lima, Perú
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Burix Mechoso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Aida Falcón de Vargas
- Hospital Vargas de Caracas, Vargas Medical School, Universidad Central de Venezuela. Hospital de Clínicas Caracas, Caracas, Venezuela
| | - Omar García Lima
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| |
Collapse
|
2
|
Bucher M, Endesfelder D, Pojtinger S, Baeyens A, Barquinero JF, Beinke C, Bobyk L, Gregoire E, Hristova R, Martinez JS, Meher PK, Milanova M, Gil OM, Montoro A, Moquet J, Moreno Domene M, Prieto MJ, Pujol-Canadell M, Sun M, Terzoudi GI, Tichy A, Triantopoulou S, Valente M, Vral A, Wojcik A, Oestreicher U. RENEB interlaboratory comparison for biological dosimetry based on dicentric chromosome analysis and cobalt-60 exposures higher than 2.5 Gy. Sci Rep 2025; 15:5485. [PMID: 39952996 PMCID: PMC11828874 DOI: 10.1038/s41598-025-89966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
In previous RENEB interlaboratory comparisons based on the manual scoring of dicentric chromosomes, a tendency for systematic overestimation for doses > 2.5 Gy was found. However, these exercises included only very few doses in the high dose range, and they were heterogeneous in terms of radiation quality and evaluation mode, and comparable only to a limited extent. Here, this presumed deviation was explored by investigating three doses > 2.5 Gy. Blood samples were irradiated (2.56, 3.41 and 4.54 Gy) using a 60Co source and sent to 14 member laboratories of the RENEB network, which performed the dicentric chromosome assay (manual and/or semi-automatic scoring) and reported dose estimates. Most participants provided estimates that agreed very well with the physical reference doses and all provided dose estimates were in the correct clinical category (> 2 Gy). The previously observed tendency for a systematic bias across all laboratories was not confirmed. However, tendencies for systematic underestimation were detected for dose estimations for reference doses given in terms of absorbed dose to blood and for some participants, a laboratory-specific trend of systematic under- or overestimation was observed. The importance of regularly performed quality checks for a broad dose range became obvious to avoid misinterpretation of results.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany.
| | - David Endesfelder
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Stefan Pojtinger
- Department for Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch- Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Catalonia, Spain
| | | | - Laure Bobyk
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE / SERAMED / LRAcc, Fontenay-aux-Roses, F- 92260, France
| | - Rositsa Hristova
- Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Juan S Martinez
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE / SERAMED / LRAcc, Fontenay-aux-Roses, F- 92260, France
| | - Prabodha Kumar Meher
- Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner- Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa, Portugal
| | - Alegria Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Jayne Moquet
- Radiation Effects Department, UK Health Security Agency, Radiation, Chemicals, Climate and Environmental Hazards Directorate, Chilton, UK
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica. Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica. Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Monica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Catalonia, Spain
| | - Mingzhu Sun
- Radiation Effects Department, UK Health Security Agency, Radiation, Chemicals, Climate and Environmental Hazards Directorate, Chilton, UK
| | - Georgia I Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Marco Valente
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - Andrzej Wojcik
- Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Ursula Oestreicher
- Department of Effects and Risks of Lonising and Non-Ionising Radiation, Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
3
|
Nakayama R, Tran TM, Anderson D, Takebayashi K, Goh VST, Fujishima Y, Miura T. An efficient and simple method for enriching metaphase cells for dicentric chromosome assay. RADIATION PROTECTION DOSIMETRY 2024; 200:1641-1646. [PMID: 39540467 DOI: 10.1093/rpd/ncae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 11/16/2024]
Abstract
As compared to peripheral blood mononuclear cell (PBMC) culture, a lower mitotic index (MI) is seen in whole blood (WB) culture, but WB can be directly used for culture in dicentric chromosome assay (DCA). The purpose of this study is to develop a simple protocol for metaphase enrichment to improve the metaphase frequency of WB culture. Fixed cells were obtained after performing WB and PBMC cultures for DCA after conventional fixation. An additional low-speed centrifugation of 200 × g for 1 min was performed, separating the fixed cells of WB culture into a pellet and a supernatant fraction. The additional low-speed centrifugation enriched metaphase frequency and provided an MI comparable to the PBMC culture in the pellet fraction. Our study suggests that it is possible to increase the number of metaphase cells on slides using the slow centrifugation method, which could contribute to the efficiency of chromosome aberration analysis in biodosimetry.
Collapse
Affiliation(s)
- Ryo Nakayama
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Thanh-Mai Tran
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
- Centre for Radiation Technology and Biological Technology, Dalat Nuclear Research Institute, 1 Nguyen Tu Luc, Ward 8, Dalat city, Lamdong Province 67000, Vietnam
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Kai Takebayashi
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 Create Way, Singapore 138602, Singapore
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| |
Collapse
|
4
|
Wang Q, Bacon BA, Taveras M, Phillippi MA, Wu X, Broustas CG, Shuryak I, Turner HC. Biomarkers for Radiation Biodosimetry and Correlation with Hematopoietic Injury in a Humanized Mouse Model. Radiat Res 2024; 202:541-551. [PMID: 39034036 DOI: 10.1667/rade-24-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/25/2024] [Indexed: 07/23/2024]
Abstract
After a large-scale radiological or nuclear event, hundreds of thousands of people may be exposed to ionizing radiation and require subsequent medical management. Acute exposure to moderate doses (2-6 Gy) of radiation can lead to the hematopoietic acute radiation syndrome, in which the bone marrow (BM) is severely compromised, and severe hemorrhage and infection are common. Previously, we have developed a panel of intracellular protein markers (FDXR, ACTN1, DDB2, BAX, p53 and TSPYL2), designed to reconstruct absorbed radiation dose from human peripheral blood (PB) leukocyte samples in humanized mice up to 3 days after exposure. The objective of this work was to continue to use the humanized mouse model to evaluate biomarker dose-/time- kinetics in human PB leukocytes in vivo, at an earlier (day 2) and later (day 7) time point, after exposure to total-body irradiation (TBI) doses of 0 to 2 Gy of X rays. In addition, to assess hematological sensitivity and radiation-induced injury, PB leukocyte cell counts, human BM hematopoietic stem cell (HSC) and progenitor cell [multipotent progenitor (MPP), common myeloid progenitor (CMP), granulocyte myeloid progenitor (GMP), megakaryocyte/erythrocyte progenitor (MEP) and multi-lymphoid progenitor (MLP)] levels were measured, and their correlation was also examined as the BM damages are difficult to assess by routine tests. Peripheral blood B-cells were significantly lower after TBI doses of 0.5 Gy on day 2 and 2 Gy on days 2 and 7; T-cells were significantly reduced only on day 2 after 2 Gy TBI. Bone marrow HSCs and MPP cells showed a dose-dependent depletion after irradiation with 0.5 Gy and 2 Gy on day 2, and after 1 Gy and 2 Gy on day 7. Circulating B cells correlated with HSCs, MPP and MLP cells on day 2, whereas T cells correlated with MPP, and myeloid cells correlated with MLP cells. On day 7, B cells correlated with MPP, CMP, GMP and MEP, while myeloid cells correlated with CMP, GMP and MEP. The intracellular leukocyte biomarkers were able to discriminate unirradiated and irradiated samples at different time points calculated by receiver operating characteristic (ROC) curve. Using machine learning algorithm methods, combining ACTN1, p53, TSPYL2 and PB-T cell and PB-B cell counts served as a strong predictor (area under the ROC >0.8) to distinguish unirradiated and irradiated samples independent of the days after TBI. The results further validated our biomarker-based triage assay and additionally evaluated the radiation sensitivity of the hematopoietic system after TBI exposures.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Michelle A Phillippi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
5
|
González Mesa JE, Alem Glison D, Chaves-Campos FA, Ortíz Morales F, Valle Bourrouet L, Abarca Ramírez M, Verdejo V, Di Giorgio M, Radl A, Taja MR, Deminge M, Rada-Tarifa A, Lafuente-Alvarez E, Lima FFD, Hwang S, Esposito Mendes M, Mandina-Cardoso T, Muñoz-Velastegui G, Guerrero-Carbajal YC, Arceo Maldonado C, Monjagata N, Aguilar-Coronel S, Espinoza-Zevallos M, Falcon de Vargas A, Vittoria Di Tomaso M, Holladay B, Lima OG, Martínez-López W. LBDNet interlaboratory comparison for the dicentric chromosome assay by digitized image analysis applying weighted robust statistical methods. Int J Radiat Biol 2024; 100:1019-1028. [PMID: 38810111 DOI: 10.1080/09553002.2024.2356556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE This interlaboratory comparison was conducted to evaluate the performance of the Latin-American Biodosimetry Network (LBDNet) in analyzing digitized images for scoring dicentric chromosomes from in vitro irradiated blood samples. The exercise also assessed the use of weighted robust algorithms to compensate the uneven expertise among the participating laboratories. METHODS Three sets of coded images obtained through the dicentric chromosome assay from blood samples irradiated at 1.5 Gy (sample A) and 4 Gy (sample B), as well as a non-irradiated whole blood sample (sample C), were shared among LBDNet laboratories. The images were captured using the Metafer4 platform coupled with the AutoCapt module. The laboratories were requested to perform triage scoring, conventional scoring, and dose estimation. The dose estimation was carried out using either their laboratory calibration curve or a common calibration curve. A comparative statistical analysis was conducted using a weighted robust Hampel algorithm and z score to compensate for uneven expertise in dicentric analysis and dose assessment among all laboratories. RESULTS Out of twelve laboratories, one had unsatisfactory estimated doses at 0 Gy, and two had unsatisfactory estimated doses at 1.5 Gy when using their own calibration curve and triage scoring mode. However, all doses were satisfactory at 4 Gy. Six laboratories had estimated doses within 95% uncertainty limits at 0 Gy, seven at 1.5 Gy, and four at 4 Gy. While the mean dose for sample C was significantly biased using robust algorithms, applying weights to compensate for the laboratory's analysis expertise reduced the bias by half. The bias from delivered doses was only notable for sample C. Using the common calibration curve for dose estimation reduced the standard deviation (s*) estimated by robust methods for all three samples. CONCLUSIONS The results underscore the significance of performing interlaboratory comparison exercises that involve digitized and electronically transmitted images, even when analyzing non-irradiated samples. In situations where the participating laboratories possess different levels of proficiency, it may prove essential to employ weighted robust algorithms to achieve precise outcomes.
Collapse
Affiliation(s)
| | - Diego Alem Glison
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | - Valentina Verdejo
- Cytogenetic Dosimetry Laboratory, Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
| | - Marina Di Giorgio
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Analía Radl
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - María Rosa Taja
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Mayra Deminge
- Biological Dosimetry Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Ana Rada-Tarifa
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Erika Lafuente-Alvarez
- Unidad de Citogenética - Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Fabiana Farias de Lima
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Suy Hwang
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Mariana Esposito Mendes
- Biological Dosimetry Laboratory, Northeast Regional Center for Nuclear Sciences CRCN-NE/CNEN, Rio de Janeiro, Brazil
| | - Tania Mandina-Cardoso
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | | | | | | | - Norma Monjagata
- Instituto de Investigaciones en Ciencias de la Salud, Asunción, Paraguay
| | | | - Marco Espinoza-Zevallos
- Cytogenetics and Radiobiology Laboratory, Directorate of Services, Peruvian Institute of Nuclear Energy, San Borja, Peru
| | - Aida Falcon de Vargas
- Vargas Hospital of Caracas. Hospital de Clínicas Caracas. Central University of Venezuela, Caracas, Venezuela
| | - Maria Vittoria Di Tomaso
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Bret Holladay
- Statistics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Omar García Lima
- Radiobiology Laboratory, Center for Radiation Protection and Hygiene (CPHR), La Habana, Cuba
| | - Wilner Martínez-López
- Genetics Department and Biodosimetry Service, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
6
|
Lee YH, Yoon HJ, Yang SS, Lee IK, Jo WS, Jeong SK, Oh SJ, Kim J, Lee Y, Seong KM. Lessons on harmonization of scoring criteria for dicentric chromosome assay in South Korea. Int J Radiat Biol 2024; 100:709-714. [PMID: 38394348 DOI: 10.1080/09553002.2024.2316603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Networking with other biodosimetry laboratories is necessary to assess the radiation exposure of many individuals in large-scale radiological accidents. The Korea biodosimetry network, K-BioDos, prepared harmonized scoring guidelines for dicentric chromosome assay to obtain homogeneous results within the network and investigated the efficiency of the guidelines. MATERIALS AND METHODS Three laboratories in K-BioDos harmonized the scoring guidelines for dicentric chromosome assay. The results of scoring dicentric chromosomes using the harmonized scoring guidelines were compared with the laboratories' results using their own methods. Feedback was collected from the scorers following the three intercomparison exercises in 3 consecutive years. RESULTS K-BioDos members showed comparable capacity to score dicentrics in the three exercises. However, the results of the K-BioDos guidelines showed no significant improvement over those of the scorers' own methods. According to the scorers, our harmonized guidelines led to more rejected metaphases and ultimately decreased the number of scorable metaphases compared with their own methods. Moreover, the scoring time was sometimes longer with the K-BioDos protocol because some scorers were not yet familiar with the guidelines, though most scorers reported that the time decreased or was unchanged. These challenges may cause low adherence to the guidelines. Most scorers expressed willingness to use the guidelines to select scorable metaphases or identify dicentrics for other biodosimetry works, whereas one did not want to use it due to the difference from their calibration curves. CONCLUSIONS We identified potential resistance to following the harmonized guidelines and received requests for more detailed methods. Our findings suggest that the harmonized criteria should be continually updated, and education and training should be provided for all scorers. These changes could allow members within the biodosimetry network to successfully collaborate and support each other in large-scale radiological accidents.
Collapse
Affiliation(s)
- Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - In Kyung Lee
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Wol Soon Jo
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Soo Kyung Jeong
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Su Jung Oh
- Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jiin Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - Younghyun Lee
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
7
|
Jayan B, Krishnan M, Saraswathy S, Gupta S, Agarwal M, Sahai K. Multicentric evaluation of conventional dosimetry vs bio-dosimetry over a period of two years for a three-point contact. Med J Armed Forces India 2023; 79:378-385. [PMID: 37441291 PMCID: PMC10334216 DOI: 10.1016/j.mjafi.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Dental radiology represents the best model for evaluating the effects of low-dose ionizing radiation. Therefore, this study evaluated the awareness on radiation hygiene among dental ancillary personnel through a questionnaire and their absorbed doses by physical and biologic dosimetry. Methods The multicentric study included two groups. Group I (N = 30) consisted of dental staff involved in dental radiology. An equal number of personnel who were not related to radiology formed the control group. Knowledge (K), attitude (A), and practice (P) of participants were assessed using a KAP questionnaire. Radiation exposure was evaluated by physical dosimetry at 3 time periods: at the beginning of the study (T1), after 10 months (T2), and at the end after 20 months (T3). Similarly, biologic dosimetry was also carried out at 3 time points by dicentric chromosome aberration assay. The data were compared using percentage analysis, analysis of variance (one-way analysis of variance), and Student's t- test. Results The KAP survey demonstrated enhanced understanding of radiation protection measures and its sound practice by the participants. Physical dosimetry showed a significant increase in absorbed dose at 3 time points: T1, T2, and T3. However, no chromosomal aberrations were observed in blood lymphocytes for any of the participants in the optimized 4-day biodosimetry protocol. Conclusion Good radiation protection protocols-safe distance from the radiation source and wear of lead aprons and thyroid collars-ensured low absorbed doses. The 4-day protocol is an important step toward developing biodosimetry laboratories in the Armed Forces Medical Services for clinical and national radiation countermeasure strategies.
Collapse
Affiliation(s)
- Balakrishnan Jayan
- Commandant, Army Dental Centre, (Research & Referral), Delhi Cantt, India
| | - Manu Krishnan
- Commanding Officer & Classified Specialist (Orthodontics), 17 Corps Dental Unit, C/o 99 APO, India
| | - Seema Saraswathy
- Faculty (Biochemistry), Army College of Medical Sciences (ACMS), Delhi, India
| | - Shilpi Gupta
- Senior Research Fellow (Dental Research & Implantology), Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Timarpur, Delhi, India
| | - Manisha Agarwal
- Associate Professor (Lab Sciences), Command Hospital (Eastern Command), Kolkata, India
| | - Kavita Sahai
- Deputy Commandant, Command Hospital (Northern Command), C/o 56 APO, India
| |
Collapse
|
8
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
9
|
Metaphase Cells Enrichment for Efficient Use in the Dicentric Chromosome Assay. Cell Biochem Biophys 2022; 80:647-656. [PMID: 36216973 DOI: 10.1007/s12013-022-01106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
The dicentric chromosome assay (DCA), is considered the 'gold standard' for radiation biodosimetry. Yet, DCA, as currently implemented, may be impractical for emergency response applications, especially when time is of the essence, owing to its labor-intensive and time-consuming nature. The growth of a primary lymphocyte culture for 48 h in vitro is required for DCA, and manual scoring of dicentric chromosomes (DCs) requires an additional 24-48 h, resulting in an overall processing time of 72-96 h for dose estimation. In order to improve this timing. we introduce a protocol that will detect the metaphase cells in a population of cells, and then will harvest only those metaphase cells. Our metaphase enrichment approach is based on fixed human lymphocytes incubated with monoclonal, anti-phosphorylated H3 histone (ser 10). Antibodies against this histone have been shown to be specific for mitotic cells. Colcemid is used to arrest the mitotic cells in metaphase. Following that, a flow-cytometric sorting apparatus isolates the mitotic fraction from a large population of cells, in a few minutes. These mitotic cells are then spread onto a slide and treated with our C-Banding procedure [Gonen et al. 2022], to visualize the centromeres with DAPI. This reduces the chemical processing time to ~2 h. This reduces the time required for the DCA and makes it practical for a much wider set of applications, such as emergency response following exposure of a large population to ionizing radiation.
Collapse
|
10
|
Sharma UC, Attwood K, Pokharel S. Quantitative analysis of International Health Regulations Annual Reports to identify global disparities in the preparedness for radiation emergencies. BMJ Open 2022; 12:e052670. [PMID: 36691150 PMCID: PMC9445785 DOI: 10.1136/bmjopen-2021-052670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/05/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Radiation emergencies are rare but can have minor confined effects to catastrophic consequences across the large geographical territories. Geographical disparities in the preparedness for radiation emergencies can negatively impact public-safety and delay protective actions. We examined such disparities using the global and regional radiation preparedness data from the revised annual International Health Regulations (IHR) data sets. SETTINGS We used IHR State Party Annual Reporting (SPAR) tool and its associated health indicators developed to mitigate public health risk from radiation emergencies. Using the most recent (2019) SPAR database developed for radiation emergencies, along with 12 other cross-sector indicators, we examined the disparities among WHO state and region-wide capacity scores for operational preparedness. RESULTS Based on the analysis of the 2019 annual reporting data sets from 171 countries, radiation emergency was one of the top three global challenges with an average global preparedness capacity of 55%. Radiation emergency preparedness capacity scores showed highest dispersion score among all 13 capacities suggesting higher disparities for preparedness across the globe. Only 38% of the countries had advanced functional capacity with ≥80% operational readiness, with 28% countries having low to very low operational readiness. No geographical regions had ≥80% operational readiness for radiation emergencies, with 4/6 geographical regions showing limited capacity or effectiveness. Global data from 171 countries showed that the capacity to respond to radiation emergencies correlated with the capacity for chemical events with a correlation coefficient (ρ) of 0.70 (CI 0.61 to 0.77). CONCLUSION We found major global disparities for the operational preparedness against radiation emergencies. Collaborative approaches involving the public health officials and policymakers at the regional and state levels are needed to develop additional guidance to adapt emergency preparedness plans for radiation incidents.
Collapse
Affiliation(s)
- Umesh C Sharma
- Department of Medicine, Division of Cardiology, University at Buffalo, Buffalo, New York, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
11
|
Sudprasert W, Belyakov OV, Tashiro S. Biological and internal dosimetry for radiation medicine: current status and future perspectives. JOURNAL OF RADIATION RESEARCH 2022; 63:247-254. [PMID: 34977921 PMCID: PMC8944326 DOI: 10.1093/jrr/rrab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/21/2021] [Indexed: 06/14/2023]
Abstract
The International Atomic Energy Agency (IAEA) and Hiroshima International Council for Health Care of the Radiation-Exposed (HICARE) jointly organized two relevant workshops in Hiroshima, Japan, i.e. a Training Meeting 'Biodosimetry in the 21st century' (BIODOSE-21) on 10-14 June 2013 and a Workshop on 'Biological and internal dosimetry: recent advance and clinical applications' which took place between 17 and 21 February 2020. The main objective of the first meeting was to develop the ability of biodosimetry laboratories to use mature and novel techniques in biological dosimetry for the estimation of radiation doses received by individuals and populations. This meeting had a special focus on the Asia-Pacific region and was connected with the then on-going IAEA Coordinated Research Project (CRP) E35008 'Strengthening of "Biological dosimetry" in IAEA Member States: Improvement of current techniques and intensification of collaboration and networking among the different institutes' (2012-17). The meeting was attended by 25 participants, which included 11 lecturers. The 14 trainees for this meeting came from India, Indonesia, Japan, Malaysia, Philippines, Republic of Korea, Singapore, Thailand and Vietnam. During the meeting 13 lectures by HICARE and IAEA invited lecturers were delivered besides eight research reports presented by the IAEA CRP E35008 network centers from the Asia-Pacific region. Two laboratory exercises were also undertaken, one each at Hiroshima University and the Radiation Effects Research Foundation (RERF). The second training workshop aimed to discuss with the participants the use of mature and novel techniques in biological and internal dosimetry for the estimation of radiation effects by accidental, environmental and medical exposures. The workshop was attended by 19 participants from Indonesia, Jordan, Oman, Philippines, Singapore, Syrian Arab Republic, Thailand, UAE, USA and Yemen. The main outcome of both meetings was a review of the state-of-the-art of biodosimetry and internal dosimetry and their future perspectives in medical management. This report highlights the learning outcome of two meetings for the benefit of all stake-holders in the field of biological and internal dosimetry.
Collapse
Affiliation(s)
- Wanwisa Sudprasert
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, 10900 Bangkok, Thailand
| | - Oleg V Belyakov
- Corresponding author. Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria. E-mail:
| | | |
Collapse
|
12
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
13
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
14
|
Gnanasekaran TS. Cytogenetic biological dosimetry assays: recent developments and updates. Radiat Oncol J 2021; 39:159-166. [PMID: 34610654 PMCID: PMC8497872 DOI: 10.3857/roj.2021.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
Biological dosimetry is the measurement of radiation-induced changes in the human to measure short and long-term health risks. Biodosimetry offers an independent means of obtaining dose information and also provides diagnostic information on the potential for "partial-body" exposure information using biological indicators and otherwise based on computer modeling, dose reconstruction, and physical dosimetry. A variety of biodosimetry tools are available and some features make some more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are discussing the recent developments and adaptability of currently available cytogenetic biological dosimetry assays.
Collapse
|
15
|
Endesfelder D, Oestreicher U, Kulka U, Ainsbury EA, Moquet J, Barnard S, Gregoire E, Martinez JS, Trompier F, Ristic Y, Woda C, Waldner L, Beinke C, Vral A, Barquinero JF, Hernandez A, Sommer S, Lumniczky K, Hargitai R, Montoro A, Milic M, Monteiro Gil O, Valente M, Bobyk L, Sevriukova O, Sabatier L, Prieto MJ, Moreno Domene M, Testa A, Patrono C, Terzoudi G, Triantopoulou S, Histova R, Wojcik A. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int J Radiat Biol 2021; 97:1181-1198. [PMID: 34138666 DOI: 10.1080/09553002.2021.1941380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.
Collapse
Affiliation(s)
| | | | - Ulrike Kulka
- Bundesamt für Strahlenschutz, BfS, Oberschleissheim, Germany
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Yoann Ristic
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Clemens Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - Lovisa Waldner
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Joan-Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfredo Hernandez
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Independent Researcher, London, UK
| | | | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Rita Hargitai
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Alegría Montoro
- Laboratorio de Dosimetría Biológica, Servicio de Protección Radiológica Hospital, Universitario Politécnico la Fe, Valencia, Spain
| | - Mirta Milic
- Institute for Medical Research and Occupational Health Mutagenesis Unit, Zagreb, Croatia
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Valente
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Laure Bobyk
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Olga Sevriukova
- Department of Expertise and Exposure Monitoring, Radiation Protection Centre, Vilnius, Lithuania
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
- Graduate School Life Science and Health, Université Paris, Saclay, France
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Rositsa Histova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
16
|
Lee YH, Lee Y, Yoon HJ, Yang SS, Joo HM, Kim JY, Cho SJ, Jo WS, Jeong SK, Oh SJ, Kang YR, Seong KM. An intercomparison exercise to compare scoring criteria and develop image databank for biodosimetry in South Korea. Int J Radiat Biol 2021; 97:1199-1205. [PMID: 34133255 DOI: 10.1080/09553002.2021.1941384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Mutual cooperation of biodosimetry laboratories is required for dose assessments of large numbers of people with potential radiation exposure, as in mass casualty accidents. We launched an intercomparison exercise to validate the performance of biodosimetry laboratories in South Korea. MATERIALS AND METHODS Participating laboratories shared metaphase images from dicentric chromosome assays (DCAs) and fluorescence in situ hybridization (FISH)-based translocation assays, which were evaluated based on their own scoring protocols. RESULTS Overall, the coefficient of variation among three laboratories was less than 10% for counting scorable metaphases and chromosomal aberrations. However, there was variation in the interpretation of the International Atomic Energy Agency guidelines for selecting scorable metaphases and identifying chromosomal aberrations. In a technical workshop, scoring discrepancies were extensively discussed in order to harmonize biodosimetry protocols in Korea. In addition, metaphase images with agreement among all participating laboratories were compiled into an image databank, which can be used for education and training of scorers. CONCLUSIONS These findings and exercises may improve the accuracy of dose assessment, as well as increase the capacity for biodosimetry in South Korea.
Collapse
Affiliation(s)
- Yang Hee Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Younghyun Lee
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Su San Yang
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Hae Mi Joo
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Ji Young Kim
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Seong-Jun Cho
- Korea Hydro & Nuclear Power Co, Radiation Health Institute, Seoul, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Soo Kyung Jeong
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dong Nam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Ki Moon Seong
- Lab of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
17
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
18
|
Bensimon Etzol J, Rizzi Y, Gateau T, Guersen J, Pereira B, Gouzou E, Lanaret M, Grand O, Bettencourt C, Bouvet S, Ugolin N, Chevillard S, Boyer L. Biodosimetry in interventional radiology: cutaneous-based immunoassay for anticipating risks of dermatitis. Eur Radiol 2021; 31:7476-7483. [PMID: 33791818 DOI: 10.1007/s00330-021-07885-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Interventional radiology procedures expose individuals to ionizing radiation. However, existing dosimetry methods do not provide the dose effectively absorbed to the skin, and do not consider the patient's individual response to irradiation. To resolve this lack of dosimetry data, we developed a new external irradiation biodosimetry device, DosiKit, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. This new biological method was tested in Clermont-Ferrand University Hospital to evaluate the assay performances in the medical field and to estimate DosiKit sensitivity threshold. METHODS DosiKit was tested over 95 patients treated with neuroradiological interventions. For each intervention, lithium fluoride thermoluminescent dosimeters (TLD) were used to measure total dose received at each hair collection point (lateral and occipital skull areas), and conventional indirect dosimetry parameters were collected with a Dosimetry Archiving and Communication System (DACS). RESULTS Quantitative measurement of radiation-induced H2AX protein phosphorylation was performed on 174 hair samples before and after the radiation exposure and 105 samples showed a notable induction of gammaH2AX protein after the radiological procedure. According to a statistical analysis, the threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy. CONCLUSIONS With this study, we showed that DosiKit provides a useful way for mapping the actually absorbed doses, allowing to identify patients overexposed in interventional radiology procedures, and thus for anticipating risk of developing dermatitis. KEY POINTS • DosiKit is a new external irradiation biodosimetry device, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. • DosiKit was tested over 95 patients treated with neuroradiological interventions. • The threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy and DosiKit provides a useful way for mapping the actually absorbed doses.
Collapse
Affiliation(s)
| | - Yassine Rizzi
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Theo Gateau
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Joel Guersen
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bruno Pereira
- Unité de Biostatistiques (DRCI), CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Emmanuel Gouzou
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mathieu Lanaret
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Oceane Grand
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | | | | | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | | - Louis Boyer
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France.,TGI Institut Pascal UMR 6602 CNRS UCA SIGMA, Clermont-Ferrand, France
| |
Collapse
|
19
|
Suto Y, Tominaga T, Akiyama M, Hirai M. Revisiting Microscopic Observation of Chromosomal Aberrations in Cultured Human Peripheral Blood Lymphocytes at the Second Mitotic Division after Gamma Irradiation In Vitro. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yumiko Suto
- Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology
| | - Takako Tominaga
- Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology
| | - Miho Akiyama
- Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology
| | - Momoki Hirai
- Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
20
|
Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA. Establishing a Reference Dose-Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Front Public Health 2021; 8:599194. [PMID: 33425838 PMCID: PMC7793750 DOI: 10.3389/fpubh.2020.599194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
In cases of nuclear and radiological accidents, public health and emergency response need to assess the magnitude of radiation exposure regardless of whether they arise from disaster, negligence, or deliberate act. Here we report the establishment of a national reference dose–response calibration curve (DRCC) for dicentric chromosome (DC), prerequisite to assess radiation doses received in accidental exposures. Peripheral blood samples were collected from 10 volunteers (aged 20–40 years, median = 29 years) of both sexes (three females and seven males). Blood samples, cytogenetic preparation, and analysis followed the International Atomic Energy Agency EPR-Biodosimetry 2011 report. Irradiations were performed using 320 kVp X-rays. Metafer system was used for automated and assisted (elimination of false-positives and inclusion of true-positives) metaphases findings and DC scoring. DC yields were fit to a linear–quadratic model. Results of the assisted DRCC showed some variations among individuals that were not statistically significant (homogeneity test, P = 0.66). There was no effect of age or sex (P > 0.05). To obtain representative national DRCC, data of all volunteers were pooled together and analyzed. The fitted parameters of the radiation-induced DC curve were as follows: Y = 0.0020 (±0.0002) + 0.0369 (±0.0019) *D + 0.0689 (±0.0009) *D2. The high significance of the fitted coefficients (z-test, P < 0.0001), along with the close to 1.0 p-value of the Poisson-based goodness of fit (χ2 = 3.51, degrees of freedom = 7, P = 0.83), indicated excellent fitting with no trend toward lack of fit. The curve was in the middle range of DRCCs published in other populations. The automated DRCC over and under estimated DCs at low (<1 Gy) and high (>2 Gy) doses, respectively, with a significant lack of goodness of fit (P < 0.0001). In conclusion, we have established the reference DRCC for DCs induced by 320 kVp X-rays. There was no effect of age or sex in this cohort of 10 young adults. Although the calibration curve obtained by the automated (unsupervised) scoring misrepresented dicentric yields at low and high doses, it can potentially be useful for triage mode to segregate between false-positive and near 2-Gy exposures from seriously irradiated individuals who require hospitalization.
Collapse
Affiliation(s)
- Ghazi A Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Najla M Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara S Bin Judia
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Belal A Moftah
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Shimura T, Nakashiro C, Narao M, Ushiyama A. Induction of oxidative stress biomarkers following whole-body irradiation in mice. PLoS One 2020; 15:e0240108. [PMID: 33002096 PMCID: PMC7529313 DOI: 10.1371/journal.pone.0240108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
Dose assessment is an important issue for radiation emergency medicine to determine appropriate clinical treatment. Hematopoietic tissues are extremely vulnerable to radiation exposure. A decrease in blood cell count following radiation exposure is the first quantitative bio-indicator using hematological techniques. We further examined induction of oxidative stress biomarkers in residual lymphocytes to identify new biomarkers for dosimetry. In vivo whole-body radiation to mice exposed to 5 Gy significantly induces DNA double-strand breaks, which were visualized by γ-H2AX in mouse blood cells. Mouse blood smears and peripheral blood mononuclear cells (PBMC) isolated from irradiated mice were used for immunostaining for oxidative biomarkers, parkin or Nrf2. Parkin is the E3 ubiquitin ligase, which is normally localized in the cytoplasm, is relocated to abnormal mitochondria with low membrane potential (ΔΨm), where it promotes clearance via mitophagy. Nrf2 transcription factor controls the major cellular antioxidant responses. Both markers of oxidative stress were more sensitive and persistent over time than nuclear DNA damage. In conclusion, parkin and Nrf2 are potential biomarkers for use in radiation dosimetry. Identification of several biological markers which show different kinetics for radiation response is essential for radiation dosimetry that allows the assessment of radiation injury and efficacy of clinical treatment in emergency radiation incidents. Radiation-induced oxidative damage is useful not only for radiation dose assessment but also for evaluation of radiation risks on humans.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
- * E-mail:
| | | | | | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| |
Collapse
|
22
|
Wang Q, Lee Y, Shuryak I, Pujol Canadell M, Taveras M, Perrier JR, Bacon BA, Rodrigues MA, Kowalski R, Capaccio C, Brenner DJ, Turner HC. Development of the FAST-DOSE assay system for high-throughput biodosimetry and radiation triage. Sci Rep 2020; 10:12716. [PMID: 32728041 PMCID: PMC7392759 DOI: 10.1038/s41598-020-69460-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- ASELL, LLC, Owings Mills, MD, 21117, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | | | | | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Dainiak N, Albanese J, Kaushik M, Balajee AS, Romanyukha A, Sharp TJ, Blakely WF. CONCEPTS OF OPERATIONS FOR A US DOSIMETRY AND BIODOSIMETRY NETWORK. RADIATION PROTECTION DOSIMETRY 2019; 186:130-138. [PMID: 30726970 DOI: 10.1093/rpd/ncy294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The USA must be prepared to provide a prompt, coordinated and integrated response for radiation dose and injury assessment for suspected radiation exposure, whether it involves isolated cases or mass casualties. Dose estimation for radiation accidents typically necessitates a multiple parameter diagnostics approach that includes clinical, biological and physical dosimetry to provide an early-phase radiation dose. A US Individual Dosimetry and Biodosimetry Network (US-IDBN) will increase surge capacity for civilian and military populations in a large-scale incident. The network's goal is to leverage available resources and provide an integrated biodosimetry capability, using multiple parameter diagnostics. Initial operations will be to expand an existing functional integration of two cytogenetic biodosimetry laboratories by developing Standard Operating Procedures, cross-training laboratorians, developing common calibration curves, supporting inter-comparison exercises and obtaining certification to process clinical samples. Integration with certified commercial laboratories will increase surge capacity to meet the needs of a mass-casualty incident.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Joseph Albanese
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Meetu Kaushik
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, PO Box 117, MS 39, Oak Ridge TN 37831, USA
| | | | - Thad J Sharp
- Naval Dosimetry Center, 8901 Wisconsin Avenue, Bethesda MD 20889, USA
| | - William F Blakely
- Uniformed Services University of the Health Sciences, Armed Forces Radiobiology Research Institute, 4555 South Palmer Road, Bldg. 42, Bethesda MD 20889-5648, USA
| |
Collapse
|
24
|
Lee Y, Jin YW, Wilkins RC, Jang S. Validation of the dicentric chromosome assay for radiation biological dosimetry in South Korea. JOURNAL OF RADIATION RESEARCH 2019; 60:555-563. [PMID: 31165147 PMCID: PMC6806015 DOI: 10.1093/jrr/rrz039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/25/2019] [Indexed: 05/21/2023]
Abstract
The dicentric chromosome assay (DCA) is a well-established biodosimetry test to estimate exposure to ionizing radiation. The Korea Institute of Radiological and Medical Sciences (KIRAMS) established a DCA protocol as a medical response to radiation emergencies in South Korea. To maintain its accuracy and performance, intercomparison exercises with Health Canada (HC) have been conducted; herein, we aimed to validate our capacity of DCA analysis based on those results. Blood samples irradiated at HC were shipped to KIRAMS to assess the irradiation dose to blinded samples using conventional DCA full scoring and triage-based techniques (conventional DCA scoring in triage mode and DCA QuickScan method). Actual doses fell within the 95% confidence intervals of dose estimates for 70-100% of the blinded samples in 2015-2018. All methods discriminated binary dose categories, reflecting clinical significance. This DCA can be used as a reliable radiation biodosimetry tool in preparation for radiation accidents in South Korea.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Corresponding author. Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea. Tel: +82-2-3399-5951; Fax: +82-2-3399-5950;
| |
Collapse
|
25
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:1397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of "deleted chromosomes" and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
26
|
Gałecki M, Tartas A, Szymanek A, Sims E, Lundholm L, Sollazzo A, Cheng L, Fujishima Y, Yoshida MA, Żygierewicz J, Wojcik A, Brzozowska-Wardecka B. Precision of scoring radiation-induced chromosomal aberrations and micronuclei by unexperienced scorers. Int J Radiat Biol 2019; 95:1251-1258. [PMID: 31140900 DOI: 10.1080/09553002.2019.1625462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Dose assessment plays an important role in case of radiological accidents and can be performed by scoring structural changes of chromosome morphology induced in cells by ionizing radiation. The results of such a test are biased by scorer experience, therefore, simple to learn assays are recommended to be used when fast analysis of a large amount of data is needed. The aim of this study was to compare the performance of two radiobiological assays - chromosomal aberrations and micronuclei - by unexperienced scorers with the reference values generated by an expert. Materials and methods: Each participant of an EU-funded two-week radiobiology course was asked to score Chinese hamster ovary cells exposed to gamma radiation up to 4 Gy. The congruence of students' and expert's scores at each dose and the coherence of the dose-response curve parameters between the students were investigated. Results: Micronucleus test tended to be faster and easier to learn than scoring chromosomal aberrations. However, both assays carried out by inexperienced students showed reasonable dose-response curves. Conclusions: In the case of a large radiological accident involving many casualties, the unexperienced scorers would support the process of biodosimetric triage by cytogenetic biological dosimetry.
Collapse
Affiliation(s)
- Maciej Gałecki
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | | | - Emma Sims
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield Soil and Agrifood Institute, Cranfield University , Bedford , UK
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Alice Sollazzo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Yohei Fujishima
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Jarosław Żygierewicz
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden.,Institute of Biology, Jan Kochanowski University , Kielce , Poland
| | | |
Collapse
|
27
|
Ryan TL, Pantelias AG, Terzoudi GI, Pantelias GE, Balajee AS. Use of human lymphocyte G0 PCCs to detect intra- and inter-chromosomal aberrations for early radiation biodosimetry and retrospective assessment of radiation-induced effects. PLoS One 2019; 14:e0216081. [PMID: 31059552 PMCID: PMC6502328 DOI: 10.1371/journal.pone.0216081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3–4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6–8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.
Collapse
Affiliation(s)
- Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Antonio G. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Georgia I. Terzoudi
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Gabriel E. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
28
|
Pujol-Canadell M, Young E, Smilenov L. Use of a Humanized Mouse Model System in the Validation of Human Radiation Biodosimetry Standards. Radiat Res 2019; 191:439-446. [PMID: 30802180 DOI: 10.1667/rr15283.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After a planned or unplanned radiation exposure, determination of absorbed dose has great clinical importance, informing treatment and triage decisions in the exposed individuals. Biodosimetry approaches allow for determination of dose in the absence of physical measurement apparatus. The current state-of-the-art biodosimetry method is based on the frequency of induced dicentric chromosomes in peripheral blood T cells, which is proportional to the absorbed radiation dose. Since dose-response curves used for obtaining absorbed dose for humans are based on data sourced from in vitro studies, a concerning discrepancy may be present in the reported dose. Specifically, T-cell survival after in vitro irradiation is much higher than that measured in humans in vivo and, in addition, is not dose dependent over some dose ranges. We hypothesized that these differences may lead to inappropriately inflated dicentric frequencies after in vitro irradiation when compared with in vivo irradiation of the same samples. This may lead to underestimation of the in vivo dose. To test this hypothesis, we employed the humanized mouse model, which allowed direct comparison of cell depletion and dicentric frequencies in human T cells irradiated in vivo and in vitro. The results showed similar dicentric chromosome induction frequencies measured in vivo and in vitro when assessed 24 h postirradiation despite the differences in cell survival. These results appear to validate the use of in vitro data for the estimation of the absorbed dose in human radiation biodosimetry.
Collapse
Affiliation(s)
| | - Erik Young
- Columbia University Medical Center, New York, New York
| | | |
Collapse
|
29
|
Kulka U, Wojcik A, Di Giorgio M, Wilkins R, Suto Y, Jang S, Quing-Jie L, Jiaxiang L, Ainsbury E, Woda C, Roy L, Li C, Lloyd D, Carr Z. BIODOSIMETRY AND BIODOSIMETRY NETWORKS FOR MANAGING RADIATION EMERGENCY. RADIATION PROTECTION DOSIMETRY 2018; 182:128-138. [PMID: 30423161 DOI: 10.1093/rpd/ncy137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/09/2023]
Abstract
Biological dosimetry enables individual dose reconstruction in the case of unclear or inconsistent radiation exposure situations, especially when a direct measurement of ionizing radiation is not or is no longer possible. To be prepared for large-scale radiological incidents, networking between well-trained laboratories has been identified as a useful approach for provision of the fast and trustworthy dose assessments needed in such circumstances. To this end, various biodosimetry laboratories worldwide have joined forces and set up regional and/or nationwide networks either on a formal or informal basis. Many of these laboratories are also a part of global networks such as those organized by World Health Organization, International Atomic Energy Agency or Global Health Security Initiative. In the present report, biodosimetry networks from different parts of the world are presented, and the partners, activities and cooperation actions are detailed. Moreover, guidance for situational application of tools used for individual dosimetry is given.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - A Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| | - M Di Giorgio
- Autoridad Regulatoria Nuclear, C1429BNP CABA, Buenos Aires, Argentina
| | - R Wilkins
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - Y Suto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Jang
- Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - L Quing-Jie
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Jiaxiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - E Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - C Woda
- HelmholtzZentrum München, Institute of Radiation Protection, Oberschleissheim, Germany
| | - L Roy
- Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses, France
| | - C Li
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - D Lloyd
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Z Carr
- World Health Organization, Department of Public Health, Environmental and Social Determinants of Health, Geneva-27, Switzerland
| |
Collapse
|
30
|
Bensimon Etzol J, Bouvet S, Bettencourt C, Altmeyer S, Paget V, Ugolin N, Chevillard S. DosiKit, a New Immunoassay for Fast Radiation Biodosimetry of Hair and Blood Samples. Radiat Res 2018; 190:473-482. [DOI: 10.1667/rr15136.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | - Vincent Paget
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses France
| | | |
Collapse
|
31
|
Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:65-71. [PMID: 30389164 DOI: 10.1016/j.mrgentox.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023]
Abstract
In radiation accidents and large-scale radiological emergencies, a fast and reliable triage of individuals according to their degree of exposure is important for accident management and identification of those who need medical assistance. In this work, the applicability of cell-fusion-mediated premature chromosome condensation (PCC) in G0-lymphocytes is examined for the development of a rapid, minimally invasive and automatable micro-PCC assay, which requires blood volumes of only 100 μl and can be performed in 96-well plates, towards risk assessments and categorization of individuals based on dose estimates. Chromosomal aberrations are visualized for dose-estimation analysis within two hours, without the need of blood culturing for two days, as required by conventional cytogenetics. The various steps of the standard-PCC procedure were adapted and, for the first time, lymphocytes in blood volumes of 100 μl were successfully fused with CHO-mitotics in 96-well plates of 2 ml/well. The plates are advantageous for high-throughput analysis since the various steps required are applied to all 96-wells simultaneously. Interestingly, the use of only 1.5 ml hypotonic and Carnoy's fixative per well offers high quality PCC-images, and the morphology of lymphocyte PCCs is identical to that obtained using the conventional PCC-assay, which requires much larger blood volumes and 15 ml tubes. For dose assessments, appropriate calibration curves were constructed and for PCC analysis specialized software (MetaSystems) was used. The micro-PCC assay can be combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric (C/T) peptide nucleic acid (PNA) probes. This allows dose assessments on the basis of accurate scoring of dicentric and centric ring chromosomes in G0-lymphocyte PCCs, which is particularly helpful when further evaluation into treatment-level categories of exposed individuals is needed. The micro-PCC assay has significant advantages for early triage biodosimetry when compared to other cytogenetic biodosimetry assays. It is rapid, cost-effective, and could pave the way to its subsequent automation.
Collapse
|
32
|
Bensimon Etzol J, Valente M, Altmeyer S, Bettencourt C, Bouvet S, Cosler G, Desangles F, Drouet M, Entine F, Hérodin F, Jourquin F, Lecompte Y, Martigne P, Michel X, Pateux J, Ugolin N, Chevillard S. DosiKit, a New Portable Immunoassay for Fast External Irradiation Biodosimetry. Radiat Res 2017; 190:176-185. [DOI: 10.1667/rr14760.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marco Valente
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | | | | | - Guillaume Cosler
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | - Michel Drouet
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Fabrice Entine
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Francis Hérodin
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Flora Jourquin
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Yannick Lecompte
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Patrick Martigne
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Xavier Michel
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Jérôme Pateux
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | |
Collapse
|
33
|
Lacombe J, Brooks C, Hu C, Menashi E, Korn R, Yang F, Zenhausern F. Analysis of Saliva Gene Expression during Head and Neck Cancer Radiotherapy: A Pilot Study. Radiat Res 2017; 188:75-81. [PMID: 28504589 DOI: 10.1667/rr14707.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saliva, a biological fluid, is a promising candidate for novel approaches to prognosis, clinical diagnosis, monitoring and management of patients with both oral and systemic diseases. However, to date, saliva has not been widely investigated as a biomarker for radiation exposure. Since white blood cells are also present in saliva, it should theoretically be possible to investigate the transcriptional biomarkers of radiation exposure classically studied in whole blood. Therefore, we collected whole blood and saliva samples from eight head and neck cancer patients before the start of radiation treatment, at mid-treatment and after treatment. We then used a panel of five genes: BAX, BBC3, CDKN1A, DDB2 and MDM2, designated for assessing radiation dose in whole blood to evaluate gene expression changes that can occur during radiotherapy. The results revealed that the expression of the five genes did not change in whole blood. However, in saliva, CDKN1A and DDB2 were significantly overexpressed at the end, compared to the start, of radiotherapy, and MDM2 was significantly underexpressed between mid-treatment and at the end of treatment. Interestingly, CDKN1A and DDB2 expressions also showed an increasing monotonic relationship with total radiation dose received during radiotherapy. To our knowledge, these results show for the first time the ability to detect gene expression changes in saliva after head and neck cancer radiotherapy, and pave the way for further promising studies validating saliva as a minimally invasive means of biofluid collection to directly measure radiation dose escalation during treatment.
Collapse
Affiliation(s)
- Jerome Lacombe
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226
| | - Carla Brooks
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226
| | - Chengcheng Hu
- b Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona 85004
| | | | - Ronald Korn
- c Honor Health Research Institute, Scottsdale, Arizona 85258
| | - Farley Yang
- c Honor Health Research Institute, Scottsdale, Arizona 85258.,d Arizona Center for Cancer Care, Honor Health, Scottsdale, Arizona 85251
| | - Frederic Zenhausern
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226.,c Honor Health Research Institute, Scottsdale, Arizona 85258.,e Translational Genomics Research Institute, Phoenix, Arizona 85004
| |
Collapse
|
34
|
Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II: Implementation of a High-Throughput Micronucleus Biodosimetry Assay on Commercial Biotech Robotic Systems. Radiat Res 2017; 187:492-498. [PMID: 28231025 DOI: 10.1667/rr011cc.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We demonstrate the use of high-throughput biodosimetry platforms based on commercial high-throughput/high-content screening robotic systems. The cytokinesis-block micronucleus (CBMN) assay, using only 20 μl whole blood from a fingerstick, was implemented on a PerkinElmer cell::explorer and General Electric IN Cell Analyzer 2000. On average 500 binucleated cells per sample were detected by our FluorQuantMN software. A calibration curve was generated in the radiation dose range up to 5.0 Gy using the data from 8 donors and 48,083 binucleated cells in total. The study described here demonstrates that high-throughput radiation biodosimetry is practical using current commercial high-throughput/high-content screening robotic systems, which can be readily programmed to perform and analyze robotics-optimized cytogenetic assays. Application to other commercial high-throughput/high-content screening systems beyond the ones used in this study is clearly practical. This approach will allow much wider access to high-throughput biodosimetric screening for large-scale radiological incidents than is currently available.
Collapse
Affiliation(s)
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | - Charles Karan
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | | | - Guy Garty
- a Center for Radiological Research and
| |
Collapse
|
35
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
37
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
38
|
Oestreicher U, Samaga D, Ainsbury E, Antunes AC, Baeyens A, Barrios L, Beinke C, Beukes P, Blakely WF, Cucu A, De Amicis A, Depuydt J, De Sanctis S, Di Giorgio M, Dobos K, Dominguez I, Duy PN, Espinoza ME, Flegal FN, Figel M, Garcia O, Monteiro Gil O, Gregoire E, Guerrero-Carbajal C, Güçlü İ, Hadjidekova V, Hande P, Kulka U, Lemon J, Lindholm C, Lista F, Lumniczky K, Martinez-Lopez W, Maznyk N, Meschini R, M’kacher R, Montoro A, Moquet J, Moreno M, Noditi M, Pajic J, Radl A, Ricoul M, Romm H, Roy L, Sabatier L, Sebastià N, Slabbert J, Sommer S, Stuck Oliveira M, Subramanian U, Suto Y, Que T, Testa A, Terzoudi G, Vral A, Wilkins R, Yanti L, Zafiropoulos D, Wojcik A. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int J Radiat Biol 2016; 93:20-29. [DOI: 10.1080/09553002.2016.1233370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Daniel Samaga
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | | | | | - Julie Depuydt
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | | | - Katalin Dobos
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | | | - Farrah N. Flegal
- Canadian Nuclear Laboratories, Radiobiology & Health, Chalk River, Ontario, Canada
| | - Markus Figel
- Helmholtz Zentrum München, Auswertungsstelle für Strahlendosimeter
| | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones (CPHR), La Havana. Cuba
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - İnci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Traning Center Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine: National University of Singapore, Singapore
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Nataliya Maznyk
- Institute for Medical Radiology of National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| | | | - Radia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Alegria Montoro
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Spain
| | | | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Analía Radl
- Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Horst Romm
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Natividad Sebastià
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Uma Subramanian
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | - Yumiko Suto
- National Institute of Radiological Sciences, Chiba, Japan
| | - Tran Que
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research “Demokritos”, NCSR”D”, Greece
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | - LusiYanti Yanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Batan, Indonesia
| | | | - Andrzej Wojcik
- Stockholm University, Institute Molecular Biosciences, Stockholm, Sweden
| |
Collapse
|
39
|
Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, De Amicis A, Domínguez I, Fattibene P, Frøvig, AM, Gregoire E, Guogyte K, Hadjidekova V, Jaworska A, Kriehuber R, Lindholm C, Lloyd D, Lumniczky K, Lyng F, Meschini R, Mörtl S, Della Monaca S, Monteiro Gil O, Montoro A, Moquet J, Moreno M, Oestreicher U, Palitti F, Pantelias G, Patrono C, Piqueret-Stephan L, Port M, Prieto MJ, Quintens R, Ricoul M, Romm H, Roy L, Sáfrány G, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Turai I, Trompier F, Valente M, Vaz P, Voisin P, Vral A, Woda C, Zafiropoulos D, Wojcik A. RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol 2016; 93:2-14. [DOI: 10.1080/09553002.2016.1230239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | - David Lloyd
- affiliated to Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Fiona Lyng
- Dublin Institute of Technology, Dublin, Ireland
| | | | - Simone Mörtl
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montoro
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Laure Piqueret-Stephan
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - María Jesus Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Géza Sáfrány
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Natividad Sebastià
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | - Georgia Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Istvan Turai
- affiliated to National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Philippe Voisin
- affiliated to Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Anne Vral
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Clemens Woda
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Andrzej Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| |
Collapse
|
40
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
41
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
42
|
Depuydt J, Baeyens A, Barnard S, Beinke C, Benedek A, Beukes P, Buraczewska I, Darroudi F, De Sanctis S, Dominguez I, Monteiro Gil O, Hadjidekova V, Kis E, Kulka U, Lista F, Lumniczky K, M’kacher R, Moquet J, Obreja D, Oestreicher U, Pajic J, Pastor N, Popova L, Regalbuto E, Ricoul M, Sabatier L, Slabbert J, Sommer S, Testa A, Thierens H, Wojcik A, Vral A. RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay). Int J Radiat Biol 2016; 93:36-47. [DOI: 10.1080/09553002.2016.1206231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Julie Depuydt
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ans Baeyens
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Christina Beinke
- Bundeswehr Institut für Radiobiology, Universität Ulm, Munich, Germany
| | - Anett Benedek
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Philip Beukes
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | | | | | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Enikő Kis
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Radhia M’kacher
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Doina Obreja
- Institutul National de Sanatate Publica, Bucuresti, Romania
| | - Ursula Oestreicher
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Jelena Pajic
- Serbian Institute of Occupational Health “Dr Dragomir Karajovic”, Radiation Protection Center, Belgrado, Serbia
| | | | - Ljubomira Popova
- National Center for Radiobiology and Radiation Protection, Sofia, Bulgaria
| | | | - Michelle Ricoul
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jacobus Slabbert
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
43
|
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, Rothkamm K. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 2016; 93:58-64. [DOI: 10.1080/09553002.2016.1207822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Albena Staynova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Carita Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Octávia Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Vanda Martins
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Ute Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Charlot Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
- Themba LABS, National Research Foundation, Somerset West, South Africa
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
- Department of Radiotherapy & Radio-Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Achel DG, Serafin AM, Akudugu JM. Flow cytometry-assisted quantification of γH2AX expression has potential as a rapid high-throughput biodosimetry tool. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:349-357. [PMID: 27262315 DOI: 10.1007/s00411-016-0654-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Large-scale radiological events require immediate and accurate estimates of doses received by victims, and possibly the first responders, to assist in treatment decisions. Although there are numerous efforts worldwide to develop biodosimetric tools to adequately handle triage needs during radiological incidents, such endeavours do not seem to actively involve sub-Saharan Africa which currently has a significant level of nuclear-related activity. To initiate a similar interest in Africa, ex vivo radiation-induced γH2AX expression in peripheral blood lymphocytes from fourteen healthy donors was assessed using flow cytometry. While the technique shows potential for use as a rapid high-throughput biodosimetric tool for radiation absorbed doses up to 5 Gy, significant inter-individual differences in γH2AX expression emerged. Also, female donors exhibited higher levels of γH2AX expression than their male counterparts. To address these shortcomings, gender-based in-house dose-response curves for γH2AX induction in lymphocytes 2, 4, and 6 h after X-ray irradiation are proposed for the South African population. The obtained results show that γH2AX is a good candidate biomarker for biodosimetry, but might need some refinement and validation through further studies involving a larger cohort of donors.
Collapse
Affiliation(s)
- Daniel G Achel
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
45
|
Ha CT, Li X, Fu D, Xiao M. Circulating IL-18 Binding Protein (IL-18BP) and IL-18 as Dual Biomarkers of Total-Body Irradiation in Mice. Radiat Res 2016; 185:375-83. [PMID: 27023262 DOI: 10.1667/rr14238.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously reported that circulating interleukin-18 (IL-18) can be used as a radiation biomarker in mice, minipigs and nonhuman primates. In this study, we further determined the serum levels of IL-18 binding protein (IL-18BP), a natural endogenous antagonist of IL-18, in CD2F1 mice 1-13 days after total-body gamma irradiation (TBI) with different doses (5-10 Gy). We compared the changes in blood lymphocyte, neutrophil and platelet counts as well as the activation of the proapoptotic executioner caspase-3 and caspase-7, and the expression of the inflammatory factor cyclooxygenase 2 (COX-2) in spleen cells, with the changes of IL-18BP and IL-18 in mouse serum. We also evaluated the significance, sensitivity and specificity of alterations in radiation-induced IL-18BP. IL-18 increased from day 1-13 after TBI in a dose-dependent manner that was paralleled with an increase in IL-18 receptor alpha (IL-18Rα) in irradiated mouse spleen cells. IL-18BP rapidly increased (25-63 fold) in mouse serum on day 1 after different doses of TBI. However, it returned to baseline within 3 days after 5-7 Gy doses and within 7 days after 8 Gy dose, and was unaltered thereafter. In contrast, high doses of radiation (9 and 10 Gy) significantly sustained a higher level of IL-18BP in mouse serum and later induced a second phase of increase in IL-18BP on day 9-13 after irradiation, which coincided with the onset of animal mortality. Consistent with this observation, highly activated caspase-3 and -7 in 8-10 Gy irradiated mouse spleen cells exhibited reduced or no activity 24 h after 5 Gy, although radiation induced an inflammatory response, as shown by COX-2 expression in all irradiated cells. Our data suggest that the radiation-induced differential elevation of IL-18 and IL-18BP in animal serum is a dynamic and discriminative indicator of the severity of injury after exposure to ionizing radiation. These findings support the inclusion of the dual biomarkers IL-18BP and IL-18 in the development of a multifactorial strategy for radiation dose and injury assessment.
Collapse
Affiliation(s)
- Cam T Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
46
|
Pirayesh Islamian J, Farajollahi A, Mehrali H, Hatamian M. Radioprotective Effects of Amifostine and Lycopene on Human Peripheral Blood Lymphocytes In Vitro. J Med Imaging Radiat Sci 2016; 47:49-54. [PMID: 31047163 DOI: 10.1016/j.jmir.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Radiation protection is a pivotal challenge for radiation workers employed in medical fields, industry, and also space professionals with an increasing role in medical diagnostic and therapeutic applications. Radioprotective effects of amifostine and lycopene and their ability to moderate the level of radiation-induced chromosomal aberrations were investigated using the dicentric chromosome assay. METHODS Parallel human whole blood samples, pretreated with amifostine (250 μg/mL), lycopene (5 μg/mL), and/or their combinations were irradiated for 30 minutes with 60Co γ rays (1, 2, 3, and 4 Gy) with a dose rate of 98.46 cGy/min at SAD = 100 cm, in vitro and cocultured with control groups. The frequencies of chromosomal aberrations in the lymphocyte of the cells were analyzed. RESULTS There were no apparent chromosome aberrations in controls and also in the drug-treated groups in the absence of radiation. Radiodrug treatment significantly decreased frequency of the radiation-induced chromosome aberrations compared with radiation alone (P < .05). Amifostine reduced the frequency of radiation-induced dicentrics by 15.8%, 21.9%, 4.5%, and 11.6%, with dose protection factors (DPFs) of 1.2 ± 0.02, 1.3 ± 0.1, 1.05 ± 0.03, and 1.13 ± 0.02. Lycopene reduced the frequency by 17.2%, 3.07%, 1.63%, and 16.6%, with DPFs of 1.21 ± 0.12, 1.03±0.05, 1.02±0.03 and 1.12±0.03. The combination treatment reduced the frequency by 28%, 24.9%, 9%, and 31.2%, with DPFs of 1.38 ± 0.06, 1.33 ± 0.06, 1.09 ± 0.02, and 1.45 ± 0.03 with radiation doses of 1, 2, 3, and 4 Gy, respectively. CONCLUSIONS It can be suggested that pretreatment with combined amifostine and lycopene may reduce the extent of ionizing radiation damage in cells.
Collapse
Affiliation(s)
- Jalil Pirayesh Islamian
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Farajollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Mehrali
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Hatamian
- Department of Medical Physics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Johnston ML, Young EF, Shepard KL. Whole-blood immunoassay for γH2AX as a radiation biodosimetry assay with minimal sample preparation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:365-372. [PMID: 25935208 DOI: 10.1007/s00411-015-0595-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The current state of the art in high-throughput minimally invasive radiation biodosimetry involves the collection of samples in the field and analysis at a centralized facility. We have developed a simple biological immunoassay for radiation exposure that could extend this analysis out of the laboratory into the field. Such a forward placed assay would facilitate triage of a potentially exposed population. The phosphorylation and localization of the histone H2AX at double-stranded DNA breaks has already been proven to be an adequate surrogate assay for reporting DNA damage proportional to radiation dose. Here, we develop an assay for phosphorylated H2AX directed against minimally processed sample lysates. We conduct preliminary verification of H2AX phosphorylation using irradiated mouse embryo fibroblast cultures. Additional dosimetry is performed using human blood samples irradiated ex vivo. The assay reports H2AX phosphorylation in human blood samples in response to ionizing radiation over a range of 0-5 Gy in a linear fashion, without requiring filtering, enrichment, or purification of the blood sample.
Collapse
Affiliation(s)
- Matthew L Johnston
- Bialanx, Inc., 511 Avenue of the Americas, Suite 267, New York, NY, USA,
| | | | | |
Collapse
|
48
|
Kulka U, Ainsbury L, Atkinson M, Barnard S, Smith R, Barquinero JF, Barrios L, Bassinet C, Beinke C, Cucu A, Darroudi F, Fattibene P, Bortolin E, Monaca SD, Gil O, Gregoire E, Hadjidekova V, Haghdoost S, Hatzi V, Hempel W, Herranz R, Jaworska A, Lindholm C, Lumniczky K, M'kacher R, Mörtl S, Montoro A, Moquet J, Moreno M, Noditi M, Ogbazghi A, Oestreicher U, Palitti F, Pantelias G, Popescu I, Prieto MJ, Roch-Lefevre S, Roessler U, Romm H, Rothkamm K, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Trompier F, Turai I, Vandevoorde C, Vaz P, Voisin P, Vral A, Ugletveit F, Wieser A, Woda C, Wojcik A. Realising the European network of biodosimetry: RENEB-status quo. RADIATION PROTECTION DOSIMETRY 2015; 164:42-5. [PMID: 25205835 PMCID: PMC4401036 DOI: 10.1093/rpd/ncu266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | | | - M Atkinson
- Helmholtz Centre Munich, Neuherberg, Germany
| | | | - R Smith
- Public Health England, Chilton, UK
| | - J F Barquinero
- Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - L Barrios
- Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - C Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - C Beinke
- Bundeswehr Institut für Radiobiologie/Universität Ulm, Ulm, Germany
| | - A Cucu
- National Institute of Public Health Romania, Bucharest, Romania
| | - F Darroudi
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - E Bortolin
- Istituto Superiore di Sanità, Rome, Italy
| | | | - O Gil
- Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - E Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - V Hadjidekova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | | | - V Hatzi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - W Hempel
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - R Herranz
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - A Jaworska
- Norwegian Radiation Protection Authority, Osteraas, Norway
| | - C Lindholm
- Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki, Finland
| | - K Lumniczky
- National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - R M'kacher
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - S Mörtl
- Helmholtz Centre Munich, Neuherberg, Germany
| | - A Montoro
- Fundación para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - J Moquet
- Public Health England, Chilton, UK
| | - M Moreno
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Noditi
- National Institute of Public Health Romania, Bucharest, Romania
| | - A Ogbazghi
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | | | - F Palitti
- University of Tuscia, Viterbo, Italy
| | - G Pantelias
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - I Popescu
- National Institute of Public Health Romania, Bucharest, Romania
| | - M J Prieto
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - S Roch-Lefevre
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - U Roessler
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - H Romm
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | | | - L Sabatier
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - N Sebastià
- Fundación para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - S Sommer
- Instytut Chemii i Techniki Jadrowej, Warsaw, Poland
| | - G Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - A Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - H Thierens
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - F Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - I Turai
- National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - C Vandevoorde
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - P Vaz
- Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - P Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - A Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - F Ugletveit
- Norwegian Radiation Protection Authority, Osteraas, Norway
| | - A Wieser
- Helmholtz Centre Munich, Neuherberg, Germany
| | - C Woda
- Helmholtz Centre Munich, Neuherberg, Germany
| | - A Wojcik
- Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Jaworska A, Ainsbury EA, Fattibene P, Lindholm C, Oestreicher U, Rothkamm K, Romm H, Thierens H, Trompier F, Voisin P, Vral A, Woda C, Wojcik A. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. RADIATION PROTECTION DOSIMETRY 2015; 164:165-169. [PMID: 25274532 DOI: 10.1093/rpd/ncu294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
Collapse
Affiliation(s)
- Alicja Jaworska
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Oesteraas, Norway
| | - Elizabeth A Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Paola Fattibene
- Department Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carita Lindholm
- Department of Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Ursula Oestreicher
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Kai Rothkamm
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Horst Romm
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Hubert Thierens
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Francois Trompier
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Philippe Voisin
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Anne Vral
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Clemens Woda
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
50
|
Establishing cytogenetic biodosimetry laboratory in Saudi Arabia and producing preliminary calibration curve of dicentric chromosomes as biomarker for medical dose estimation in response to radiation emergencies. 3 Biotech 2014; 4:635-645. [PMID: 28324310 PMCID: PMC4235882 DOI: 10.1007/s13205-014-0217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022] Open
Abstract
In cases of public or occupational radiation overexposure and eventual radiological accidents, it is important to provide dose assessment, medical triage, diagnoses and treatment to victims. Cytogenetic bio-dosimetry based on scoring of dicentric chromosomal aberrations assay (DCA) is the “gold standard” biotechnology technique for estimating medically relevant radiation doses. Under the auspices of the National Science, Technology and Innovation Plan in Saudi Arabia, we have set up a biodosimetry laboratory and produced a national standard dose–response calibration curve for DCA, pre-required to estimate the doses received. For this, the basic cytogenetic DCA technique needed to be established. Peripheral blood lymphocytes were collected from four healthy volunteers and irradiated with radiation doses between 0 and 5 Gy of 320 keV X-rays. Then, lymphocytes were PHA stimulated, Colcemid division arrested and stained cytogenetic slides were prepared. The Metafer4 system (MetaSystem) was used for automatic and manually assisted metaphase finding and scoring of dicentric chromosomes. Results were fit to the linear-quadratic dose–effect model according to the IAEA EPR-Biodosimetry-2011 report. The resulting manually assisted dose–response calibration curve (Y = 0.0017 + 0.026 × D + 0.081 × D2) was in the range of those described in other populations. Although the automated scoring over-and-under estimates DCA at low (<1 Gy) and high (>2 Gy) doses, respectively, it showed potential for use in triage mode to segregate between victims with potential risk to develop acute radiotoxicity syndromes. In conclusion, we have successfully established the first biodosimetry laboratory in the region and have produced a preliminary national dose–response calibration curve. The laboratory can now contribute to the national preparedness plan in response to eventual radiation emergencies in addition to providing information for decision makers and public health officials who assess the magnitude of public, medical, occupational and accidental radiation exposures.
Collapse
|