1
|
Li D, Wang Z, Yu Q, Wang J, Wu R, Tuo Z, Yoo KH, Wusiman D, Ye L, Guo Y, Yang Y, Shao F, Shu Z, Okoli U, Cho WC, Wei W, Feng D. Tracing the Evolution of Sex Hormones and Receptor-Mediated Immune Microenvironmental Differences in Prostate and Bladder Cancers: From Embryonic Development to Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407715. [PMID: 40007149 PMCID: PMC11967776 DOI: 10.1002/advs.202407715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 02/27/2025]
Abstract
The bladder and prostate originate from the urogenital sinus. However, bladder cancer (BC) is usually classified as an immune "hot" tumor, whereas prostate cancer (PCa) is deemed as an immune "cold" tumor according to the tumor microenvironment (TME) and clinical outcomes. To investigate the immune differences between BC and PCa, studies are compared focusing on immune regulation mediated by sex hormones and receptors to identify key genes and pathways responsible for the immune differences. From a developmental perspective, it is shown that PCa and BC activate genes and pathways similar to those in the developmental stage. During prostate development, the differential expression and function of the androgen receptor (AR) across cell types may contribute to its dual role in promoting and inhibiting immunity in different cells. Androgen deprivation therapy affects AR function in different cells within the TME, influencing immune cell infiltration and antitumor function. Additionally, estrogenα and estrogenβ exert contrasting effects in PCa and BC, which may hold the potential for modifying the "cold" and "hot" tumor phenotypes. Future research should target key genes and pathways involved in bladder development to clarify the immune regulatory similarities and differences between BC and PCa.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhipeng Wang
- Department of UrologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Qingxin Yu
- Department of pathologyNingbo Clinical Pathology Diagnosis CenterNingbo CityZhejiang Province315211China
| | - Jie Wang
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Ruicheng Wu
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhouting Tuo
- Department of Urological SurgeryDaping HospitalArmy Medical Center of PLAArmy Medical UniversityChongqing404100China
| | - Koo Han Yoo
- Department of UrologyKyung Hee UniversitySeoul04510South Korea
| | - Dilinaer Wusiman
- Department of Comparative PathobiologyCollege of Veterinary MedicinePurdue UniversityWest LafayetteIN47907USA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteIN47907USA
| | - Luxia Ye
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yiqing Guo
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yubo Yang
- Department of UrologyThree Gorges HospitalChongqing UniversityWanzhouChongqing404000China
| | - Fanglin Shao
- Department of RehabilitationThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Ziyu Shu
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education)Chongqing UniversityChongqing400045China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
- Basic and Translational Cancer Research GroupDepartment of Pharmacology and TherapeuticsCollege of MedicineUniversity of NigeriaEnugu StateNsukka410001Eastern part of Nigeria
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongSAR999077China
| | - Wuran Wei
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Dechao Feng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
2
|
AlHariry NS, El Saftawy EA, Aboulhoda BE, Abozamel AH, Alghamdi MA, Hamoud AE, Khalil Ghanam WAE. Comparison of tissue biomarkers between non-schistosoma and schistosoma-associated urothelial carcinoma. Tissue Cell 2024; 88:102416. [PMID: 38796863 DOI: 10.1016/j.tice.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND High-grade urothelial carcinoma either non-Schistosoma (NS-UBC) or Schistosoma (S-UBC)-associated is the tenth cause of death worldwide and represents a serious therapeutic problem. AIM Evaluation of the immmunohistochemical expression of tumor necrosis factor-alpha (TNFα), epidermal growth factor receptor (EGFR), programmed cell death protein-1 (PDL1), estrogen receptor-alpha (ERα) and UroplakinIII, in the high-grade in NS-UBC and S-UBC as potential prognostic and therapeutic targets analyzed through estimation of area percentage, optical density and international pathological scoring system for each marker. MATERIAL AND METHODS Sixty high grade urothelial carcinoma cases were enrolled in the study (30 cases of NS-UBC and 30 cases of S-UBC). The cases were immunohistochemically-assessed for TNFα, EGFR, PDL1, ERα and Uroplakin III expression. In S-UBC, parasite load was also evaluated for correlation with the immunohistochemical markers' expression in S-UBC. RESULTS The area percentage of immune-expression of TNFα and EGFR was higher in S-UBC compared to NS-UBC. On the other hand, the NS-UBC displayed statistically-higher expression of PDL1 and uroplakinIII (p-value <0.001). ERα revealed higher, yet, non-significant expressions in S-UBC compared to NS-UBC (p-value =0.459). PDL1 expression showed the most superior record regarding area percentage (64.6± 34.5). Regarding optical density, TNF-α showed the highest transmittance expression (2.4 ± 0.9). EGFR positively correlated with PDL1 in S-UBC (r= 0.578, p-value =0.001) whereas in NS-UBC, TNFα and PDL1 (r=0.382, p-value=0.037) had positive correlation. Schistosoma eggs in tissues oppose uroplakin III expression and trigger immunomodulation via PDL1. CONCLUSION Due to lower UroplakinIII expression, S-UBC is supposed to have a poorer prognosis. Hormonal therapy is not hypothesized due to a very minimal ERα expression in both NS-UBC and S-UBC. Regarding immunotherapy, anti-TNF-α is suggested for S-UBC whilst in NS-UBC, blockading PDL1 might be useful. Targeted EGFR therapy seems to carry emphasized outcomes in S-UBC. Correlations encourage combined immune therapy in NS-UBC; nevertheless, in S-UBC, combined anti-EGFR and PDL1 seem to be of benefit.
Collapse
Affiliation(s)
| | - Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Ahmed H Abozamel
- Department of Urology, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Amany E Hamoud
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
3
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Villadsen AB, Holm-Jacobsen JN, Prabhala BK, Bundgaard-Nielsen C, Huntjens P, Kornum JB, Glavind K, Leutscher PDC, Christensen LP, Jeppesen PB, Sørensen S, Arenholt LTS. Use of Fermented Red Clover Isoflavones in the Treatment of Overactive Bladder in Postmenopausal Women: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2023; 15:4165. [PMID: 37836449 PMCID: PMC10574253 DOI: 10.3390/nu15194165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Postmenopausal women are at risk of developing an overactive bladder (OAB). Conventional vaginal estrogen has shown promise for symptom relief. Isoflavones have proven effective as an alternative to estrogen treatment against menopause-related symptoms. However, its effect on OAB symptoms has not been studied. This study investigates if fermented red clover isoflavones reduce OAB symptoms in postmenopausal women. In this randomized, double-blinded, placebo-controlled trial, women were administered red clover extract (RCE) or a placebo twice daily for three months. Women filled out the International Consultation on Incontinence Questionnaire Overactive Bladder (ICIQ-OAB) and Urinary Incontinence Short Form (ICIQ-UI-SF), together with a fluid intake and voiding diary. A total of 33 women (16 in the RCE group and 17 in the placebo group) were included in the analysis. Baseline demographics and OAB characteristics were comparable across groups. Intake of RCE did not lead to significant relief in most urinary bladder symptom measures, although a significant reduction in the bother of urinary urgency (p = 0.033) and a tendency towards a decreased ICIQ-OAB score were observed (p = 0.056). In contrast, the placebo exhibited a significant decrease in the ICIQ-OAB score (p = 0.021) and in some diary outcomes. We found that an intake of isoflavones did not relieve OAB symptoms in postmenopausal women.
Collapse
Affiliation(s)
- Annemarie B. Villadsen
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Julie N. Holm-Jacobsen
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
| | - Bala K. Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark; (B.K.P.); (L.P.C.)
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Pam Huntjens
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
| | - Jette B. Kornum
- Department of Clinical Microbiology, Aalborg University, 9000 Aalborg, Denmark;
| | - Karin Glavind
- Department of Obstetrics and Gynecology, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Peter D. C. Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Lars P. Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark; (B.K.P.); (L.P.C.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Steno Diabetes Center North Denmark, 9000 Aalborg, Denmark
| | - Louise T. S. Arenholt
- Centre for Clinical Research, North Denmark Regional Hospital, 9800 Hjoerring, Denmark; (A.B.V.); (J.N.H.-J.); (C.B.-N.); (P.H.); (P.D.C.L.); (S.S.)
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Department of Obstetrics and Gynecology, North Denmark Regional Hospital, 9800 Hjoerring, Denmark
| |
Collapse
|
5
|
Lindblad A, Wu R, Persson K, Demirel I. The Role of NLRP3 in Regulation of Antimicrobial Peptides and Estrogen Signaling in UPEC-Infected Bladder Epithelial Cells. Cells 2023; 12:2298. [PMID: 37759520 PMCID: PMC10526908 DOI: 10.3390/cells12182298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The NLRP3 inflammasome, estrogen and antimicrobial peptides have all been found to have a vital role in the protection of the bladder urothelium. However, the interdependence between these protective factors during a bladder infection is currently unknown. Our aim was to investigate the role of NLRP3 in the regulation of antimicrobial peptides and estrogen signaling in bladder epithelial cells during a UPEC infection. Human bladder epithelial cells and CRISPR/Cas9-generated NLRP3-deficient cells were stimulated with the UPEC strain CFT073 and estradiol. The gene and protein expression were evaluated with microarray, qRT-PCR, western blot and ELISA. Microarray results showed that the expression of most antimicrobial peptides was reduced in CFT073-infected NLRP3-deficient cells compared to Cas9 control cells. Conditioned medium from NLRP3-deficient cells also lost the ability to suppress CFT073 growth. Moreover, NLRP3-deficient cells had lower basal release of Beta-defensin-1, Beta-defensin-2 and RNase7. The ability of estradiol to induce an increased expression of antimicrobial peptides was also abrogated in NLRP3-deficient cells. The decreased antimicrobial peptide expression might be linked to the observed reduced expression and activity of estradiol receptor beta in NLRP3-deficient cells. This study suggests that NLRP3 may regulate the release and expression of antimicrobial peptides and affect estrogen signaling in bladder epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Isak Demirel
- School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden; (A.L.); (R.W.); (K.P.)
| |
Collapse
|
6
|
Braun F, Jaschinski M, Täger P, Marmann V, Brandenstein MV, Köditz B, Fischer T, Muñoz-Vázquez S, Zimmermanns B, Dietlein M, Sudbrock F, Krapf P, Fischer D, Heidenreich A, Drzezga A, Kirsch S, Pietsch M, Schomäcker K. Synthesis and evaluation of radioiodinated estrogens for diagnosis and therapy of male urogenital tumours. Org Biomol Chem 2023; 21:3090-3095. [PMID: 36947011 DOI: 10.1039/d3ob00114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The preparation of 24 estrogens, their estrogen receptor (ER) affinity and studies of radioiodinated estrogen binding to ER-positive male bladder tumor cells (HTB9) are described. The estrogens with the highest affinity were selected using fluorescence anisotropy assays. A 2,2,2-trifluoroethyl group at the 11β-position caused particularly promising affinity. (Radio)iodination was performed on the 17α-vinyl group. Binding studies on HTB9 cells revealed picomolar affinities of radioconjugates 19 and 31, indicating promising ability for targeting of urogenital tumors.
Collapse
Affiliation(s)
- Feodor Braun
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Marcel Jaschinski
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Philipp Täger
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Verena Marmann
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Melanie von Brandenstein
- Clinic and Polyclinic for Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Barbara Köditz
- Clinic and Polyclinic for Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thomas Fischer
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Sergio Muñoz-Vázquez
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Beate Zimmermanns
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Markus Dietlein
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Ferdinand Sudbrock
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Phillip Krapf
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Dietmar Fischer
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Axel Heidenreich
- Clinic and Polyclinic for Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| | - Stefan Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Klaus Schomäcker
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
7
|
Utilizing MALDI-TOF MS and LC-MS/MS to access serum peptidome-based biomarkers in canine oral tumors. Sci Rep 2022; 12:21641. [PMID: 36517562 PMCID: PMC9750994 DOI: 10.1038/s41598-022-26132-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors frequently found in dogs include canine oral tumors, either cancerous or noncancerous. The bloodstream is an important route for tumor metastasis, particularly for late-stage oral melanoma (LOM) and late-stage oral squamous cell carcinoma (LOSCC). The present study aimed to investigate serum peptidome-based biomarkers of dogs with early-stage oral melanoma, LOM, LOSCC, benign oral tumors, chronic periodontitis and healthy controls, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry. A principal component analysis plot showed distinct clusters among all groups. Four peptides were identified, including peptidyl-prolyl cis-trans isomerase FKBP4 isoform X2 (FKBP4), steroid hormone receptor ERR1 (ESRRA or ERRA), immunoglobulin superfamily member 10 (IGSF10) and ATP-binding cassette subfamily B member 5 (ABCB5). FKBP4, ESRRA and ABCB5 were found to be overexpressed in both LOM and LOSCC, whereas IGSF10 expression was markedly increased in LOSCC only. These four proteins also played a crucial role in numerous pathways of cancer metastasis and showed a strong relationship with chemotherapy drugs. In conclusion, this study showed rapid screening of canine oral tumors using serum and MALDI-TOF MS. In addition, potential serum peptidome-based biomarker candidates for LOM and LOSCC were identified.
Collapse
|
8
|
Li YD, Gao L, Gou YQ, Tan W, Liu C. Age of menarche and primary bladder cancer risk: A meta-analysis and systematic review. Urol Oncol 2022; 40:346.e17-346.e26. [DOI: 10.1016/j.urolonc.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
9
|
Wakui S, Takahashi H, Muto T. In Utero Exposure to 3,3',4,4', 5-Pentachlorobiphenyl Dose-Dependently Induces N-butyl-4-(hydroxybutyl) Nitrosamine in Rats With Urinary Bladder Carcinoma. Toxicol Pathol 2022; 50:366-380. [PMID: 35045775 DOI: 10.1177/01926233211064180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are fat-soluble environmental pollutants that can accumulate in adipose tissue or be secreted in milk. N-butyl-4-(hydroxy butyl) (BBN), a rat bladder carcinogen, recruits the host metabolism to yield its ultimate carcinogenic form via CYP1s. Since estrogen receptors (ERs) mediate biological responses important for the growth of bladder carcinoma, we investigated PCNA, Cyclin D1, ERs, CYP1s, and AhR expression in BBN rat bladder carcinomas with prenatal PCB exposure. Female SD rats were treated with 7.5 μg, 250 ng, and 2.5 ng of 3,3',4,4',5-pentachlorobiphenyl (PCB126)/kg or vehicle on days 13 to 19 post-pregnancy. Six-week-old male offspring were treated with 0.05% BBN for 10 weeks before being anesthetized and the urinary bladder wall incised to expose the bladder carcinomas. N-butyl-4-(hydroxybutyl) bladder carcinoma incidence increased with prenatal PCB exposure dose-dependently. In bladder carcinoma, PCB126 exposure significantly increased PCNA, D1, ERα, CYPIA1, CYP1B1, and AhR expression dose-dependently, and increased ERα expression was particularly prominent. However, the expression of ERβ was low, independent of the volume of PCB126 given, indicating similarity to the Vehicle group. We conclude that prenatal PCB126 exposure in rats can induce PCB126 to dose-dependently metabolize BBN via CYP1A1, and contribute to bladder carcinogenesis with upregulation of ERα expression.
Collapse
Affiliation(s)
- Shin Wakui
- Laboratory of Toxicology, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan. Muto is now with Kumiai Chemical Industry Co., Ltd. Japan
| | - Tomoko Muto
- Laboratory of Toxicology, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| |
Collapse
|
10
|
Hogg E, Frank S, Oft J, Benway B, Rashid MH, Lahiri S. Urinary Tract Infection in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:743-757. [PMID: 35147552 PMCID: PMC9108555 DOI: 10.3233/jpd-213103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Urinary tract infection (UTI) is a common precipitant of acute neurological deterioration in patients with Parkinson's disease (PD) and a leading cause of delirium, functional decline, falls, and hospitalization. Various clinical features of PD including autonomic dysfunction and altered urodynamics, frailty and cognitive impairment, and the need for bladder catheterization contribute to an increased risk of UTI. Sepsis due to UTI is a feared consequence of untreated or undertreated UTI and a leading cause of morbidity in PD. Emerging research suggests that immune-mediated brain injury may underlie the pathogenesis of UTI-induced deterioration of PD symptoms. Existing strategies to prevent UTI in patients with PD include use of topical estrogen, prophylactic supplements, antibiotic bladder irrigation, clean catheterization techniques, and prophylactic oral antibiotics, while bacterial interference and vaccines/immunostimulants directed against common UTI pathogens are potentially emerging strategies that are currently under investigation. Future research is needed to mitigate the deleterious effects of UTI in PD.
Collapse
Affiliation(s)
- Elliot Hogg
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel Frank
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jillian Oft
- Department of Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian Benway
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Departments of Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
12
|
Hyldgaard JM, Jensen JB. The Inequality of Females in Bladder Cancer. APMIS 2021; 129:694-699. [PMID: 34582047 DOI: 10.1111/apm.13183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Urinary bladder cancer is worldwide one of the most diagnosed and costly types of cancer. One puzzle in the bladder cancer diagnosis is the disproportional relationship between genders. Males are more likely to be diagnosed with bladder cancer whereas females typically are diagnosed with more adverse disease and worse prognosis, which has led to speculation of the potential role of sex hormones and their receptors in this disease. Estrogen receptors are present in the human bladder, and their role in bladder cancer oncogenesis is increasingly becoming a focus for researchers around the world. This mini-review aims to give a brief overview of the status of female bladder cancer, and to which extend the sex hormones receptors play a role in this. A literature search was performed and included all female original studies on bladder cancer and hormone receptors. Estrogen-receptor alpha seems to be anti-oncogenic whereas estrogen-receptor beta is exhibiting its function pro-oncogenic. The receptor functions may be exercised through mRNA transcriptions and enzymes. Epidemiological studies indicate a potential increase in incidence of bladder cancer for females with earlier age at menopause, and clinical trials are investigating Tamoxifen as a potential treatment in bladder cancer. Increasing evidence supports the theory of bladder cancer development and progression as being partly hormone-dependent. This can lead to a change in conceptual background of bladder cancer etiology and development in the future. Further studies are required to more precise map the use of anti-hormonal drugs in the treatment of this cancer.
Collapse
|
13
|
Low-Intensity Extracorporeal Shock Wave Therapy Promotes Bladder Regeneration and Improves Overactive Bladder Induced by Ovarian Hormone Deficiency from Rat Animal Model to Human Clinical Trial. Int J Mol Sci 2021; 22:ijms22179296. [PMID: 34502202 PMCID: PMC8431217 DOI: 10.3390/ijms22179296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Postmenopausal women with ovary hormone deficiency (OHD) are subject to overactive bladder (OAB) symptoms. The present study attempted to elucidate whether low-intensity extracorporeal shock wave therapy (LiESWT) alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity to influence bladder function in OHD-induced OAB in human clinical trial and rat model. The ovariectomized (OVX) for 12 months Sprague–Dawley rat model mimicking the physiological condition of menopause was utilized to induce OAB and assess the potential therapeutic mechanism of LiESWT (0.12 mJ/mm2, 300 pulses, and 3 pulses/second). The randomized, single-blinded clinical trial was enrolled 58 participants to investigate the therapeutic efficacy of LiESWT (0.25 mJ/mm2, 3000 pulses, 3 pulses/second) on postmenopausal women with OAB. The results revealed that 8 weeks’ LiESWT inhibited interstitial fibrosis, promoted cell proliferation, enhanced angiogenesis protein expression, and elevated the protein phosphorylation of ErK1/2, P38, and Akt, leading to decreased urinary frequency, nocturia, urgency, urgency incontinence, and post-voided residual urine volume, but increased voided urine volume and the maximal flow rate of postmenopausal participants. In conclusion, LiESWT attenuated inflammatory responses, increased angiogenesis, and promoted proliferation and differentiation, thereby improved OAB symptoms, thereafter promoting social activity and the quality of life of postmenopausal participants.
Collapse
|
14
|
Sikic D, Eckstein M, Weyerer V, Kubon J, Breyer J, Roghmann F, Kunath F, Keck B, Erben P, Hartmann A, Wirtz RM, Wullich B, Taubert H, Wach S. High expression of ERBB2 is an independent risk factor for reduced recurrence-free survival in patients with stage T1 non-muscle-invasive bladder cancer. Urol Oncol 2021; 40:63.e9-63.e18. [PMID: 34330652 DOI: 10.1016/j.urolonc.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Molecular markers associated with breast cancer are assumed to be associated with outcome in non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS We retrospectively investigated the association of the mRNA expression of estrogen receptor 1 (ESR1) and 2 (ESR2), progesterone receptor (PGR), MKI67, and HER2 (ERBB2) with recurrence-free (RFS), cancer-specific (CSS), and overall survival (OS) in 80 patients with stage T1 NMIBC. RESULTS High expression of ESR2 (P = 0.003), ERBB2 (P < 0.001), and MKI67 (P = 0.029) was associated with shorter RFS. Only high ERBB2 was an independent prognostic factor for reduced RFS (HR = 2.98; P = 0.009). When sub stratifying the cohort, high ESR2 was associated with reduced RFS (P < 0.001), CSS (P = 0.037) and OS (P = 0.006) in patients without instillation therapy. High ESR2 was associated with reduced CSS (P = 0.018) and OS (P = 0.029) in females and with shorter RFS in both sexes (males: P = 0.035; females: P = 0.010). Patients with high ERBB2 showed reduced CSS (P = 0.011) and OS (P = 0.042) in females and reduced CSS (P = 0.012) in those without instillation, while RFS was significantly reduced irrespective of sex or instillation. CONCLUSION High mRNA expression of ERBB2 is an independent predictor of reduced RFS in patients with stage T1 NMIBC. High ERBB2 and ESR2 are associated with reduced outcomes, especially in females and patients without instillation therapy.
Collapse
Affiliation(s)
- Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Veronika Weyerer
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Kubon
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Frank Kunath
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Bastian Keck
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Philipp Erben
- Department of Urology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
15
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2021; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
17
|
Goto T, Miyamoto H. The Role of Estrogen Receptors in Urothelial Cancer. Front Endocrinol (Lausanne) 2021; 12:643870. [PMID: 33796076 PMCID: PMC8008958 DOI: 10.3389/fendo.2021.643870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Epidemiological data have indicated that there are some sex-related differences in bladder cancer. Indeed, the incidence of bladder cancer in men has been substantially higher than that in women throughout the world, while women tend to have higher stage disease and poorer prognosis. These gender disparities have prompted to investigate sex hormones and their cognitive receptors in bladder cancer. Specifically, estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to contribute to urothelial carcinogenesis and cancer progression, as well as to modulating chemosensitivity in bladder cancer, although conflicting findings exist. Meanwhile, immunohistochemical studies in surgical specimens have assessed the expression of estrogen receptors and related proteins as well as its associations with clinicopathologic features of bladder cancer and patient outcomes. This review article summarizes and discusses available data indicating that estrogen receptor signaling plays an important role in urothelial cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Hiroshi Miyamoto,
| |
Collapse
|
18
|
Impact of infections, preneoplasia and cancer on micronucleus formation in urothelial and cervical cells: A systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108361. [PMID: 34083051 DOI: 10.1016/j.mrrev.2020.108361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/24/2022]
Abstract
Approximately 165,000 and 311,000 individuals die annually from urothelial (UC) and cervical (CC) cancer. The therapeutic success of these cancers depends strongly on their early detection and could be improved by use of additional diagnostic tools. We evaluated the current knowledge of the use of micronucleus (MN) assays (which detect structural and numerical chromosomal aberrations) with urine- (UDC) and cervix-derived (CDC) cells for the identification of humans with increased risks and for the diagnosis of UC and CC. Several findings indicate that MN rates in UDC are higher in individuals with inflammation and schistosomiasis that are associated with increased prevalence of UC; furthermore, higher MN rates were also found in CDC in women with HPV, Candidiasis and Trichomonas infections which increase the risks for CC. Only few studies were published on MN rates in UDS in patients with UC, two concern the detection of recurrent bladder tumors. Strong correlations were found in individuals with abnormal CC cells that are scored in Pap tests and histopathological abnormalities. In total, 16 studies were published which concerned these topics. MN rates increased in the order: inflammation < ASC-US/ASC-H < LSIL < HSIL < CC. It is evident that MNi numbers increase with the risk to develop CC and with the degree of malignant transformation. Overall, the evaluation of the literature indicates that MNi are useful additional biomarkers for the prognosis and detection of CC and possibly also for UC. In regard to the diagnosis/surveillance of UC, further investigations are needed to draw firm conclusions, but the currently available data are promising. In general, further standardization of the assays is needed (i.e. definition of optimal cell numbers and of suitable stains as well as elucidation of the usefulness of parameters reflecting cytotoxicity and mitotic activity) before MN trials can be implemented in routine screening.
Collapse
|
19
|
Ide H, Miyamoto H. The Role of Steroid Hormone Receptors in Urothelial Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082155. [PMID: 32759680 PMCID: PMC7465876 DOI: 10.3390/cancers12082155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Preclinical and/or clinical evidence has indicated a potential role of steroid hormone-mediated signaling pathways in the development of various neoplastic diseases, while precise mechanisms for the functions of specific receptors remain poorly understood. Specifically, in urothelial cancer where sex-related differences particularly in its incidence are noted, activation of sex hormone receptors, such as androgen receptor and estrogen receptor-β, has been associated with the induction of tumor development. More recently, glucocorticoid receptor has been implied to function as a suppressor of urothelial tumorigenesis. This article summarizes and discusses available data suggesting that steroid hormone receptors, including androgen receptor, estrogen receptor-α, estrogen receptor-β, glucocorticoid receptor, progesterone receptor and vitamin D receptor, as well as their related signals, contribute to modulating urothelial tumorigenesis.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
20
|
Zeng G, Zhang M, Gao P, Wang J, Sun D. Algicidal Efficiency and Genotoxic Effects of Phanerochaete chrysosporium against Microcystis aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4029. [PMID: 32517048 PMCID: PMC7312622 DOI: 10.3390/ijerph17114029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
Eutrophication has become a severe environmental problem. This study evaluated the algicidal efficiency and genotoxic effects of Microcystis aeruginosa co-cultured with Phanerochaete chrysosporium for 48 h under the optimum conditions of 250 mg/L of P. chrysosporium at 25 °C with dissolved oxygen content of 7.0 mg/L. The results showed that the activity of algal dehydrogenase, superoxide dismutase, and peroxidase were all decreased and the malondialdehyde content increased after co-culturing. Fourier transform infrared spectroscopy and scanning electron microscopy observations showed that the functional group and structure of algal cells were significantly changed. Compared with those of control tadpoles, blood cells of Fejervarya multistriata tadpoles had increased micronucleus frequency (from 1.05 ± 0.09 to 1.99 ± 0.05) and abnormal nuclei (from 2.45 ± 0.06 to 5.83 ± 0.07). The tail length of M. aeruginosa co-cultured with P. chrysosporium increased from 1.12 ± 0.21 to 21.68 ± 0.34, and the comet length increased from 6.45 ± 0.09 to 36.45 ± 0.67 within 48 h. Micronucleus assay and Comet assay results demonstrated that P. chrysosporium might effectively remove algae and reduce genotoxic effects and may be safe for aquatic ecosystems.
Collapse
Affiliation(s)
- Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (G.Z.); (M.Z.); (P.G.); (J.W.)
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (G.Z.); (M.Z.); (P.G.); (J.W.)
| | - Pei Gao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (G.Z.); (M.Z.); (P.G.); (J.W.)
| | - Jiale Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (G.Z.); (M.Z.); (P.G.); (J.W.)
| | - Da Sun
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
21
|
Bernardo C, Santos J, Costa C, Tavares A, Amaro T, Marques I, Gouveia MJ, Félix V, Afreixo V, Brindley PJ, Costa JM, Amado F, Helguero L, Santos LL. Estrogen receptors in urogenital schistosomiasis and bladder cancer: Estrogen receptor alpha-mediated cell proliferation. Urol Oncol 2020; 38:738.e23-738.e35. [PMID: 32507545 DOI: 10.1016/j.urolonc.2020.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023]
Abstract
Estrogen-like metabolites have been identified in S. haematobium, the helminth parasite that causes urogenital schistosomiasis (UGS) and in patients´ blood and urine during UGS. Estrogen receptor (ER) activation is enriched in the luminal molecular subtype bladder cancer (BlaCa). To date, the significance of ER to these diseases remains elusive. We evaluated ERα and ERβ expression in UGS-related BlaCa (n = 27), UGS-related non-malignant lesions (n = 35), and noninfected BlaCa (n = 80). We investigated the potential of ERα to recognize S. haematobium-derived metabolites by docking and molecular dynamics simulations and studied ERα modulation in vitro using 3 BlaCa cell lines, T24, 5637 and HT1376. ERα was expressed in tumor and stromal cells in approximately 20% noninfected cases and in 30% of UGS-related BlaCa, predominantly in the epithelial cells. Overall, ERα expression was associated with features of tumor aggressiveness such as high proliferation and p53 positive expression. ERα expression correlated with presence of schistosome eggs. ERβ was widely expressed in both cohorts but weaker in UGS-related cases. molecular dynamics simulations of the 4 most abundant S. haematobium-derived metabolites revealed that smaller metabolites have comparable affinity for the ERα active state than 17β-estradiol, while the larger metabolites present higher affinity. Our in vitro findings suggested that ERα activation promotes proliferation in ERα expressing BlaCa cells and that this can be reverted with anti-estrogenic therapy. In summary, we report differential ER expression between UGS-related BlaCa and noninfected BlaCa and provide evidence supporting a role of active ERα during UGS and UGS-induced carcinogenesis.
Collapse
Affiliation(s)
- Carina Bernardo
- Hormones and Cancer Lab, Department of Medical Sciences, Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Júlio Santos
- Urology Department, Hospital Américo Boavida, Luanda, Angola; Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal
| | - Céu Costa
- Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center (FP-ENAS/CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Igor Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria João Gouveia
- Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal; Department of Infectious Diseases, R&D Unit, INSA-National Health Institute Dr. Ricardo Jorge, Porto, Portugal
| | - Vítor Félix
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Vera Afreixo
- Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, Aveiro, Portugal
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - José Manuel Costa
- Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal; Department of Infectious Diseases, R&D Unit, INSA-National Health Institute Dr. Ricardo Jorge, Porto, Portugal
| | - Francisco Amado
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luisa Helguero
- Hormones and Cancer Lab, Department of Medical Sciences, Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| |
Collapse
|
22
|
Abstract
OBJECTIVES A significant body of knowledge implicates menopausal estrogen levels in the pathogenesis of the common pelvic floor disorders (PFDs). These health conditions substantially decrease quality of life, increase depression, social isolation, caregiver burden, and economic costs to the individuals and society. METHODS This review summarizes the epidemiology of the individual PFDs with particular attention to the understanding of the relationship between each PFD and menopausal estrogen levels, and the gaps in science and clinical care that affect menopausal women. In addition, we review the epidemiology of recurrent urinary tract infection (rUTI)-a condition experienced frequently and disproportionately by menopausal women and hypothesized to be potentiated by menopausal estrogen levels. RESULTS The abundance of estrogen receptors in the urogenital tract explains why the natural reduction of endogenous estrogen, the hallmark of menopause, can cause or potentiate PFDs and rUTIs. A substantial body of epidemiological literature suggests an association between menopause, and PFDs and rUTIs; however, the ability to separate this association from age and other comorbid conditions makes it difficult to draw definitive conclusions on the role of menopause alone in the development and/or progression of PFDs. Similarly, the causative link between the decline in endogenous estrogen levels and the pathogenesis of PFDs and rUTIs has not been well-established. CONCLUSIONS Innovative human studies, focused on the independent effects of menopausal estrogen levels, uncoupled from tissue and cellular senescence, are needed.
Collapse
|
23
|
González-Granillo M, Savva C, Li X, Ghosh Laskar M, Angelin B, Gustafsson JÅ, Korach-André M. Selective estrogen receptor (ER)β activation provokes a redistribution of fat mass and modifies hepatic triglyceride composition in obese male mice. Mol Cell Endocrinol 2020; 502:110672. [PMID: 31811898 DOI: 10.1016/j.mce.2019.110672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Estrogen exerts its action through the binding to two major receptors, estrogen receptor (ER)α and β. Recently, the beneficial role of selective ERβ activation in the regulation of metabolic homeostasis in obesity has been demonstrated, but its importance is still controversial. However, no data are available regarding possible gender differences in response to pharmaceutical activation of ERβ. Male mice were fed a control diet (CD) or a high fat diet (HFD) before being treated with the ERβ selective ligand, 4-(2-(3-5-dimethylisoxazol-4-yl)-1H-indol-3yl)phenol (DIP) in the same conditions as in our recently published paper in female mice. Magnetic resonance imaging and spectroscopy were performed repeatedly in vivo after 6 weeks of diet and after 2 weeks of DIP. Adipose tissue distribution and hepatic triglycerides composition were quantified. HFD-treated males showed a feminization of their fat distribution towards more subcutaneous fat depots and increase total fat content and visceral adipose tissue showed clear browning sites after DIP. Hepatic lipid composition was modified by DIP, with less saturated and more unsaturated lipids and an improved insulin sensitivity. Finally, brown adipose tissue size expended after DIP, due to an increase of the size of the lipid droplets. Our data demonstrate that selective activation of ERβ exerts a tissue-specific and sex-dependent response to metabolic adaptation to overfeeding. Most importantly, together with our previously published results in females, the current findings support the concept that sex should be considered in the future development of obesity-moderating drugs.
Collapse
Affiliation(s)
- Marcela González-Granillo
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Savva
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Xidan Li
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Moumita Ghosh Laskar
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
24
|
Abstract
Urinary tract infections (UTIs) are highly prevalent, lead to considerable patient morbidity, incur large financial costs to health-care systems and are one of the most common reasons for antibiotic use worldwide. The growing problem of antimicrobial resistance means that the search for nonantibiotic alternatives for the treatment and prevention of UTI is of critical importance. Potential nonantibiotic measures and treatments for UTIs include behavioural changes, dietary supplementation (such as Chinese herbal medicines and cranberry products), NSAIDs, probiotics, D-mannose, methenamine hippurate, estrogens, intravesical glycosaminoglycans, immunostimulants, vaccines and inoculation with less-pathogenic bacteria. Some of the results of trials of these approaches are promising; however, high-level evidence is required before firm recommendations for their use can be made. A combination of these agents might provide the optimal treatment to reduce recurrent UTI, and trials in specific population groups are required.
Collapse
|
25
|
Lo SS, Lim EJ, Ng LG, Kuo TLC. The Role of Estrogen Status in the Causation of Female Lower Urinary Tract and Pelvic Floor Dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sen A, Iyer J, Boddu S, Kaul A, Kaul R. Estrogen receptor alpha differentially modulates host immunity in the bladder and kidney in response to urinary tract infection. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:110-122. [PMID: 31317051 PMCID: PMC6627544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The protective role of endogenous estrogen against Urinary Tract Infection (UTI) is well recognized, but the involvement of estrogen receptors (ERs) in modulating immunity in the urinary tract during UTI pathogenesis has not been investigated. The current study investigates the role of ERα in modulating immune responses and UTI outcome. Mice were pre-treated with either ERα agonist, propyl-pyrazole-triol (PPT), or ERα antagonist, methyl-piperidino-pyrazole (MPP), before experimental UTI. The UTI outcome was determined by checking the bacterial load, CD55 and TNFα expression in the bladder and kidney tissues. We observed opposite effects of PPT and MPP treatment on bacterial clearance in bladder versus kidney. PPT significantly reduced bacterial load (P < 0.05) only in the kidney, with minimal changes in CD55 and TNFα levels. In contrast, MPP showed remarkable bacterial clearance only in the bladder that corresponded with reduced CD55 and TNFα expression. MPP treatment in uninfected state induced a significant increase in TNFα production (P < 0.05) in the bladder, but not in the kidney. Our results suggest a protective role of ERα in the kidney. However, protection in the bladder may be mediated via other ER subtypes that may be involved in boosting the local immune responses. Drugs targeting specific ERs in bladder may serve as an adjunct treatment for boosting immune responses in the urogenital tract for efficient bacterial clearance.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health SciencesTulsa, OK, USA
| | - Janaki Iyer
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health SciencesTulsa, OK, USA
- Current address: Department of Natural Sciences, Northeastern State UniversityTahlequah, OK, USA
| | - Shreyes Boddu
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health SciencesTulsa, OK, USA
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health SciencesTulsa, OK, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health SciencesTulsa, OK, USA
| |
Collapse
|
27
|
Imai Y, Noda S, Matsuyama C, Shimizu A, Kamai T. Sex steroid hormone receptors in bladder cancer: Usefulness in differential diagnosis and implications in histogenesis of bladder cancer. Urol Oncol 2019; 37:353.e9-353.e15. [PMID: 30737158 DOI: 10.1016/j.urolonc.2019.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In rare cases, differential diagnosis between bladder cancer (BC) and gynecological tract cancer (GTC) is difficult because of anatomical proximity and morphological similarity. We analyzed expression status of sex steroid hormone receptors in BC in this study. First, we investigated their usefulness as a histological marker for differential diagnosis. Second, we considered their roles in BC histogenesis. METHODS Estrogen receptor α (ERα) and progesterone receptor (PgR) expression was investigated by immunohistochemistry in 125 BCs obtained by transurethral resection or biopsy, then in nonneoplastic background mucosa (trigone, fundus, and dome) of 33 total cystectomy samples. They were evaluated as positive when ≥ 1% of 500 subject cells were immunoreactive with moderate or strong intensities. RESULTS ERα and PgR were positive in 38.4% and 3.2% of BCs, respectively, suggesting that ERα status alone could not definitely differentiate between BC and GTC. ERα expression was not significantly associated with age and sex of BC patients and histopathology of BCs. Although not significant, ERα expression was more frequent in higher grade (G1/G2 vs. G3/G4; P = 0.143) and marginally associated with advanced stage of BCs (pTis/pTa/pT1 vs. pT2/pT3, P = 0.056). ERα expression was significantly more frequent in background mucosa with ERα-positive BC (In the epithelium and stroma; both P < 0.001). ERα expression was continuously observed from normal to malignant epithelium in some cases. Although not significant, Brunn's nest or cystitis glandularis was more frequent in background mucosa with ERα-positive BC (P = 0.218). Analyses of nonneoplastic mucosa in cystectomy revealed that ERα was more frequently positive in urothelium of trigone, a predilection site for cystitis glandularis, than those of fundus and dome, with a significant difference between trigone and dome (P = 0.034). These data suggest that chronic inflammation may up-regulate ERα in the background epithelium, especially in trigone, and ERα expression in BC might be the reflection of bladder epithelium from which BC arose. CONCLUSIONS Usefulness of ERα was limited in differential diagnosis between BC and GTC. ERα up-regulation might not play a critical role in the development of BC because it was already noted in the background bladder mucosa.
Collapse
Affiliation(s)
- Yasuo Imai
- Department of Diagnostic Pathology, Ota Memorial Hospital, SUBARU Health Insurance Society, Gunma, Japan; Department of Diagnostic Pathology, Dokkyo Medical University, Tochigi, Japan.
| | - Shuhei Noda
- Department of Diagnostic Pathology, Dokkyo Medical University, Tochigi, Japan
| | - Chiaki Matsuyama
- Department of Diagnostic Pathology, Dokkyo Medical University, Tochigi, Japan
| | - Ayako Shimizu
- Department of Diagnostic Pathology, Dokkyo Medical University, Tochigi, Japan
| | - Takao Kamai
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
28
|
Zheng D, Williams C, Vold JA, Nguyen JH, Harnois DM, Bagaria SP, McLaughlin SA, Li Z. Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett 2018; 438:24-31. [PMID: 30223066 PMCID: PMC6287770 DOI: 10.1016/j.canlet.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Gender differences in the incidences of cancers have been found in almost all human cancers. However, the mechanisms that underlie gender disparities in most human cancer types have been under-investigated. Here, we provide a comprehensive overview of potential mechanisms underlying sexual dimorphism of each cancer regarding sex hormone signaling. Fully addressing the mechanisms of sexual dimorphism in human cancers will greatly benefit current development of precision medicine. Our discussions of potential mechanisms underlying sexual dimorphism in each cancer will be instructive for future cancer research on gender disparities.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Cecilia Williams
- Department of Biosciences and Nutrition, KTH Royal Institute of Technology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jeremy A Vold
- Mayo Cancer Registry, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Justin H Nguyen
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Denise M Harnois
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sanjay P Bagaria
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sarah A McLaughlin
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
29
|
Abelson B, Sun D, Que L, Nebel RA, Baker D, Popiel P, Amundsen CL, Chai T, Close C, DiSanto M, Fraser MO, Kielb SJ, Kuchel G, Mueller ER, Palmer MH, Parker-Autry C, Wolfe AJ, Damaser MS. Sex differences in lower urinary tract biology and physiology. Biol Sex Differ 2018; 9:45. [PMID: 30343668 PMCID: PMC6196569 DOI: 10.1186/s13293-018-0204-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Females and males differ significantly in gross anatomy and physiology of the lower urinary tract, and these differences are commonly discussed in the medical and scientific literature. However, less attention is dedicated to investigating the varied development, function, and biology between females and males on a cellular level. Recognizing that cell biology is not uniform, especially in the lower urinary tract of females and males, is crucial for providing context and relevance for diverse fields of biomedical investigation. This review serves to characterize the current understanding of biological sex differences between female and male lower urinary tracts, while identifying areas for future research. First, the differences in overall cell populations are discussed in the detrusor smooth muscle, urothelium, and trigone. Second, the urethra is discussed, including anatomic discussions of the female and male urethra followed by discussions of cellular differences in the urothelial and muscular layers. The pelvic floor is then reviewed, followed by an examination of the sex differences in hormonal regulation, the urinary tract microbiome, and the reticuloendothelial system. Understanding the complex and dynamic development, anatomy, and physiology of the lower urinary tract should be contextualized by the sex differences described in this review.
Collapse
Affiliation(s)
- Benjamin Abelson
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Sun
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lauren Que
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Dylan Baker
- UConn Center on Aging, University of Connecticut, 263 Farmington, Farmington, CT, USA
| | - Patrick Popiel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Cindy L Amundsen
- Department of Obstetrics and Gynecology, Division of Urogynecology and Reconstructive Surgery, Duke University, Durham, NC, USA
| | - Toby Chai
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | | | - Michael DiSanto
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Matthew O Fraser
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie J Kielb
- Department of Urology and Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George Kuchel
- UConn Center on Aging, University of Connecticut, 263 Farmington, Farmington, CT, USA
| | - Elizabeth R Mueller
- Department of Urology, Loyola University Chicago, Maywood, IL, USA.,Department of Obstetrics/Gynecology, Loyola University Chicago, Maywood, IL, USA
| | - Mary H Palmer
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Candace Parker-Autry
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Margot S Damaser
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. .,Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA. .,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
30
|
Ding M, Liu Y, Li J, Yao L, Liao X, Xie H, Yang K, Zhou Q, Liu Y, Huang W, Cai Z. Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1. J Cell Mol Med 2018; 22:5919-5927. [PMID: 30252203 PMCID: PMC6237589 DOI: 10.1111/jcmm.13861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, studies have shown that enhancer RNAs (eRNAs) can be transcribed from enhancers. Increasing evidence has revealed that eRNAs play critical roles in the development of various cancers. Oestrogen‐associated eRNAs are closely related to breast cancer. In view of the gender differences in bladder cancer (BCa), we suppose that oestrogen‐associated eRNAs are also involved in tumorigenesis of BCa. In our study, we first demonstrated that eGREB1 derived from the enhancer of an oestrogen‐responsive gene—GREB1 was up‐regulated in BCa tissues, and the expression level of eGREB1 is positively associated with the histological grade and TNM stage of BCa. Knockdown of eGREB1 by CRISPR‐Cas13a could inhibit cell proliferation, migration and invasion and induce apoptosis in BCa cells T24 and 5637. Besides, we exhibited the promoting effect of oestrogen on BCa cells. What's more, down‐regulation of eGREB1 could improve the malignant biological characteristics of BCa cells induced by oestrogen. In conclusion, our data indicated that eGREB1 plays oncogenic role and oestrogen may promote the occurrence and progression of BCa by inducing eGREB1 production. Our findings provide new insights into the prevention of BCa and develop a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yuhan Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianfa Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinhui Liao
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haibiao Xie
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kang Yang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,University of South China, Hengyang, China
| | - Qun Zhou
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Velloso FJ, Bianco AFR, Farias JO, Torres NEC, Ferruzo PYM, Anschau V, Jesus-Ferreira HC, Chang THT, Sogayar MC, Zerbini LF, Correa RG. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther 2017; 10:5491-5524. [PMID: 29200866 PMCID: PMC5701508 DOI: 10.2147/ott.s142154] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the disease with highest public health impact in developed countries. Particularly, breast cancer has the highest incidence in women worldwide and the fifth highest mortality in the globe, imposing a significant social and economic burden to society. The disease has a complex heterogeneous etiology, being associated with several risk factors that range from lifestyle to age and family history. Breast cancer is usually classified according to the site of tumor occurrence and gene expression profiling. Although mutations in a few key genes, such as BRCA1 and BRCA2, are associated with high breast cancer risk, the large majority of breast cancer cases are related to mutated genes of low penetrance, which are frequently altered in the whole population. Therefore, understanding the molecular basis of breast cancer, including the several deregulated genes and related pathways linked to this pathology, is essential to ensure advances in early tumor detection and prevention. In this review, we outline key cellular pathways whose deregulation has been associated with breast cancer, leading to alterations in cell proliferation, apoptosis, and the delicate hormonal balance of breast tissue cells. Therefore, here we describe some potential breast cancer-related nodes and signaling concepts linked to the disease, which can be positively translated into novel therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Valesca Anschau
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ted Hung-Tse Chang
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | | | - Luiz F Zerbini
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Bhattar R, Yadav SS, Tomar V, Mittal A, Gangkak G, Mehta J. Role of oestrogen receptor-α and -β in bladder tissue of patients with a clinical diagnosis of benign prostatic hyperplasia. BJU Int 2017; 121:130-138. [DOI: 10.1111/bju.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rohit Bhattar
- Department ofUrology and Renal Transplantation; SMS Medical College; Jaipur Rajasthan India
| | - Sher Singh Yadav
- Department ofUrology and Renal Transplantation; SMS Medical College; Jaipur Rajasthan India
| | - Vinay Tomar
- Department ofUrology and Renal Transplantation; SMS Medical College; Jaipur Rajasthan India
| | - Alka Mittal
- Department of Pathology; SMS Medical College; Jaipur Rajasthan India
| | - Goto Gangkak
- Department ofUrology and Renal Transplantation; SMS Medical College; Jaipur Rajasthan India
| | - Jayanti Mehta
- Department of Pathology; SMS Medical College; Jaipur Rajasthan India
| |
Collapse
|
33
|
Ide H, Inoue S, Miyamoto H. Histopathological and prognostic significance of the expression of sex hormone receptors in bladder cancer: A meta-analysis of immunohistochemical studies. PLoS One 2017; 12:e0174746. [PMID: 28362839 PMCID: PMC5375178 DOI: 10.1371/journal.pone.0174746] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
Objective Emerging preclinical evidence suggests the involvement of sex hormones and their receptor signals in the development and progression of bladder cancer. Meanwhile, previous studies have demonstrated conflicting results on the relationship between the status of sex hormone receptors in urothelial tumors and histopathological characteristics of the tumors or patient outcomes. We therefore conducted this meta-analysis to assess the clinicopathological impact of the expression of androgen receptor (AR) and estrogen receptors (ERs) in bladder cancer. Methods A comprehensive literature search in databases (i.e. PubMed, Web of Science, Cochrane) was performed for all immunohistochemical studies stained for AR, ERα, and/or ERβ in surgically resected bladder cancer specimens and analyzed for patient outcomes. We selected eligible studies in accordance with the PRISMA guidelines and analyzed data using R software. Results A total of 2,049 patients from 13 retrospective studies were included in this meta-analysis. The difference in ERα expression between non-tumors and tumors was significant [odds ratio (OR) = 0.412; P<0.001], while those of AR (OR = 3.256; P = 0.336) or ERβ (OR = 0.580; P = 0.674) were not statistically significant. AR positivity in tumors was strongly correlated with gender (male vs. female: OR = 0.658; P = 0.027) or tumor grade (low-grade vs. high-grade: OR = 0.575; P<0.001). ERβ positive rates were significantly higher in high-grade (OR = 2.169; P<0.001) and muscle-invasive (OR = 3.104; P<0.001) tumors than in low-grade and non-muscle-invasive tumors, respectively. Survival analysis in patients with non-muscle-invasive bladder cancer revealed associations between AR expression and better recurrence-free survival [hazard ration (HR) = 0.593; P = 0.006) as well as between ERβ expression and worse recurrence-free (HR = 1.573; P = 0.013) or progression-free (HR = 4.148; P = 0.089) survivals. Conclusions These data suggest down-regulation of ERα expression in bladder tumors, compared with non-neoplastic urothelial tissues. AR or ERβ expression was down- or up-regulated, respectively, in high-grade and/or muscle-invasive bladder cancers. Moreover, immunohistochemistry of AR/ERβ in surgical specimens may serve as prognosticators in patients with non-muscle-invasive bladder tumor.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
- Department Urology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kashiwagi E, Fujita K, Yamaguchi S, Fushimi H, Ide H, Inoue S, Mizushima T, Reis LO, Sharma R, Netto GJ, Nonomura N, Miyamoto H. Expression of steroid hormone receptors and its prognostic significance in urothelial carcinoma of the upper urinary tract. Cancer Biol Ther 2016; 17:1188-1196. [PMID: 27635763 PMCID: PMC5137486 DOI: 10.1080/15384047.2016.1235667] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022] Open
Abstract
To assess the expression status of steroid hormone receptors in upper urinary tract urothelial carcinoma (UUTUC), we immunohistochemically stained for androgen receptor (AR), estrogen receptor-α (ERα), ERβ, glucocorticoid receptor (GR), and progesterone receptor (PR) in 99 UUTUC specimens and paired non-neoplastic urothelial tissues. AR/ERα/ERβ/GR/PR was positive in 20%/18%/62%/63%/16% of tumors, which was significantly lower (except PR) than in benign urothelial tissues [57% (P < 0.001)/40% (P = 0.001)/85% (P = 0.001)/84% (P = 0.002)/13% (P = 0.489)]. There were no significant associations between each receptor expression pattern and histopathological characteristic of the tumors including tumor grade/stage. Kaplan-Meier and log-rank tests revealed no significant prognostic value of each receptor expression in these 99 patients. However, patients with UUTUC positive for either ERα or PR had a significantly higher risk of disease-specific mortality (P = 0.025), compared with those with UUTUC negative for both. PR positivity alone in pT3 or pT4 tumors was also strongly associated with the risk of disease-specific mortality (P = 0.040). Multivariate analysis further identified the expression of ERα and/or PR as a strong predictor for disease-specific mortality in the entire cohort of the patients (hazard ratio, 2.434; P = 0.037). Thus, in accordance with previous observations in bladder specimens, significant decreases in the expression of AR/ERα/ERβ/GR in UUTUC, compared with that in non-neoplastic urothelium, were observed. Meanwhile, the negativity of both ERα and PR in UUTUC as well as the negativity of PR alone in deeply invasive tumor was suggested to serve as a prognosticator.
Collapse
Affiliation(s)
- Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Yamaguchi
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonardo O. Reis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J. Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
35
|
Kawahara T, Ide H, Kashiwagi E, El-Shishtawy KA, Li Y, Reis LO, Zheng Y, Miyamoto H. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth. Urol Oncol 2016; 34:432.e15-432.e4.32E23. [PMID: 27330033 DOI: 10.1016/j.urolonc.2016.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. METHODS Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. RESULTS Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. CONCLUSIONS Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hiroki Ide
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eiji Kashiwagi
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kareem A El-Shishtawy
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Leonardo O Reis
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yichun Zheng
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hiroshi Miyamoto
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
36
|
Ogris C, Guala D, Helleday T, Sonnhammer ELL. A novel method for crosstalk analysis of biological networks: improving accuracy of pathway annotation. Nucleic Acids Res 2016; 45:e8. [PMID: 27664219 PMCID: PMC5314790 DOI: 10.1093/nar/gkw849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
Analyzing gene expression patterns is a mainstay to gain functional insights of biological systems. A plethora of tools exist to identify significant enrichment of pathways for a set of differentially expressed genes. Most tools analyze gene overlap between gene sets and are therefore severely hampered by the current state of pathway annotation, yet at the same time they run a high risk of false assignments. A way to improve both true positive and false positive rates (FPRs) is to use a functional association network and instead look for enrichment of network connections between gene sets. We present a new network crosstalk analysis method BinoX that determines the statistical significance of network link enrichment or depletion between gene sets, using the binomial distribution. This is a much more appropriate statistical model than previous methods have employed, and as a result BinoX yields substantially better true positive and FPRs than was possible before. A number of benchmarks were performed to assess the accuracy of BinoX and competing methods. We demonstrate examples of how BinoX finds many biologically meaningful pathway annotations for gene sets from cancer and other diseases, which are not found by other methods. BinoX is available at http://sonnhammer.org/BinoX.
Collapse
Affiliation(s)
- Christoph Ogris
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Dimitri Guala
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Erik L L Sonnhammer
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| |
Collapse
|
37
|
Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res 2016; 5:133. [PMID: 27656602 PMCID: PMC5025906 DOI: 10.4103/2277-9175.187395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This cancer may be due to a multistep process with an accumulation of epigenetic alterations in tumor suppressor genes (TSGs), leading to hypermethylation of the genes. Hypermethylation of TSGs is associated with silencing and inactivation of them. It is well-known that DNA hypomethylation is the initial epigenetic abnormality recognized in human tumors. Estrogen receptor alpha (ERα) is one of the TSGs which modulates gene transcription and its hypermethylation is because of overactivity of DNA methyltransferases. Fortunately, epigenetic changes especially hypermethylation can be reversed by pharmacological compounds such as genistein (GE) and 17-beta estradiol (E2) which involve in preventing the development of certain cancers by maintaining a protective DNA methylation. The aim of the present study was to analyze the effects of GE on ERα and DNMT1 genes expression and also apoptotic and antiproliferative effects of GE and E2 on HCC. Materials and Methods: Cells were treated with various concentrations of GE and E2 and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used. Furthermore, cells were treated with single dose of GE and E2 (25 μM) and flow cytometry assay was performed. The expression level of the genes was determined by quantitative real-time reverse transcription polymerase chain reaction. Results: GE increased ERα and decreased DNMT1 genes expression, GE and E2 inhibited cell viability and induced apoptosis significantly. Conclusion: GE can epigenetically increase ERα expression by inhibition of DNMT1 expression which in turn increases apoptotic effect of E2. Furthermore, a combination of GE and E2 can induce apoptosis more significantly.
Collapse
Affiliation(s)
- Fraidoon Kavoosi
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masumeh Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Breyer J, Wirtz RM, Laible M, Schlombs K, Erben P, Kriegmair MC, Stoehr R, Eidt S, Denzinger S, Burger M, Hartmann A, Otto W. ESR1, ERBB2, and Ki67 mRNA expression predicts stage and grade of non-muscle-invasive bladder carcinoma (NMIBC). Virchows Arch 2016; 469:547-552. [PMID: 27514658 DOI: 10.1007/s00428-016-2002-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/24/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Pathological staging and grading are crucial for risk assessment in non-muscle-invasive bladder cancer (NMIBC). Molecular grading might support pathological evaluation and minimize interobserver variability. In this study, the well-established breast cancer markers ESR1, PGR, ERBB2, and MKI67 were evaluated as potential molecular markers to support grading and staging in NMIBC. We retrospectively analyzed clinical data and formalin-fixed paraffin-embedded tissues (FFPE) of patients with NMIBC. Messenger RNA (mRNA) expression of the aforementioned markers was measured by single-step reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) using RNA-specific TaqMan assays. Relative gene expression was determined by normalization to two reference genes (CALM2 and B2M) using the 40-ΔΔCT method and correlated to histopathological stage and grade. Pathological assessment was performed by an experienced uropathologist. Statistical analysis was performed using the SAS software JMP 9.0.0 version and GraphPad Prism 5.04. Of 381 cases of NMIBC, samples of 100 pTa and 255 pT1 cases were included in the final study. Spearman rank correlation revealed significant correlations between grade and expression of MKI67 (r = 0.52, p < 0.0001), ESR1 (r = 0.25, p < 0.0001), and ERBB2 (r = 0.18, p = 0.0008). In Mann-Whitney tests, MKI67 was significantly different between all grades (p < 0.0001), while ESR1 (p = 0.0006) and ERBB2 (p = 0.027) were significantly different between G2 and G3. Higher expression of MKI67 (r = 0.49; p < 0.0001), ERBB2 (r = 0.22; p < 0.0001), and ESR1 (r = 0.18; p = 0.0009) mRNA was positively correlated with higher stage. MKI67 (p < 0.0001), ERBB2 (p = 0.0058), and PGR (p = 0.0007) were significantly different between pTa and pT1. In NMIBC expression of ESR1, ERBB2 and MKI67 are significantly different between stage and grade. This potentially provides objective parameters for pathological evaluation.
Collapse
Affiliation(s)
- Johannes Breyer
- Department of Urology, University of Regensburg, Caritas Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany.
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany.,Institute of Pathology at the St Elisabeth Hospital Köln-Hohenlind, Cologne, Germany
| | | | | | - Philipp Erben
- Department of Urology, University of Mannheim, Mannheim, Germany
| | | | - Robert Stoehr
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Eidt
- Institute of Pathology at the St Elisabeth Hospital Köln-Hohenlind, Cologne, Germany
| | - Stefan Denzinger
- Department of Urology, University of Regensburg, Caritas Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Caritas Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Caritas Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Germany
| |
Collapse
|
39
|
Godoy G, Gakis G, Smith CL, Fahmy O. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression. Bladder Cancer 2016; 2:127-137. [PMID: 27376135 PMCID: PMC4927898 DOI: 10.3233/blc-160052] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer.
Collapse
Affiliation(s)
- Guilherme Godoy
- Scott Department of Urology, Baylor College of Medicine , Houston, TX, USA
| | - Georgios Gakis
- Department of Urology, Eberhard-Karls University , Tuebingen, Germany
| | - Carolyn L Smith
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Omar Fahmy
- Department of Urology, Eberhard-Karls University , Tuebingen, Germany
| |
Collapse
|
40
|
Ide H, Miyamoto H. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor. DISEASE MARKERS 2015; 2015:840640. [PMID: 26770009 PMCID: PMC4685115 DOI: 10.1155/2015/840640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
Abstract
There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.
Collapse
Affiliation(s)
- Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Hsu I, Yeh CR, Slavin S, Miyamoto H, Netto GJ, Tsai YC, Muyan M, Wu XR, Messing EM, Guancial EA, Yeh S. Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo. Oncotarget 2015; 5:7917-35. [PMID: 25277204 PMCID: PMC4202170 DOI: 10.18632/oncotarget.1421] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clinical reports show males have a higher bladder cancer (BCa) incidence than females. The sexual difference of BCa occurrence suggests that estrogen and its receptors may affect BCa development. Estrogen receptor alpha (ERα) is the classic receptor to convey estrogen signaling, however, the function of ERα in BCa development remains largely unknown. To understand the in vivo role of ERα in BCa development, we generated total and urothelial specific ERα knockout mice (ERαKO) and used the pre- carcinogen BBN to induce BCa. Earlier reports showed that ERα promotes breast and ovarian cancers in females. Surprisingly and of clinical importance, our results showed that ERα inhibits BCa development and loss of the ERα gene results in an earlier onset and higher incidence of BBN-induced in vivo mouse BCa. Supportively, carcinogen induced malignant transformation ability was reduced in ERα expressing urothelial cells as compared to ERα negative cells. Mechanism studies suggest that ERα could control the expression of INPP4B to reduce AKT activity and consequently reduce BCa cell growth. In addition, IHC staining of clinical sample analyses show that INPP4B expression, in correlation with reduced ERα, is significantly reduced in human BCa specimens. Together, this is the first report using the in vivo cre-loxP gene knockout mouse model to characterize ERα roles in BCa development. Our studies provide multiple in vitro cell studies and in vivo animal model data as well as human BCa tissue analyses to prove ERα plays a protective role in BCa initiation and growth at least partly via modulating the INPP4B/Akt pathway.
Collapse
Affiliation(s)
- Iawen Hsu
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642. Contributed equally
| | - Chiuan-Ren Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642. Contributed equally
| | - Spencer Slavin
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Hiroshi Miyamoto
- Departments of Pathology, Urology, and Oncology, The Johns Hopkins Hospital, Baltimore, MD 21231
| | - George J Netto
- Departments of Pathology, Urology, and Oncology, The Johns Hopkins Hospital, Baltimore, MD 21231
| | - Yu-Chieh Tsai
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Mesut Muyan
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Xue-Ru Wu
- Department of Urology, New York University, School of Medicine, NY 10016
| | - Edward M Messing
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth A Guancial
- Departments of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Shuyuan Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
42
|
Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251780. [PMID: 26090392 PMCID: PMC4450232 DOI: 10.1155/2015/251780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
Abstract
Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB) is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1) were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.
Collapse
|
43
|
Garcia PV, Apolinário LM, Böckelmann PK, Nunes IDS, Duran N, Fávaro WJ. Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4427-4443. [PMID: 26191134 PMCID: PMC4503006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
The present study describes the role of the ubiquitin ligase Siah-2 and corepressor N-CoR in controlling androgen receptor (AR) and estrogen receptors (ERα and ERβ) signaling in an appropriate animal model (Fischer 344 female rats) of non-muscle invasive bladder cancer (NMIBC), especially under conditions of anti-androgen therapy with flutamide. Furthermore, this study describes the mechanisms of a promising therapeutic alternative for NMIBC based on Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) intravesical immunotherapy combined with flutamide, involving the interaction among steroid hormone receptors, their regulators and Toll-like receptors (TLRs). Our results demonstrated that increased Siah-2 and AR protein levels and decreased N-CoR, cytochrome P450 (CYP450) and estrogen receptors levels played a critical role in the urothelial carcinogenesis, probably leading to escape of urothelial cancer cells from immune system attack. P-MAPA immunotherapy led to distinct activation of innate immune system TLRs 2 and 4-mediated, resulting in increase of interferon signaling pathway, which was more effective in recovering the immunosuppressive tumor immune microenvironment and in recovering the bladder histology features than BCG (Bacillus Calmette-Guerin) treatments. The AR blockade therapy was important in the modulating of downstream molecules of TLR2 and TLR4 signaling pathway, decreasing the inflammatory cytokines signaling and enhancing the interferon signaling pathway when associated with P-MAPA. Taken together, the data obtained suggest that interferon signaling pathway activation and targeting AR and Siah-2 signals by P-MAPA intravesical immunotherapy alone and/ or in combination with AR blockade may provide novel therapeutic approaches for NMIBC.
Collapse
Affiliation(s)
- Patrick Vianna Garcia
- Department of Structural and Functional Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Letícia Montanholi Apolinário
- Department of Structural and Functional Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Petra Karla Böckelmann
- Department of Structural and Functional Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Iseu da Silva Nunes
- Farmabrasilis R&D Division, Campinas, SP, Brazil, Biol Chem Lab., University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Nelson Duran
- Farmabrasilis R&D Division, Campinas, SP, Brazil, Biol Chem Lab., University of Campinas (UNICAMP)Campinas, SP, Brazil
- Institute of Chemistry, Biol Chem Lab., University of Campinas (UNICAMP)Campinas, SP, Brazil
- Institute of Chemistry, NanoBioss, University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Wagner José Fávaro
- Department of Structural and Functional Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas (UNICAMP)Campinas, SP, Brazil
- Farmabrasilis R&D Division, Campinas, SP, Brazil, Biol Chem Lab., University of Campinas (UNICAMP)Campinas, SP, Brazil
| |
Collapse
|
44
|
The Estrogen Pathway: Estrogen Receptor-α, Progesterone Receptor, and Estrogen Receptor-β Expression in Radical Cystectomy Urothelial Cell Carcinoma Specimens. Clin Genitourin Cancer 2015; 13:476-84. [PMID: 25981333 DOI: 10.1016/j.clgc.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Bladder cancer has the sixth highest incidence in the United States. Treatment of metastatic bladder cancer is difficult, and mortality is certain. There are certain pathways in cancer growth and progression that are important in bladder cancer development. Recently, the estrogen pathway has been found to be a potential target for therapy. METHODS We identified 410 patients treated with radical cystectomy for urothelial cell carcinoma between 1990 and 1994. We obtained representative paraffin-embedded tissue blocks for 336 (82.0%) of these cases and evaluated the expression and intensity of estrogen receptor (ER)-α, ER-β, and progesterone receptor by immunohistochemistry. RESULTS Among the 12 ER-α-positive cases, median tumor ER-α expression was 10% (range, 10%-50%). In contrast to ER-α, all cases were ER-β-positive. Median tumor ER-β expression was 90% (range, 20%-100%). Nearly all cases had ER-β expression of ≥ 90% (175 [55.9%] with 90% and 103 [32.9%] with 100%). However, the intensity of ER-β staining varied from focal to moderate to marked in 64 (20.5%), 167 (53.4%), and 82 (26.2%) cases, respectively. Progesterone receptor expression was noted to be negative in all cases. CONCLUSIONS ER-β is highly expressed in bladder cancer. Prospective validation of these data might further elucidate the utility of ER-β as a marker for prognosis or possible target for therapy.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To review and summarize current knowledge on gender differences and sex steroid hormones in nonmuscle invasive bladder cancer. RECENT FINDINGS Beyond the proven role of gender as a risk factor for the development of bladder cancer, recent studies indicate that women present with more advanced bladder cancer tumor stages than men, which may be due to differences in both bladder cancer care and biology. In addition, female gender has been identified as an independent prognostic factor for both recurrence and progression and may be associated with worse response to Bacillus Calmette-Guérin instillation therapy. Overall, sex steroid hormones and their receptors impact bladder carcinogenesis, recurrence and progression. Basic and transitional research evidence suggests that estrogens may initially protect against bladder cancer development, but later promote bladder cancer progression. Androgens, in contrast, seem to initiate and drive bladder cancer with its receptor playing a central role. Promising novel research shows a potential role of sex steroid hormones as therapeutic targets. SUMMARY Whereas men are more likely to develop bladder cancer, women present generally with more advanced disease and have worse oncologic outcomes even after adjusting for tumor stage. Sex steroid hormones and their receptors play an active role in bladder cancer development and progression and represent attractive therapeutic targets for gender-specific care.
Collapse
|
46
|
Nicholson TM, Moses MA, Uchtmann KS, Keil KP, Bjorling DE, Vezina CM, Wood RW, Ricke WA. Estrogen receptor-α is a key mediator and therapeutic target for bladder complications of benign prostatic hyperplasia. J Urol 2015; 193:722-9. [PMID: 25167991 PMCID: PMC4305478 DOI: 10.1016/j.juro.2014.08.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE Estrogens are important in prostate growth and have a role in benign prostatic hyperplasia. However, to our knowledge no current therapy directly targets estrogen action. Estrogens act primarily via estrogen receptors α and β. In a mouse model we evaluated the relative contribution of these receptors to bladder complications of benign prostatic hyperplasia. We also evaluated the prevention of these bladder complications using the selective estrogen receptor modulators raloxifene and tamoxifen (estrogen receptor-α selective antagonists), and R,R-THC (estrogen receptor-β selective antagonist). MATERIALS AND METHODS Adult male C57bl/6 mice received implants of 25 mg testosterone and 2.5 mg 17β-estradiol slow release pellets. Untreated controls underwent sham surgery. We evaluated the contributions of the estrogen receptor subtypes in ERαKO and ERβKO mice compared to their respective wild-type litter mates. Wild-type mice treated with testosterone plus 17β-estradiol were compared to mice treated with testosterone plus 17β-estradiol and 25 mg selective estrogen receptor modulators to evaluate the prevention of benign prostatic hyperplasia complications by selective estrogen receptor modulators. RESULTS Large bladders with urinary retention developed in ERαWT and ERβWT litter mates treated with testosterone plus 17β-estradiol but such bladders did not develop in ERαKO mice treated with testosterone plus 17β-estradiol. ERβKO mice treated with testosterone plus 17β-estradiol had large bladders with urinary retention and increased bladder mass. Cotreatment with the estrogen receptor-α antagonist raloxifene resulted in decreased bladder mass compared to that in wild-type mice treated with testosterone plus 17β-estradiol. Bladders in mice treated with the estrogen receptor-β antagonist R,R-THC were similar to those in testosterone plus 17β-estradiol treated mice. CONCLUSIONS Estrogen receptor-α but not β is a key mediator of bladder complications of benign prostatic hyperplasia and a potential target for future therapies.
Collapse
Affiliation(s)
- Tristan M Nicholson
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael A Moses
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kristen S Uchtmann
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald W Wood
- Department of Obstetrics and Gynecology and Urology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
47
|
Sex steroid signaling: implications for lung diseases. Pharmacol Ther 2015; 150:94-108. [PMID: 25595323 DOI: 10.1016/j.pharmthera.2015.01.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
There is increasing recognition that sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine.
Collapse
|
48
|
Zhang Y, Jiang Y, Lian X, Xu S, Wei J, Chu C, Wang S. Effects of ERα-specific antagonist on mouse preimplantation embryo development and zygotic genome activation. J Steroid Biochem Mol Biol 2015; 145:13-20. [PMID: 25263659 DOI: 10.1016/j.jsbmb.2014.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 09/05/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Zygotic genome activation (ZGA) is essential for normal development of mammalian preimplantation embryos. Estrogen receptor alpha (ERα) has been implicated in early embryogenesis, and controls the expression of genes associated with proliferation, differentiation and development of cell and target organs via a genomic effect. The objective of this study was to determine whether ERα plays a role in early embryo development and affects ZGA gene expression. Toward this objective, 1-cell embryos from B6C3F1 mouse were cultured with the antiestrogen ICI182780, ERα-specific antagonist MPP, ERα-specific antibody and ERβ-specific antagonist PHTPP. Development of 2-cell to 4-cell in vitro was significantly blocked by ICI182780, MPP and ERα-antibody treatment in a dose-dependent manner but not affected by PHTPP exposure. MPP decreased nuclear ERα protein levels and reduced mRNA expression levels of MuERV-L, one of the ZGA related genes. The results indicate that ERα has a functional role in early embryo development by regulation of ZGA-related genes.
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Yufei Jiang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China; Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Chenfeng Chu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China; Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
49
|
Estrogen receptor β (ERβ) is a novel prognostic marker of recurrence survival in non-muscle-invasive bladder cancer potentially by inhibiting cadherin switch. World J Urol 2014; 32:149-55. [PMID: 24616912 DOI: 10.1007/s00345-012-1020-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
OBJECTIVE The function and significance of estrogen receptor β (ERβ) in bladder cancer remains a field of hot debate. In this study, we aimed to (a) evaluate ERβ as a novel prognostic marker of recurrence free survival; and (b) digest the underlying mechanism by elucidating the relationship between ERβ expression and cadherin switch. METHODS We examined the expression levels of ERβ, E-cadherin and N-cadherin in 42 initial non-muscle-invasive urothelial bladder carcinomas via immunohistochemistry. Correlation analysis was performed among ERβ expression, cadherin switch and recurrence free survival. Moreover, in vitro studies were performed to validate the identified correlation using two bladder cancer cell lines RT4 and 253J. Upon stimulation with an ERβ selective agonist diarylpropionitrile, E-cadherin, N-cadherin expressions; cell migration and invasion capacity were assessed. RESULTS Expression of ERβ protein was seen in 34 bladder cancer cases (80.9%), and 21 (50%) specimens showed non-cadherin switch (positive E-cadherin and negative N-cadherin). ERβ expression and the non-cadherin switch are both accompanied with better recurrence free survival. Also, the least ERβ expression was observed in specimens that undergo cadherin switch. Moreover, these results were consistent with our observations in bladder cancer RT4 and 253J cell lines studies. Diarylpropionitrile stimulation resulted in an increase in E-cadherin, a decrease in N-cadherin expression and abolished cell migration and invasion. CONCLUSION ERβ is a prognostic marker of recurrence free rate in non-muscle-invasive bladder cancer, potentially through suppressing cadherin switch, and may act as a potential target for bladder cancer therapy.
Collapse
|
50
|
Nersesyan A, Kundi M, Fenech M, Bolognesi C, Misik M, Wultsch G, Hartmann M, Knasmueller S. Micronucleus assay with urine derived cells (UDC): A review of its application in human studies investigating genotoxin exposure and bladder cancer risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:37-51. [DOI: 10.1016/j.mrrev.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022]
|