1
|
Skrajnowska D, Szterk A, Ofiara K, Kowalczyk P, Bobrowska-Korczak B. The Genistein Supply and Elemental Composition of Rat Kidneys in an Induced Breast Cancer Model. Nutrients 2025; 17:1184. [PMID: 40218942 PMCID: PMC11990330 DOI: 10.3390/nu17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Many natural phytochemicals support the work of the kidneys. The health effects of genistein have been confirmed in many kidney diseases (inflammation and acute kidney injury, cancer or menopausal or senile changes). Genistein through various mechanisms can affect kidney conditions. Objectives: The purpose of this work was to analyze the supply of various forms of genistein at a low dose (0.2 mg/kg b.w.) on the renal mineral composition of rats under conditions of mammary gland tumorigenesis (induced with DMBA). Methods: Sprague rats at the age of 40 days were divided into four research groups, i.e., a control group receiving only standard feed and four groups receiving feed supplemented with genistein in the form of nanoparticles (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 92 ± 41 nm), genistein in microparticle form (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 587 ± 83 nm) and genistein in macroparticle form (normal, classical) (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.). Mammary gland cancer was induced using DMBA (7,12-dimethyl-1,2-benz(a)anthracene). The experiment lasted 100 days. The concentrations of Ca, Zn, Fe, Cu, As, Se, Rb, Sr, Mo, B, and Mn were measured using the ICP-MS method, while the levels of K, Mg, and Na were measured using the FAAS method. Results: It was shown that, depending on the degree of miniaturization of genistein, its administration affected changes in kidney mineral composition, primarily resulting in a strongly reduced calcium content in the group of rats receiving nanogenistein. We found a negative impact of nanogenistein administration on the amount of calcium and iron, indicating an increased distribution or excretion of these elements from the body, as well as an increase in the number of elements, especially magnesium, sodium, zinc, boron, and copper concentrations, compared to the non-supplemented group. Conclusions: This study confirms the need for thorough clinical analyses in the future, with regard to the effects of genistein, especially its nanoforms on the body.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Arkadiusz Szterk
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
- Chair of Preclinical Sciences, Department of Pharmacology and Toxicology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Karol Ofiara
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
| | - Paweł Kowalczyk
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| |
Collapse
|
2
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Hanna M, Akabawy AMA, Khalifa MM, Elbaset MA, Imam RA, Seddiek H. Intracellular iron accumulation throughout the progression of sepsis influences the phenotype and function of activated macrophages in renal tissue damage. Front Physiol 2025; 16:1430946. [PMID: 39949667 PMCID: PMC11821637 DOI: 10.3389/fphys.2025.1430946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Sepsis, the most common cause of acute kidney injury, remains a major socioeconomic burden. A dysregulated immune response leads to progressive organ dysfunction. Although numerous inflammatory pathways were described, most are still vague and need to be studied in terms of the mechanisms to improve the therapeutic intervention. We tackled the relationship between intracellular iron overload and macrophage polarization within 6, 24, and 72 h of sepsis induction. In our study, sepsis-induced kidney injury was caused by using the cecal ligation and puncture (CLP) model. Our results indicated severe renal tissue damage with a progressive increase in serum BUN and creatinine with architectural tissue damage and positive PAS staining. There was increased expression of CD8+ CD68+ M1 macrophage markers with upregulation of iNOS and co-expression of CD163+. Alternatively, Arg1+ Fizz1+ M2 macrophage markers were downregulated with increased iNOS/Arg1 ratio. TFR1, cubilin, and DMT1, as iron transport systems, were increased compared to sham but were significant after 72 h, while ZIP8 showed no significant change. There was a correlation between iron overload and M1 macrophage polarization with CD163+ phenotype, together with fibrotic changes. The intracellular iron overload with downregulation of ferritin was strongly related to macrophage polarization that was exaggerated at 72 h. Finally, early introduced therapy to target free iron during sepsis is a proposed novel solution for protecting the renal tissue from acute injury due to macrophage activation that may end up with chronic kidney injury, if not mortality.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Hanan Seddiek
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Yang SQ, Zhao X, Zhang J, Liao DY, Wang YH, Wang YG. Ferroptosis in renal fibrosis: a mini-review. J Drug Target 2024; 32:785-793. [PMID: 38721679 DOI: 10.1080/1061186x.2024.2353363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Ferroptosis is a novel form of programmed cell death that is iron-dependent and distinct from autophagy, apoptosis, and necroptosis. It is primarily characterised by a decrease in glutathione peroxidase 4 (GPX4) activity, or by the accumulation of lipid peroxidation and reactive oxygen species (ROS). Renal fibrosis is a common pathological change in the progression of various primary and secondary renal diseases to end-stage renal disease and poses a serious threat to human health with high morbidity and mortality. Multiple pathways contribute to the development of renal fibrosis, with ferroptosis playing a crucial role in renal fibrosis pathogenesis due to its involvement in the production of ROS. Ferroptosis is related to several signalling pathways, including System Xc-/GPX4, abnormal iron metabolism and lipid peroxidation. A number of studies have indicated that ferroptosis is closely involved in the process of renal fibrosis caused by various kidney diseases such as glomerulonephritis, renal ischaemia-reperfusion injury, diabetic nephropathy and renal calculus. Identifying the underlying molecular mechanisms that determine cell death would open up new insights to address a therapeutic strategy to renal fibrosis. The review aimed to browse and summarise the known mechanisms of ferroptosis that may be associated with biological reactions of renal fibrosis.
Collapse
Affiliation(s)
- Si-Qi Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Xi Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Jing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Dong-Ying Liao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
| | - Yu-Han Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Yao-Guang Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| |
Collapse
|
5
|
Packer M. Iron homeostasis, recycling and vulnerability in the stressed kidney: A neglected dimension of iron-deficient heart failure. Eur J Heart Fail 2024; 26:1631-1641. [PMID: 38727795 DOI: 10.1002/ejhf.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 07/26/2024] Open
Abstract
The available evidence suggests that the kidney may contribute importantly to the development of an iron deficiency state in patients with heart failure and may be injured by therapeutic efforts to achieve iron repletion. The exceptional workload of the proximal renal tubule requires substantial quantities of iron for ATP synthesis, which it derives from Fe3+ bound to transferrin in the bloodstream. Following ferrireduction, Fe2+ is conveyed by divalent transporters (e.g. DMT1) out of the endosome of the proximal renal tubule, and highly reactive Fe2+ can be directed to the mitochondria, sequestered safely in a ferritin nanocage or exported through the actions of hepcidin-inhibitable ferroportin. The actions of ferroportin, together with transferrin endocytosis and DMT1-mediated transport, play a key role in the recycling of iron from the tubular fluid into the bloodstream and preventing the loss of filtered iron in the urine. Activation of endogenous neurohormonal systems and proinflammatory signalling in heart failure decrease megalin-mediated uptake and DMT1 expression, and increase hepcidin-mediated suppression of ferroportin, promoting the loss of iron in the urine and contributing to the development of an iron deficiency state. Furthermore, the failure of ferroportin-mediated efflux at the basolateral membrane heightens the susceptibility of the renal tubules to cytosolic excesses of Fe2+, causing lipid peroxidation and synchronized cell death (ferroptosis) through the iron-dependent free radical theft of electrons from lipids in the cell membrane. Ferroptosis is a central mechanism to most disorders that can cause acute and chronic kidney disease. Short-term bolus administration of intravenous iron can cause oxidative stress and is accompanied by markers of renal injury. Experimentally, long-term maintenance of an iron-replete state is accompanied by accelerated loss of nephrons, oxidative stress, inflammation and fibrosis. Intravenous iron therapy increases glomerular filtration rate rapidly in patients with heart failure (perhaps because of a haemodynamic effect) but not in patients with chronic kidney disease, and the effects of intravenous iron on the progression of renal dysfunction in the long-term trials - AFFIRM-AHF, IRONMAN and HEART-FID - have not yet been reported. Given the potential role of dysregulated renal iron homeostasis in the pathogenesis of iron deficiency and the known vulnerability of the kidney to intravenous iron, the appropriate level of iron repletion with respect to the risk of acute and chronic kidney injury in patients with heart failure requires further study.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
6
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
7
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Olinder J, Stjernqvist MJ, Lindén A, Salomonsson ET, Annborn M, Herwald H, Rydén C. Hepcidin, in contrast to heparin binding protein, does not portend acute kidney injury in patients with community acquired septic shock. PLoS One 2024; 19:e0299257. [PMID: 38696394 PMCID: PMC11065221 DOI: 10.1371/journal.pone.0299257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/07/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.
Collapse
Affiliation(s)
- Jon Olinder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Albin Lindén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Martin Annborn
- Department of Clinical Sciences, Sections of Anesthesiology and Intensive Care, Lund University, Lund, Sweden
- Department of Anesthesiology and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Rydén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci 2024; 25:3745. [PMID: 38612557 PMCID: PMC11012052 DOI: 10.3390/ijms25073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
10
|
Kaur G, Kaur R, Sumanpreet, Kaur M. Association of COVID with Mycosis in General. Infect Disord Drug Targets 2024; 24:e190124225866. [PMID: 38251692 DOI: 10.2174/0118715265266815231130063931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 is a respiratory disease which created havoc worldwide, was accompanied by another peculiar, otherwise rare, secondary fungal infection Mucormycosis which was observed at exceptionally high incidence in India during the second wave of COVID-19. The article explores possible links between the two infectious diseases to understand a higher-than-normal occurrence of Mucormycosis in COVID-19 patients. Coronavirus enters the patients through ACE-2 and many other receptors like- NRP-1, TfR, CD-126, and CD-26. Virus bind to cells possessing these receptors and affect their proper functioning, disturbing homeostatic metabolism and resulting in conditions like hyperglycemia, Diabetic Ketoacidosis (DKA), low serum pH, iron overload, anemia, hypoxia, and immunosuppression as explained in the article. All these outcomes provide a very supportive environment for the attack and spread of Mucormycosis fungi. The major receptor for Mucormycosis in humans is the GRP-78. Its expression is upregulated by coronavirus entry and by hyperferritinemia, hyperglycemia, and acidic conditions prevalent in COVID patients, thus providing an easy entry for the fungal species. Upregulation of GRP-78 furthermore damages pancreatic β-cells and intensifies hyperglycemia, showing quite a synergic relationship. Inordinate rise of Mucormycosis cases in India might be explained by facts like- India possessing a large proportion of diabetic patients, emergence of a very deadly strain of coronavirus- Delta strain, higher doses of steroids and antibodies used to treat patients against this strain, overburdened health care services, sudden much higher need of oxygen supply and use of industrial oxygen could explain the Mucormycosis outbreak observed in India during the second wave of COVID-19. OBJECTIVE The present review discusses the functional interdependence between COVID-19 and Mucormycosis and summarizes the possible synergic links between COVID and Mucormycosis. CONCLUSION The receptors and metabolic pathways affected by COVID-19 result in severe physiological conditions- hyperglycemia, DKA, anemia, iron overload, immunosuppression, and hypoxia. All these conditions not only increase the expression of GRP-78, the major receptor for entry of fungi but also play a crucial role in providing quality media for Mucormycosis fungus to establish and grow. Hence explains the fungal epidemic observed in India during the second wave of COVID-19 in India.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Sumanpreet
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Manpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| |
Collapse
|
11
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Alli AA, Desai D, Elshika A, Conrad M, Proneth B, Clapp W, Atkinson C, Segal M, Searcy LA, Denslow ND, Bolisetty S, Mehrad B, Morel L, Scindia Y. Kidney tubular epithelial cell ferroptosis links glomerular injury to tubulointerstitial pathology in lupus nephritis. Clin Immunol 2023; 248:109213. [PMID: 36566913 PMCID: PMC10810556 DOI: 10.1016/j.clim.2022.109213] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology and Aging, University of Florida, Gainesville, USA
| | - Dhruv Desai
- Department of Medicine, University of Florida, Gainesville, USA
| | - Ahmed Elshika
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum Munich, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Zentrum Munich, Germany
| | - William Clapp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| | - Carl Atkinson
- Department of Medicine, University of Florida, Gainesville, USA
| | - Mark Segal
- Department of Medicine, University of Florida, Gainesville, USA
| | - Louis A Searcy
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA
| | | | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, USA.
| |
Collapse
|
13
|
Vali SW, Lindahl PA. Low-temperature Mössbauer spectroscopy of organs from 57Fe-enriched HFE (-/-) hemochromatosis mice: an iron-dependent threshold for generating hemosiderin. J Biol Inorg Chem 2023; 28:173-185. [PMID: 36512071 PMCID: PMC9981716 DOI: 10.1007/s00775-022-01975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022]
Abstract
Hereditary hemochromatosis is an iron-overload disease most often arising from a mutation in the Homeostatic Fe regulator (HFE) gene. HFE organs become overloaded with iron which causes damage. Iron-overload is commonly detected by NMR imaging, but the spectroscopic technique is insensitive to diamagnetic iron. Here, we used Mössbauer spectroscopy to examine the iron content of liver, spleen, kidney, heart, and brain of 57Fe-enriched HFE(-/-) mice of ages 3-52 wk. Overall, the iron contents of all investigated HFE organs were similar to the same healthy organ but from an older mouse. Livers and spleens were majorly overloaded, followed by kidneys. Excess iron was generally present as ferritin. Iron-sulfur clusters and low-spin FeII hemes (combined into the central quadrupole doublet) and nonheme high-spin FeII species were also observed. Spectra of young and middle-aged HFE kidneys were dominated by the central quadrupole doublet and were largely devoid of ferritin. Collecting and comparing spectra at 5 and 60 K allowed the presence of hemosiderin, a decomposition product of ferritin, to be quantified, and it also allowed the diamagnetic central doublet to be distinguished from ferritin. Hemosiderin was observed in spleens and livers from HFE mice, and in spleens from controls, but only when iron concentrations exceeded 2-3 mM. Even in those cases, hemosiderin represented only 10-20% of the iron in the sample. NMR imaging can identify iron-overload under non-invasive room-temperature conditions, but Mössbauer spectroscopy of 57Fe-enriched mice can detect all forms of iron and perhaps allow the process of iron-overloading to be probed in greater detail.
Collapse
Affiliation(s)
- Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
| |
Collapse
|
14
|
Wu Q, Sacomboio E, Valente de Souza L, Martins R, Kitoko J, Cardoso S, Ademolue TW, Paixão T, Lehtimäki J, Figueiredo A, Norden C, Tharaux PL, Weiss G, Wang F, Ramos S, Soares MP. Renal control of life-threatening malarial anemia. Cell Rep 2023; 42:112057. [PMID: 36735532 DOI: 10.1016/j.celrep.2023.112057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Iron recycling prevents the development of anemia under homeostatic conditions. Whether iron recycling was co-opted as a defense strategy to prevent the development of anemia in response to infection is unclear. We find that in severe Plasmodium falciparum malaria, the onset of life-threatening anemia is associated with acute kidney injury (AKI), irrespective of parasite load. Using a well-established experimental rodent model of malaria anemia, we identify a transcriptional response that endows renal proximal tubule epithelial cells (RPTECs) with the capacity to store and recycle iron during P. chabaudi chabaudi (Pcc) infection. This response encompasses the induction of ferroportin 1/SLC40A1, which exports iron from RPTECs and counteracts AKI while supporting compensatory erythropoiesis and preventing the onset of life-threatening malarial anemia. Iron recycling by myeloid cells is dispensable to this protective response, suggesting that RPTECs provide an iron-recycling salvage pathway that prevents the pathogenesis of life-threatening malarial anemia.
Collapse
Affiliation(s)
- Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jamil Kitoko
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Caren Norden
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Center (PARCC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris Cité, Paris, France
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
15
|
Proficient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases 2022; 11:diseases11010008. [PMID: 36648873 PMCID: PMC9844481 DOI: 10.3390/diseases11010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
The definition of acute kidney injury (AKI), despite improvements in criteria, continues to be based on the level of serum creatinine and urinary output that do not specifically indicate tubular function or injury, or glomerular function or injury that is not significant enough to warrant acute hospitalization of the patient. Finding novel biomarkers of AKI has become a major focus nowadays in nephrology to overcome the further complications of end stage renal disease (ESRD). Many compounds, such as KIM 1, IL 18, NGAL, uromodulin, calprotectin, vanin 1, galactin 3, platelet-derived growth factor (PDGF), urinary Na+/H+ exchanger isoform 3 (NHE3), retinol binding protein (RBP) and Cystatin C, are released from the renal tubules and thus any alterations in tubular function can be detected by measuring these parameters in urine. Additionally, glomerular injury can be detected by measuring immunoglobulin G, nephrin, podocalyxin, podocin, transferrin, netrin-1, pyruvate kinase M2, etc. in urine. These novel biomarkers will be useful for timing the initial insult and assessing the duration of AKI. According to available research, these biomarkers could be applied to assess the onset of AKI, distinguishing between kidney injury and dysfunction, directing the management of AKI, and enhancing disease diagnosis. Therefore, we intend to present recent developments in our understanding of significant biomarkers implicated in various aspects of renal damage. Numerous biomarkers are implicated in various pathophysiological processes that follow renal injury, and can improve prognosis and risk classification.
Collapse
|
16
|
Aggarwal A, Dinda AK, Mukhopadhyay CK. Effect of Cisplatin on Renal Iron Homeostasis Components: Implication in Nephropathy. ACS OMEGA 2022; 7:27804-27817. [PMID: 35990481 PMCID: PMC9386824 DOI: 10.1021/acsomega.1c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin is an important chemotherapeutic drug for the treatment of solid tumors but often causes nephropathy as part of the off-target toxicity. Iron accumulation and related damage were implicated in cisplatin-induced kidney injury. However, the role of cisplatin in the renal iron sensing mechanism and its target genes responsible for iron uptake, storage, and release have not been investigated. Cellular iron homeostasis is controlled by the interaction of iron regulatory proteins (IRP1 and IRP2) and iron-responsive elements (IREs) present in the untranslated regions of iron transport and storage components. Here, we report that cisplatin does not influence the expressions of IRP targets such as transferrin receptor-1 (TfR1), divalent metal transporter-1 (DMT1), and ferroportin in renal cells despite the increased heme oxygenase-1 (HO-1) level. Ferritin subunits (Ft-H and Ft-L) are elevated in different magnitudes due to the increased mRNA expression. Intriguingly, a higher expression of Ft-L mRNA is detected than that of Ft-H mRNA. The inability of cisplatin in altering the IRE-IRP interaction is confirmed by examining IRE-containing luciferase activity, RNA electrophoretic mobility shift assay, and activation of IRPs. The labile iron pool is depleted but reversed by silencing of either Ft-H or Ft-L, suggesting increased iron storage by ferritin. Silencing of Ft-H or Ft-L promotes cell death, suggesting that ferritin acts to protect the renal cells from cisplatin-mediated toxicity. A differential increase of transcripts and equivalent increase of proteins of Ft-H and Ft-L and unaltered TfR1 and DMT1 transcripts are found in the kidneys of cisplatin-treated rats along with iron accumulation. Our results reveal that cisplatin does not influence the IRE-IRP interaction despite alteration of the cellular iron pool in renal cells. This insensitivity of the IRE-IRP system may be implicated in the accumulation of iron to contribute to cisplatin-induced nephropathy.
Collapse
Affiliation(s)
- Ayushi Aggarwal
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Amit K. Dinda
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
17
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
18
|
In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. J Biol Chem 2022; 298:101823. [PMID: 35283192 PMCID: PMC9052147 DOI: 10.1016/j.jbc.2022.101823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Collapse
|
19
|
Kidney tubule iron loading in experimental focal segmental glomerulosclerosis. Sci Rep 2022; 12:1199. [PMID: 35075227 PMCID: PMC8786831 DOI: 10.1038/s41598-022-05261-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney iron deposition may play a role in the progression of tubulointerstitial injury during chronic kidney disease. Here, we studied the molecular mechanisms of kidney iron loading in experimental focal segmental glomerulosclerosis (FSGS) and investigated the effect of iron-reducing interventions on disease progression. Thy-1.1 mice were injected with anti-Thy-1.1 monoclonal antibody (mAb) to induce proteinuria. Urine, blood and tissue were collected at day (D)1, D5, D8, D15 and D22 after mAb injection. Thy-1.1 mice were subjected to captopril (CA), iron-deficient (ID) diet or iron chelation (deferoxamine; DFO). MAb injection resulted in significant albuminuria at all time points (p < 0.01). Kidney iron loading, predominantly in distal tubules, increased in time, along with urinary kidney injury molecule-1 and 24p3 concentration, as well as kidney mRNA expression of Interleukin-6 (Il-6) and Heme oxygenase-1 (Ho-1). Treatment with CA, ID diet or DFO significantly reduced kidney iron deposition at D8 and D22 (p < 0.001) and fibrosis at D22 (p < 0.05), but not kidney Il-6. ID treatment increased kidney Ho-1 (p < 0.001). In conclusion, kidney iron accumulation coincides with progression of tubulointerstitial injury in this model of FSGS. Reduction of iron loading halts disease progression. However, targeted approaches to prevent excessive kidney iron loading are warranted to maintain the delicate systemic and cellular iron balance.
Collapse
|
20
|
Hamada Y, Hirano E, Sugimoto K, Hanada K, Kaku T, Manda N, Tsuchida K. A farewell to phlebotomy-use of placenta-derived drugs Laennec and Porcine for improving hereditary hemochromatosis without phlebotomy: a case report. J Med Case Rep 2022; 16:26. [PMID: 35065677 PMCID: PMC8784004 DOI: 10.1186/s13256-021-03230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human hepcidin, produced by hepatocytes, regulates intestinal iron absorption, iron recycling by macrophages, and iron release from hepatic storage. Recent studies indicate that hepcidin deficiency is the underlying cause of the most known form of hereditary hemochromatosis. CASE PRESENTATION A 44-year-old Asian man who developed type 2 diabetes mellitus had elevated serum ferritin levels (10,191 ng/mL). Liver biopsy revealed remarkable iron deposition in the hepatocytes and relatively advanced fibrosis (F3). Chromosomal analysis confirmed the presence of transferrin receptor type 2 mutations (c.1100T>G, c.2008_9delAC, hereditary hemochromatosis type 3 analyzed by Kawabata). The patient received intravenous infusions of Laennec (672 mg/day, three times/week) or oral administration with Porcine (3.87 g/day) for 84 months as an alternative to repeated phlebotomy. At the end of the treatment period, serum ferritin level decreased to 428.4 ng/mL (below the baseline level of 536.8 ng/mL). Hemoglobin A1c levels also improved after treatment with the same or lower dose of insulin (8.8% before versus 6.8% after). Plural liver biopsies revealed remarkable improvements in the grade of iron deposition and fibrosis (F3 before versus F1 after) of the liver tissue. CONCLUSION The discovery of hepcidin and its role in iron metabolism could lead to novel therapies for hereditary hemochromatosis. Laennec (parenteral) and Porcine (oral), which act as hepcidin inducers, actually improved iron overload in this hereditary hemochromatosis patient, without utilizing sequential phlebotomy. This suggests the possibility of not only improving the prognosis of hereditary hemochromatosis (types 1, 2, and 3) but also ameliorating complications, such as type 2 diabetes, liver fibrosis, and hypogonadism. Laennec and Porcine can completely replace continuous venesection in patients with venesection and may improve other iron-overloading disorders caused by hepcidin deficiency.
Collapse
Affiliation(s)
- Yuki Hamada
- Hamada Clinic for Gastroenterology and Hepatology, Sapporo, Japan
| | - Eiichi Hirano
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, Fukuoka 839-0864 Japan
| | - Koji Sugimoto
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, Fukuoka 839-0864 Japan
| | | | | | | | | |
Collapse
|
21
|
Iron Inhibits the Translation and Activity of the Renal Epithelial Sodium Channel. BIOLOGY 2022; 11:biology11010123. [PMID: 35053120 PMCID: PMC8772986 DOI: 10.3390/biology11010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Hypertension is associated with an increased renal expression and activity of the epithelial sodium channel (ENaC) and iron deficiency. Distal tubules absorb iron, causing perturbations that may influence local responses. In this observational study, we investigated the relationship between iron content and ENaC expression and activity using two cell lines and hepcidin knockout mice (a murine model of iron overload). We found that iron did not transcriptionally regulate ENaC in hepcidin knockout mice or in vitro in collecting duct cells. However, the renal tubules of hepcidin knockout mice have a lower expression of ENaC protein. ENaC activity in cultured Xenopus 2F3 cells and mpkCCD cells was inhibited by iron, which could be reversed by iron chelation. Thus, our novel findings implicate iron as a regulator of ENaC protein and its activity.
Collapse
|
22
|
Votava JA, Reese SR, Deck KM, Nizzi CP, Anderson SA, Djamali A, Eisenstein RS. Dysregulation of the sensory and regulatory pathways controlling cellular iron metabolism in unilateral obstructive nephropathy. Am J Physiol Renal Physiol 2022; 322:F89-F103. [PMID: 34843656 PMCID: PMC8742730 DOI: 10.1152/ajprenal.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease involves disturbances in iron metabolism including anemia caused by insufficient erythropoietin (EPO) production. However, underlying mechanisms responsible for the dysregulation of cellular iron metabolism are incompletely defined. Using the unilateral ureteral obstruction (UUO) model in Irp1+/+ and Irp1-/- mice, we asked if iron regulatory proteins (IRPs), the central regulators of cellular iron metabolism and suppressors of EPO production, contribute to the etiology of anemia in kidney failure. We identified a significant reduction in IRP protein level and RNA binding activity that associates with a loss of the iron uptake protein transferrin receptor 1 (TfR1), increased expression of the iron storage protein subunits H- and L-ferritin, and a low but overall variable level of stainable iron in the obstructed kidney. This reduction in IRP RNA binding activity and ferritin RNA levels suggests the concomitant rise in ferritin expression and iron content in kidney failure is IRP dependent. In contrast, the reduction in the Epo mRNA level in the obstructed kidney was not rescued by genetic ablation of IRP1, suggesting disruption of normal hypoxia-inducible factor (HIF)-2α regulation. Furthermore, reduced expression of some HIF-α target genes in UUO occurred in the face of increased expression of HIF-α proteins and prolyl hydroxylases 2 and 1, the latter of which is not known to be HIF-α mediated. Our results suggest that the IRP system drives changes in cellular iron metabolism that are associated with kidney failure in UUO but that the impact of IRPs on EPO production is overridden by disrupted hypoxia signaling.NEW & NOTEWORTHY This study demonstrates that iron metabolism and hypoxia signaling are dysregulated in unilateral obstructive nephropathy. Expression of iron regulatory proteins (IRPs), central regulators of cellular iron metabolism, and the iron uptake (transferrin receptor 1) and storage (ferritins) proteins they target is strongly altered. This suggests a role of IRPs in previously observed changes in iron metabolism in progressive renal disease. Hypoxia signaling is disrupted and appeared to dominate the action of IRP1 in controlling erythropoietin expression.
Collapse
Affiliation(s)
- James A Votava
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shannon R Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathryn M Deck
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christopher P Nizzi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sheila A Anderson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
23
|
Greenan-Barrett J, Doolan G, Shah D, Virdee S, Robinson GA, Choida V, Gak N, de Gruijter N, Rosser E, Al-Obaidi M, Leandro M, Zandi MS, Pepper RJ, Salama A, Jury EC, Ciurtin C. Biomarkers Associated with Organ-Specific Involvement in Juvenile Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:7619. [PMID: 34299237 PMCID: PMC8306911 DOI: 10.3390/ijms22147619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is characterised by onset before 18 years of age and more severe disease phenotype, increased morbidity and mortality compared to adult-onset SLE. Management strategies in JSLE rely heavily on evidence derived from adult-onset SLE studies; therefore, identifying biomarkers associated with the disease pathogenesis and reflecting particularities of JSLE clinical phenotype holds promise for better patient management and improved outcomes. This narrative review summarises the evidence related to various traditional and novel biomarkers that have shown a promising role in identifying and predicting specific organ involvement in JSLE and appraises the evidence regarding their clinical utility, focusing in particular on renal biomarkers, while also emphasising the research into cardiovascular, haematological, neurological, skin and joint disease-related JSLE biomarkers, as well as genetic biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- James Greenan-Barrett
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Georgia Doolan
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Devina Shah
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Simrun Virdee
- Department of Ophthalmology, Royal Free Hospital, London NW3 2QG, UK;
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Varvara Choida
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Nataliya Gak
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| | - Nina de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Elizabeth Rosser
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Muthana Al-Obaidi
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London WC1N 3JH, UK;
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria Leandro
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Michael S. Zandi
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK;
| | - Ruth J. Pepper
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Elizabeth C. Jury
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| |
Collapse
|
24
|
Mohammad G, Matakidou A, Robbins PA, Lakhal-Littleton S. The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney Int 2021; 100:559-569. [PMID: 33991530 PMCID: PMC8456337 DOI: 10.1016/j.kint.2021.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
The hepcidin/ferroportin axis controls systemic iron homeostasis by regulating iron acquisition from the duodenum and reticuloendothelial system, respective sites of iron absorption and recycling. Ferroportin is also abundant in the kidney, where it has been implicated in tubular iron reabsorption. However, it remains unknown whether endogenous hepcidin regulates ferroportin-mediated iron reabsorption under physiological conditions, and whether such regulation is important for kidney and/or systemic iron homeostasis. To address these questions, we generated a novel mouse model with an inducible kidney-tubule specific knock-in of fpnC326Y, which encodes a hepcidin-resistant ferroportin termed FPNC326Y. Under conditions of normal iron availability, female mice harboring this allele had consistently decreased kidney iron but only transiently increased systemic iron indices. Under conditions of excess iron availability, male and female mice harboring this allele had milder kidney iron overload, but greater systemic iron overload relative to controls. Additionally, despite comparable systemic iron overload, kidney iron overload occurred in wild type mice fed an iron-loaded diet but not in hemochromatosis mice harboring a ubiquitous knock-in of fpnC326Y. Thus, our study demonstrates that endogenous hepcidin controls ferroportin-mediated tubular iron reabsorption under physiological conditions. It also shows that such control is important for both kidney and systemic iron homeostasis in the context of iron overload.
Collapse
Affiliation(s)
- Goran Mohammad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Athena Matakidou
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
25
|
Wlazlo E, Mehrad B, Morel L, Scindia Y. Iron Metabolism: An Under Investigated Driver of Renal Pathology in Lupus Nephritis. Front Med (Lausanne) 2021; 8:643686. [PMID: 33912577 PMCID: PMC8071941 DOI: 10.3389/fmed.2021.643686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Nephritis is a common manifestation of systemic lupus erythematosus, a condition associated with inflammation and iron imbalance. Renal tubules are the work horse of the nephron. They contain a large number of mitochondria that require iron for oxidative phosphorylation, and a tight control of intracellular iron prevents excessive generation of reactive oxygen species. Iron supply to the kidney is dependent on systemic iron availability, which is regulated by the hepcidin-ferroportin axis. Most of the filtered plasma iron is reabsorbed in proximal tubules, a process that is controlled in part by iron regulatory proteins. This review summarizes tubulointerstitial injury in lupus nephritis and current understanding of how renal tubular cells regulate intracellular iron levels, highlighting the role of iron imbalance in the proximal tubules as a driver of tubulointerstitial injury in lupus nephritis. We propose a model based on the dynamic ability of iron to catalyze reactive oxygen species, which can lead to an accumulation of lipid hydroperoxides in proximal tubular epithelial cells. These iron-catalyzed oxidative species can also accentuate protein and autoantibody-induced inflammatory transcription factors leading to matrix, cytokine/chemokine production and immune cell infiltration. This could potentially explain the interplay between increased glomerular permeability and the ensuing tubular injury, tubulointerstitial inflammation and progression to renal failure in LN, and open new avenues of research to develop novel therapies targeting iron metabolism.
Collapse
Affiliation(s)
- Ewa Wlazlo
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, United States.,Department of Pathology, University of Florida, Gainesville, FL, United States.,Division of Nephrology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Brandis JEP, Kihn KC, Taraban MB, Schnorr J, Confer AM, Batelu S, Sun D, Rodriguez JD, Jiang W, Goldberg DP, Langguth P, Stemmler TL, Yu YB, Kane MA, Polli JE, Michel SLJ. Evaluation of the Physicochemical Properties of the Iron Nanoparticle Drug Products: Brand and Generic Sodium Ferric Gluconate. Mol Pharm 2021; 18:1544-1557. [PMID: 33621099 DOI: 10.1021/acs.molpharmaceut.0c00922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.
Collapse
Affiliation(s)
- Joel E P Brandis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Marc B Taraban
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Julia Schnorr
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Alex M Confer
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jason D Rodriguez
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO 20903, United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
27
|
Denton CC, Detterich JA, Coates TD, Wood JC. Kidney iron deposition by R2* is associated with haemolysis and urinary iron. Br J Haematol 2020; 193:633-636. [PMID: 33216350 DOI: 10.1111/bjh.17085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/03/2023]
Abstract
Kidney iron deposition measured by R2* (magnetic resonance imaging) MRI is posited to result from tubular reabsorption of filtered haemoglobin due to intravascular haemolysis. In chronically transfused sickle cell disease (SCD), R2* is elevated and positively correlated with lactate dehydrogenase (LDH). To account for contributions to renal iron from systemic iron overload, we evaluated kidney R2*, urinary iron and haemolysis markers in 62 non-transfused SCD patients. On multivariate analysis, kidney R2* was associated with urinary iron and LDH (R2 = 0·55, P < 0·0001). Our study confirms that kidney R2* is associated with intravascular haemolysis and raises important questions regarding the role of iron in SCD nephropathy.
Collapse
Affiliation(s)
- Christopher C Denton
- Department of Pediatrics, Divisions of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon A Detterich
- Department of Pediatrics, Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas D Coates
- Department of Pediatrics, Divisions of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John C Wood
- Department of Pediatrics, Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Dheir H, Sipahi S, Yaylaci S, Genc AC, Genc FT, Genc AB, Guçlu E, Muratdagi G, Toptan H, Karabay O. Is the COVID-19 disease associated with de novo nephritic syndrome? ACTA ACUST UNITED AC 2020; 66:1258-1263. [PMID: 33027455 DOI: 10.1590/1806-9282.66.9.1258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION This study aims to determine the incidence of de novo nephritic syndrome (NS) in COVID-19 patients and identify its associated factors. METHODS All ward patients with COVID-19 pneumonia were investigated. After determining the inclusion and exclusion criteria, the study population was identified. The urine dipstick test and urine protein creatinine ratio (UPCR) measurements were performed. Patients with de novo NS findings, nasopharyngeal swab, and urine RT-PCR tests were performed simultaneously. RESULTS This descriptive cross-sectional study was conducted with 21 patients with COVID-19. The mean age of the patients was 42.2±8.8 years, and 71.4% of them were male. The mean duration of follow-up was 28.4±9.3 days. The urine RT-PCR test was positive in one patient (4.8%). Improvements were observed in hematuria by 71.4%, and proteinuria by 85.7% at the end of the follow-up. A significant decrease in the measured UPCR was found in comparison to the baseline(P=0.000). Also, improvements were recorded in the complete blood counts, inflammatory parameters, ferritin, and coagulation tests, compared to the baseline. There was a positive correlation between baseline UPCR and ferritin, and a negative correlation between baseline UPCR and sodium values. CONCLUSION COVID-19-induced de novo nephritic syndrome may occur mainly due to tubulointerstitial involvement and often results in spontaneous remission. However, why these findings were not present in all patients who had no comorbidities is not clear.
Collapse
Affiliation(s)
- Hamad Dheir
- Sakarya University Faculty of Medicine, Division of Nephrology, Sakarya, Turkey
| | - Savas Sipahi
- Sakarya University Faculty of Medicine, Division of Nephrology, Sakarya, Turkey
| | - Selcuk Yaylaci
- Sakarya University Faculty of Medicine, Department of Internal Medicine, Sakarya, Turkey
| | - Ahmed Cihad Genc
- Sakarya University Faculty of Medicine, Department of Internal Medicine, Sakarya, Turkey
| | - Fevziye Turkoglu Genc
- Sakarya University Faculty of Medicine, Department of Internal Medicine, Sakarya, Turkey
| | - Ahmed Bilal Genc
- Sakarya University Faculty of Medicine, Department of Internal Medicine, Sakarya, Turkey
| | - Ertugrul Guçlu
- Sakarya University Faculty of Medicine, Department of Infection Diseases, Sakarya, Turkey
| | - Gurkan Muratdagi
- Sakarya University Faculty of Medicine, Department of Family Medicine, Sakarya, Turkey
| | - Hande Toptan
- Sakarya University Faculty of Medicine, Department of Microbiology, Sakarya, Turkey
| | - Oguz Karabay
- Sakarya University Faculty of Medicine, Department of Infection Diseases, Sakarya, Turkey
| |
Collapse
|
29
|
Theut LR, Dsouza DL, Grove RC, Boesen EI. Evidence of Renal Iron Accumulation in a Male Mouse Model of Lupus. Front Med (Lausanne) 2020; 7:516. [PMID: 33015091 PMCID: PMC7506121 DOI: 10.3389/fmed.2020.00516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Lupus nephritis represents a common and serious complication of the autoimmune disease Systemic Lupus Erythematosus (SLE). Clinical studies suggest that several proteins related to iron metabolism, including transferrin, serve as urinary biomarkers of lupus nephritis. We previously reported that in female NZBWF1 mice, a commonly used mouse model of SLE with a female sex bias, increased urinary transferrin excretion and renal iron accumulation occur around the onset of albuminuria. The current study investigated whether similar findings occur in male mice of a different mouse model of SLE, the MRL/lpr mouse. Two different cohorts were studied: MRL/lpr mice at an early, pre-albuminuric age (8 weeks), and after developing albuminuria (>100 mg/dL, confirmed by ELISA); age-matched MRL/MpJ control strain mice served for comparison. Urinary transferrin excretion was dramatically increased in the older, albuminuric MRL/lpr mice compared to the age-matched MRL/MpJ (P < 0.05), but there was no significant difference between strains at 8 weeks of age. Similarly, there were no significant differences between strains in renal cortical or outer medullary non-heme iron concentrations at 8 weeks. In the older, albuminuric MRL/lpr mice, renal cortical and outer medullary non-heme iron concentrations were significantly increased compared with age-matched MRL/MpJ mice, as was the expression of the iron storage protein ferritin (P < 0.01). Together, these data show that increased urinary transferrin excretion and renal tissue iron accumulation also occurs in albuminuric male MRL/lpr mice, suggesting that renal iron accumulation may be a feature of multiple mouse models of SLE.
Collapse
Affiliation(s)
- Lindsey R Theut
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Del L Dsouza
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan C Grove
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
30
|
Shu J, Hu Y, Yu X, Chen J, Xu W, Pan J. Elevated serum iron level is a predictor of prognosis in ICU patients with acute kidney injury. BMC Nephrol 2020; 21:303. [PMID: 32711469 PMCID: PMC7382811 DOI: 10.1186/s12882-020-01965-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulation of iron is associated with oxidative stress, inflammation, and regulated cell death processes that contribute to the development of acute kidney injury (AKI). We aimed to investigate the association between serum iron levels and prognosis in intensive care unit (ICU) patients with AKI. METHODS A total of 483 patients with AKI defined as per the Kidney Disease: Improving Global Guidelines were included in this retrospective study. The data was extracted from the single-centre Medical Information Mart for Intensive Care III database. AKI patients with serum iron parameters measured upon ICU admission were included and divided into two groups (low group and high group). The prognostic value of serum iron was analysed using univariate and multivariate Cox regression analysis. RESULTS The optimal cut-off value for serum iron was calculated to be 60 μg/dl. Univariable Cox regression analysis showed that serum iron levels were significantly correlated with prognosis of AKI patients. After adjusting for possible confounding variables, serum iron levels higher than 60 μg/dl were associated with increases in 28-day (hazard [HR] 1.832; P < 0.001) and 90-day (HR 1.741; P < 0.001) mortality, as per multivariable Cox regression analysis. CONCLUSIONS High serum iron levels were associated with increased short- and long-term mortality in ICU patients with AKI. Serum iron levels measured upon admission may be used for predicting prognosis in AKI patients.
Collapse
Affiliation(s)
- Jie Shu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yufeng Hu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xueshu Yu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jiaxiu Chen
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wenwei Xu
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jingye Pan
- Department of Intensive Care Unit, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
31
|
Liyanage PY, Zhou Y, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Vanni S, Graham RM, Leblanc RM. Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood-brain barrier via carbon nitride dots. NANOSCALE 2020; 12:7927-7938. [PMID: 32232249 DOI: 10.1039/d0nr01647k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pediatric glioblastomas are known to be one of the most dangerous and life-threatening cancers among many others regardless of the low number of cases reported. The major obstacles in the treatment of these tumors can be identified as the lack of prognosis data and the therapeutic requirement to be able to cross the blood-brain barrier (BBB). Due to this lack of data and techniques, pediatric patients could face drastic side effects over a long-time span even after survival. Therefore, in this study, the capability of non-toxic carbon nitride dots (CNDs) to selectively target pediatric glioblastoma cells was studied in vitro. Furthermore, the nanocarrier capability and efficiency of CNDs were also investigated through conjugation of a chemotherapeutic agent and transferrin (Tf) protein. Gemcitabine (GM) was introduced into the system as a chemotherapeutic agent, which has never been successfully used for the treatment of any central nervous system (CNS) cancer. More than 95% of selective damage of SJGBM2 glioma cells was observed at 1 μM of CN-GM conjugate with almost 100% viability of non-cancerous HEK293 cells, although this ability was diminished at lower concentrations. However, further conjugation of Tf to obtain CN-GM-Tf allowed the achievement of selective targeting and prominent anti-cancer activity at a 100-fold lower concentration of 10 nM. Furthermore, both conjugates were capable of effectively damaging several other brain tumor cells, which were not well responsive towards the single treatment of GM. The capability of BBB penetration of the conjugates was observed using a zebrafish model, which confirms the CNDs' competence as an excellent nanocarrier to the CNS.
Collapse
Affiliation(s)
- Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|
33
|
Dos Santos Rodrigues B, Arora S, Kanekiyo T, Singh J. Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Brain Res 2020; 1734:146738. [PMID: 32081534 DOI: 10.1016/j.brainres.2020.146738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Effective transport of therapeutic nucleic acid to brain has been a challenge for the success of gene therapy for treating brain diseases. In this study, we proposed liposomal nanoparticles modified with brain targeting ligandsfor active brain targeting with enhanced BBB permeation and delivery of genes to brain. We targeted transferrin and nicotinic acetylcholine receptors by conjugating transferrin (Tf) and rabies virus glycoprotein (RVG) peptide to surface of liposomes. Liposomal formulations showed homogeneous particle size and ability to protect plasmid DNA against enzymatic degradation. These nanoparticles were internalized by brain endothelial cells, astrocytes and primary neuronal cells through energy-dependent endocytosis pathways. RVG-Tf coupled liposomes showed superior ability to transfect cells compared to liposomes without surface modification or single modification. Characterization of permeability through blood brain barrier (BBB) and functionality of designed liposomes were performed using an in vitro triple co-culture BBB model. Liposome-RVG-Tf efficiently translocated across in vitro BBB model and, consecutively, transfected primary neuronal cells. Notably, brain-targeted liposomes promoted in vivo BBB permeation. These studies suggest that modifications of liposomes with brain-targeting ligands are a promising strategy for delivery of genes to brain.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
34
|
Zhao L, Zou Y, Zhang J, Zhang R, Ren H, Li L, Guo R, Zhang J, Liu F. Serum transferrin predicts end-stage Renal Disease in Type 2 Diabetes Mellitus patients. Int J Med Sci 2020; 17:2113-2124. [PMID: 32922172 PMCID: PMC7484672 DOI: 10.7150/ijms.46259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: To investigate the relationship between serum iron status and renal outcome in patients with type 2 diabetes mellitus (T2DM). Methods: Chinese patients (n=111) with T2DM and biopsy-proven diabetic nephropathy (DN) were surveyed in a longitudinal, retrospective study. Serum iron, total iron-binding capacity, ferritin, and transferrin were measured at the time of renal biopsy. Iron deposition and transferrin staining were performed with renal biopsy specimens of DN patients and potential kidney donors. End-stage renal disease (ESRD) was the end-point. ESRD was defined as an estimated glomerular filtration rate <15 mL/min/1.73 m2 or the need for chronic renal replacement therapy. Cox proportional hazard models were used to estimate the hazard ratios (HRs) for the influence of serum iron metabolism on ESRD. Results: During a median follow up of 30.9 months, 66 (59.5%) patients progressed to ESRD. After adjusting for age, sex, baseline systolic blood pressure, renal functions, hemoglobin, HbA1c, and pathological findings, lower serum transferrin concentrations were significantly associated with higher ESRD in multivariate models. Compared with patients in the highest transferrin quartile (≥1.65 g/L), patients in the lowest quartile (≤1.15 g/L) had multivariable-adjusted HR (95% confidence interval) of 7.36 (1.40-38.65) for ESRD. Moreover, tubular epithelial cells in DN exhibited a higher deposition of iron and transferrin expression compared with healthy controls. Conclusions: Low serum transferrin concentration was associated with diabetic ESRD in patients with T2DM. Free iron nephrotoxicity and poor nutritional status with accumulated iron or transferrin deposition might contribute to ESRD.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Honghong Ren
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin Li
- Division of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ruikun Guo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Yasumura S, Naito Y, Okuno K, Sawada H, Asakura M, Masuyama T, Ishihara M. Effects of Heterozygous TfR1 (Transferrin Receptor 1) Deletion in Pathogenesis of Renal Fibrosis in Mice. Hypertension 2019; 75:413-421. [PMID: 31838906 DOI: 10.1161/hypertensionaha.119.13670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Renal fibrosis is the final pathological process common for several types of end-stage renal diseases, including obstructive nephropathy and diabetic kidney disease. Substantial renal iron loads and oxidative stress have been reported to contribute to the development of renal diseases. TfR1 (transferrin receptor 1) plays a crucial role in cellular iron transport. However, there are no studies investigating TfR1 in the pathophysiology of renal fibrosis. Here, we investigate the role of TfR1 in the development of renal fibrosis. Primarily, to ascertain an association of TfR1 in the pathophysiology of renal fibrosis, we induced unilateral ureteral obstruction in wild-type (WT) and heterozygous TfR1 deleted (TfR1+/-) mice. TfR1+/- mice exhibited attenuated renal fibrosis, along with reduced renal expression of ferritin and 4-hydroxynonenal as compared with WT mice after unilateral ureteral obstruction. In addition, renal expression of TGFβ-RI (transforming growth factor-β receptor I) and Smad2, downstream signaling of TGFβ-RI was attenuated in TfR1+/- mice compared with WT mice after unilateral ureteral obstruction. Next, we investigated the role of TfR1 in the development of diabetic kidney disease. No difference was observed in blood glucose levels and urinary albumin:creatinine ratios between WT and TfR1+/- diabetic mice after streptozotocin administration. In contrast, TfR1+/- mice showed suppressed renal fibrosis, along with reduced renal expression of ferritin, 4-hydroxynonenal, TGFβ-RI, and Smad2 compared with WT mice after streptozotocin administration. These results suggest that TfR1 plays an important role in the development of renal fibrosis.
Collapse
Affiliation(s)
- Seiki Yasumura
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshiro Naito
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Keisuke Okuno
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hisashi Sawada
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masanori Asakura
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tohru Masuyama
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaharu Ishihara
- From the Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
36
|
Casanova AG, Vicente-Vicente L, Hernández-Sánchez MT, Prieto M, Rihuete MI, Ramis LM, Del Barco E, Cruz JJ, Ortiz A, Cruz-González I, Martínez-Salgado C, Pescador M, López-Hernández FJ, Morales AI. Urinary transferrin pre-emptively identifies the risk of renal damage posed by subclinical tubular alterations. Biomed Pharmacother 2019; 121:109684. [PMID: 31810121 DOI: 10.1016/j.biopha.2019.109684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/16/2019] [Indexed: 01/02/2023] Open
Abstract
Nephrotoxicity is an important limitation to the clinical use of many drugs and contrast media. Drug nephrotoxicity occurs in acute, subacute and chronic manifestations ranging from glomerular, tubular, vascular and immunological phenotypes to acute kidney injury. Pre-emptive risk assessment of drug nephrotoxicity poses an urgent need of precision medicine to optimize pharmacological therapies and interventional procedures involving nephrotoxic products in a preventive and personalized manner. Biomarkers of risk have been identified in animal models, and risk scores have been proposed, whose clinical use is abated by their reduced applicability to specific etiological models or clinical circumstances. However, our present data suggest that the urinary level of transferrin may be indicative of risk of renal damage, where risk is induced by subclinical tubular alterations regardless of etiology. In fact, urinary transferrin pre-emptively correlates with the subsequent renal damage in animal models in which risk has been induced by drugs and toxins affecting the renal tubules (i.e. cisplatin, gentamicin and uranyl nitrate); whereas transferrin shows no relation with the risk posed by a drug affecting renal hemodynamics (i.e. cyclosporine A). Our experiments also show that transferrin increases in the urine in the risk state (i.e. prior to the damage) precisely as a consequence of reduced tubular reabsorption. Finally, urinary transferrin pre-emptively identifies subpopulations of oncological and cardiac patients at risk of nephrotoxicity. In perspective, urinary transferrin might be further explored as a wider biomarker of an important mechanism of predisposition to renal damage induced by insults causing subclinical tubular alterations.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Marta Prieto
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - M Isabel Rihuete
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Medical Oncology Service, University Hospital of Salamanca, Salamanca, Spain
| | - Laura M Ramis
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Medical Oncology Service, University Hospital of Salamanca, Salamanca, Spain
| | - Elvira Del Barco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Medical Oncology Service, University Hospital of Salamanca, Salamanca, Spain
| | - Juan J Cruz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Medical Oncology Service, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Ortiz
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Cruz-González
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Cardiology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Moisés Pescador
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana I Morales
- Toxicology Unit, Department of Physiology & Pharmacology, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Valladolid, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
38
|
Robak P, Ożgo M, Lepczyński A, Herosimczyk A, Barszcz M, Taciak M, Skomiał J. Proteome changes in renal cortex and medulla induced by dietary supplementation with inulin-type fructans in growing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:1837-1847. [PMID: 31368153 DOI: 10.1111/jpn.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/29/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
The aim of the study was to evaluate the influence of dietary supplementation with inulin extract from chicory root and dried chicory root on the protein profile of the renal cortex and medulla of growing pigs. The experiment was carried out on renal cortex and medulla tissue collected from 24 50-day-old PIC x Penarlan P76 crossbred piglets (males). Animals were divided into three dietary groups (n = 8) and fed with a control diet, diet supplemented with 2% inulin extract from chicory root and a diet supplemented with 4% dried chicory root. Kidney samples were collected after 40 days of feeding, and renal cortex and medulla proteins were separated by two-dimensional electrophoresis. Protein identification was performed using MALDI-TOF mass spectrometry. The diet supplemented with 2% chicory inulin induced significant expression changes of 20 and 26 protein spots in the renal cortex and medulla respectively. Supplementation with 4% dried chicory root triggered changes in the expression of 44 and 24 proteins in the renal cortex and medulla respectively. Both forms of chicory inulin-type fructans effectively affected the expression of proteins involved in energy metabolism, heat shock proteins and other chaperones, cytoskeletal and cytoskeleton-related proteins, as well as other proteins. Additionally, changes in transferrin abundance in both experimental groups suggested the significance of chicory fructan supplementation for iron absorption and bioavailability. In conclusion, 2% inulin extract from chicory root and 4% dried chicory root exerted a similar effect on changes in renal protein expression; however, more pronounced alterations were induced by dried chicory root. Nevertheless, further studies are needed for better understanding the mechanism underlying the effect of chicory inulin-type fructans and their fermentation end products on the kidneys of growing pigs.
Collapse
Affiliation(s)
- Paulina Robak
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Jacek Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
39
|
Bednarz A, Lipiński P, Starzyński RR, Tomczyk M, Nowak W, Mucha O, Ogórek M, Pierzchała O, Jończy A, Staroń R, Śmierzchalska J, Rajfur Z, Baster Z, Józkowicz A, Lenartowicz M. Role of the kidneys in the redistribution of heme-derived iron during neonatal hemolysis in mice. Sci Rep 2019; 9:11102. [PMID: 31366967 PMCID: PMC6668426 DOI: 10.1038/s41598-019-47414-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Moderate intravascular hemolysis is a common condition in newborns. It is followed by the accumulation of bilirubin, which is a secondary product of the activity of heme oxygenase-1, an enzyme that catalyzes the breakdown of heme released from disrupted erythrocytes and taken up by hepatic macrophages. Although these cells are a major site of enzymatic heme breakdown in adults, we show here that epithelial cells of proximal tubules in the kidneys perform the functions of both heme uptake and catabolism in mouse neonates. A time-course study examining mouse pups during the neonatal period showed a gradual recovery from hemolysis, and concomitant decreases in the expression of heme-related genes and non-heme iron transporters in the proximal tubules. By adjusting the expression of iron-handling proteins in response to the disappearance of hemolysis in mouse neonates, the kidneys may play a role in the detoxification of iron and contribute to its recirculation from the primary urine to the blood.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Witold Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Robert Staroń
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552, Magdalenka, Jastrzębiec, Poland
| | - Julia Śmierzchalska
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
40
|
Abstract
Iron is required for key aspects of cellular physiology including mitochondrial function and DNA synthesis and repair. However, free iron is an aberration because of its ability to donate electrons, reduce oxygen, and generate reactive oxygen species. Iron-mediated cell injury or ferroptosis is a central player in the pathogenesis of acute kidney injury. There are several homeostatic proteins and pathways that maintain critical balance in iron homeostasis to allow iron's biologic functions yet avoid ferroptosis. Hepcidin serves as the master regulator of iron homeostasis through its ability to regulate ferroportin-mediated iron export and intracellular H-ferritin levels. Hepcidin is a protective molecule in acute kidney injury. Drugs targeting hepcidin, H-ferritin, and ferroptosis pathways hold great promise to prevent or treat kidney injury. In this review we discuss iron homeostasis under physiological and pathologic conditions and highlight its importance in acute kidney injury.
Collapse
|
41
|
Chaudhary K, Chilakala A, Ananth S, Mandala A, Veeranan-Karmegam R, Powell FL, Ganapathy V, Gnana-Prakasam JP. Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload. Am J Physiol Renal Physiol 2019; 317:F512-F517. [PMID: 31188032 DOI: 10.1152/ajprenal.00184.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes. Possible maladaptive mechanisms of organ damage by tissue iron accumulation have not been well studied. We recently reported that iron induced the retinal renin-angiotensin system (RAS) and accelerated the progression of diabetic retinopathy. However, whether iron regulates the systemic RAS is unknown. To explore if iron alters the expression of intrarenal RAS and its role in the progression of DN, we used the high Fe iron (HFE) knockout mouse, a genetic model of systemic iron overload. We found that diabetes upregulated the expression of iron regulatory proteins and augmented tissue iron accumulation in the kidneys of both type 1 and type 2 diabetic mouse models. Iron accumulation in the kidneys of HFE knockout mice was associated with increase in serum and intrarenal renin expression. Induction of diabetes in HFE knockout mice using streptozotocin caused a much higher accumulation of renal iron and accelerated the progression of nephropathy compared with diabetic wild-type mice. Treatment of diabetic mice with the iron chelator deferiprone reversed the renin upregulation and reduced kidney injury. Thus, our results establish a new link between renal iron and RAS activity. Exploring the mechanisms of iron-induced RAS activation further may have a significant therapeutic impact on hypertension and DN.
Collapse
Affiliation(s)
- Kapil Chaudhary
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Aruna Chilakala
- Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ashok Mandala
- Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | | | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jaya P Gnana-Prakasam
- Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
42
|
Hydrogen Gas Alleviates Chronic Intermittent Hypoxia-Induced Renal Injury through Reducing Iron Overload. Molecules 2019; 24:molecules24061184. [PMID: 30917568 PMCID: PMC6471060 DOI: 10.3390/molecules24061184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Iron-induced oxidative stress has been found to be a central player in the pathogenesis of kidney injury. Recent studies have indicated H2 can be used as a novel antioxidant to protect cells. The present study was designed to investigate the protective effects of H2 against chronic intermittent hypoxia (CIH)-induced renal injury and its correlation mechanism involved in iron metabolism. We found that CIH-induced renal iron overloaded along with increased apoptosis and oxidative stress. Iron accumulates mainly occurred in the proximal tubule epithelial cells of rats as showed by Perl’s stain. Moreover, we found that CIH could promote renal transferrin receptor and divalent metal transporter-1 expression, inhibit ceruloplasmin expression. Renal injury, apoptosis and oxidative stress induced by CIH were strikingly attenuated in H2 treated rats. In conclusion, hydrogen may attenuate CIH-induced renal injury at least partially via inhibiting renal iron overload.
Collapse
|
43
|
Smith CP, Lee WK, Haley M, Poulsen SB, Thévenod F, Fenton RA. Proximal tubule transferrin uptake is modulated by cellular iron and mediated by apical membrane megalin-cubilin complex and transferrin receptor 1. J Biol Chem 2019; 294:7025-7036. [PMID: 30833328 PMCID: PMC6497946 DOI: 10.1074/jbc.ra118.006390] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Indexed: 01/12/2023] Open
Abstract
Receptor-mediated endocytosis is responsible for reabsorption of transferrin (Tf) in renal proximal tubules (PTs). Although the role of the megalin-cubilin receptor complex (MCRC) in this process is unequivocal, modalities independent of this complex are evident but as yet undefined. Here, using immunostaining and Tf-flux assays, FACS analysis, and fluorescence imaging, we report localization of Tf receptor 1 (TfR1), the cognate Tf receptor mediating cellular holo-Tf (hTf) acquisition, to the apical brush border of the PT, with expression gradually declining along the PT in mouse and rat kidneys. In functional studies, hTf uptake across the apical membrane of cultured PT epithelial cell (PTEC) monolayers increased in response to decreased cellular iron after desferrioxamine (DFO) treatment. We also found that apical hTf uptake under basal conditions is receptor-associated protein (RAP)-sensitive and therefore mediated by the MCRC but becomes RAP-insensitive under DFO treatment, with concomitantly decreased megalin and cubilin expression levels and increased TfR1 expression. Thus, as well as the MCRC, TfR1 mediates hTf uptake across the PT apical brush border, but in conditions of decreased cellular iron, hTf uptake is predominated by augmented apical TfR1. In conclusion, both the MCRC and TfR1 mediate hTf uptake across apical brush border membranes of PTECs and reciprocally respond to decreased cellular iron. Our findings have implications for renal health, whole-body iron homeostasis, and pathologies arising from disrupted iron balance.
Collapse
Affiliation(s)
- Craig P Smith
- From the School of Medical Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom,
| | - Wing-Kee Lee
- Physiology, Pathophysiology and Toxicology, University of Witten/Herdecke, D-58453 Witten, Germany, and
| | - Matthew Haley
- From the School of Medical Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, 8000 Denmark
| | - Frank Thévenod
- Physiology, Pathophysiology and Toxicology, University of Witten/Herdecke, D-58453 Witten, Germany, and
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, 8000 Denmark
| |
Collapse
|
44
|
Iron uptake by ZIP8 and ZIP14 in human proximal tubular epithelial cells. Biometals 2019; 32:211-226. [PMID: 30806852 PMCID: PMC6437295 DOI: 10.1007/s10534-019-00183-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
In patients with iron overload disorders, increasing number of reports of renal dysfunction and renal iron deposition support an association between increased iron exposure and renal injury. In systemic iron overload, elevated circulating levels of transferrin-bound (TBI) and non-transferrin-bound iron (NTBI) are filtered to the renal proximal tubules, where they may cause injury. However, the mechanisms of tubular iron handling remain elusive. To unravel molecular renal proximal tubular NTBI and TBI handling, human conditionally immortalized proximal tubular epithelial cells (ciPTECs) were incubated with 55Fe as NTBI and fluorescently labeled holo-transferrin as TBI. Ferrous iron importers ZIP8 and ZIP14 were localized in the ciPTEC plasma membrane. Whereas silencing of either ZIP8 or ZIP14 alone did not affect 55Fe uptake, combined silencing significantly reduced 55Fe uptake compared to control (p < 0.05). Furthermore, transferrin receptor 1 (TfR1) and ZIP14, but not ZIP8, colocalized with early endosome antigen 1 (EEA1). TfR1 and ZIP14 also colocalized with uptake of fluorescently labeled transferrin. Furthermore, ZIP14 silencing decreased 55Fe uptake after 55Fe-Transferrin exposure (p < 0.05), suggesting ZIP14 could be involved in early endosomal transport of TBI-derived iron into the cytosol. Our data suggest that human proximal tubular epithelial cells take up TBI and NTBI, where ZIP8 and ZIP14 are both involved in NTBI uptake, but ZIP14, not ZIP8, mediates TBI-derived iron uptake. This knowledge provides more insights in the mechanisms of renal iron handling and suggests that ZIP8 and ZIP14 could be potential targets for limiting renal iron reabsorption and enhancing urinary iron excretion in systemic iron overload disorders.
Collapse
|
45
|
Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, Schmidt PJ, Fleming MD, Fendler W, Harper JW, Kimmelman AC, Mancias JD. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica 2019; 104:1342-1354. [PMID: 30630985 PMCID: PMC6601094 DOI: 10.3324/haematol.2018.204123] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
Ncoa4 mediates autophagic degradation of ferritin, the cytosolic iron storage complex, to maintain intracellular iron homeostasis. Recent evidence also supports a role for Ncoa4 in systemic iron homeostasis and erythropoiesis. However, the specific contribution and temporal importance of Ncoa4-mediated ferritinophagy in regulating systemic iron homeostasis and erythropoiesis is unclear. Here, we show that Ncoa4 has a critical role in basal systemic iron homeostasis and both cell autonomous and non-autonomous roles in murine erythropoiesis. Using an inducible murine model of Ncoa4 knockout, acute systemic disruption of Ncoa4 impaired systemic iron homeostasis leading to tissue ferritin and iron accumulation, a decrease in serum iron, and anemia. Mice acutely depleted of Ncoa4 engaged the Hif2a-erythropoietin system to compensate for anemia. Mice with targeted deletion of Ncoa4 specifically in the erythroid compartment developed a pronounced anemia in the immediate postnatal stage, a mild hypochromic microcytic anemia at adult stages, and were more sensitive to hemolysis with higher requirements for the Hif2a-erythropoietin axis and extramedullary erythropoiesis during recovery. These studies demonstrate the importance of Ncoa4-mediated ferritinophagy as a regulator of systemic iron homeostasis and define the relative cell autonomous and non-autonomous contributions of Ncoa4 in supporting erythropoiesis in vivo.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian Gableske
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Quiles del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Mark P Jedrychowski
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Douglas E Biancur
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wojciech Fendler
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
46
|
Weiss A, Spektor L, A. Cohen L, Lifshitz L, Magid Gold I, Zhang DL, Truman-Rosentsvit M, Leichtmann-Bardoogo Y, Nyska A, Addadi S, Rouault TA, Meyron-Holtz EG. Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention. PLoS One 2018; 13:e0204471. [PMID: 30321179 PMCID: PMC6188744 DOI: 10.1371/journal.pone.0204471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
The exact route of iron through the kidney and its regulation during iron overload are not completely elucidated. Under physiologic conditions, non-transferrin and transferrin bound iron passes the glomerular filter and is reabsorbed through kidney epithelial cells, so that hardly any iron is found in the urine. To study the route of iron reabsorption through the kidney, we analyzed the location and regulation of iron metabolism related proteins in kidneys of mice with iron overload, elicited by iron dextran injections. Transferrin Receptor 1 was decreased as expected, following iron overload. In contrast, the multi-ligand hetero-dimeric receptor-complex megalin/cubilin, which also mediates the internalization of transferrin, was highly up-regulated. Moreover, with increasing iron, intracellular ferritin distribution shifted in renal epithelium from an apical location to a punctate distribution throughout the epithelial cells. In addition, in contrast to many other tissues, the iron exporter ferroportin was not reduced by iron overload in the kidney. Iron accumulated mainly in interstitial macrophages, and more prominently in the medulla than in the cortex. This suggests that despite the reduction of Transferrin Receptor 1, alternative pathways may effectively mediate re-absorption of iron that cycles through the kidney during parenterally induced iron-overload. The most iron consuming process of the body, erythropoiesis, is regulated by the renal erythropoietin producing cells in kidney interstitium. We propose, that the efficient re-absorption of iron by the kidney, also during iron overload enables these cells to sense systemic iron and regulate its usage based on the systemic iron state.
Collapse
Affiliation(s)
- Avital Weiss
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lior Spektor
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lyora A. Cohen
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Lifshitz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbar Magid Gold
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - De-Liang Zhang
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marianna Truman-Rosentsvit
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Leichtmann-Bardoogo
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, and Consultant in Toxicologic Pathology, Timrat, Israel
| | | | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Esther G. Meyron-Holtz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
47
|
van Raaij S, Masereeuw R, Swinkels D, van Swelm R. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicol Lett 2018; 295:179-186. [DOI: 10.1016/j.toxlet.2018.06.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023]
|
48
|
Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 2018; 8:9353. [PMID: 29921869 PMCID: PMC6008459 DOI: 10.1038/s41598-018-27107-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.
Collapse
|
49
|
Refaat B, Abdelghany AH, BaSalamah MA, El-Boshy M, Ahmad J, Idris S. Acute and Chronic Iron Overloading Differentially Modulates the Expression of Cellular Iron-homeostatic Molecules in Normal Rat Kidney. J Histochem Cytochem 2018; 66:825-839. [PMID: 29873589 DOI: 10.1369/0022155418782696] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about the renal responses to acute iron overloading. This study measured the renal tubular expression of transferrin receptor-1 (TfR1), cubilin/megalin receptors, hepcidin, ferroportin, and ferritin chains following subacute intoxication of 40 male Wistar rats with a single oral dose of ferrous iron (300 mg/kg). The animals were randomly subdivided into 4 equal subgroups at the time of necropsy (1, 2, 4, and 8 hr). The results were compared with the controls ( n=15) and with the chronic group ( n=15), which received iron for 4 weeks (75 mg/kg/day; 5 days/week). Although both toxicity models inhibited TfR1, they upregulated the cubilin/megalin receptors and hepcidin, and triggered iron deposition in tubular cells. The ferritin heavy-chain and ferroportin were downregulated in the 2-hr and 4-hr acute subgroups, whereas chronic toxicity promoted their expression, compared with controls. Moreover, the 4-hr and 8-hr subgroups had higher intracellular Fe+2 and marked cell apoptosis compared with the chronic group. In conclusion, the kidney appears to sustain iron reabsorption in both intoxication models. However, the cellular iron storage and exporter proteins were differentially expressed in both models, and their inhibition post-acute toxicity might contribute toward the intracellular accumulation of Fe+2, oxidative stress, and ferroptosis.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany Hassan Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Pathology Department, Faculty of Medicine.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences.,Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
50
|
Ferritin based bionanocages as novel biomemory device concept. Biosens Bioelectron 2018; 103:19-25. [DOI: 10.1016/j.bios.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/03/2023]
|