1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Shang ZZ, Ye HY, Gao X, Wang HY, Li QM, Hu JM, Zhang FY, Luo JP. An acidic polysaccharide promoting GLP-1 secretion from Dendrobium huoshanense protocorm-like bodies: Structure validation and activity exploration. Int J Biol Macromol 2024; 278:134783. [PMID: 39153673 DOI: 10.1016/j.ijbiomac.2024.134783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) as a multifunctional hormone is secreted mainly from enteroendocrine L-cells, and enhancing its endogenous secretion has potential benefits of regulating glucose homeostasis and controlling body weight gain. In the present study, a novel polysaccharide (h-DHP) with high ability to enhance plasma GLP-1 level in mice was isolated from Dendrobium huoshanense protocorm-like bodies under the guidance of activity evaluation. Structural identification showed that h-DHP was an acidic polysaccharide with the molecular weight of 1.38 × 105 Da, and was composed of galactose, glucose, arabinose and glucuronic acid at a molar ratio of 15.7: 11.2: 4.5: 1.0 with a backbone consisting of →5)-α-L-Araf-(1→, →3)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →4,6)-β-D-Glcp-(1→ along with branches consisting of α-L-Araf-(1→, α-D-Galp-(1→, α-D-GlcAp-(1→, β-D-Glcp-(1→ and →4)-β-D-Glcp-(1→. Animal experiments with different administration routes demonstrated that h-DHP-enhanced plasma GLP-1 level was attributed to h-DHP-promoted GLP-1 secretion in the enteroendocrine L-cells, which was supported by h-DHP-enhanced extracellular GLP-1 level in STC-1 cells. Inhibition of adenylate cyclase and phospholipase C indicated that cAMP and cAMP-triggered intracellular Ca2+ increase participated in h-DHP-promoted GLP-1 secretion. These results suggested that h-DHP has the potential of enhancing endogenous GLP-1 level through h-DHP-promoted and cAMP-mediated GLP-1 secretion from enteroendocrine cells.
Collapse
Affiliation(s)
- Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hui-Yu Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xin Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hong-Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| |
Collapse
|
3
|
Hu Q, Hou S, Xiong B, Wen Y, Wang J, Zeng J, Ma X, Wang F. Therapeutic Effects of Baicalin on Diseases Related to Gut-Brain Axis Dysfunctions. Molecules 2023; 28:6501. [PMID: 37764277 PMCID: PMC10535911 DOI: 10.3390/molecules28186501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gut-brain axis is an active area of research. Several representative diseases, including central nervous system disorders (Alzheimer's disease, Parkinson's disease, and depression), metabolic disorders (obesity-related diseases), and intestinal disorders (inflammatory bowel disease and dysbiosis), are associated with the dysfunctional gut-brain axis. Baicalin, a bioactive flavonoid extracted from Scutellaria baicalensis, is reported to exert various pharmacological effects. This narrative review summarizes the molecular mechanisms and potential targets of baicalin in disorders of the gut-brain axis. Baicalin protects the central nervous system through anti-neuroinflammatory and anti-neuronal apoptotic effects, suppresses obesity through anti-inflammatory and antioxidant effects, and alleviates intestinal disorders through regulatory effects on intestinal microorganisms and short-chain fatty acid production. The bioactivities of baicalin are mediated through the gut-brain axis. This review comprehensively summarizes the regulatory role of baicalin in gut-brain axis disorders, laying a foundation for future research, although further confirmatory basic research is required.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Shuyu Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Baoyi Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Jundong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (S.H.); (J.W.)
| | - Fang Wang
- Department of Pharmacy, Medical Supplies Center of PLA General of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
Modvig IM, Christiansen CB, Rehfeld JF, Holst JJ, Veedfald S. CCK-1 and CCK-2 receptor agonism do not stimulate GLP-1 and neurotensin secretion in the isolated perfused rat small intestine or GLP-1 and PYY secretion in the rat colon. Physiol Rep 2020; 8:e14352. [PMID: 31984675 PMCID: PMC6983481 DOI: 10.14814/phy2.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Gastrin and cholecystokinin (CCK) are hormones released from endocrine cells in the antral stomach (gastrin), the duodenum, and the jejunum (CCK). Recent reports, based on secretion experiments in an enteroendocrine cell line (NCI-H716) and gastrin receptor expression in proglucagon-expressing cells from the rat colon, suggested that gastrin could be a regulator of glucagon-like peptide-1 (GLP-1) secretion. To investigate these findings, we studied the acute effects of CCK-8 (a CCK1/CCK2 (gastrin) receptor agonist) and gastrin-17 (a CCK2(gastrin) receptor agonist) in robust ex vivo models: the isolated perfused rat small intestine and the isolated perfused rat colon. Small intestines from Wistar rats (n = 6), were perfused intraarterially over 80 min. During the perfusion, CCK (1 nmol/L) and gastrin (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. Colons from Wistar rats (n = 6) were perfused intraarterially over 100 min. During the perfusion, CCK (1 nmol/L), vasoactive intestinal peptide (VIP) (10 nmol/L), and glucose-dependent insulinotropic polypeptide (GIP) (1 nmol/L) were infused over 10-min periods separated by washout/baseline periods. In the perfused rat small intestines neither CCK nor gastrin stimulated the release of GLP-1 or neurotensin. In the perfused rat colon, neither CCK or VIP stimulated GLP-1 or peptide YY (PYY) release, but GIP stimulated both GLP-1 and PYY release. In both sets of experiments, bombesin, a gastrin-releasing peptide analog, served as a positive control. Our findings do not support the suggestion that gastrin or CCK participate in the acute regulation of intestinal GLP-1 secretion, but that GIP may play a role in the regulation of hormone secretion from the colon.
Collapse
Affiliation(s)
- Ida M. Modvig
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte B. Christiansen
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens F. Rehfeld
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Translational Metabolic PhysiologyNNF Center for Basic Metabolic ResearchThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical SciencesThe Panum InstituteFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1120] [Impact Index Per Article: 186.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
6
|
Steingoetter A, Arnold M, Scheuble N, Fedele S, Bertsch P, Liu D, Parker HL, Langhans W, Fischer P. A Rat Model of Human Lipid Emulsion Digestion. Front Nutr 2019; 6:170. [PMID: 31781572 PMCID: PMC6861183 DOI: 10.3389/fnut.2019.00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule. Experiments were performed in a randomized cross-over study design. After gastric infusion of the lipid emulsions, we assessed gastric emptying by the paracetamol absorption test and recorded in separate experiments food intake and plasma levels of gastrointestinal hormones and metabolites in the HPV. For an acid stable emulsion, slower gastric emptying and an enhanced release of satiating gastrointestinal (GI) hormones were observed and were associated with lower short-term energy intake in rats and less hunger in humans, respectively. The magnitude of hormonal responses was related to the acid stability and redispersibility of the emulsions and thus seems to depend on the availability of lipids for digestion. Plasma metabolite levels were unaffected by the emulsion induced changes in lipolysis. The results support that structured lipid systems are digested similarly in rats and humans. Thus unstable emulsions undergo the same intragastric destabilization in both species, i.e., increased droplet size and creaming. This work establishes the rat as a viable animal model for in vivo studies on the control of satiation and energy intake by tailored lipid systems.
Collapse
Affiliation(s)
- Andreas Steingoetter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Nathalie Scheuble
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pascal Bertsch
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Dian Liu
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Helen L Parker
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,School of Medicine, Pharmacy and Health, Durham University, Durham, United Kingdom.,Institute of Health and Society, Newcastle University, Durham, United Kingdom
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391500269x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Christiansen CB, Trammell SAJ, Wewer Albrechtsen NJ, Schoonjans K, Albrechtsen R, Gillum MP, Kuhre RE, Holst JJ. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G574-G584. [PMID: 30767682 DOI: 10.1152/ajpgi.00010.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion. NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Samuel Addison Jack Trammell
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark.,Clinical Proteomics, Novo Nordic Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne , Switzerland
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Matthew Paul Gillum
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
9
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol 2018; 315:G53-G65. [PMID: 29494208 DOI: 10.1152/ajpgi.00346.2017] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca2+-channel blocker nifedipine, the KATP-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
11
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
12
|
A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More? Indian J Clin Biochem 2017; 33:121-131. [PMID: 29651202 DOI: 10.1007/s12291-017-0668-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of diabetes mellitus, a chronic metabolic disease characterized by hyperglycemia, is growing worldwide. The majority of the cases belong to type 2 diabetes mellitus (T2DM). Globally, India ranks second in terms of diabetes prevalence among adults. Currently available classes of therapeutic agents are used alone or in combinations but seldom achieve treatment targets. Diverse pathophysiology and the need of therapeutic agents with more favourable pharmacokinetic-pharmacodynamics profile make newer drug discoveries in the field of T2DM essential. A large number of molecules, some with novel mechanisms, are in pipeline. The essence of this review is to track and discuss these potential agents, based on their developmental stages, especially those in phase 3 or phase 2. Unique molecules are being developed for existing drug classes like insulins, DPP-4 inhibitors, GLP-1 analogues; and under newer classes like dual/pan PPAR agonists, dual SGLT1/SGLT2 inhibitors, glimins, anti-inflammatory agents, glucokinase activators, G-protein coupled receptor agonists, hybrid peptide agonists, apical sodium-dependent bile acid transporter (ASBT) inhibitors, glucagon receptor antagonists etc. The heterogeneous clinical presentation and therapeutic outcomes in phenotypically similar patients is a clue to think beyond the standard treatment strategy.
Collapse
|
13
|
Forbes S, Stafford S, Coope G, Heffron H, Real K, Newman R, Davenport R, Barnes M, Grosse J, Cox H. Selective FFA2 Agonism Appears to Act via Intestinal PYY to Reduce Transit and Food Intake but Does Not Improve Glucose Tolerance in Mouse Models. Diabetes 2015; 64:3763-71. [PMID: 26239054 DOI: 10.2337/db15-0481] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/26/2015] [Indexed: 12/28/2022]
Abstract
Free fatty acid receptor 2 (FFA2) is expressed on enteroendocrine L cells that release glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) when activated by short-chain fatty acids (SCFAs). Functionally GLP-1 and PYY inhibit gut transit, increase glucose tolerance, and suppress appetite; thus, FFA2 has therapeutic potential for type 2 diabetes and obesity. However, FFA2-selective agonists have not been characterized in vivo. Compound 1 (Cpd 1), a potent FFA2 agonist, was tested for its activity on the following: GLP-1 release, modulation of intestinal mucosal ion transport and transit in wild-type (WT) and FFA2(-/-) tissue, and food intake and glucose tolerance in lean and diet-induced obese (DIO) mice. Cpd 1 stimulated GLP-1 secretion in vivo, but this effect was only detected with dipeptidyl peptidase IV inhibition, while mucosal responses were PYY, not GLP-1, mediated. Gut transit was faster in FFA2(-/-) mice, while Cpd 1 slowed WT transit and reduced food intake and body weight in DIO mice. Cpd 1 decreased glucose tolerance and suppressed plasma insulin in lean and DIO mice, despite FFA2(-/-) mice displaying impaired glucose tolerance. These results suggest that FFA2 inhibits intestinal functions and suppresses food intake via PYY pathways, with limited GLP-1 contribution. Thus, FFA2 may be an effective therapeutic target for obesity but not for type 2 diabetes.
Collapse
Affiliation(s)
- Sarah Forbes
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, U.K
| | | | | | | | | | | | | | | | | | - Helen Cox
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, U.K.
| |
Collapse
|
14
|
Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015. [PMID: 26224102 DOI: 10.1007/s00125-015-3712-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Each human intestine harbours not only hundreds of trillions of bacteria but also bacteriophage particles, viruses, fungi and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. An increasing number of data obtained during the last 10 years have indicated changes in gut bacterial composition or function in type 2 diabetic patients. Analysis of this 'dysbiosis' enables the detection of alterations in specific bacteria, clusters of bacteria or bacterial functions associated with the occurrence or evolution of type 2 diabetes; these bacteria are predominantly involved in the control of inflammation and energy homeostasis. Our review focuses on two key questions: does gut dysbiosis truly play a role in the occurrence of type 2 diabetes, and will recent discoveries linking the gut microbiota to host health be helpful for the development of novel therapeutic approaches for type 2 diabetes? Here we review how pharmacological, surgical and nutritional interventions for type 2 diabetic patients may impact the gut microbiota. Experimental studies in animals are identifying which bacterial metabolites and components act on host immune homeostasis and glucose metabolism, primarily by targeting intestinal cells involved in endocrine and gut barrier functions. We discuss novel approaches (e.g. probiotics, prebiotics and faecal transfer) and the need for research and adequate intervention studies to evaluate the feasibility and relevance of these new therapies for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
- Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| |
Collapse
|
15
|
Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 2015; 361:697-710. [DOI: 10.1007/s00441-015-2165-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
16
|
Bhutta HY, Rajpal N, White W, Freudenberg JM, Liu Y, Way J, Rajpal D, Cooper DC, Young A, Tavakkoli A, Chen L. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS One 2015; 10:e0122273. [PMID: 25798945 PMCID: PMC4370587 DOI: 10.1371/journal.pone.0122273] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans.
Collapse
Affiliation(s)
- Hina Y Bhutta
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Investigative Medicine, Imperial College, London, United Kingdom
| | - Neetu Rajpal
- Metabolic Drug Discovery, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Wendy White
- Molecular Discovery Research, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Johannes M. Freudenberg
- Quantitative Sciences Division, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Yaping Liu
- Metabolic Drug Discovery, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - James Way
- Metabolic Drug Discovery, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Deepak Rajpal
- Quantitative Sciences Division, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - David C. Cooper
- Quantitative Sciences Division, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Andrew Young
- Metabolic Drug Discovery, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lihong Chen
- Metabolic Drug Discovery, GlaxoSmithKline Inc., Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
17
|
Mittermayer F, Caveney E, De Oliveira C, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev 2015; 11:17-31. [PMID: 25537454 PMCID: PMC4428473 DOI: 10.2174/1573399810666141224121927] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
The global burden of type 2 diabetes is increasing worldwide, and successful treatment of this disease needs constant provision of new drugs. Twelve classes of antidiabetic drugs are currently available, and many new drugs are under clinical development. These include compounds with known mechanisms of action but unique properties, such as once-weekly DPP4 inhibitors or oral insulin. They also include drugs with new mechanisms of action, the focus of this review. Most of these compounds are in Phase 1 and 2, with only a small number having made it to Phase 3 at this time. The new drug classes described include PPAR agonists/modulators, glucokinase activators, glucagon receptor antagonists, anti-inflammatory compounds, G-protein coupled receptor agonists, gastrointestinal peptide agonists other than GLP-1, apical sodium-dependent bile acid transporter (ASBT) inhibitors, SGLT1 and dual SGLT1/SGLT2 inhibitors, and 11beta- HSD1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Rick Turner
- Quintiles GmbH, Stella- Klein-Low Weg 15, Rund 4, Haus B, OG 4, 1020 Vienna, Austria.
| |
Collapse
|
18
|
Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 2014; 9:1202-8. [PMID: 25456122 PMCID: PMC4308618 DOI: 10.1016/j.celrep.2014.10.032] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/22/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022] Open
Abstract
It has long been speculated that metabolites, produced by gut microbiota, influence host metabolism in health and diseases. Here, we reveal that indole, a metabolite produced from the dissimilation of tryptophan, is able to modulate the secretion of glucagon-like peptide-1 (GLP-1) from immortalized and primary mouse colonic L cells. Indole increased GLP-1 release during short exposures, but it reduced secretion over longer periods. These effects were attributed to the ability of indole to affect two key molecular mechanisms in L cells. On the one hand, indole inhibited voltage-gated K+ channels, increased the temporal width of action potentials fired by L cells, and led to enhanced Ca2+ entry, thereby acutely stimulating GLP-1 secretion. On the other hand, indole slowed ATP production by blocking NADH dehydrogenase, thus leading to a prolonged reduction of GLP-1 secretion. Our results identify indole as a signaling molecule by which gut microbiota communicate with L cells and influence host metabolism. Bacterial metabolite indole modulates secretion of incretin peptide GLP-1 Indole widens the width of action potentials fired by L cells and elevates GLP-1 Prolonged exposure to indole inhibits ATP production and thus GLP-1 secretion
Collapse
|
19
|
Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond) 2014; 39:424-9. [PMID: 25109781 PMCID: PMC4356745 DOI: 10.1038/ijo.2014.153] [Citation(s) in RCA: 560] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 12/24/2022]
Abstract
Background and Objectives: The gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) acutely suppress appetite. The short chain fatty acid (SCFA) receptor, free fatty acid receptor 2 (FFA2) is present on colonic enteroendocrine L cells, and a role has been suggested for SCFAs in appetite regulation. Here, we characterise the in vitro and in vivo effects of colonic propionate on PYY and GLP-1 release in rodents, and investigate the role of FFA2 in mediating these effects using FFA2 knockout mice. Methods: We used Wistar rats, C57BL6 mice and free fatty acid receptor 2 knockout (FFA−/−) mice on a C57BL6 background to explore the impact of the SCFA propionate on PYY and GLP-1 release. Isolated colonic crypt cultures were used to assess the effects of propionate on gut hormone release in vitro. We subsequently developed an in vivo technique to assess gut hormone release into the portal vein following colonic infusion of propionate. Results: Propionate stimulated the secretion of both PYY and GLP-1 from wild-type primary murine colonic crypt cultures. This effect was significantly attenuated in cultures from FFA2−/− mice. Intra-colonic infusion of propionate elevated PYY and GLP-1 levels in jugular vein plasma in rats and in portal vein plasma in both rats and mice. However, propionate did not significantly stimulate gut hormone release in FFA2−/− mice. Conclusions: Intra-colonic administration of propionate stimulates the concurrent release of both GLP-1 and PYY in rats and mice. These data demonstrate that FFA2 deficiency impairs SCFA-induced gut hormone secretion both in vitro and in vivo.
Collapse
Affiliation(s)
- A Psichas
- Nutrition and Dietetic Research Group, Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - M L Sleeth
- Nutrition and Dietetic Research Group, Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - K G Murphy
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - L Brooks
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - G A Bewick
- 1] Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK [2] Division of Diabetes & Nutritional Sciences, Kings College London, Yeovil, UK
| | - A C Hanyaloglu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College, London, UK
| | - M A Ghatei
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - S R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - G Frost
- Nutrition and Dietetic Research Group, Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| |
Collapse
|
20
|
Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res 2014; 357:63-9. [DOI: 10.1007/s00441-014-1886-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
|
21
|
Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013; 13:935-40. [PMID: 24075718 DOI: 10.1016/j.coph.2013.09.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The gut microbiota affects host metabolism through a number of physiological processes. Emerging evidence suggests that gut microbes interact with the host through several pathways involving enteroendocrine cells (e.g. L cells). The activation of specific G protein coupled receptors expressed on L cells (e.g. GPR41, GPR43, GPR119 and TGR5) triggers the secretion of glucagon-like peptides (GLP-1 and GLP-2) and PYY. These gut peptides are known to control energy homeostasis, glucose metabolism, gut barrier function and metabolic inflammation. Here, we explore how crosstalk between the ligands produced by the gut microbiota (short chain fatty acids, or SCFAs), or produced by the host but influenced by gut microbes (endocannabinoids and bile acids), impact host physiology.
Collapse
|
22
|
The role of viscosity and fermentability of dietary fibers on satiety- and adiposity-related hormones in rats. Nutrients 2013; 5:2093-113. [PMID: 23749206 PMCID: PMC3725495 DOI: 10.3390/nu5062093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022] Open
Abstract
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination.
Collapse
|
23
|
Wu Y, Aquino CJ, Cowan DJ, Anderson DL, Ambroso JL, Bishop MJ, Boros EE, Chen L, Cunningham A, Dobbins RL, Feldman PL, Harston LT, Kaldor IW, Klein R, Liang X, McIntyre MS, Merrill CL, Patterson KM, Prescott JS, Ray JS, Roller SG, Yao X, Young A, Yuen J, Collins JL. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem 2013; 56:5094-114. [PMID: 23678871 DOI: 10.1021/jm400459m] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical sodium-dependent bile acid transporter (ASBT) transports bile salts from the lumen of the gastrointestinal (GI) tract to the liver via the portal vein. Multiple pharmaceutical companies have exploited the physiological link between ASBT and hepatic cholesterol metabolism, which led to the clinical investigation of ASBT inhibitors as lipid-lowering agents. While modest lipid effects were demonstrated, the potential utility of ASBT inhibitors for treatment of type 2 diabetes has been relatively unexplored. We initiated a lead optimization effort that focused on the identification of a potent, nonabsorbable ASBT inhibitor starting from the first-generation inhibitor 264W94 (1). Extensive SAR studies culminated in the discovery of GSK2330672 (56) as a highly potent, nonabsorbable ASBT inhibitor which lowers glucose in an animal model of type 2 diabetes and shows excellent developability properties for evaluating the potential therapeutic utility of a nonabsorbable ASBT inhibitor for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yulin Wu
- GlaxoSmithKline Research & Development, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects. SPRINGERPLUS 2013; 2:20. [PMID: 23450079 PMCID: PMC3579475 DOI: 10.1186/2193-1801-2-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023]
Abstract
Bile acids play an important role in post-prandial glucose metabolism by stimulating release of glucagon-like peptide-1 (GLP-1) via the G-protein-coupled receptor TGR5, which is expressed in intestinal L cells. Thus, bile acid sequestrants are expected to stimulate secretion of endogenous GLP-1 through TGR5. We investigated incretin and insulin secretion after a meal with and without ursodeoxycholic acid (UDCA), a widely used therapeutic agent in liver diseases, in 7 non-diabetic Japanese subjects. We found that UDCA intake resulted in higher GLP-1 secretion (area under the curve [AUC] of 0–60 min after meal without UDCA, 450 ± 162 mmol·min/l; with UDCA, 649 ± 232 mmol·min/l, P = 0.046) and lower blood glucose (AUC of 0–60 min without UDCA, 7191 ± 250 mg·min/dl; with UDCA, 6716 ± 189 mg·min/dl, P = 0.001) , although we did not find statistically significant insulin increase by UDCA intake (AUC of 0–60 min without UDCA, 1551 ± 418 μU·min/ml; with UDCA, 1941 ± 246 μU·min/ml, P = 0.065). These results suggest that UDCA increases bile-induced GLP-1 secretion. Ours is the first report showing increased GLP-1 secretion and decreased blood glucose in response to UDCA.
Collapse
|
25
|
Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg 2012; 256:104-10. [PMID: 22609843 DOI: 10.1097/sla.0b013e31825370c0] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To present 5-year results of sleeve gastrectomy (SG) with transit bipartition (TB) as a metabolic intervention for obesity. BACKGROUND Recent data suggest that high glycemic index foods may lead to a hormonally hyperactive proximal gut and a hypoactivate distal gut, which are linked to metabolic syndrome. TB was designed to counterbalance these effects. METHODS A total of 1020 obese patients with body mass index (BMI) ranging from 33 to 72 Kg/m underwent SG and TB (SG + TB). TB creates a gastroileal anastomosis in the antrum after the SG; nutrient transit is maintained in the duodenum, avoiding blind loops and minimizing malabsorption. The stomach retains 2 outflow pathways. A lateral enteroanastomosis connects both segments at 80 cm proximal to the cecum. RESULTS Adequate follow-up data were collected in 59.1% of patients from 4 months to 5 years. The average percent of excess BMI loss was 91%, 94%, 85%, 78%, and 74% in the first, second, third, fourth, and fifth year, respectively. Patients experienced early satiety and major improvement in presurgical comorbidities, including diabetes (86% in remission), following surgery. Two deaths occurred (0.2%). Other surgical complications occurred in 6% of patients. Signs of malabsorption were rare. CONCLUSIONS SG + TB is a simple procedure that results in rapid weight loss and remission or major improvement of comorbidities. Strictly aiming at physiological correction, TB avoids prostheses, narrow anastomoses, excluded segments, and malabsorption. Weight and comorbidities are much improved. Diabetes is improved without duodenal exclusion. TB is an excellent complement to an SG.
Collapse
|
26
|
Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 2012; 302:E68-76. [PMID: 21934041 DOI: 10.1152/ajpendo.00323.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/analysis
- Bile Acids and Salts/blood
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Dose-Response Relationship, Drug
- Feces/chemistry
- Gastrointestinal Agents/therapeutic use
- Gene Expression Regulation/drug effects
- Glucagon-Like Peptide 1/blood
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/therapeutic use
- Intestinal Absorption/drug effects
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Isoxazoles/administration & dosage
- Isoxazoles/therapeutic use
- Liver/drug effects
- Liver/metabolism
- Male
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Zucker
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Symporters/antagonists & inhibitors
- Thiazepines/administration & dosage
- Thiazepines/therapeutic use
Collapse
Affiliation(s)
- Lihong Chen
- Department of Biology, Quantitative Science, Metabolic Drug Discovery, GlaxoSmithKline Inc., Five Moore Dr., Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol 2012; 165:414-23. [PMID: 21718300 PMCID: PMC3268195 DOI: 10.1111/j.1476-5381.2011.01561.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The glucagon-like peptides GLP-1 and GLP-2 are secreted from enteroendocrine L-cells following nutrient ingestion. Drugs that increase activity of the GLP-1 axis are highly successful therapies for type 2 diabetes, and boosting L-cell secretion is a potential strategy for future diabetes treatment. The aim of the present study was to further our understanding of the bile acid receptor GPBA (TGR5), an L-cell target currently under therapeutic exploration. EXPERIMENTAL APPROACH GLUTag cells and mixed primary murine intestinal cultures were exposed to bile acids and a specific agonist, GPBAR-A. Secretion was measured using hormone assays and intracellular calcium and cAMP responses were monitored using real-time imaging techniques. KEY RESULTS Bile acid-triggered GLP-1 secretion from GLUTag cells was GPBA-dependent, as demonstrated by its abolition following tgr5 siRNA transfection. Bile acids and GPBAR-A increased GLP-1 secretion from intestinal cultures, with evidence for synergy between the effects of glucose and GPBA activation. Elevation of cAMP was observed following GPBA activation in individual GLUTag cells. Direct calcium responses to GPBAR-A were small, but in the presence of the agonist, a subpopulation of cells that was previously poorly glucose-responsive exhibited robust glucose responses. In vivo, increased delivery of bile to more distal regions of the ileum augmented L-cell stimulation. CONCLUSIONS AND IMPLICATIONS GPBA signalling in L-cells involves rapid elevation of cAMP, and enhanced calcium and secretory responses to glucose. Modulation of this receptor therapeutically may be an attractive strategy to enhance GLP-1 secretion and achieve better glycaemic control in diabetic patients.
Collapse
Affiliation(s)
- HE Parker
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - K Wallis
- Department of Metabolic Medicine, Imperial College LondonHammersmith Campus, London, UK
| | - CW le Roux
- Department of Metabolic Medicine, Imperial College LondonHammersmith Campus, London, UK
| | - KY Wong
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - F Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - FM Gribble
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| |
Collapse
|
28
|
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
29
|
Abstract
The recently discovered SCFA-activated G-coupled protein receptors FFA receptor 2 and FFA receptor 3 are co-localised in l-cells with the anorexigenic 'ileal brake' gut hormone peptide YY, and also in adipocytes, with activation stimulating leptin release. Thus, SCFA such as acetate and propionate show promise as a candidate to increase satiety-enhancing properties of food. We therefore postulate SCFA may have a role in appetite regulation and energy homeostasis. SCFA can be delivered either directly within food, or indirectly via the colon by the provision of fermentable non-digestible carbohydrates. A review of studies investigating the effects of oral SCFA ingestion on appetite suggests that while oral SCFA ingestion is associated with enhanced satiety, this may be explained by product palatability rather than a physiological effect of SCFA. Colon-derived SCFA generated during microfloral fermentation have also been suggested to explain satiety-enhancing properties of non-digestible carbohydrates. However, findings are mixed from investigations into the effects of the prebiotic inulin-type fructans on appetite. Overall, data presented in this review do not support a role for SCFA in appetite regulation.
Collapse
|
30
|
Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92:219-31. [PMID: 21518048 DOI: 10.1111/j.1365-2613.2011.00767.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With over thirty different hormones identified as being produced in the gastrointestinal (GI) tract, the gut has been described as 'the largest endocrine organ in the body' (Ann. Oncol., 12, 2003, S63). The classification of these hormones and the cells that produce them, the enteroendocrine cells (EECs), has provided the foundation for digestive physiology. Furthermore, alterations in the composition and function of EEC may influence digestive physiology and thereby associate with GI pathologies. Whilst there is a rapidly increasing body of data on the role and function of EEC in the upper GI tract, there is a less clear-cut understanding of the function of EEC in the lower GI. Nonetheless, their presence and diversity are indicative of a role. This review focuses on the EECs of the lower GI where new evidence also suggests a possible relationship with the development and progression of primary adenocarcinoma.
Collapse
Affiliation(s)
- Ashok R Gunawardene
- Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
31
|
Wu T, Rayner CK, Jones K, Horowitz M. Dietary effects on incretin hormone secretion. VITAMINS AND HORMONES 2011; 84:81-110. [PMID: 21094897 DOI: 10.1016/b978-0-12-381517-0.00003-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The delivery of nutrients from the stomach into the duodenum and their subsequent interaction with the small intestine to stimulate incretin hormone release are central determinants of the glycemic response. The incretin effect has hitherto been attributed to the secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) from enteroendocrine cells in the intestinal epithelium. A number of recent studies have yielded fundamental insights into the influence of individual nutrients on incretin release and the mechanisms involved in the detection of carbohydrates, fats, and proteins by enteroendocrine cells, including the K(ATP) channel, sodium-glucose cotransporter 1 (SGLT1), sweet taste receptors, G-protein-coupled receptors (GPRs), and oligopeptide transporter 1 (PepT1). Dietary modification, including modifying macronutrient composition or the consumption of "preloads" in advance of a meal, represents a novel approach to manipulate the incretin response and thereby regulate glucose homeostasis in patients with type 2 diabetes. This review focuses on the effects of individual nutrients on incretin hormone secretion, our current understanding of the signaling mechanisms that trigger secretion by enteroendocrine cells, and the therapeutic implications of these observations.
Collapse
Affiliation(s)
- Tongzhi Wu
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
32
|
Iakoubov R, Ahmed A, Lauffer LM, Bazinet RP, Brubaker PL. Essential role for protein kinase Cζ in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology 2011; 152:1244-52. [PMID: 21325047 DOI: 10.1210/en.2010-1352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Luminal monounsaturated long-chain fatty acids [e.g. oleic acid (OA)] increase secretion of the incretin, glucagon-like peptide-1 (GLP-1) from the ileocolonic L cell. However, it is not known whether OA ingestion causes a sufficient increase in distal luminal concentrations to directly enhance GLP-1 secretion. Furthermore, we have demonstrated that protein kinase Cζ (PKCζ) is required for OA-induced GLP-1 secretion in vitro; however, the physiological relevance of this finding remains unknown. Therefore, we have determined luminal OA concentrations in OA-fed rats and examined the effects of direct OA stimulation on GLP-1 secretion using a novel model of intestinal-specific PKCζ knockdown. Murine GLUTag L cells express numerous fatty acid transport proteins and take up OA in a saturable manner. Oral administration of OA increased the ileal chyme content of OA by 140-fold over 60-120 min (P < 0.05-0.01), peaking at 105 ± 50 μmol/g. To evaluate the direct effects of OA on GLP-1 secretion, 125 mm OA was rectally infused into the colon and terminal ileum of rats. Plasma bioactive GLP-1 increased from 20 ± 6 to 102 ± 21 pg/ml at 60 min (P < 0.01). However, pretreatment with ileocolonic adenoviral PKCζ small interfering RNA resulted in a 68 ± 8% reduction in the GLP-1 response to rectal OA (P < 0.001). The results of these studies indicate that OA levels in the rat terminal gut after oral ingestion are sufficient to induce GLP-1 secretion and that PKCζ is necessary for the effects of OA on GLP-1 secretion in vivo. PKCζ may therefore serve as a novel therapeutic target to enhance GLP-1 levels in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Roman Iakoubov
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
33
|
Rafferty EP, Wylie AR, Hand KH, Elliott CE, Grieve DJ, Green BD. Investigating the effects of physiological bile acids on GLP-1 secretion and glucose tolerance in normal and GLP-1R(-/-) mice. Biol Chem 2011; 392:539-46. [PMID: 21521075 DOI: 10.1515/bc.2011.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.
Collapse
Affiliation(s)
- Eamon P Rafferty
- School of Biological Sciences, Queen's University Belfast, BT9 5AG, UK
| | | | | | | | | | | |
Collapse
|
34
|
Chen L, McNulty J, Anderson D, Liu Y, Nystrom C, Bullard S, Collins J, Handlon AL, Klein R, Grimes A, Murray D, Brown R, Krull D, Benson B, Kleymenova E, Remlinger K, Young A, Yao X. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. J Pharmacol Exp Ther 2010; 334:164-70. [PMID: 20413600 DOI: 10.1124/jpet.110.166892] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bile acid sequestrants (BAS) have shown antidiabetic effects in both humans and animals but the underlying mechanism is not clear. In the present study, we evaluated cholestyramine in Zucker diabetic fatty (ZDF) rats. Although control ZDF rats had continuous increases in blood glucose and hemoglobin A1c (HbA1c) and serum glucose and a decrease in serum insulin throughout a 5-week study, the cholestyramine-treated ZDF rats showed a dose-dependent decrease and normalization in serum glucose and HbA1c. An oral glucose tolerance test showed a significant increase in glucose-stimulated glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin release in rats treated with cholestyramine. Quantitative analysis of gene expression indicated that cholestyramine treatment decreased farnesoid X receptor (FXR) activity in the liver and the intestine without liver X receptor (LXR) activation in the liver. Moreover, a combination of an FXR agonist with cholestyramine did not reduce the antihyperglycemic effect over cholestyramine alone, suggesting that the FXR-small heterodimer partner-LXR pathway was not required for the glycemic effects of cholestyramine. In summary, our results demonstrated that cholestyramine could completely reverse hyperglycemia in ZDF rats through improvements in insulin sensitivity and pancreatic beta-cell function. Enhancement in GLP-1 and PYY secretion is an important mechanism for BAS-mediated antidiabetic efficacy.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Biology, Metabolic Drug Discovery, GlaxoSmithKline, Inc., Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Parker HE, Reimann F, Gribble FM. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev Mol Med 2010; 12:e1. [PMID: 20047700 DOI: 10.1017/s146239940900132x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from enteroendocrine cells in the intestinal epithelium in response to nutrient ingestion. The actions of GLP-1 and GIP - not only on local gut physiology but also on glucose homeostasis, appetite control and fat metabolism - have made these hormones an attractive area for drug discovery programmes. The potential range of strategies to target the secretion of these hormones therapeutically has been limited by an incomplete understanding of the mechanisms underlying their release. The use of organ and whole-animal perfusion techniques, cell line models and primary L- and K-cells has led to the identification of a variety of pathways involved in the sensing of carbohydrate, fat and protein in the gut lumen. This review focuses on our current understanding of these signalling mechanisms that might underlie nutrient responsiveness of L- and K-cells.
Collapse
Affiliation(s)
- Helen E Parker
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
36
|
Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab 2008; 8:532-9. [PMID: 19041768 PMCID: PMC2697331 DOI: 10.1016/j.cmet.2008.11.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/28/2008] [Accepted: 11/11/2008] [Indexed: 12/27/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an enteric hormone that stimulates insulin secretion and improves glycaemia in type 2 diabetes. Although GLP-1-based treatments are clinically available, alternative strategies to increase endogenous GLP-1 release from L cells are hampered by our limited physiological understanding of this cell type. By generating transgenic mice with L cell-specific expression of a fluorescent protein, we studied the characteristics of primary L cells by electrophysiology, fluorescence calcium imaging, and expression analysis and show that single L cells are electrically excitable and glucose responsive. Sensitivity to tolbutamide and low-millimolar concentrations of glucose and alpha-methylglucopyranoside, assessed in single L cells and by hormone secretion from primary cultures, suggested that GLP-1 release is regulated by the activity of sodium glucose cotransporter 1 and ATP-sensitive K(+) channels, consistent with their high expression levels in purified L cells by quantitative RT-PCR. These and other pathways identified using this approach will provide exciting opportunities for future physiological and therapeutic exploration.
Collapse
Affiliation(s)
- Frank Reimann
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Abdella M. Habib
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Gwen Tolhurst
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Helen E. Parker
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Gareth J. Rogers
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
37
|
Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab 2008. [PMID: 19041768 DOI: 10.1016/j.cmet] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an enteric hormone that stimulates insulin secretion and improves glycaemia in type 2 diabetes. Although GLP-1-based treatments are clinically available, alternative strategies to increase endogenous GLP-1 release from L cells are hampered by our limited physiological understanding of this cell type. By generating transgenic mice with L cell-specific expression of a fluorescent protein, we studied the characteristics of primary L cells by electrophysiology, fluorescence calcium imaging, and expression analysis and show that single L cells are electrically excitable and glucose responsive. Sensitivity to tolbutamide and low-millimolar concentrations of glucose and alpha-methylglucopyranoside, assessed in single L cells and by hormone secretion from primary cultures, suggested that GLP-1 release is regulated by the activity of sodium glucose cotransporter 1 and ATP-sensitive K(+) channels, consistent with their high expression levels in purified L cells by quantitative RT-PCR. These and other pathways identified using this approach will provide exciting opportunities for future physiological and therapeutic exploration.
Collapse
Affiliation(s)
- Frank Reimann
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
38
|
Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 2008; 20:2180-97. [PMID: 18634871 DOI: 10.1016/j.cellsig.2008.06.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism.
Collapse
Affiliation(s)
- Amy Nguyen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
39
|
Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 2008; 149:2038-47. [PMID: 18202141 DOI: 10.1210/en.2007-0966] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently showed that activation of G protein-coupled receptor 119 (GPR119) (also termed glucose dependent insulinotropic receptor) improves glucose homeostasis via direct cAMP-mediated enhancement of glucose-dependent insulin release in pancreatic beta-cells. Here we show that GPR119 also stimulates incretin hormone release and thus may regulate glucose homeostasis by this additional mechanism. GPR119 mRNA was found to be expressed at significant levels in intestinal subregions that produce glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1. Furthermore, in situ hybridization studies indicated that most GLP-1-producing cells coexpress GPR119 mRNA. In GLUTag cells, a well-established model of intestinal L-cell function, the potent GPR119 agonist AR231453 stimulated cAMP accumulation and GLP-1 release. When administered in mice, AR231453 increased active GLP-1 levels within 2 min after oral glucose delivery and substantially enhanced total glucose-dependent insulinotropic peptide levels. Blockade of GLP-1 receptor signaling with exendin(9-39) reduced the ability of AR231453 to improve glucose tolerance in mice. Conversely, combined administration of AR231453 and the DPP-4 inhibitor sitagliptin to wild-type mice significantly amplified both plasma GLP-1 levels and oral glucose tolerance, relative to either agent alone. In mice lacking GPR119, no such enhancement was seen. Thus, GPR119 regulates glucose tolerance by acting on intestinal endocrine cells as well as pancreatic beta-cells. These data also suggest that combined stimulation of incretin hormone release and protection against incretin hormone degradation may be an effective antidiabetic strategy.
Collapse
Affiliation(s)
- Zhi-Liang Chu
- Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27:104-19. [PMID: 17973645 DOI: 10.1111/j.1365-2036.2007.03562.x] [Citation(s) in RCA: 1824] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Butyrate, a short-chain fatty acid, is a main end-product of intestinal microbial fermentation of mainly dietary fibre. Butyrate is an important energy source for intestinal epithelial cells and plays a role in the maintenance of colonic homeostasis. AIM To provide an overview on the present knowledge of the bioactivity of butyrate, emphasizing effects and possible mechanisms of action in relation to human colonic function. METHODS A PubMed search was performed to select relevant publications using the search terms: 'butyrate, short-chain fatty acid, fibre, colon, inflammation, carcinogenesis, barrier, oxidative stress, permeability and satiety'. RESULTS Butyrate exerts potent effects on a variety of colonic mucosal functions such as inhibition of inflammation and carcinogenesis, reinforcing various components of the colonic defence barrier and decreasing oxidative stress. In addition, butyrate may promote satiety. Two important mechanisms include the inhibition of nuclear factor kappa B activation and histone deacetylation. However, the observed effects of butyrate largely depend on concentrations and models used and human data are still limited. CONCLUSION Although most studies point towards beneficial effects of butyrate, more human in vivo studies are needed to contribute to our current understanding of butyrate-mediated effects on colonic function in health and disease.
Collapse
Affiliation(s)
- H M Hamer
- TI Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Bataille D. Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med (Berl) 2007; 85:673-84. [PMID: 17356847 DOI: 10.1007/s00109-007-0167-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 01/18/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
Many peptide hormones implicated in the regulation of intermediary metabolism arise from larger precursors called prohormones. These precursors are cut into pieces by proprotein convertases, more precisely those called prohormone convertases (PCs) that cleave at the C terminus of basic doublets. The remaining basic amino acids are eliminated by a specialized carboxypeptidase, leading to the active hormone. This processing may provide, from a single precursor, several peptides with different biological activities depending on the site(s) of cleavage on the precursor. When the processing is tissue-specific, this mechanism allows to produce, from a single protein, different sets of hormones depending on the tissue considered, leading to novel regulatory processes. The archetype of such a pluripotent prohormone in the field of intermediary metabolism is pro-glucagon that, when cut by PC1 in intestinal L cells, produces four different peptides with different specificities [glicentin, oxyntomodulin (OXM), glucagon-like peptide-1, and glucagon-like peptide-2], whereas, when cut by PC2 in the alpha cells of the endocrine pancreas, glucagon is produced and, through the supplementary action of NRD convertase, a fragment of glucagon (miniglucagon) with original properties.
Collapse
Affiliation(s)
- Dominique Bataille
- Inserm U376, CHU Arnaud-de-Villeneuve, 34295, Montpellier Cedex 05, France.
| |
Collapse
|
42
|
Abstract
The glucoincretins, glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), are intestinal peptides secreted in response to glucose or lipid intake. Data on isolated intestinal tissues, dietary treatments and knockout mice strongly suggest that GIP and GLP-1 secretion requires glucose and lipid metabolism by intestinal cells. However, incretin secretion can also be induced by non-digestible carbohydrates and involves the autonomic nervous system and endocrine factors such as GIP itself and cholecystokinin. The classical pharmacological approach and the recent use of knockout mice for the incretin receptors have shown that a remarkable feature of incretins is the ability to stimulate insulin secretion in the presence of hyperglycaemia only, hence avoiding any hypoglycaemic episode. This important role is the basis of ongoing clinical trials using GLP-1 analogues. Since most of the data concern GLP-1, we will focus on this incretin. In addition, GLP-1 is involved in glucose sensing by the autonomic nervous system of the hepato-portal vein controlling muscle glucose utilization and indirectly insulin secretion. GLP-1 has been shown to decrease glucagon secretion, food intake and gastric emptying, preventing excessive hyperglycaemia and overfeeding. Another remarkable feature of GLP-1 is its secretion by the brain. Recently, elegant data showed that cerebral GLP-1 is involved in cognition and memory. Experiments using knockout mice suggest that the lack of the GIP receptor prevents diet-induced obesity. Consequently, macronutrients controlling intestinal glucose and lipid metabolism would control incretin secretion and would consequently be beneficial for health. The control of incretin secretion represents a major goal for new therapeutic as well as nutrition strategies for treating and/or reducing the risk of hyperglycaemic syndromes, excessive body weight and thus improvement of well-being.
Collapse
Affiliation(s)
- Rémy Burcelin
- UMR 5018 CNRS-UPS and IFR 31, Rangueil Hospital, Toulouse, France.
| |
Collapse
|
43
|
Qin X, Shen H, Liu M, Yang Q, Zheng S, Sabo M, D'Alessio DA, Tso P. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am J Physiol Gastrointest Liver Physiol 2005; 288:G943-9. [PMID: 15677555 DOI: 10.1152/ajpgi.00303.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a gastrointestinal hormone secreted in response to meal ingestion by enteroendocrine L cells located predominantly in the lower small intestine and large intestine. GLP-1 inhibits the secretion and motility of the upper gut and has been suggested to play a role in the "ileal brake." In this study, we investigated the effect of recombinant GLP-1-(7-36) amide (rGLP-1) on lipid absorption in the small intestine in intestinal lymph duct-cannulated rats. In addition, the effects of rGLP-1 on intestinal production of apolipoprotein (apo) B and apo A-IV, two apolipoproteins closely related to lipid absorption, were evaluated. rGLP-1 was infused through the jugular vein, and lipids were infused simultaneously through a duodenal cannula. Our results showed that infusion of rGLP-1 at 20 pmol.kg(-1).min(-1) caused a dramatic and prompt decrease in lymph flow from 2.22 +/- 0.15 (SE) ml/h at baseline (n = 6) to 1.24 +/- 0.06 ml/h at 2 h (P < 0.001). In contrast, a significant increase in lymph flow was observed in the saline (control) group: 2.19 +/- 0.20 and 3.48 +/- 0.09 ml/h at baseline and at 6 h of lipid infusion, respectively (P < 0.001). rGLP-1 also inhibited intestinal triolein absorption (P < 0.05) and lymphatic apo B and apo A-IV output (P < 0.05) but did not affect cholesterol absorption. In conclusion, rGLP-1 dramatically decreases intestinal lymph flow and reduces triglyceride absorption and apo B and apo A-IV production. These findings suggest a novel role for GLP-1 in lipid absorption.
Collapse
Affiliation(s)
- Xiaofa Qin
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329:386-90. [PMID: 15721318 DOI: 10.1016/j.bbrc.2005.01.139] [Citation(s) in RCA: 582] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Indexed: 02/08/2023]
Abstract
Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. Recently, a G protein-coupled receptor, TGR5, was identified as a cell-surface bile acid receptor. In this study, we show that bile acids promote glucagon-like peptide-1 (GLP-1) secretion through TGR5 in a murine enteroendocrine cell line STC-1. In STC-1 cells, bile acids promoted GLP-1 secretion in a dose-dependent manner. As STC-1 cells express TGR5 mRNA, we examined whether bile acids induce GLP-1 secretion through TGR5. RNA interference experiments showed that reduced expression of TGR5 resulted in reduced secretion of GLP-1. Furthermore, transient transfection of STC-1 cells with an expression plasmid containing TGR5 significantly enhanced GLP-1 secretion, indicating that bile acids promote GLP-1 secretion through TGR5 in STC-1 cells. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in STC-1 cells. An adenylate cyclase inhibitor, MDL12330A, significantly suppressed bile acid-promoted GLP-1 secretion, suggesting that bile acids induce GLP-1 secretion via intracellular cAMP production in STC-1 cells.
Collapse
Affiliation(s)
- Susumu Katsuma
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47:1592-601. [PMID: 15365617 DOI: 10.1007/s00125-004-1498-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/02/2004] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are secreted from enteroendocrine L cells in response to nutrient ingestion. As glutamine is an important metabolic fuel for the gut, the aim of this study was to investigate the effect of glutamine on the GLP-1-secreting cell line, GLUTag. METHODS GLP-1 release was measured following incubation of GLUTag cells under a range of conditions. Single cells were studied by electrophysiology, calcium imaging and cytosolic ATP measurement using recombinant luciferase. RESULTS Glutamine was a more potent GLP-1 secretagogue than glucose or other amino acids, increasing GLP-1 release 7.1+/-0.7-fold ( n=19) at 10 mmol/l, with an estimated median effective concentration of between 0.1 and 1 mmol/l. Glutamine (10 mmol/l) induced a sodium-dependent inward current of 3.2+/-1.2 pA per cell ( n=9), which triggered membrane depolarisation and an increase in intracellular calcium. Asparagine and alanine produced electrophysiological and calcium changes that were at least as large as those caused by glutamine, but they were less effective GLP-1 secretagogues, suggesting that glutamine also potentiates secretion downstream of the calcium signal. This was confirmed by measuring secretion in the presence of 30 mmol/l KCl + diazoxide, or in alpha-haemolysin-permeabilised cells. Glutamine increased cytosolic ATP, but was less effective than glucose. CONCLUSIONS/INTERPRETATION Glutamine acts as a trigger and potentiator of GLP-1 release, consistent with its role as the major metabolic fuel for the gut. The results suggest that nutritional agents like glutamine might have beneficial effects in diabetes and obesity.
Collapse
Affiliation(s)
- F Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
46
|
Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 2004; 81:1005-12. [PMID: 14719035 DOI: 10.1139/y03-107] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The proglucagon-derived peptide family consists of three highly related peptides, glucagon and the glucagon-like peptides GLP-1 and GLP-2. Although the biological activity of glucagon as a counter-regulatory hormone has been known for almost a century, studies conducted over the past decade have now also elucidated important roles for GLP-1 as an antidiabetic hormone, and for GLP-2 as a stimulator of intestinal growth. In contrast to pancreatic glucagon, the GLPs are synthesized in the intestinal epithelial L cells, where they are subject to the influences of luminal nutrients, as well as to a variety of neuroendocrine inputs. In this review, we will focus on the complex integrative mechanisms that regulate the secretion of these peptides from L cells, including both direct and indirect regulation by ingested nutrients.
Collapse
|
47
|
Hansen L, Holst JJ. The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno--ileal loop? REGULATORY PEPTIDES 2002; 110:39-45. [PMID: 12468108 DOI: 10.1016/s0167-0115(02)00157-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Secretion of the gut hormone glucagon-like peptide-1 (GLP-1) is stimulated by meal ingestion. The response is rapid, suggesting a stimulatory pathway elicited from the upper gastrointestinal area. In pigs, we have been unable to demonstrate a neural stimulatory pathway, but GLP-1 secretion is regulated by local somatostatin secretion. In search for an endocrine pathway, we studied the effect of a range of concentrations of cholecystokinin octapeptide (26-33) (CCK 8), gastric inhibitory peptide 1-42 (GIP), secretin, motilin, calcitonin gene-related peptide (CGRP), and the modified amino acid, 5-hydroxytryptamine (serotonin, 5-HT) on GLP-1 and somatostatin release from isolated perfused segments of porcine ileum.GLP-1 secretion was stimulated by 1 nM CCK 8 and 10 nM GIP, but suppressed by 1 nM motilin and 1 microM 5-HT. Secretin and CGRP had no effect. Somatostatin secretion was stimulated by CCK 8 at 1 and 10 nM, by GIP at 1 and 10 nM and by 10 nM CGRP. Secretin, 5-HT and motilin had no effect on somatostatin secretion. We conclude that CCK 8 and GIP 1-42 stimulated GLP-1 secretion, but only in concentrations greatly exceeding normal postprandial concentrations. Thus, we find it unlikely that endocrine agents from the duodenum regulate GLP-1 secretion in pigs.
Collapse
Affiliation(s)
- Lene Hansen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | |
Collapse
|
48
|
Robertson MD, Jackson KG, Fielding BA, Morgan LM, Williams CM, Frayn KN. Acute ingestion of a meal rich in n-3 polyunsaturated fatty acids results in rapid gastric emptying in humans. Am J Clin Nutr 2002; 76:232-8. [PMID: 12081840 DOI: 10.1093/ajcn/76.1.232] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND n-3 Polyunsaturated fatty acids (PUFAs) have proven benefits for both the development of atherosclerosis and inflammatory conditions. The effects on atherosclerosis may be partly mediated by the observed reduction in fasting and postprandial triacylglycerol concentrations after both acute and chronic n-3 PUFA ingestion. OBJECTIVE The aim of this study was to assess gastric emptying and gastrointestinal hormone release after the consumption of mixed meals rich in n-3 PUFAs or other classes of fatty acids. DESIGN Ten healthy women (aged 50-62 y) completed 4 separate study visits in a single-blind, randomized design. On each occasion, subjects consumed 40 g oil rich in either saturated fatty acids, monounsaturated fatty acids, n-6 PUFAs, or n-3 PUFAs as part of a mixed meal. [1-(13)C]Octanoic acid (100 mg) was added to each oil. Gastric emptying was assessed by a labeled octanoic acid breath test, and concentrations of gastrointestinal hormones and plasma lipids were measured. RESULTS Recovery of (13)C in breath was enhanced after n-3 PUFA ingestion (P < 0.005). The cholecystokinin response after the n-3 PUFA meal was significantly delayed (P < 0.001), and the glucagon-like peptide 1 response was significantly reduced (P < 0.05). CONCLUSION The inclusion of n-3 PUFAs in a meal alters the gastric emptying rate, potentially as the result of changes in the pattern of cholecystokinin and glucagon-like peptide 1 release.
Collapse
Affiliation(s)
- M Denise Robertson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
49
|
Kieffer TJ, Hussain MA, Habener JF. Glucagon and Glucagon‐like Peptide Production and Degradation. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Araki Y, Tsujikawa T, Andoh A, Sasaki M, Fujiyama Y, Bamba T. Therapeutic effects of an oral adsorbent on acute dextran sulphate sodium-induced colitis and its recovery phase in rats, especially effects of elimination of bile acids in gut lumen. Dig Liver Dis 2000; 32:691-8. [PMID: 11142579 DOI: 10.1016/s1590-8658(00)80332-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pathogenesis of inflammatory bowel disease is still unknown. However, it is possible that faecal bile acids influence the clinical course. AIMS To evaluate the eliminating effects of faecal bile acids by the oral adsorbent on dextran sulphate sodium-induced rat colitis. METHODS Rats were given 3% dextran sulphate sodium aqueous solution for 7 days, with or without concomitant administration of oral adsorbent, or the rats were given dextran sulphate sodium for 7 days, followed with or without oral adsorbent for 5 days. Macroscopic and microscopic examinations of the colons and measurement of faecal bile acids were performed. The cytotoxicity of bile salts on Caco-2 cells was also evaluated. RESULTS Oral adsorbent tended to attenuate the dextran sulphate sodium-induced colitis. Oral adsorbent was fairly effective in reducing faecal hyodeoxycholic acid concentration. A positive correlation was found between the size of the ulcer area and the faecal hyodeoxycholic acid concentration. In a cell culture study, cytotoxicity of bile acid was parallel with increasing hydrophobicity of the bile acid. However, hyodeoxycholate exhibited severe cytotoxicity, despite its hydrophilic properties. CONCLUSIONS Oral adsorbent tended to attenuate the dextran sulphate sodium-induced colitis and tended to promote the recovery process. It is possible that bile acids in the gut lumen influence the progression of dextran sulphate sodium-induced colitis and its repair process.
Collapse
Affiliation(s)
- Y Araki
- Department of Internal Medicine, Nagahama Red Cross Hospital, Shiga, Japan
| | | | | | | | | | | |
Collapse
|