1
|
Kha M, Magnusson Y, Johansson I, Altiparmak G, Lundgren J, Nyström J, Ebefors K, Swärd K, Johansson ME. Injured Proximal Tubular Epithelial Cells Lose Hepatocyte Nuclear Factor 4α Expression Crucial for Brush Border Formation and Transport. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:845-860. [PMID: 39954965 DOI: 10.1016/j.ajpath.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025]
Abstract
Recent studies have demonstrated that the transcription factor hepatocyte nuclear factor 4α (HNF4A) drives epithelial differentiation in the renal proximal tubules (PTs) and is critical for maintaining a mature PT phenotype. Furthermore, HNF4A down-regulation has been observed following kidney injury in mouse models. The aim of the present work was to investigate the role of HNF4A during acute and chronic human kidney disease and the loss of the mature PT phenotype in cultured PT cells. Loss of HNF4A expression and gain of vimentin expression were reciprocal and gradual during both acute and chronic kidney disease, as indicated by immunohistochemistry. Healthy human kidneys demonstrated partial or total loss of HNF4A expression in vimentin-positive scattered tubular cells. Primary cell isolation and subculture of PT cells recapitulated HNF4A-associated loss of the PT phenotype. Re-expression of HNF4A in cultured PT cells by adenoviral transduction increased transcripts related to brush border formation as well as absorptive and transport processes, as shown by RNA sequencing and gene set enrichment analyses. Thus, the reduction of HNF4A and increase of vimentin expression were connected to both acute and chronic kidney disease and represented a stereotypic injury response of the PT, resulting in dedifferentiation. HNF4A re-expression in cultured primary PT cells could provide a more reliable and predictive in vitro model to study PT function and injury.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iva Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jaana Lundgren
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Aihara S, Muto Y. Single-cell epigenetics and multiomics analysis in kidney research. Clin Exp Nephrol 2025:10.1007/s10157-025-02679-8. [PMID: 40281349 DOI: 10.1007/s10157-025-02679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
The rapid evolution of single-cell sequencing technologies has significantly advanced our knowledge of cellular heterogeneity and the underlying molecular basis in healthy and diseased kidneys. While single-cell transcriptomic analysis excels in characterizing cell states in the heterogeneous population, the complex regulatory mechanisms governing the gene expressions are difficult to decipher using transcriptomic data alone. Single-cell sequencing technology has recently extended to include epigenome and other modalities, allowing single-cell multiomics analysis. Especially, the integrative analysis of epigenome and transcriptome dissects the cell-specific, gene-regulatory mechanisms driving cellular heterogeneity. An increasing number of single-cell multimodal atlases are being generated in nephrology research, offering novel insights into cellular diversity and the underpinning epigenetic regulation. This ongoing paradigm shift in kidney research accelerates the identification of new biomarkers and potential therapeutic targets, promoting clinical translation. In this era of transformative nephrology research, the basic knowledge of single-cell sequencing analysis and multiomics approach is valuable not only for basic science researchers but for all nephrologists. This review overview single-cell analysis, with a focus on emerging epigenomic and multiomics approaches and their application to kidney research.
Collapse
Affiliation(s)
- Seishi Aihara
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5901 Forest Park Rd., Dallas, TX, 75390, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5901 Forest Park Rd., Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Martínez-Rojas MÁ, Bobadilla NA. Sodium-glucose cotransporter 2 inhibitors: a novel approach to prevent the transition from acute kidney injury to chronic kidney disease. Curr Opin Nephrol Hypertens 2025:00041552-990000000-00230. [PMID: 40265513 DOI: 10.1097/mnh.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) often progresses to chronic kidney disease (CKD), yet standardized clinical guidelines for managing this transition remain lacking. Recent studies suggest that sodium-glucose cotransporter 2 inhibitors (SGLT2i) or flozins improve AKI outcomes. Studies on patients living with diabetes post-AKI show flozins reduce mortality, CKD progression, and recurrent AKI, highlighting their potential in mitigating maladaptive kidney repair. We discuss recent preclinical evidence supporting a role of SGLT2i during AKI repair and subsequent CKD. RECENT FINDINGS AKI is characterized by endothelial and tubular injury, hypoperfusion, metabolic dysfunction, inflammation, and cell death. SGLT2i restore renal hemodynamics, mitochondrial dysfunction, and reduce oxidative stress, improving recovery following AKI. Additionally, SGLT2i mitigate cell death by counteracting apoptosis and ferroptosis while reducing inflammation through suppression of pro-inflammatory cytokines and inflammasome activation. Beyond AKI, flozins exhibit long-term antifibrotic effects, reducing extracellular matrix deposition even after treatment discontinuation. Preclinical studies demonstrate a sustained protective effect on kidney integrity months after short-term treatment. SUMMARY These inhibitors hold promise for broad nephroprotection, with robust biological rationale in maladaptive repair. Further research is needed to optimize their use and establish clinical guidelines for AKI management in both diabetic and nondiabetic populations.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico
- Departamento de Educación Médica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico
- Departamento de Nefrología y Metabolismo Mineral
| |
Collapse
|
4
|
Li F, Lan Q, Wang Y, Xiong J, Xiao T, Gong S, Li Y, Wang S, Yao M, Lv L, Qin S, Xin W, Liu L, Zhang B, Zhao J. Single-cell analysis of proximal tubular cells with different DNA content reveals functional heterogeneity in the acute kidney injury to chronic kidney disease transition. Kidney Int 2025:S0085-2538(25)00332-1. [PMID: 40268163 DOI: 10.1016/j.kint.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Proximal tubular epithelial cells with different DNA contents emerge after acute kidney injury (AKI). However, their heterogeneity and roles in the acute kidney injury-to-chronic kidney disease (AKI-to-CKD) transition remain incompletely understood. METHODS Proximal tubular epithelial cells with different DNA contents were isolated at days 3 and 14 post-AKI following ischemia reperfusion injury for single-cell RNA sequencing. RESULTS Here, we found that proximal tubular epithelial cells with different DNA contents have existing and distinct bulk transcriptome profiles, especially those cells over 4N (polyploid cells with more than four chromosome sets) with upregulated profibrotic signatures. Heterogeneity existed within four distinct functional clusters. In particular, the polyploid cells demonstrated a preferential enrichment within specific proinflammatory and profibrotic clusters post-AKI. Polyploid cells within these specific clusters displayed the profibrotic trajectory, accompanied by increased fibrosis-driving regulon activity and very strong cell-cell interactions. This suggests polyploidy cells have an intrinsic role in promoting the AKI-to-CKD transition. Furthermore, we identified that secreted phosphoprotein 1 (SPP1) as the pivotal hub of polyploid cells and may be involved in various profibrotic signaling pathways. Genetic knockdown of SPP1 in the proximal tubule in vivo dramatically ameliorated kidney fibrosis. CONCLUSIONS Overall, our findings reveal the heterogeneity of proximal tubular epithelial cells with different DNA contents and identify intrinsic factors of polyploid cells such as SPP1 expression in promoting kidney fibrosis. Our study provides novel insights into potential therapeutic target of preventing the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Fugang Li
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qigang Lan
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yaqin Wang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Tangli Xiao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shuiqin Gong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yan Li
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shaobo Wang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Mengying Yao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Liangjing Lv
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shaozong Qin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Wang Xin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Li Liu
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Bo Zhang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jinghong Zhao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
| |
Collapse
|
5
|
Hoenig MP, Brooks CR, Hoorn EJ, Hall AM. Biology of the proximal tubule in body homeostasis and kidney disease. Nephrol Dial Transplant 2025; 40:234-243. [PMID: 39066502 PMCID: PMC11852287 DOI: 10.1093/ndt/gfae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 07/28/2024] Open
Abstract
The proximal tubule (PT) is known as the workhorse of the kidney, for both the range and magnitude of the functions that it performs. It is not only responsible for reabsorbing most solutes and proteins filtered by glomeruli, but also for secreting non-filtered substances including drugs and uremic toxins. The PT therefore plays a pivotal role in kidney physiology and body homeostasis. Moreover, it is the major site of damage in acute kidney injury and nephrotoxicity. In this review, we will provide an introduction to the cell biology of the PT and explore how it is adapted to the execution of a myriad of different functions and how these can differ between males and females. We will then discuss how the PT regulates phosphate, glucose and acid-base balance, and the consequences of alterations in PT function for bone and cardiovascular health. Finally, we explore why the PT is vulnerable to ischemic and toxic insults, and how acute injury in the PT can lead to maladaptive repair, chronic damage and kidney fibrosis. In summary, we will demonstrate that knowledge of the basic cell biology of the PT is critical for understanding kidney disease phenotypes and their associated systemic complications, and for developing new therapeutic strategies to prevent these.
Collapse
Affiliation(s)
- Melanie P Hoenig
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Craig R Brooks
- Department of Medicine at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Switzerland. Zurich Kidney Center, University of Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Vanichapol T, Gonzalez A, Delgado R, Brewer M, Clouthier KA, Menshikh AA, Snyder WE, Rahman T, Sander V, Yang H, Davidson AJ, de Caestecker MP. Permanent defects in renal medullary structure and function after reversal of urinary obstruction. JCI Insight 2025; 10:e187008. [PMID: 39847447 PMCID: PMC11949033 DOI: 10.1172/jci.insight.187008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction. Despite robust regeneration and complete histological recovery of the renal medulla, these mice exhibited a permanent defect in urinary concentrating capacity. However, there were lasting changes in the composition, organization, and transcriptional profiles of epithelial, endothelial, and interstitial cells. Persistent inflammatory responses were also seen in patients with renal stone disease, but there were also adaptive responses to the increasingly hypoxic environment of the renal medulla that occurred only after reversal of obstruction. These findings indicate that while partial repair occurs after reversal of urinary obstruction, there are lasting structural and functional changes across all major cellular compartments of the renal medulla. These changes reflect shared and distinct responses to different renal medullary injuries in humans and mice.
Collapse
Affiliation(s)
- Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Maya Brewer
- Division of Nephrology, Department of Medicine, and
| | | | | | | | | | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
7
|
Janosevic D, De Luca T, Eadon MT. The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:7-22. [PMID: 39332674 PMCID: PMC11686451 DOI: 10.1016/j.ajpath.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has led to major advances in our understanding of proximal tubule subtypes in health and disease. The proximal tubule serves essential functions in overall homeostasis, but pathologic or physiological perturbations can affect its transcriptomic signature and corresponding tasks. These alterations in proximal tubular cells are often described within a scRNA-seq atlas as cell states, which are pathophysiological subclassifications based on molecular and morphologic changes in a cell's response to that injury compared with its native state. This review describes the major cell states defined in the Kidney Precision Medicine Project's scRNA-seq atlas. It then identifies the overlap between the Kidney Precision Medicine Project and other seminal works that may use different nomenclature or cluster proximal tubule cells at different resolutions to define cell state subtypes. The goal is for the reader to understand the key transcriptomic markers of important cellular injury and regeneration processes across this highly dynamic and evolving field.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
McElliott MC, Telang AC, Ference-Salo JT, Al-Suraimi A, Chowdhury M, Otto EA, Soofi A, Dressler GR, Beamish JA. Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury. Am J Physiol Renal Physiol 2025; 328:F95-F106. [PMID: 39620904 PMCID: PMC11918291 DOI: 10.1152/ajprenal.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wild-type proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells, whereas mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role in determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.NEW & NOTEWORTHY Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. In this report, we identify a novel and proximal tubule segment-specific role for the Pax family of transcription factors in the differential sensitivity of proximal tubule segments to ischemic AKI. These results may lead to new therapeutic targets for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Corte-Iglesias V, Saiz ML, Andrade-Lopez AC, Salazar N, Bernet CR, Martin-Martin C, Borra JM, Lozano JJ, Aransay AM, Diaz-Corte C, Lopez-Larrea C, Suarez-Alvarez B. Propionate and butyrate counteract renal damage and progression to chronic kidney disease. Nephrol Dial Transplant 2024; 40:133-150. [PMID: 38794880 PMCID: PMC11852269 DOI: 10.1093/ndt/gfae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), mainly acetate, propionate and butyrate, are produced by gut microbiota through fermentation of complex carbohydrates that cannot be digested by the human host. They affect gut health and can contribute at the distal level to the pathophysiology of several diseases, including renal pathologies. METHODS SCFA levels were measured in chronic kidney disease (CKD) patients (n = 54) at different stages of the disease, and associations with renal function and inflammation parameters were examined. The impact of propionate and butyrate in pathways triggered in tubular cells under inflammatory conditions was analysed using genome-wide expression assays. Finally, a pre-clinical mouse model of folic acid-induced transition from acute kidney injury to CKD was used to analyse the preventive and therapeutic potential of these microbial metabolites in the development of CKD. RESULTS Faecal levels of propionate and butyrate in CKD patients gradually reduce as the disease progresses, and do so in close association with established clinical parameters for serum creatinine, blood urea nitrogen and the estimated glomerular filtration rate. Propionate and butyrate jointly downregulated the expression of 103 genes related to inflammatory processes and immune system activation triggered by tumour necrosis factor-α in tubular cells. In vivo, the administration of propionate and butyrate, either before or soon after injury, respectively, prevented and slowed the progression of damage. This was indicated by a decrease in renal injury markers, the expression of pro-inflammatory and pro-fibrotic markers, and recovery of renal function over the long term. CONCLUSIONS Propionate and butyrate levels are associated with a progressive loss of renal function in CKD patients. Early administration of these SCFAs prevents disease advancement in a pre-clinical model of acute renal damage, demonstrating their therapeutic potential independently of the gut microbiota.
Collapse
Affiliation(s)
- Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Cristina Andrade-Lopez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Nephrology, Hospital Universitario San Agustin, Avilés, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Diet, Human Microbiota and Health Group, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Cristian Ruiz Bernet
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jesús Martinez Borra
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan-Jose Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ana M Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carmen Diaz-Corte
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Department of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
- Kidney Disease Spanish Network, RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Asghari M, Sabo AR, Barwinska D, Ferreira RM, Ferkowicz M, Bowen WS, Cheng YH, Gisch DL, Gulbronson C, Phillips CL, Kelly KJ, Sutton TA, Williams JC, Vazquez M, O'Toole J, Palevsky P, Rosas SE, Waikar SS, Kiryluk K, Parikh C, Hodgins J, Sarder P, De Boer IH, Himmelfarb J, Kretzler M, Jain S, Eadon MT, Winfree S, El-Achkar TM, Dagher PC. Integration of spatial multiplexed protein imaging and transcriptomics in the human kidney tracks the regenerative potential timeline of proximal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625544. [PMID: 39677736 PMCID: PMC11642746 DOI: 10.1101/2024.11.26.625544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury. The persistence of such a state is associated with failed repair. Here, we introduce a novel analytical pipeline applied to highly multiplexed spatial protein imaging to characterize proximal tubular subpopulations and neighborhoods in reference and disease human kidney tissue. The results were validated and extended through integration with spatial and single cell transcriptomics. We demonstrate that, in reference tissue, a large proportion of S1 and S2 proximal tubular epithelial cells express THY1, a mesenchymal stromal and stem cell marker that regulates differentiation. Kidney disease is associated with loss of THY1 and transition towards expression of PROM1, another stem cell marker shown recently to be linked to failed repair. We demonstrate that the trajectory of proximal tubular cells to THY1 expression is clearly distinct from that of PROM1, and that a state with PROM1 expression is associated with niches of inflammation. Our data support a model in which the interplay between THY1 and PROM1 expression in proximal tubules associates with their regenerative potential and marks the timeline of disease progression.
Collapse
|
11
|
Noel S, Kapoor R, Rabb H. New approaches to acute kidney injury. Clin Kidney J 2024; 17:65-81. [PMID: 39583139 PMCID: PMC11581771 DOI: 10.1093/ckj/sfae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 11/26/2024] Open
Abstract
Acute kidney injury (AKI) is a common and serious clinical syndrome that involves complex interplay between different cellular, molecular, metabolic and immunologic mechanisms. Elucidating these pathophysiologic mechanisms is crucial to identify novel biomarkers and therapies. Recent innovative methodologies and the advancement of existing technologies has accelerated our understanding of AKI and led to unexpected new therapeutic candidates. The aim of this review is to introduce and update the reader about recent developments applying novel technologies in omics, imaging, nanomedicine and artificial intelligence to AKI research, plus to provide examples where this can be translated to improve patient care.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Radhika Kapoor
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Ihara K, Satake E, Wilson PC, Krolewski B, Kobayashi H, Md Dom ZI, Ricca J, Wilson J, Dreyfuss JM, Niewczas MA, Doria A, Nelson RG, Pezzolesi MG, Humphreys BD, Duffin K, Krolewski AS. Circulating proteins linked to apoptosis processes and fast development of end-stage kidney disease in diabetes. JCI Insight 2024; 9:e178373. [PMID: 39435665 PMCID: PMC11529980 DOI: 10.1172/jci.insight.178373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
Many circulating proteins are associated with risk of ESKD, but their source and the biological pathways/disease processes they represent are unclear. Using OLINK proteomics platform, concentrations of 455 proteins were measured in plasma specimens obtained at baseline from 399 individuals with diabetes. Elevated concentrations of 46 circulating proteins were associated (P < 1 × 10-5) with development of ESKD (n = 143) during 7-15 years of follow-up. Twenty of these proteins enriched apoptosis/TNF receptor signaling pathways. A subset of 20 proteins (5-7 proteins), summarized as an apoptosis score, together with clinical variables accurately predicted risk of ESKD. Expression of genes encoding the 46 proteins in peripheral WBCs showed no difference between cells from individuals who did or did not develop ESKD. In contrast, plasma concentration of many of the 46 proteins differed by this outcome. In single-nucleus RNA-Seq analysis of kidney biopsies, the majority of genes encoding for the 20 apoptosis/TNF receptor proteins were overexpressed in injured versus healthy proximal tubule cells. Expression of these 20 genes also correlated with the overall index of apoptosis in these cells. Elevated levels of circulating proteins flagging apoptotic processes/TNF receptor signaling pathways - and likely originating from kidney cells, including injured/apoptotic proximal tubular cells - preceded the development of ESKD.
Collapse
Affiliation(s)
- Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Parker C. Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Ricca
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jonathan Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert G. Nelson
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Marcus G. Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward OM, Outeda P, Cheng T, Mahjoub MR, Watnick TJ, Humphreys BD. Multiomics profiling of mouse polycystic kidney disease progression at a single-cell resolution. Proc Natl Acad Sci U S A 2024; 121:e2410830121. [PMID: 39405347 PMCID: PMC11513963 DOI: 10.1073/pnas.2410830121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to kidney failure. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single-nucleus multimodal atlas of an orthologous mouse PKD model at early, mid, and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalog differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single-nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Tao Cheng
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Moe R. Mahjoub
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Terry J. Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO63110
| |
Collapse
|
14
|
Telang AC, Ference-Salo JT, McElliott MC, Chowdhury M, Beamish JA. Sustained alterations in proximal tubule gene expression in primary culture associate with HNF4A loss. Sci Rep 2024; 14:22927. [PMID: 39358473 PMCID: PMC11447228 DOI: 10.1038/s41598-024-73861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
Primary cultures of proximal tubule cells are widely used to model the behavior of kidney epithelial cells in vitro. However, de-differentiation of primary cells upon culture has been observed and appreciated for decades, yet the mechanisms driving this phenomenon remain poorly understood. This confounds the interpretation of experiments using primary kidney epithelial cells and prevents their use to engineer functional kidney tissue ex vivo. In this report, we measure the dynamics of cell-state transformations in early primary culture of mouse proximal tubules to identify key pathways and processes that correlate with and may drive de-differentiation. Our data show that the loss of proximal-tubule-specific genes is rapid, uniform, and sustained even after confluent, polarized epithelial monolayers develop. This de-differentiation occurs uniformly across many common culture condition variations. Changes in early culture were strongly associated with the loss of HNF4A. Exogenous re-expression of HNF4A can promote expression of a subset of proximal tubule genes in a de-differentiated proximal tubule cell line. Using genetically labeled proximal tubule cells, we show that selective pressures very early in culture influence which cells grow to confluence. Together, these data indicate that the loss of in vivo function in proximal tubule cultures occurs very early and suggest that the sustained loss of HNF4A is a key regulatory event mediating this change.
Collapse
Affiliation(s)
- Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Min X, Li Y, Zhang X, Liu S, Chen Z, Mao Q, Kong Q, Wang Z, Liu L, Ding Z. HSPA12A stimulates "Smurf1-Hif1α-aerobic glycolysis" axis to promote proliferation of renal tubular epithelial cells after hypoxia/reoxygenation injury. Cell Stress Chaperones 2024; 29:681-695. [PMID: 39349238 DOI: 10.1016/j.cstres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024] Open
Abstract
Proliferation of renal tubular epithelial cells (TECs) is critical for the recovery after kidney ischemia/reperfusion (KI/R). However, there is still a lack of ideal therapies for promoting TEC proliferation. Heat shock protein A12A (HSPA12A) shows abundant expression in kidney in our previous studies. To investigate the role of HSPA12A in TEC proliferation after KI/R, an in vitro KI/R model was simulated by hypoxia (12 h) and reoxygenation (12 h) in human kidney tubular epithelial HK-2 cells. We found that, when hypoxia/reoxygenation (H/R) triggered HK-2 cell injury, HSPA12A expression was downregulated, and extracellular lactate, the readout of glycolysis, was also decreased. Loss and gain of functional studies showed that HSPA12A did not change cell viability after hypoxia but increased cell proliferation as well as glycolytic flux of HK-2 cells after H/R. When blocking glycolysis by 2-deoxy-D-glucose or oxamate, the HSPA12A promoted HK-2 cell proliferation was also abolished. Further analysis revealed that HSPA12A overexpression increased hypoxia-inducible factor 1α (Hif1α) protein expression and nuclear localization in HK-2 cells in response to H/R, whereas HSPA12A knockdown showed the opposite effects. Notably, pharmacological inhibition of Hif1α with YC-1 reversed the HSPA12A-induced increases of both glycolytic flux and proliferation of H/R HK-2 cells. Moreover, the HSPA12A increased Hif1α protein expression was not via upregulating its transcription but through increasing its protein stability in a Smurf1-dependent manner. The findings indicate that HSPA12A might serve as a promising target for TEC proliferation to help recovery after KI/R.
Collapse
Affiliation(s)
- Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfan Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijiang Liu
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Anesthesiology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing, China
| | - Ziyang Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaohe Wang
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Melchinger I, Guo K, Li X, Guo J, Cantley LG, Xu L. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition. Am J Physiol Renal Physiol 2024; 327:F610-F622. [PMID: 39116349 PMCID: PMC11483080 DOI: 10.1152/ajprenal.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-β suppressed TNF-α- and IL-1β-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1β) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.
Collapse
Affiliation(s)
- Isabel Melchinger
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kailin Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xiaoxu Li
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jiankan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
17
|
Liu S, Gao Y, Feng X, Xu Y, Hu M, Fei H, Zheng H, Huang J, Li T, Zhao C, Sun L. A novel study on CXXC5: unraveling its regulatory mechanisms in hematopoietic stem cell biology through proteomics and gene editing. Genes Genomics 2024; 46:1133-1147. [PMID: 39150611 DOI: 10.1007/s13258-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This study investigates the role of CXXC5 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) within the bone marrow microenvironment, utilizing advanced methodologies such as single-cell RNA sequencing (scRNA-seq), CRISPR-Cas9, and proteomic analysis. METHODS We employed flow cytometry to isolate HSCs from bone marrow samples, followed by scRNA-seq analysis using the 10x Genomics platform to examine cell clustering and CXXC5 expression patterns. CRISPR-Cas9 and lentiviral vectors facilitated the knockout and overexpression of CXXC5 in HSCs. The impact on HSCs was assessed through qRT-PCR, Western blot, CCK-8, CFU, and LTC-IC assays, alongside flow cytometry to measure apoptosis and cell proportions. A mouse model was also used to evaluate the effects of CXXC5 manipulation on HSC engraftment and survival rates. RESULTS Our findings highlight the diversity of cell clustering and the significant role of CXXC5 in HSC regulation. Knockout experiments showed reduced proliferation and accelerated differentiation, whereas overexpression led to enhanced proliferation and delayed differentiation. Proteomic analysis identified key biological processes influenced by CXXC5, including cell proliferation, differentiation, and apoptosis. In vivo results demonstrated that CXXC5 silencing impaired HSC engraftment in a bone marrow transplantation model. CONCLUSION CXXC5 is crucial for the regulation of HSC self-renewal and differentiation in the bone marrow microenvironment. Its manipulation presents a novel approach for enhancing HSC function and provides a potential therapeutic target for hematological diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hairong Fei
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Tianlan Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Chunting Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| | - Lingjie Sun
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| |
Collapse
|
18
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Vanichapol T, Gonzalez A, Delgado R, Brewer M, Clouthier KA, Menshikh A, Snyder WE, Rahman T, Sander V, Yang H, Davidson A, de Caestecker M. Partial repair causes permanent defects in papillary structure and function after reversal of urinary obstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612436. [PMID: 39314319 PMCID: PMC11419032 DOI: 10.1101/2024.09.11.612436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Urinary obstruction causes injury to the renal papilla and leads to defects in the ability to concentrate urine which predisposes to progressive kidney injury. However, the regenerative capacity of the papilla after reversal of obstruction is poorly understood. To address this, we developed a mouse model of reversible urinary obstruction which is characterized by extensive papillary injury, followed by a robust regeneration response and complete histological recovery over a 3- month period. However, these mice have a pronounced defect in urinary concentrating capacity. We now show that this is due to permanent changes in the composition, organization, and transcriptional signatures of epithelial, endothelial, and interstitial cell lineages in the papilla. There are persistent inflammatory responses that are also seen in patients with renal stone disease but are associated with cell-specific adaptive responses to the increasingly hypoxic environment of the papilla after reversal of obstruction. Taken together, our analysis of a new model of reversible urinary obstruction reveals that partial repair leads to permanent changes in the structure and function of all of the major cellular compartments in the papilla that include both shared and distinct responses to different types of renal papillary injury in humans and mice. Summary Partial repair after reversal of urinary obstruction leads to permanent changes in structure and function of all major cellular compartments in the renal papilla.
Collapse
|
20
|
Gujarati NA, Frimpong BO, Zaidi M, Bronstein R, Revelo MP, Haley JD, Kravets I, Guo Y, Mallipattu SK. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat Commun 2024; 15:8038. [PMID: 39271683 PMCID: PMC11399446 DOI: 10.1038/s41467-024-52306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bismark O Frimpong
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Malaika Zaidi
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Renal Section, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
21
|
Polonsky M, Gerhardt LMS, Yun J, Koppitch K, Colón KL, Amrhein H, Wold B, Zheng S, Yuan GC, Thomson M, Cai L, McMahon AP. Spatial transcriptomics defines injury specific microenvironments and cellular interactions in kidney regeneration and disease. Nat Commun 2024; 15:7010. [PMID: 39237549 PMCID: PMC11377535 DOI: 10.1038/s41467-024-51186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, together with injury-invoked inflammation and fibrosis. Deciphering the molecular pathways and cellular interactions driving these processes is challenging due to the complex tissue structure. Here, we apply single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics reveals injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicts Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and their neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis identifies cellular microenvironments resembling early tertiary lymphoid structures and associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.
Collapse
Affiliation(s)
- Michal Polonsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Katsuya Lex Colón
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry Amrhein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
22
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
24
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. SCIENCE ADVANCES 2024; 10:eado2849. [PMID: 39110788 PMCID: PMC11305376 DOI: 10.1126/sciadv.ado2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Beamish JA, Watts JA, Dressler GR. Gene regulation in regeneration after acute kidney injury. J Biol Chem 2024; 300:107520. [PMID: 38950862 PMCID: PMC11325799 DOI: 10.1016/j.jbc.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
27
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 PMCID: PMC11660082 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Kong Y, Chen X, Liu F, Tang J, Zhang Y, Zhang X, Zhang L, Zhang T, Wang Y, Su M, Zhang Q, Chen H, Zhou D, Yi F, Liu H, Fu Y. Ultrasmall Polyphenol-NAD + Nanoparticle-Mediated Renal Delivery for Mitochondrial Repair and Anti-Inflammatory Treatment of AKI-to-CKD Progression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310731. [PMID: 38805174 DOI: 10.1002/adma.202310731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/21/2024] [Indexed: 05/29/2024]
Abstract
As a central metabolic molecule, nicotinamide adenine dinucleotide (NAD+) can potentially treat acute kidney injury (AKI) and chronic kidney disease (CKD); however, its bioavailability is poor due to short half-life, instability, the deficiency of targeting, and difficulties in transmembrane transport. Here a physiologically adaptive gallic acid-NAD+ nanoparticle is designed, which has ultrasmall size and pH-responsiveness, passes through the glomerular filtration membrane to reach injured renal tubules, and efficiently delivers NAD+ into the kidneys. With an effective accumulation in the kidneys, it restores renal function, immune microenvironment homeostasis, and mitochondrial homeostasis of AKI mice via the NAD+-Sirtuin-1 axis, and exerts strong antifibrotic effects on the AKI-to-CKD transition by inhibiting TGF-β signaling. It also exhibits excellent stability, biodegradable, and biocompatible properties, ensuring its long-term safety, practicality, and clinical translational feasibility. The present study shows a potential modality of mitochondrial repair and immunomodulation through nanoagents for the efficient and safe treatment of AKI and CKD.
Collapse
Affiliation(s)
- Ying Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Xu Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Jiageng Tang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yijing Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiangxiang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Luyao Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Tong Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yaqi Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Mengxiao Su
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Qixin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Hanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Di Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, China
- National Key Laboratoy for innovation and Transfomation of Luobing Theoy, Key Laboratory of Cardiovascular Health, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yi Fu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| |
Collapse
|
29
|
Yoon B, Kim H, Jung SW, Park J. Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int 2024; 105:1186-1199. [PMID: 38554991 DOI: 10.1016/j.kint.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.
Collapse
Affiliation(s)
- Baul Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hayoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
30
|
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward OM, Outeda P, Cheng T, Mahjoub MR, Watnick TJ, Humphreys BD. Multi-omics profiling of mouse polycystic kidney disease progression at a single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595830. [PMID: 38854144 PMCID: PMC11160654 DOI: 10.1101/2024.05.27.595830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalogue differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Moe R. Mahjoub
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Terry J. Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
31
|
Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, Byers LN, Tullius SG, Orlando G, Waikar SS, Humphreys BD. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab 2024; 36:1105-1125.e10. [PMID: 38513647 PMCID: PMC11081846 DOI: 10.1016/j.cmet.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lori N Byers
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
32
|
Livingston MJ, Zhang M, Kwon SH, Chen JK, Li H, Manicassamy S, Dong Z. Autophagy activates EGR1 via MAPK/ERK to induce FGF2 in renal tubular cells for fibroblast activation and fibrosis during maladaptive kidney repair. Autophagy 2024; 20:1032-1053. [PMID: 37978868 PMCID: PMC11135847 DOI: 10.1080/15548627.2023.2281156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Macroautophagy/autophagy contributes to maladaptive kidney repair by inducing pro-fibrotic factors such as FGF2 (fibroblast growth factor 2), but the underlying mechanism remains elusive. Here, we show that EGR1 (early growth response 1) was induced in injured proximal tubules after ischemic acute kidney injury (AKI) and this induction was suppressed by autophagy deficiency in inducible, renal tubule-specific atg7 (autophagy related 7) knockout (iRT-atg7 KO) mice. In cultured proximal tubular cells, TGFB1 (transforming growth factor beta 1) induced EGR1 and this induction was also autophagy dependent. Egr1 knockdown in tubular cells reduced FGF2 expression during TGFB1 treatment, leading to less FGF2 secretion and decreased paracrine effects on fibroblasts. ChIP assay detected an increased binding of EGR1 to the Fgf2 gene promoter in TGFB1-treated tubular cells. Both Fgf2 and Egr1 transcription was inhibited by FGF2 neutralizing antibody, suggesting a positive feedback for EGR1-mediated FGF2 autoregulation. This feedback was confirmed using fgf2-deficient tubular cells and fgf2-deficient mice. Upstream of EGR1, autophagy deficiency in mice suppressed MAPK/ERK (mitogen-activated protein kinase) activation in post-ischemic renal tubules. This inhibition correlated with SQSTM1/p62 (sequestosome 1) aggregation and its sequestration of MAPK/ERK. SQSTM1/p62 interacted with MAPK/ERK and blocked its activation during TGFB1 treatment in autophagy-deficient tubular cells. Inhibition of MAPK/ERK suppressed EGR1 and FGF2 expression in maladaptive tubules, leading to the amelioration of renal fibrosis and improvement of renal function. These results suggest that autophagy activates MAPK/ERK in renal tubular cells, which induces EGR1 to transactivate FGF2. FGF2 is then secreted into the interstitium to stimulate fibroblasts for fibrogenesis.Abbreviation: 3-MA: 3-methyladenine; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB/β-actin: actin, beta; AKI: acute kidney injury; aa: amino acid; ATG/Atg: autophagy related; BUN: blood urea nitrogen; ChIP: chromatin immunoprecipitation; CKD: chronic kidney disease; CM: conditioned medium; COL1A1: collagen, type I, alpha 1; COL4A1: collagen, type IV, alpha 1; CQ: chloroquine; DBA: dolichos biflorus agglutinin; EGR1: early growth response 1; ELK1: ELK1, member of ETS oncogene family; FGF2: fibroblast growth factor 2; FN1: fibronectin 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAVCR1/KIM-1: hepatitis A virus cellular receptor 1; IP: immunoprecipitation; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK: mitogen-activated protein kinase; NFKB: nuclear factor kappa B; PB1: Phox and Bem1; PFT: pifithrin α; PPIB/cyclophilin B: peptidylprolyl isomerase B; RT-qPCR: real time-quantitative PCR; SQSTM1/p62: sequestosome 1; TGFB1/TGF-β1: transforming growth factor beta 1; VIM: vimentin.
Collapse
Affiliation(s)
- Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
33
|
Bradford STJ, Wu H, Kirita Y, Chen C, Malvin NP, Yoshimura Y, Muto Y, Humphreys BD. TNIK depletion induces inflammation and apoptosis in injured renal proximal tubule epithelial cells. Am J Physiol Renal Physiol 2024; 326:F827-F838. [PMID: 38482555 PMCID: PMC11386974 DOI: 10.1152/ajprenal.00262.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.
Collapse
Affiliation(s)
- Shayna T J Bradford
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yuhei Kirita
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Changfeng Chen
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Nicole P Malvin
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
34
|
Martínez-Rojas MÁ, Balcázar H, Ponce-Nava MS, González-Soria I, Marquina-Castillo B, Pérez-Villalva R, Bobadilla NA. A short treatment with resveratrol after a renal ischaemia-reperfusion injury prevents maladaptive repair and long-term chronic kidney disease in rats. J Physiol 2024; 602:1835-1852. [PMID: 38529522 DOI: 10.1113/jp285979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hiram Balcázar
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Susana Ponce-Nava
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isaac González-Soria
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Brenda Marquina-Castillo
- Department of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
35
|
Su XT, Reyes JV, Lackey AE, Demirci H, Bachmann S, Maeoka Y, Cornelius RJ, McCormick JA, Yang CL, Jung HJ, Welling PA, Nelson JW, Ellison DH. Enriched Single-Nucleus RNA-Sequencing Reveals Unique Attributes of Distal Convoluted Tubule Cells. J Am Soc Nephrol 2024; 35:426-440. [PMID: 38238903 PMCID: PMC11000721 DOI: 10.1681/asn.0000000000000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
SIGNIFICANCE STATEMENT High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.
Collapse
Affiliation(s)
- Xiao-Tong Su
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jeremiah V. Reyes
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Anne E. Lackey
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hasan Demirci
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yujiro Maeoka
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ryan J. Cornelius
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - James A. McCormick
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan W. Nelson
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David H. Ellison
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon
- Renal Section, VA Portland Healthcare System, Portland, Oregon
| |
Collapse
|
36
|
Buse M, Cheng M, Jankowski V, Lellig M, Sterzer V, Strieder T, Leuchtle K, Martin IV, Seikrit C, Brinkkoettter P, Crispatzu G, Floege J, Boor P, Speer T, Kramann R, Ostendorf T, Moeller MJ, Costa IG, Stamellou E. Lineage tracing reveals transient phenotypic adaptation of tubular cells during acute kidney injury. iScience 2024; 27:109255. [PMID: 38444605 PMCID: PMC10914483 DOI: 10.1016/j.isci.2024.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Tubular injury is the hallmark of acute kidney injury (AKI) with a tremendous impact on patients and health-care systems. During injury, any differentiated proximal tubular cell (PT) may transition into a specific injured phenotype, so-called "scattered tubular cell" (STC)-phenotype. To understand the fate of this specific phenotype, we generated transgenic mice allowing inducible, reversible, and irreversible tagging of these cells in a murine AKI model, the unilateral ischemia-reperfusion injury (IRI). For lineage tracing, we analyzed the kidneys using single-cell profiling during disease development at various time points. Labeled cells, which we defined by established endogenous markers, already appeared 8 h after injury and showed a distinct expression set of genes. We show that STCs re-differentiate back into fully differentiated PTs upon the resolution of the injury. In summary, we show the dynamics of the phenotypic transition of PTs during injury, revealing a reversible transcriptional program as an adaptive response during disease.
Collapse
Affiliation(s)
- Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Thiago Strieder
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ina V. Martin
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Paul Brinkkoettter
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Timotheus Speer
- Medical Clinic 4, Nephrology, University of Frankfurt und Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Marcus J. Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Wu H, Dixon EE, Xuanyuan Q, Guo J, Yoshimura Y, Debashish C, Niesnerova A, Xu H, Rouault M, Humphreys BD. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat Commun 2024; 15:1396. [PMID: 38360882 PMCID: PMC10869771 DOI: 10.1038/s41467-024-45752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Emerging spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ at cellular resolution. We apply direct RNA hybridization-based in situ sequencing (dRNA HybISS, Cartana part of 10xGenomics) to compare male and female healthy mouse kidneys and the male kidney injury and repair timecourse. A pre-selected panel of 200 genes is used to identify cell state dynamics patterns during injury and repair. We develop a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting dataset allows us to resolve 13 kidney cell types within distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. At late timepoints after injury, C3+ leukocytes are enriched near pro-inflammatory, failed-repair proximal tubule cells. Integration of snRNA-seq dataset from the same injury and repair samples also allows us to impute the spatial localization of genes not directly measured by dRNA HybISS.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Juanru Guo
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | | | - Hao Xu
- 10X Genomics, Pleasanton, CA, USA
- Aplex Bio AB, Solna, Sweden
| | | | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
38
|
Ledru N, Wilson PC, Muto Y, Yoshimura Y, Wu H, Li D, Asthana A, Tullius SG, Waikar SS, Orlando G, Humphreys BD. Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing. Nat Commun 2024; 15:1291. [PMID: 38347009 PMCID: PMC10861555 DOI: 10.1038/s41467-024-45706-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing offers an opportunity to study the gene regulatory networks underpinning these changes in order to identify key regulatory drivers. We develop a regularized regression approach to construct genome-wide parametric gene regulatory networks using multiomic datasets. We generate a single nucleus multiomic dataset from seven adult human kidney samples and apply our method to study drivers of a failed injury response associated with kidney disease. We demonstrate that our approach is a highly effective tool for predicting key cis- and trans-regulatory elements underpinning the healthy to failed repair transition and use it to identify NFAT5 as a driver of the maladaptive proximal tubule state.
Collapse
Affiliation(s)
- Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Parker C Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Lv X, Fan Q, Li X, Li P, Wan Z, Han X, Wang H, Wang X, Wu L, Huo B, Yang L, Chen G, Zhang Y. Identification of renal ischemia reperfusion injury-characteristic genes, pathways and immunological micro-environment features through bioinformatics approaches. Aging (Albany NY) 2024; 16:2123-2140. [PMID: 38329418 PMCID: PMC10911371 DOI: 10.18632/aging.205471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Biomarkers and pathways associated with renal ischemia reperfusion injury (IRI) had not been well unveiled. This study was intended to investigate and summarize the regulatory networks for related hub genes. Besides, the immunological micro-environment features were evaluated and the correlations between immune cells and hub genes were also explored. METHODS GSE98622 containing mouse samples with multiple IRI stages and controls was collected from the GEO database. Differentially expressed genes (DEGs) were recognized by the R package limma, and the GO and KEGG analyses were conducted by DAVID. Gene set variation analysis (GSVA) and weighted gene coexpression network analysis (WGCNA) had been implemented to uncover changed pathways and gene modules related to IRI. Besides the known pathways such as apoptosis pathway, metabolic pathway, and cell cycle pathways, some novel pathways were also discovered to be critical in IRI. A series of novel genes associated with IRI was also dug out. An IRI mouse model was constructed to validate the results. RESULTS The well-known IRI marker genes (Kim1 and Lcn2) and novel hub genes (Hbegf, Serpine2, Apbb1ip, Trip13, Atf3, and Ncaph) had been proved by the quantitative real-time polymerase chain reaction (qRT-PCR). Thereafter, miRNAs targeted to the dysregulated genes were predicted and the miRNA-target network was constructed. Furthermore, the immune infiltration for these samples was predicted and the results showed that macrophages infiltrated to the injured kidney to affect the tissue repair or fibrosis. Hub genes were significantly positively or negatively correlated with the macrophage abundance indicating they played a crucial role in macrophage infiltration. CONCLUSIONS Consequently, the pathways, hub genes, miRNAs, and the immune microenvironment may explain the mechanism of IRI and might be the potential targets for IRI treatments.
Collapse
Affiliation(s)
- Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University Eye Institute, Nankai University, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuanjie Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Peng Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuena Han
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoxia Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lin Wu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bin Huo
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Li Yang
- Lanzhou First People's Hospital, Lanzhou, Gansu, China
| | - Gen Chen
- Department of Microbiology, School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
40
|
Beamish JA, Telang AC, McElliott MC, Al-Suraimi A, Chowdhury M, Ference-Salo JT, Otto EA, Menon R, Soofi A, Weinberg JM, Patel SR, Dressler GR. Pax protein depletion in proximal tubules triggers conserved mechanisms of resistance to acute ischemic kidney injury preventing transition to chronic kidney disease. Kidney Int 2024; 105:312-327. [PMID: 37977366 PMCID: PMC10958455 DOI: 10.1016/j.kint.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeevkumar R Patel
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Muto Y, Dixon EE, Yoshimura Y, Ledru N, Kirita Y, Wu H, Humphreys BD. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576421. [PMID: 38328130 PMCID: PMC10849487 DOI: 10.1101/2024.01.20.576421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting especially activation of proinflammatory pathways. We further generated single nucleus multiomic data from four human AKI samples including validation by genome-wide identification of NF-kB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubule cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E. Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
42
|
Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Melo Ferreira R, Akilesh S, Ghag R, Lu C, Cheng YH, Collins KS, Parikh SV, Rovin BH, Robbins L, Stout L, Conklin KY, Diep D, Zhang B, Knoten A, Barwinska D, Asghari M, Sabo AR, Ferkowicz MJ, Sutton TA, Kelly KJ, De Boer IH, Rosas SE, Kiryluk K, Hodgin JB, Alakwaa F, Winfree S, Jefferson N, Türkmen A, Gaut JP, Gehlenborg N, Phillips CL, El-Achkar TM, Dagher PC, Hato T, Zhang K, Himmelfarb J, Kretzler M, Mollah S, Jain S, Rauchman M, Eadon MT. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun 2024; 15:433. [PMID: 38199997 PMCID: PMC10781985 DOI: 10.1038/s41467-023-44467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Collapse
Affiliation(s)
- Debora L Gisch
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Blue B Lake
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Jeannine Basta
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | | | | | | | - Reetika Ghag
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Charles Lu
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Ying-Hua Cheng
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samir V Parikh
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Brad H Rovin
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lynn Robbins
- St. Louis Veteran Affairs Medical Center, St. Louis, MO, 63106, USA
| | - Lisa Stout
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Kimberly Y Conklin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dinh Diep
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bo Zhang
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Amanda Knoten
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mahla Asghari
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela R Sabo
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Timothy A Sutton
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Sylvia E Rosas
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | - Seth Winfree
- University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nichole Jefferson
- Kidney Precision Medicine Project Community Engagement Committee, Dallas, TX, USA
| | - Aydın Türkmen
- Istanbul School of Medicine, Division of Nephrology, Istanbul, Turkey
| | - Joseph P Gaut
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Pierre C Dagher
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Takashi Hato
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Shamim Mollah
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Sanjay Jain
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael Rauchman
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael T Eadon
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
43
|
Yamashita N, Kramann R. Mechanisms of kidney fibrosis and routes towards therapy. Trends Endocrinol Metab 2024; 35:31-48. [PMID: 37775469 DOI: 10.1016/j.tem.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney diseases (CKDs) and is therefore considered to be a promising therapeutic target for these conditions. However, despite great progress in recent years, no targeted antifibrotic therapies for the kidney have been approved, likely because the complex mechanisms that initiate and drive fibrosis are not yet completely understood. Recent single-cell genomic approaches have allowed novel insights into kidney fibrosis mechanisms in mouse and human, particularly the heterogeneity and differentiation processes of myofibroblasts, the role of injured epithelial cells and immune cells, and their crosstalk mechanisms. In this review we summarize the key mechanisms that drive kidney fibrosis, including recent advances in understanding the mechanisms, as well as potential routes for developing novel targeted antifibrotic therapeutics.
Collapse
Affiliation(s)
- Noriyuki Yamashita
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Huynh NV, Rehage C, Hyndman KA. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am J Physiol Renal Physiol 2023; 325:F717-F732. [PMID: 37767569 PMCID: PMC11550884 DOI: 10.1152/ajprenal.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.
Collapse
Affiliation(s)
- Nha Van Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
45
|
Polonsky M, Gerhardt LMS, Yun J, Koppitch K, Colón KL, Amrhein H, Zheng S, Yuan GC, Thomson M, Cai L, McMahon AP. Spatial transcriptomics defines injury-specific microenvironments in the adult mouse kidney and novel cellular interactions in regeneration and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568217. [PMID: 38045285 PMCID: PMC10690238 DOI: 10.1101/2023.11.22.568217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, and injury-invoked inflammation and fibrosis. Deciphering molecular pathways and cellular interactions driving these processes is challenging due to the complex renal architecture. Here, we applied single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics revealed injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicted Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis revealed cellular microenvironments resembling early tertiary lymphoid structures and identified associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.
Collapse
Affiliation(s)
- Michal Polonsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Louisa M. S. Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Katsuya Lex Colón
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry Amrhein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
46
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
47
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
48
|
Beamish JA, Telang AC, McElliott MC, Al-Suraimi A, Chowdhury M, Ference-Salo JT, Otto EA, Menon R, Soofi A, Weinberg JM, Patel SR, Dressler GR. Pax Protein Depletion in Proximal Tubules Triggers Conserved Mechanisms of Resistance to Acute Ischemic Kidney Injury and Prevents Transition to Chronic Kidney Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559511. [PMID: 37873377 PMCID: PMC10592940 DOI: 10.1101/2023.10.03.559511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. In this report, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI. We found that Pax2 and Pax8 are upregulated after severe AKI and correlate with chronic injury. Surprisingly, we then discovered that proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to preconditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of S3 proximal tubule cells that display features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic preconditioning, and female sex. Taken together, our results identify a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both injury response and protection from ischemic AKI. TRANSLATIONAL STATEMENT Identifying the molecular and genetic regulators unique to the nephron that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are two homologous nephron-specific transcription factors that are critical for kidney development and physiology. Here we report that proximal-tubule-selective depletion of Pax2 and Pax8 protects against both acute and chronic injury and induces an expression profile in the S3 proximal tubule with common features shared among diverse conditions that protect against ischemia. These findings highlight a new role for Pax proteins as potential therapeutic targets to treat AKI.
Collapse
|
49
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
50
|
Inagi R, Yoshioka K. Stray tubules: the varied and dynamic fate of tubular cells. Kidney Int 2023; 104:19-21. [PMID: 36804410 DOI: 10.1016/j.kint.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Affiliation(s)
- Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Kentaro Yoshioka
- Division of CKD Pathophysiology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|