1
|
Satta E, Strollo F, Borgia L, Guarino G, Romano C, Masarone M, Marfella R, Gentile S. Urinary L-FABP: A Novel Biomarker for Evaluating Diabetic Nephropathy Onset and Progression. A Narrative Review. Diabetes Ther 2025; 16:1107-1124. [PMID: 40178792 PMCID: PMC12085547 DOI: 10.1007/s13300-025-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Patients with diabetes mellitus (DM) are at risk of developing diabetic nephropathy (DN), a condition whose onset and progression are linked to increased morbidity and mortality. Therefore, early recognition is crucial. Presently, this relies on the albumin excretion rate (AER) and glomerular filtration rate (GFR). Nevertheless, DN eventually affects patients with normal AER and GFR. Thus, further easy-to-handle biomarkers of DN onset/worsening are needed. Liver-type fatty acid-binding protein (L-FABP) has been associated with renal damage and could help predict/diagnose DN. We performed a literature selection to evaluate the performance of urinary excretion of such biomarker (urinary-L-FABP:uL-FABP) in predicting/diagnosing DN and its progression in diabetes. We evaluated 635 publications, 21 of which were included. Of these, 14 have cross-sectional design/arms and ten longitudinal design/arms. Cross-sectional studies showed uL-FABP to correlate with DN onset and severity in type-1 DM and type-2 DM, besides being higher than in healthy controls in the case of normoalbuminuria. Longitudinal studies showed baseline uL-FABP to predict DN onset in normoalbuminuric patients with T1DM and DN progression independently of diabetes type. The results suggest that uL-FABP is a marker of tubular damage detectable before increased albumin excretion and can represent the earliest sign of DN. Indeed, it discloses its onset and often predicts its severity in T2DM and patients with T1DM. Currently, uL-FABP can be routinely assessed and, being available as a point-of-care fast-test kit, may also become an easy-to-handle diagnostic tool for outpatients. In conclusion, uL-FABP represents a user-friendly biomarker of DN and can even predict DN progression in T2DM and T1DM over time.
Collapse
Affiliation(s)
- Ersilia Satta
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
| | - Felice Strollo
- Department of Endocrinology and Diabetes, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Borgia
- Bioethics, DISVA, Department of Life and Environmental Sciences, Biological Sciences Faculty, Marche Polytechnic University, 22, Piazza Roma, 60121, Ancona, Italy
| | - Giuseppina Guarino
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | | | - Mario Masarone
- Department of Medicine, Surgery and Odontostomatology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | - Raffaele Marfella
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Hall AM. Protein handling in kidney tubules. Nat Rev Nephrol 2025; 21:241-252. [PMID: 39762367 DOI: 10.1038/s41581-024-00914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/23/2025]
Abstract
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Yang T, Peng Y, Shao Y, Pan D, Cheng Q, Jiang Z, Qian S, Li B, Yan M, Zhu X, Liu J, Wang T, Lu Q, Yin X. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156411. [PMID: 39884075 DOI: 10.1016/j.phymed.2025.156411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Renal tubular injury was a significant pathological change of diabetic kidney disease (DKD), and the amelioration of renal tubular injury through mitochondrial function was an important treatment strategy of DKD. Our previous study had revealed that Jujuboside A (Ju A), the main active substance isolated from Semen Ziziphi Spinosae (SZS), could restore renal function of diabetic mice. However, its protective mechanism against DKD remains unclear. PURPOSE To investigate the effects and the mechanism of Ju A against DKD-associated renal tubular injury. STUDY DESIGN AND METHODS The anti-apoptotic effect of Ju A and its protection effect on mitochondria dysfunction of renal tubular epithelial cells (RTECs) were examined in high glucose (HG)-cultured HK-2 cells, and in db/db mice. Subsequently, Network Pharmacology analysis, molecular docking, luciferase assay, chromatin immunoprecipitation (ChIP), Yin Yang 1 (YY1) overexpression lentiviral vector and peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α) specific agonist ZLN005 were all used to identify the protective mechanism of Ju A towards DKD-associated mitochondrial dysfunction of RTECs. RESULTS Ju A inhibited RTECs apoptosis and ameliorated mitochondria dysfunction of RTECs of diabetic mice, and HG-cultured HK-2 cells. YY1 was the potential target of Ju A against DKD-related mitochondrial dysfunction, and the down-regulation of YY1 induced by Ju A increased PGC-1α promoter activity, leading to the restored mitochondrial function of HG-treated HK-2 cells. Renal tubule specific overexpression of YY1 intercepted the renal protective effect of Ju A on diabetic mice via blocking PGC-1α-mediated restoration of mitochondrial function of RTECs. The in-depth mechanism research revealed that the protective effect of Ju A towards DKD-associated renal tubular injury was linked to the restored mitochondrial function through YY1/PGC-1α signaling, resulting in the inhibited apoptosis of RTECs in diabetic condition via inactivating CytC-mediated Caspase9/Caspase3 signaling. CONCLUSION Ju A through the inhibition of mitochondria-dependent apoptosis alleviated DKD-associated renal tubular injury via YY1/PGC-1α signaling.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yuting Peng
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yuting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Dandan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Junjie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Urology, The affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, PR China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, PR China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
5
|
Saeedi BJ, Carr HE, Higgins PDR, Steiner CA. AXL: A novel therapeutic target in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:141-157. [PMID: 39521598 DOI: 10.1016/bs.apha.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel diseases (IBD) and their sequela (colitis-associate carcinoma and fibrostenotic complications) remain a significant clinical challenge and novel therapeutic targets are desperately needed. AXL, a receptor tyrosine kinase, has been implicated in myriad cellular functions central to the pathogenesis of IBD. These include facilitating epithelial-to-mesenchymal transition, dampening of Toll-like receptor and natural killer cell mediated immune responses, driving proliferation, and propagating fibrogenic signaling. The vast majority of preclinical research on AXL has focused on its role in cancer. As such, pharmacologic AXL inhibitors are currently in clinical trials, but the indications remain limited to malignancy. In this chapter, we summarize the current preclinical data of AXL in IBD, colitis associated carcinoma, and fibrostenotic disease, and highlight its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
| | - Hannah E Carr
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | - Calen A Steiner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Faivre A, Bugarski M, Rinaldi A, Sakhi IB, Verissimo T, Legouis D, Rutkowski JM, Correia S, Kaminska M, Dalga D, Malpetti D, Cippa PE, de Seigneux S, Hall AM. Spatiotemporal Landscape of Kidney Tubular Responses to Glomerular Proteinuria. J Am Soc Nephrol 2024; 35:854-869. [PMID: 38652545 PMCID: PMC11230716 DOI: 10.1681/asn.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Key Points Glomerular proteinuria induces large-scale changes in gene expression along the nephron. Increased protein uptake in the proximal tubule results in axial remodeling and injury. Increased protein delivery to the distal tubule causes dedifferentiation of the epithelium. Background Large increases in glomerular protein filtration induce major changes in body homeostasis and are associated with a higher risk of kidney functional decline and cardiovascular disease. We investigated how elevated protein exposure modifies the landscape of tubular function along the entire nephron, to understand the cellular changes that mediate these important clinical phenomena. Methods We conducted single-nucleus RNA sequencing, functional intravital imaging, and antibody staining to spatially map transport processes along the mouse kidney tubule. We then delineated how these were altered in a transgenic mouse model of inducible glomerular proteinuria (POD-ATTAC) at 7 and 28 days. Results Glomerular proteinuria activated large-scale and pleiotropic changes in gene expression in all major nephron sections. Extension of protein uptake from early (S1) to later (S2) parts of the proximal tubule initially triggered dramatic expansion of a hybrid S1/2 population, followed by injury and failed repair, with the cumulative effect of loss of canonical S2 functions. Proteinuria also induced acute injury in S3. Meanwhile, overflow of luminal proteins to the distal tubule caused transcriptional convergence between specialized regions and generalized dedifferentiation. Conclusions Proteinuria modulated cell signaling in tubular epithelia and caused distinct patterns of remodeling and injury in a segment-specific manner. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_05_01_ASN0000000000000357.mp3
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Imene B. Sakhi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | | | - Sara Correia
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Monika Kaminska
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Delal Dalga
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Pietro E. Cippa
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Zurich Kidney Center, Zurich, Switzerland
| |
Collapse
|
7
|
Guan M, Wu L, Cheng Y, Qi D, Chen J, Song H, Hu H, Wan Q. Defining the threshold: triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio's non-linear impact on tubular atrophy in primary membranous nephropathy. Front Endocrinol (Lausanne) 2024; 15:1322646. [PMID: 38327562 PMCID: PMC10847559 DOI: 10.3389/fendo.2024.1322646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Background Hyperlipidemia is common in primary membranous nephropathy (PMN) patients, and tubular atrophy (TA) is an unfavorable prognostic factor. However, the correlation between the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and TA is controversial. Therefore, our study aimed to investigate the association between the TG/HDL-C ratio and TA in PMN patients. Methods We conducted a cross-sectional study and collected data from 363 PMN patients at Shenzhen Second People's Hospital from January 2008 to April 2023. The primary objective was to evaluate the independent correlation between the TG/HDL-C ratio and TA using binary logistic regression model. We used a generalized additive model along with smooth curve fitting and multiple sensitivity analyses to explore the relationship between these variables. Additionally, subgroup analyses were conducted to delve deeper into the results. Results Of the 363 PMN patients, 75 had TA (20.66%). The study population had a mean age of 46.598 ± 14.462 years, with 217 (59.78%) being male. After adjusting for sex, age, BMI, hypertension, history of diabetes, smoking, alcohol consumption, UPRO, eGFR, HB, FPG, and ALB, we found that the TG/HDL-C ratio was an independent risk factor for TA in PMN patients (OR=1.29, 95% CI: 1.04, 1.61, P=0.0213). A non-linear correlation was observed between the TG/HDL-C ratio and TA, with an inflection point at 4.25. The odds ratios (OR) on the left and right sides of this inflection point were 1.56 (95% CI: 1.17, 2.07) and 0.25 (95% CI: 0.04, 1.54), respectively. Sensitivity analysis confirmed these results. Subgroup analysis showed a consistent association between the TG/HDL-C ratio and TA, implying that factors such as gender, BMI, age, UPRO, ALB, hypertension and severe nephrotic syndrome had negligible effects on the link between the TG/HDL-C ratio and TA. Conclusion Our study demonstrates a non-linear positive correlation between the TG/HDL-C ratio and the risk of TA in PMN patients, independent of other factors. Specifically, the association is more pronounced when the ratio falls below 4.25. Based on our findings, it would be advisable to decrease the TG/HDL-C ratio below the inflection point in PMN patients as part of treatment strategies.
Collapse
Affiliation(s)
- Mijie Guan
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Cheng
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Dongli Qi
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Haiying Song
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Qijun Wan
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Luo M, Zhu Z, Zhang L, Zhang S, You Z, Chen H, Rao J, Lin K, Guo Y. Predictive Value of N-Terminal Pro B-Type Natriuretic Peptide for Contrast-Induced Nephropathy Non-Recovery and Poor Outcomes Among Patients Undergoing Percutaneous Coronary Intervention. Circ J 2023; 87:258-265. [PMID: 36288935 DOI: 10.1253/circj.cj-22-0399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN) is a frequent complication in patients undergoing percutaneous coronary intervention (PCI). The degree of recovery of renal function from CIN may affect long-term prognosis. N-terminal pro B-type natriuretic peptide (NT-proBNP) is a simple but useful biomarker for predicting CIN. However, the predictive value of preprocedural NT-proBNP for CIN non-recovery and long-term outcomes in patients undergoing PCI remains unclear. METHODS AND RESULTS This study prospectively enrolled 550 patients with CIN after PCI between January 2012 and December 2018. CIN non-recovery was defined as persistent serum creatinine >25% or 0.5 mg/dL over baseline from 1 week to 12 months after PCI in patients who developed CIN. CIN non-recovery was observed in 40 (7.3%) patients. Receiver operating characteristic analysis indicated that the best NT-proBNP cut-off value for detecting CIN non-recovery was 876.1 pg/mL (area under the curve 0.768; 95% confidence interval [CI] 0.731-0.803). After adjusting for potential confounders, multivariable analysis indicated that NT-proBNP >876.1 pg/mL was an independent predictor of CIN non-recovery (odds ratio 1.94; 95% CI 1.03-3.75; P=0.0042). Kaplan-Meier curves showed higher rates of long-term mortality among patients with CIN non-recovery than those with CIN recovery (Chi-squared=14.183, log-rank P=0.0002). CONCLUSIONS Preprocedural NT-proBNP was associated with CIN non-recovery among patients undergoing PCI. The optimal cut-off value for NT-proBNP to predict CIN non-recovery was 876.1 pg/mL.
Collapse
Affiliation(s)
- Manqing Luo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Zheng Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
| | - Liwei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Sicheng Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Zhebin You
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University
| | - Hanchuan Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Jingyi Rao
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Kaiyang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases
- Fujian Heart Failure Center Alliance
| |
Collapse
|
9
|
Liu H, Feng J, Tang L. Early renal structural changes and potential biomarkers in diabetic nephropathy. Front Physiol 2022; 13:1020443. [PMID: 36425298 PMCID: PMC9679365 DOI: 10.3389/fphys.2022.1020443] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 08/10/2023] Open
Abstract
Diabetic nephropathy is one of the most serious microvascular complications of diabetes mellitus, with increasing prevalence and mortality. Currently, renal function is assessed clinically using albumin excretion rate and glomerular filtration rate. But before the appearance of micro-albumin, the glomerular structure has been severely damaged. Glomerular filtration rate based on serum creatinine is a certain underestimate of renal status. Early diagnosis of diabetic nephropathy has an important role in improving kidney function and delaying disease progression with drugs. There is an urgent need for biomarkers that can characterize the structural changes associated with the kidney. In this review, we focus on the early glomerular and tubular structural alterations, with a detailed description of the glomerular injury markers SMAD1 and Podocalyxin, and the tubular injury markers NGAL, Netrin-1, and L-FABP in the context of diabetic nephropathy. We have summarized the currently studied protein markers and performed bioprocess analysis. Also, a brief review of proteomic and scRNA-seq method in the search of diabetic nephropathy.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
11
|
Dąbkowski K, Kreft E, Sałaga-Zaleska K, Chyła G, Kuchta A, Jankowski M. Redox regulation of hemodynamics response to diadenosine tetraphosphate an agonist of P2 receptors and renal function in diet-induced hypercholesterolemic rats. Physiol Rep 2021; 9:e14888. [PMID: 34110719 PMCID: PMC8191177 DOI: 10.14814/phy2.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
Hypercholesterolemia and oxidative stress may lead to disturbances in the renal microvasculature in response to vasoactive agents, including P2 receptors (P2R) agonists. We investigated the renal microvascular response to diadenosine tetraphosphate (Ap4A), an agonist of P2R, in diet‐induced hypercholesteremic rats over 28 days, supplemented in the last 10 days with tempol (2 mM) or DL‐buthionine‐(S,R)‐sulfoximine (BSO, 20 mM) in the drinking water. Using laser Doppler flowmetry, renal blood perfusion in the cortex and medulla (CBP, MBP) was measured during the infusion of Ap4A. This induced a biphasic response in the CBP: a phase of rapid decrease was followed by one of rapid increase extended for 30 min in both the normocholesterolemic and hypercholesterolemic rats. The phase of decreased CBP was not affected by tempol or BSO in either group. Early and extended increases in CBP were prevented by tempol in the hypercholesterolemia rats, while, in the normocholesterolemic rats, only the extended increase in CBP was affected by tempol; BSO prevented extended increase in CBP in normocholesterolemic rats. MBP response is not affected by hypercholesterolemia. The hypercholesterolemic rats were characterized by increased urinary albumin and 8‐isoPGF2α excretion. Moreover, BSO increased the urinary excretion of nephrin in the hypercholesterolemic rats but, similar to tempol, did not affect the excretion of albumin in their urine. The results suggest the important role of redox balance in the extracellular nucleotide regulation of the renal vasculature and glomerular injury in hypercholesterolemia.
Collapse
Affiliation(s)
- Kamil Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Gabriela Chyła
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Predictive value of preprocedural albuminuria for contrast-induced nephropathy non-recovery in patients undergoing percutaneous coronary intervention. Int Urol Nephrol 2021; 53:2603-2610. [PMID: 33675474 PMCID: PMC8599242 DOI: 10.1007/s11255-021-02818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/13/2021] [Indexed: 11/27/2022]
Abstract
Objective The present study investigated the predictive value of albuminuria for contrast-induced nephropathy (CIN) non-recovery in patients undergoing percutaneous coronary intervention (PCI). Methods We retrospectively enrolled 550 consecutive patients inflicted with CIN after PCI and reassessing kidney function among 1 week–12 months between January 2012 and December 2018. Patients were stratified into three groups according to urine albumin: negative group (urine dipstick negative), trace group (urine dipstick trace) and positive group (urine dipstick ≥ 1 +). The primary outcomes were CIN non-recovery (a decrease of serum creatinine which remains ≥ 25% or 0.5 mg/dL over baseline at 1 week–12 months after PCI in patients inflicted with CIN). The odds ratio (OR) of CIN non-recovery was analyzed by logistic regression using the negative urine dipstick group as the reference group. Results Overall, 88 (16.0%) patients had trace urinary albumin, 74 (13.5%) patients had positive urinary albumin and 40 (7.3%) patients developed CIN non-recovery. Patients with positive urinary albumin had significantly higher incidence of CIN non-recovery [negative (3.4%), trace (11.4%) and positive (23.0%), respectively; P < 0.0001]. Multivariate analysis showed that trace and positive urinary albumin were associated with an increased risk of CIN non-recovery (trace vs negative: OR 2.88, P = 0.022; positive vs negative: OR 2.99, P = 0.021). These associations were consistent in subgroups of patients stratified by CIN non-recovery risk predictors. And CIN non-recovery was associated with an increased risk of long-term mortality during a mean follow-up period of 703 days (P < 0.001). Conclusion Preprocedural albuminuria was associated with CIN non-recovery in patients undergoing PCI.
Collapse
|
13
|
Ugarte F, Santapau D, Gallardo V, Garfias C, Yizmeyián A, Villanueva S, Sepúlveda C, Rocco J, Pasten C, Urquidi C, Cavada G, San Martin P, Cano F, Irarrázabal CE. Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:654269. [PMID: 35046888 PMCID: PMC8762324 DOI: 10.3389/fendo.2021.654269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Tubular damage has a role in Diabetic Kidney Disease (DKD). We evaluated the early tubulointerstitial damage biomarkers in type-1 Diabetes Mellitus (T1DM) pediatric participants and studied the correlation with classical DKD parameters. METHODS Thirty-four T1DM and fifteen healthy participants were enrolled. Clinical and biochemical parameters [Glomerular filtration Rate (GFR), microalbuminuria (MAU), albumin/creatinine ratio (ACR), and glycated hemoglobin A1c (HbA1c)] were evaluated. Neutrophil gelatinase-associated lipocalin (NGAL), Hypoxia-inducible Factor-1α (HIF-1α), and Nuclear Factor of Activated T-cells-5 (NFAT5) levels were studied in the supernatant (S) and the exosome-like extracellular vesicles (E) fraction from urine samples. RESULTS In the T1DM, 12% had MAU >20 mg/L, 6% ACR >30 mg/g, and 88% had eGFR >140 ml/min/1.72 m2. NGAL in the S (NGAL-S) or E (NGAL-E) fraction was not detectable in the control. The NGAL-E was more frequent (p = 0.040) and higher (p = 0.002) than NGAL-S in T1DM. The T1DM participants with positive NGAL had higher age (p = 0.03), T1DM evolution (p = 0.03), and serum creatinine (p = 0.003) than negative NGAL. The NGAL-E correlated positively with tanner stage (p = 0.0036), the median levels of HbA1c before enrollment (p = 0.045) and was independent of ACR, MAU, and HbA1c at the enrollment. NFAT5 and HIF-1α levels were not detectable in T1DM or control. CONCLUSION Urinary exosome-like extracellular vesicles could be a new source of early detection of tubular injury biomarkers of DKD in T1DM patients.
Collapse
Affiliation(s)
- Francisca Ugarte
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
- Departament of Pediatrics, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Vivian Gallardo
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Garfias
- Pediatric Endocrinology Unit, Pediatric Service, Clinica Universidad de los Andes, Santiago, Chile
| | - Anahí Yizmeyián
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Soledad Villanueva
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Carolina Sepúlveda
- Pediatric Endocrinology and Diabetes Unit, Hospital Dr. Exequiel González Cortés, Santiago, Chile
| | - Jocelyn Rocco
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
| | - Consuelo Pasten
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Cinthya Urquidi
- Department of Epidemiology and Health Studies, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gabriel Cavada
- Department of Public Health, School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela San Martin
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisco Cano
- Pediatric Nephrology Unit, Pediatric Service, Hospital Luis Calvo Mackennna, Santiago, Chile
| | - Carlos E. Irarrázabal
- Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- *Correspondence: Carlos E. Irarrázabal,
| |
Collapse
|
14
|
Feng Y, Zhong X, Tang TT, Wang C, Wang LT, Li ZL, Ni HF, Wang B, Wu M, Liu D, Liu H, Tang RN, Liu BC, Lv LL. Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease. Cell Death Dis 2020; 11:513. [PMID: 32641688 PMCID: PMC7343869 DOI: 10.1038/s41419-020-2709-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Exosomes are increasingly recognized as vehicles of intercellular communication. However, the role of exosome in maintaining cellular homeostasis under stress conditions remained unclear. Here we show that Rab27a expression was upregulated exclusively in tubular epithelial cells (TECs) during proteinuria nephropathy established by adriamycin (ADR) injection and 5/6 nephrectomy as well as in chronic kidney disease patients, leading to the increased secretion of exosomes carrying albumin. The active exosome production promoted tubule injury and inflammation in neighboring and the producing cells. Interferon regulatory factor 1 (IRF-1) was found as the transcription factor contributed to the upregulation of Rab27a. Albumin could be detected in exosome fraction and co-localized with exosome marker CD63 indicating the secretion of albumin into extracellular space by exosomes. Interestingly, inhibition of exosome release accelerated albumin degradation which reversed tubule injury with albumin overload, while lysosome suppression augmented exosome secretion and tubule inflammation. Our findings revealed that IRF-1/Rab27a mediated exosome secretion constituted a coordinated approach to lysosome degradation for albumin handling, which lead to the augment of albumin toxicity as a maladaptive response to maintain cell homeostasis. The findings may suggest a novel therapeutic strategy for proteinuric kidney disease by targeting exosome secretion.
Collapse
Affiliation(s)
- Ye Feng
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Xin Zhong
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Cui Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Li-Ting Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Hai-Feng Ni
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Min Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Dan Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
15
|
Baker C, Ahmed M, Cheng K, Arciero E, Bhave S, Natalie Ho WL, Goldstein AM, Hotta R. Hypoganglionosis in the gastric antrum causes delayed gastric emptying. Neurogastroenterol Motil 2020; 32:e13766. [PMID: 31773831 PMCID: PMC7182502 DOI: 10.1111/nmo.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enteric nervous system (ENS) abnormalities have been implicated in delayed gastric emptying but studies exploring potential treatment options are limited by the lack of an experimental animal model. We examined the ENS abnormalities in the mouse stomach associated with aging, developed a novel model of gastroparesis, and established a new approach to measure gastric emptying. METHODS A modified gastric emptying assay was developed, validated in nNOS -/- mice, and tested in mice at multiple ages. Age-related changes in ENS structure were analyzed by immunohistochemistry. Gastric aganglionosis was generated in Wnt1-iDTR mice using focal administration of diphtheria toxin (DT) into the anterior antral wall. KEY RESULTS Older mice (>5 months) exhibit hypoganglionosis in the gastric antrum and a decreased proportion of nNOS neurons as compared to younger mice (age 5-7 weeks). This was associated with a significant age-dependent decrease in liquid and solid gastric emptying. A novel model of gastric antrum hypoganglionosis was established using neural crest-specific expression of diphtheria toxin receptor. In this model, a significant reduction in liquid and solid gastric emptying is observed. CONCLUSIONS & INFERENCES Older mice exhibit delayed gastric emptying associated with hypoganglionosis and a reduction in nNOS-expressing neurons in the antrum. The causal relationship between antral hypoganglionosis and delayed gastric emptying was verified using a novel experimental model of ENS ablation. This study provides new information regarding the pathogenesis of delayed gastric emptying and provides a robust model system to study this disease and develop novel treatments.
Collapse
Affiliation(s)
- Corey Baker
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Minhal Ahmed
- Department of Bioengineering, Northeastern University, Boston MA 02115
| | - Katarina Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Wing Lam Natalie Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
16
|
Kurata A, Tachibana Y, Takahashi T, Horiba N. Novel AXL-specific inhibitor ameliorates kidney dysfunction through the inhibition of epithelial-to-mesenchymal transition of renal tubular cells. PLoS One 2020; 15:e0232055. [PMID: 32324796 PMCID: PMC7179907 DOI: 10.1371/journal.pone.0232055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023] Open
Abstract
Chronic kidney diseases affect more than 800 million people globally and remain a high unmet need. Various therapeutic targets are currently under evaluation in pre-clinical and clinical studies. Because the growth arrest specific gene 6 (Gas6)/AXL pathway has been implicated in the pathogenesis of kidney diseases, we generated a novel selective and potent AXL inhibitor, CH5451098, and we evaluated its efficacy and elucidated its mechanism in an NEP25 mouse model that follows the clinical course of glomerular nephritis. In this model, CH5451098 significantly ameliorated the excretion of urinary albumin and elevation of serum creatinine. Additionally, it also inhibited tubulointerstitial fibrosis and tubular damage. To elucidate the mechanism behind these changes, we analyzed the effect of CH5451098 against transforming growth factor β1 (TGFβ1) and Gas6, which is a ligand of AXL receptor, in NRK-52E renal tubular epithelial cells. CH5451098 inhibited epithelial-to-mesenchymal transition (EMT) caused by the synergistic effects of TGFβ1 and Gas6 in NRK-52E cells. This inhibition was also observed in NEP25 mice. Taken together, these results suggest that CH5451098 could ameliorate kidney dysfunction in glomerular nephritis by inhibiting EMT in tubular cells. These results reveal that AXL strongly contributes to the disease progression of glomerular nephritis.
Collapse
Affiliation(s)
- Atsuo Kurata
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
- * E-mail:
| | - Yukako Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tadakatsu Takahashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Naoshi Horiba
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| |
Collapse
|
17
|
Lau RWK, Al‐Rubaie A, Saini S, Wise AF, Ricardo SD. Percutaneous intrarenal transplantation of differentiated induced pluripotent stem cells into newborn mice. Anat Rec (Hoboken) 2020; 303:2603-2612. [DOI: 10.1002/ar.24371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ricky W. K. Lau
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Ali Al‐Rubaie
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Sheetal Saini
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Andrea F. Wise
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| | - Sharon D. Ricardo
- Department of Anatomy and Developmental BiologyBiomedical Discovery Institute, Monash University Clayton Victoria Australia
| |
Collapse
|
18
|
Dimuccio V, Peruzzi L, Brizzi MF, Cocchi E, Fop F, Boido A, Gili M, Gallo S, Biancone L, Camussi G, Bussolati B. Acute and chronic glomerular damage is associated with reduced CD133 expression in urinary extracellular vesicles. Am J Physiol Renal Physiol 2019; 318:F486-F495. [PMID: 31869243 DOI: 10.1152/ajprenal.00404.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles released into urine (uEVs) can represent interesting biomarkers of renal cell damage. CD133, a stem/progenitor cell marker expressed by renal progenitor cells, is highly expressed in uEVs of healthy individuals. In the present study, we evaluated the level of CD133 in the uEVs of patients with acute and chronic glomerular damage by cytofluorimetric analysis. The level of CD133+ uEVs was significantly decreased in pediatric patients with acute glomerulonephritis during the acute phase of renal damage, while it was restored after the subsequent recovery. A similar decrease was also observed in patients with chronic glomerulonephritis. Moreover, CD133+ uEVs significantly declined in patients with type 2 diabetes, used as validation group, with the lowest levels in patients with albuminuria with diabetic nephropathy. Indeed, receiver-operating characteristic curve analysis indicates the ability of CD133+ uEV values to discriminate the health condition from that of glomerular disease. In parallel, a significant decrease of CD133 in renal progenitor cells and in their derived EVs was observed in vitro after cell treatment with a combination of glucose and albumin overload, mimicking the diabetic condition. These data indicate that the level of CD133+ uEVs may represent an easily accessible marker of renal normal physiology and could provide information on the "reservoir" of regenerating cells within tubules.
Collapse
Affiliation(s)
- Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Enrico Cocchi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizio Fop
- Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alberto Boido
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Gili
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luigi Biancone
- Department of Medical Sciences, University of Turin, Turin, Italy.,Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Bhave S, Arciero E, Baker C, Ho WL, Stavely R, Goldstein AM, Hotta R. Enteric neuronal cell therapy reverses architectural changes in a novel diphtheria toxin-mediated model of colonic aganglionosis. Sci Rep 2019; 9:18756. [PMID: 31822721 PMCID: PMC6904570 DOI: 10.1038/s41598-019-55128-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of the enteric nervous system (ENS) in the distal bowel. Despite removal of the aganglionic segment, gastrointestinal (GI) problems persist. Cell therapy offers potential treatment but use of genetic models is limited by their poor survival. We have developed a novel model of aganglionosis in which enteric neural crest-derived cells (ENCDCs) express diphtheria toxin (DT) receptor. Local DT injection into the colon wall results in focal, specific, and sustained ENS ablation without altering GI transit or colonic contractility, allowing improved survival over other aganglionosis models. Focal ENS ablation leads to increased smooth muscle and mucosal thickness, and localized inflammation. Transplantation of ENCDCs into this region leads to engraftment, migration, and differentiation of enteric neurons and glial cells, with restoration of normal architecture of the colonic epithelium and muscle, reduction in inflammation, and improved survival.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey Baker
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wing Lam Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Zhu H, Liu X, Zhang C, Li Q, An X, Liu S, Wu L, Zhang B, Yuan Y, Xing C. Association of urinary acidification function with the progression of diabetic kidney disease in patients with type 2 diabetes. J Diabetes Complications 2019; 33:107419. [PMID: 31473080 DOI: 10.1016/j.jdiacomp.2019.107419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although diabetic kidney disease (DKD) has been considered as a glomerulocentric disease in the past few decades, growing evidence demonstrated that tubular damage was indispensable in its pathogenesis and progression. This study was designed to investigate the association of urinary acidification dysfunction with the progression of DKD in type 2 diabetic patients. METHODS Here the urinary acidification functions were measured from 80 participants with renal biopsy-proven DKD. The different kinds of renal tubular transportation dysfunction were analyzed, including the dysfunction of bicarbonate reabsorption, titratable acid secretion, and ammonium secretion. In addition, patients were followed up for 17 (interquartile range, 11-32) months to evaluate the effect of urinary acidification dysfunction in the progression of DKD. RESULTS The most common urinary acidification dysfunction was the disorder of ammonium secretion, accounting for 53.75%. The more proteinuria excretion and the lower glomerular filtration rate (GFR) were observed in the urinary titratable acid disorder group than the normal group, and the same results were obtained for ammonium secretion disorder. Urine titratable acid was positively correlated with eGFR whereas it was inversely correlated with proteinuria, serum creatinine, and BUN. Moreover, 24 h urine protein, serum creatinine, BUN and cystatin C increased from DKD stage II to stage IV, whereas the eGFR and urine titratable acid decreased in the same way. Furthermore, Kaplan-Meier analysis and Cox regression showed that the disorder of titratable acid was an independent risk factor for DKD progression. CONCLUSIONS The dysfunction of urinary titratable acid is a potential biomarker for the severity of proteinuria, eGFR and glomerular lesions in patients with DKD. Moreover, the titratable acid disorder is an independent risk factor of the DKD progression.
Collapse
MESH Headings
- Acidosis, Renal Tubular/complications
- Acidosis, Renal Tubular/diagnosis
- Acidosis, Renal Tubular/epidemiology
- Acidosis, Renal Tubular/etiology
- Acids/analysis
- Acids/metabolism
- Adult
- Aged
- Biomarkers/metabolism
- Biomarkers/urine
- Comorbidity
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/epidemiology
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/urine
- Disease Progression
- Female
- Glomerular Filtration Rate
- Humans
- Hydrogen-Ion Concentration
- Kidney/metabolism
- Kidney/physiopathology
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/epidemiology
- Kidney Failure, Chronic/physiopathology
- Kidney Failure, Chronic/urine
- Male
- Middle Aged
- Prognosis
- Proteinuria/epidemiology
- Proteinuria/etiology
- Proteinuria/urine
- Urine/chemistry
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xi Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Postnatal podocyte gain: Is the jury still out? Semin Cell Dev Biol 2019; 91:147-152. [DOI: 10.1016/j.semcdb.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
22
|
Silaghi CN, Ilyés T, Filip VP, Farcaș M, van Ballegooijen AJ, Crăciun AM. Vitamin K Dependent Proteins in Kidney Disease. Int J Mol Sci 2019; 20:ijms20071571. [PMID: 30934817 PMCID: PMC6479974 DOI: 10.3390/ijms20071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of developing vascular calcifications, as well as bone dynamics impairment, leading to a poor quality of life and increased mortality. Certain vitamin K dependent proteins (VKDPs) act mainly as calcification inhibitors, but their involvement in the onset and progression of CKD are not completely elucidated. This review is an update of the current state of knowledge about the relationship between CKD and four extrahepatic VKDPs: matrix Gla protein, osteocalcin, growth-arrest specific protein 6 and Gla-rich protein. Based on published literature in the last ten years, the purpose of this review is to address fundamental aspects about the link between CKD and circulating VKDPs levels as well as to raise new topics about how the interplay between molecular weight and charge could influence the modifications of circulating VKDPs at the glomerular level, or whether distinct renal etiologies have effect on VKDPs. This review is the output of a systematic literature search and may open future research avenues in this niche domain.
Collapse
Affiliation(s)
- Ciprian N Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Vladimir P Filip
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Marius Farcaș
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Adriana J van Ballegooijen
- Department of Nephrology & Epidemiology and Biostatistics, Amsterdam University Medical Center, VUmc, 1117 HV Amsterdam, The Netherlands.
| | - Alexandra M Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| |
Collapse
|
23
|
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, Dash SN, Berg M, Naams JB, Hautala LC, Nisen H, Mirtti T, Groop PH, Wähälä K, Tienari J, Lehtonen S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J 2019; 33:2858-2869. [PMID: 30321069 PMCID: PMC6338644 DOI: 10.1096/fj.201800529rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Metformin, the first-line drug to treat type 2 diabetes (T2D), inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. However, the direct target and the underlying mechanisms by which metformin increases glucose uptake in peripheral tissues remain uncharacterized. Lipid phosphatase Src homology 2 domain-containing inositol-5-phosphatase 2 (SHIP2) is upregulated in diabetic rodent models and suppresses insulin signaling by reducing Akt activation, leading to insulin resistance and diminished glucose uptake. Here, we demonstrate that metformin directly binds to and reduces the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. Metformin inhibits SHIP2 in cultured cells and in skeletal muscle and kidney of db/db mice. In SHIP2-overexpressing myotubes, metformin ameliorates reduced glucose uptake by slowing down glucose transporter 4 endocytosis. SHIP2 overexpression reduces Akt activity and enhances podocyte apoptosis, and both are restored to normal levels by metformin. SHIP2 activity is elevated in glomeruli of patients with T2D receiving nonmetformin medication, but not in patients receiving metformin, compared with people without diabetes. Furthermore, podocyte loss in kidneys of metformin-treated T2D patients is reduced compared with patients receiving nonmetformin medication. Our data unravel a novel molecular mechanism by which metformin enhances glucose uptake and acts renoprotectively by reducing SHIP2 activity.-Polianskyte-Prause, Z., Tolvanen, T. A., Lindfors, S., Dumont, V., Van, M., Wang, H., Dash, S. N., Berg, M., Naams, J.-B., Hautala, L. C., Nisen, H., Mirtti, T., Groop, P.-H., Wähälä, K., Tienari, J., Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Kidney Diseases/prevention & control
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Podocytes/cytology
- Podocytes/drug effects
- Podocytes/metabolism
- Rats
Collapse
Affiliation(s)
| | | | - Sonja Lindfors
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Vincent Dumont
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mervi Van
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hong Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mika Berg
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Laura C. Hautala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Hyvinkää, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Lee CH, Su SC, Hsu YJ, Lu CH, Hsieh CH, Hung YJ, Liu JS, Li PF, Shen PH. Plasma growth arrest-specific protein 6 expression in uremic patients with type 2 diabetes. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_21_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Ougaard ME, Jensen HE, Thuen ID, Petersen EG, Kvist PH. Inhibitors of the renin-angiotensin system ameliorates clinical and pathological aspects of experimentally induced nephrotoxic serum nephritis. Ren Fail 2018; 40:640-648. [PMID: 30403908 PMCID: PMC6225365 DOI: 10.1080/0886022x.2018.1533867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Chronic kidney disease (CKD) is a global health concern, but the current treatments only slow down the progression. Thus an improved understanding of the pathogenesis and novel treatments of CKD are needed. The nephrotoxic nephritis (NTN) model has the potential to study the pathogenesis of CKD as it resembles human CKD. The classical treatments with angiotensin II receptor blocker (ARB) or the angiotensin-converting enzyme inhibitor (ACE I) have shown a clinical effect in CKD. Methods: We characterized the disease development in the NTN model over 11 weeks by investigating functional and histopathological changes. We tested doses of 15 and 30 mg/kg/day enalapril and losartan in the NTN model in order to investigate the effect of inhibiting the renin-angiotensin-system (RAS). Results: The NTN model displayed albuminuria peaking on days 6–7, mesangial expansion (ME), renal fibrosis, inflammation and iron accumulation peaking on day 42. However, albuminuria, ME, renal fibrosis and inflammation were still significantly present on day 77, suggesting that the NTN model is useful for studying both the acute and chronic disease phases. Enalapril and losartan significantly enhanced the glomerular filtration rate (GFR) and decreased albuminuria, ME, renal fibrosis and inflammation of NTN-induced kidney disease in mice. Conclusions: This is the first study showing a comprehensive pathological description of the chronic features of the murine NTN model and that inhibiting the RAS pathway show a significant effect on functional and morphological parameters.
Collapse
Affiliation(s)
- M E Ougaard
- a Haemophilia PK & ADME , Novo Nordisk , Frederiksberg , Denmark.,b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - H E Jensen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - I D Thuen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - E G Petersen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - P H Kvist
- a Haemophilia PK & ADME , Novo Nordisk , Frederiksberg , Denmark
| |
Collapse
|
26
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
27
|
Schenk LK, Buchholz B, Henke SF, Michgehl U, Daniel C, Amann K, Kunzelmann K, Pavenstädt H. Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am J Physiol Renal Physiol 2018; 315:F1777-F1786. [PMID: 30156115 DOI: 10.1152/ajprenal.00638.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TMEM16A is a transmembrane protein from a conserved family of calcium-activated proteins that is highly expressed in the kidney. TMEM16A confers calcium-activated chloride channel activity, which is of importance for various cellular functions in secretory epithelia and involved in secretion-dependent renal cyst growth. However, its specific function in renal physiology has remained elusive so far. Therefore, we generated conditional nephron-specific TMEM16A-knockout mice and found that these animals suffered from albuminuria. Kidney histology demonstrated an intact corticomedullary differentiation and absence of cysts. Electron microscopy showed a normal slit diaphragm. However, the total number of glomeruli and total nephron count was decreased in TMEM16A-knockout animals. At the same time, glomerular diameter was increased, presumably as a result of the hyperfiltration in the remaining glomeruli. TUNEL and PCNA stainings showed increased cell death and increased proliferation. Proximal tubular cilia were intact in young animals, but the number of properly ciliated cells was decreased in older, albuminuric animals. Taken together, our data suggest that TMEM16A may be involved in ureteric bud branching and proper nephron endowment. Loss of TMEM16A resulted in reduced nephron number and, subsequently, albuminuria and tubular damage.
Collapse
Affiliation(s)
- Laura K Schenk
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Sebastian F Henke
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Ulf Michgehl
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Christoph Daniel
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Kerstin Amann
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg , Regensburg Germany
| | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW For more than a century, kidney microscopic imaging was driven by the need for greater and greater resolution. This was in part provided by the analysis of thinner tissue sections. As a result, most kidney morphometry was performed in 'two' dimensions, largely ignoring the three-dimensionality of kidney tissue and cells. Although stereological techniques address this issue, they have generally been considered laborious and expensive and thereby unattractive for routine use. RECENT FINDINGS The past 2 decades have witnessed the development of optical clearing techniques, which enables visualization of thick slices of kidney tissue and even whole kidneys. This review describes the three main optical clearing strategies (solvent-based, aqueous-based and hydrogel embedding) with their respective advantages and disadvantages. We also describe how optical clearing provides new approaches to kidney morphometrics, including general kidney morphology (i.e. identification and quantitation of atubular glomeruli), glomerular numbers and volumes, numbers of specific glomerular cells (i.e. podocytes) and cell-specific stress-related changes (i.e. foot process effacement). SUMMARY The new clearing and morphometric approaches described in this review provide a new toolbox for imaging and quantification of kidney microanatomy. These approaches will make it easier to visualize the three-dimensional microanatomy of the kidney and decrease our reliance on biased two-dimensional morphometric techniques and time-consuming stereological approaches. They will also accelerate our research of structure-function relations in the healthy and diseased kidney.
Collapse
|
29
|
Stevens M, Neal CR, Salmon AHJ, Bates DO, Harper SJ, Oltean S. Vascular Endothelial Growth Factor-A165b Restores Normal Glomerular Water Permeability in a Diphtheria-Toxin Mouse Model of Glomerular Injury. Nephron Clin Pract 2018; 139:51-62. [PMID: 29393270 DOI: 10.1159/000485664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS Genetic cell ablation using the human diphtheria toxin receptor (hDTR) is a new strategy used for analysing cellular function. Diphtheria toxin (DT) is a cytotoxic protein that leaves mouse cells relatively unaffected, but upon binding to hDTR it ultimately leads to cell death. We used a podocyte-specific hDTR expressing (Pod-DTR) mouse to assess the anti-permeability and cyto-protective effects of the splice isoform vascular endothelial growth factor (VEGF-A165b). METHODS The Pod-DTR mouse was crossed with a mouse that over-expressed VEGF-A165b specifically in the podocytes (Neph-VEGF-A165b). Wild type (WT), Pod-DTR, Neph-VEGF-A165b and Pod-DTR X Neph-VEGF-A165b mice were treated with several doses of DT (1, 5, 100, and 1,000 ng/g bodyweight). Urine was collected and the glomerular water permeability (LpA/Vi) was measured ex vivo after 14 days. Structural analysis and podocyte marker expression were also assessed. RESULTS Pod-DTR mice developed an increased glomerular LpA/Vi 14 days after administration of DT (all doses), which was prevented when the mice over-expressed VEGF-A165b. No major structural abnormalities, podocyte ablation or albuminuria was observed in Pod-DTR mice, indicating this to be a mild model of podocyte disease. However, a change in expression and localisation of nephrin within the podocytes was observed, indicating disruption of the slit diaphragm in the Pod-DTR mice. This was prevented in the Pod-DTR X Neph-VEGF-A165b mice. CONCLUSION Although only a mild model of podocyte injury, over-expression of the anti-permeability VEGF-A165b isoform in the podocytes of Pod-DTR mice had a protective effect. Therefore, this study further highlights the therapeutic potential of VEGF-A165b in glomerular disease.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher R Neal
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew H J Salmon
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Steven J Harper
- School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neurosciences, Bristol, United Kingdom.,Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Zeni L, Norden AGW, Cancarini G, Unwin RJ. A more tubulocentric view of diabetic kidney disease. J Nephrol 2017; 30:701-717. [PMID: 28840540 PMCID: PMC5698396 DOI: 10.1007/s40620-017-0423-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of Diabetes Mellitus (DM) Types 1 and 2, and prevention of end stage renal disease (ESRD) remains a major challenge. Despite its high prevalence, the pathogenesis of DN is still controversial. Initial glomerular disease manifested by hyperfiltration and loss of glomerular size and charge permselectivity may initiate a cascade of injuries, including tubulo-interstitial disease. Clinically, 'microalbuminuria' is still accepted as an early biomarker of glomerular damage, despite mounting evidence that its predictive value for DN is questionable, and findings that suggest the proximal tubule is an important link in the development of DN. The concept of 'diabetic tubulopathy' has emerged from recent studies, and its causative role in DN is supported by clinical and experimental evidence, as well as plausible pathogenetic mechanisms. This review explores the 'tubulocentric' view of DN. The recent finding that inhibition of proximal tubule (PT) glucose transport (via SGLT2) is nephro-protective in diabetic patients is discussed in relation to the tubule's potential role in DN. Studies with a tubulocentric view of DN have stimulated alternative clinical approaches to the early detection of diabetic kidney disease. There are tubular biomarkers considered as direct indicators of injury of the proximal tubule (PT), such as N-acetyl-β-D-glucosaminidase, Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1, and other functional PT biomarkers, such as Urine free Retinol-Binding Protein 4 and Cystatin C, which reflect impaired reabsorption of filtered proteins. The clinical application of these measurements to diabetic patients will be reviewed in the context of the need for better biomarkers for early DN.
Collapse
Affiliation(s)
- Letizia Zeni
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy.
| | - Anthony G W Norden
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Giovanni Cancarini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy
| | - Robert J Unwin
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Cardiovascular and Metabolic Diseases iMED ECD, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
31
|
Puelles VG, Bertram JF, Moeller MJ. Quantifying podocyte depletion: theoretical and practical considerations. Cell Tissue Res 2017; 369:229-236. [DOI: 10.1007/s00441-017-2630-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
32
|
Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 2017; 89:46-57. [PMID: 26759047 DOI: 10.1016/j.kint.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension and Georges-Köhler-Haus for Biomedical Research and Transplantation, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
33
|
Nakagawa N, Barron L, Gomez IG, Johnson BG, Roach AM, Kameoka S, Jack RM, Lupher ML, Gharib SA, Duffield JS. Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease. JCI Insight 2016; 1:e87446. [PMID: 27942582 DOI: 10.1172/jci.insight.87446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pentraxin-2 (PTX-2), also known as serum amyloid P component (SAP/APCS), is a constitutive, antiinflammatory, innate immune plasma protein whose circulating level is decreased in chronic human fibrotic diseases. Here we show that recombinant human PTX-2 (rhPTX-2) retards progression of chronic kidney disease in Col4a3 mutant mice with Alport syndrome, reducing blood markers of kidney failure, enhancing lifespan by 20%, and improving histological signs of disease. Exogenously delivered rhPTX-2 was detected in macrophages but also in tubular epithelial cells, where it counteracted macrophage activation and was cytoprotective for the epithelium. Computational analysis of genes regulated by rhPTX-2 identified the transcriptional regulator c-Jun along with its activator protein-1 (AP-1) binding partners as a central target for the function of rhPTX-2. Accordingly, PTX-2 attenuates c-Jun and AP-1 activity, and reduces expression of AP-1-dependent inflammatory genes in both monocytes and epithelium. Our studies therefore identify rhPTX-2 as a potential therapy for chronic fibrotic disease of the kidney and an important inhibitor of pathological c-Jun signaling in this setting.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Luke Barron
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Ivan G Gomez
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Bryce G Johnson
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Allie M Roach
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Sei Kameoka
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | | | | | - Sina A Gharib
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Computational Medicine Core.,Divsion of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Jeremy S Duffield
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Liu F, Zhuang S. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis. Int J Mol Sci 2016; 17:ijms17060972. [PMID: 27331812 PMCID: PMC4926504 DOI: 10.3390/ijms17060972] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
35
|
Kasztan M, Piwkowska A, Kreft E, Rogacka D, Audzeyenka I, Szczepanska-Konkel M, Jankowski M. Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria. Am J Physiol Renal Physiol 2016; 311:F103-11. [PMID: 27076649 DOI: 10.1152/ajprenal.00567.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms underlying the in vitro and in vivo purinergic actions on glomerular filter permeability to albumin by measuring convectional albumin permeability (Palb) in a single isolated rat glomerulus based on the video microscopy method. Primary cultured rat podocytes were used for the analysis of Palb, cGMP accumulation, PKG-Iα dimerization, and immunofluorescence. In vitro, natural nucleotides (ATP, ADP, UTP, and UDP) and nonmetabolized ATP analogs (2-meSATP and ATP-γ-S) increased Palb in a time- and concentration-dependent manner. The effects were dependent on P2 receptor activation, nitric oxide synthase, and cytoplasmic guanylate cyclase. ATP analogs significantly increased Palb, cGMP accumulation, and subcortical actin reorganization in a PKG-dependent but nondimer-mediated route in cultured podocytes. In vivo, 2-meSATP and ATP-γ-S increased Palb but did not significantly affect urinary albumin excretion. Both agonists enhanced the clathrin-mediated endocytosis of albumin in podocytes. A product of adenine nucleotides hydrolysis, adenosine, increased the permeability of the glomerular barrier via adrenergic receptors in a dependent and independent manner. Our results suggest that the extracellular nucleotides that stimulate an increase of glomerular Palb involve nitric oxide synthase and cytoplasmic guanylate cyclase with actin reorganization in podocytes.
Collapse
Affiliation(s)
- Małgorzata Kasztan
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Ewelina Kreft
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| | | | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland; and Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
36
|
Hassan H, Tian X, Inoue K, Chai N, Liu C, Soda K, Moeckel G, Tufro A, Lee AH, Somlo S, Fedeles S, Ishibe S. Essential Role of X-Box Binding Protein-1 during Endoplasmic Reticulum Stress in Podocytes. J Am Soc Nephrol 2016; 27:1055-65. [PMID: 26303067 PMCID: PMC4814187 DOI: 10.1681/asn.2015020191] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
Abstract
Podocytes are terminally differentiated epithelial cells that reside along the glomerular filtration barrier. Evidence suggests that after podocyte injury, endoplasmic reticulum stress response is activated, but the molecular mechanisms involved are incompletely defined. In a mouse model, we confirmed that podocyte injury induces endoplasmic reticulum stress response and upregulated unfolded protein response pathways, which have been shown to mitigate damage by preventing the accumulation of misfolded proteins in the endoplasmic reticulum. Furthermore, simultaneous podocyte-specific genetic inactivation of X-box binding protein-1 (Xbp1), a transcription factor activated during endoplasmic reticulum stress and critically involved in the untranslated protein response, and Sec63, a heat shock protein-40 chaperone required for protein folding in the endoplasmic reticulum, resulted in progressive albuminuria, foot process effacement, and histology consistent with ESRD. Finally, loss of both Sec63 and Xbp1 induced apoptosis in podocytes, which associated with activation of the JNK pathway. Collectively, our results indicate that an intact Xbp1 pathway operating to mitigate stress in the endoplasmic reticulum is essential for the maintenance of a normal glomerular filtration barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gilbert Moeckel
- Pathology, Yale University School of Medicine, New Haven, Connecticut, and
| | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | |
Collapse
|
37
|
Puelles VG, van der Wolde JW, Schulze KE, Short KM, Wong MN, Bensley JG, Cullen-McEwen LA, Caruana G, Hokke SN, Li J, Firth SD, Harper IS, Nikolic-Paterson DJ, Bertram JF. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. J Am Soc Nephrol 2016; 27:3093-3104. [PMID: 26975438 DOI: 10.1681/asn.2015121340] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.
Collapse
Affiliation(s)
- Victor G Puelles
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - James W van der Wolde
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Biochemistry and Molecular Biology, and
| | - Milagros N Wong
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jonathan G Bensley
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Luise A Cullen-McEwen
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Georgina Caruana
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stacey N Hokke
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jinhua Li
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stephen D Firth
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | | | - John F Bertram
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| |
Collapse
|
38
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
39
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
40
|
Grahammer F, Wanner N, Huber TB. mTOR controls kidney epithelia in health and disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i9-i18. [PMID: 24493874 DOI: 10.1093/ndt/gft491] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal epithelial function is the cornerstone of key excretory processes performed by our kidneys. Most of these tasks need to be tightly controlled to keep our internal environment in balance. Recently, the mTOR signalling network emerged as a key pathway controlling renal epithelial cells from the glomerular tuft along the entire nephron. Both mTOR complexes, mTORC1 and mTORC2, regulate such diverse processes as glomerular filtration and the fine tuning of tubular electrolyte balance. Most importantly, dysregulation of mTOR signalling contributes to prevalent kidney diseases like diabetic nephropathy and cystic kidney disease. The following review shall summarize our current knowledge of the renal epithelial mTOR signalling system under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Florian Grahammer
- Renal Division, Department of Medicine, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
41
|
Zoja C, Abbate M, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 2014; 30:706-12. [PMID: 25087196 DOI: 10.1093/ndt/gfu261] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/14/2022] Open
Abstract
Chronic proteinuric renal diseases, independent from the type of the initial insult, have in common a loss of selectivity of the glomerular barrier to protein filtration. Glomerular sclerosis is the progressive lesion affecting the glomerular capillary wall, the primary site at which the protein filtration is abnormally enhanced by disease. Dysfunction of podocytes, that serve to maintain the intact barrier, is a central event in lesion development. However, glomerular injury is signalled to tubular and interstitial structures largely in advance of nephron destruction. Glomerular ultrafiltration of excessive amounts of plasma-derived proteins and associated factors incites tubulointerstitial damage and might amplify an inherent susceptibility of the kidney to become dysfunctional in several disease conditions. Thus, noxious substances in the proteinuric ultrafiltrate promote apoptotic responses and multiple changes in the phenotype of tubule cells with generation of inflammatory and fibrogenic mediators. The severity of tubular interstitial damage has long been recognized to be highly correlated to the degree of deterioration of renal failure even better than glomerular lesions. This review focuses on pathways of tubular injury and apoptosis that in turn promote nephron-by-nephron degeneration and interstitial fibrosis during proteinuria contributing to multifaceted processes of kidney scarring and function loss.
Collapse
Affiliation(s)
- Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
42
|
Hyde GD, Taylor RF, Ashton N, Borland SJ, Wu HSG, Gilmore AP, Canfield AE. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLoS One 2014; 9:e102096. [PMID: 25019319 PMCID: PMC4096921 DOI: 10.1371/journal.pone.0102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as the progressive loss of renal function often involving glomerular, tubulo-interstitial and vascular pathology. CKD is associated with vascular calcification; the extent of which predicts morbidity and mortality. However, the molecular regulation of these events and the progression of chronic kidney disease are not fully elucidated. To investigate the function of Axl receptor tyrosine kinase in CKD we performed a sub-total nephrectomy and fed high phosphate (1%) diet to Axl+/+ and Axl−/− mice. Plasma Gas6 (Axl' ligand), renal Axl expression and downstream Akt signalling were all significantly up-regulated in Axl+/+ mice following renal mass reduction and high phosphate diet, compared to age-matched controls. Axl−/− mice had significantly enhanced uraemia, reduced bodyweight and significantly reduced survival following sub-total nephrectomy and high phosphate diet compared to Axl+/+ mice; only 45% of Axl−/− mice survived to 14 weeks post-surgery compared to 87% of Axl+/+ mice. Histological analysis of kidney remnants revealed no effect of loss of Axl on glomerular hypertrophy, calcification or renal sclerosis but identified significantly increased tubulo-interstitial apoptosis in Axl−/− mice. Vascular calcification was not induced in Axl+/+ or Axl−/− mice in the time frame we were able to examine. In conclusion, we identify the up-regulation of Gas6/Axl signalling as a protective mechanism which reduces tubulo-interstitial apoptosis and slows progression to end-stage renal failure in the murine nephrectomy and high phosphate diet model of CKD.
Collapse
Affiliation(s)
- Gareth D. Hyde
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Rebecca F. Taylor
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Samantha J. Borland
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Andrew P. Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann E. Canfield
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, Walz G, Moeller MJ, Grahammer F, Huber TB. Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 2014; 25:707-16. [PMID: 24408871 DOI: 10.1681/asn.2013050452] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Podocyte loss is a major determinant of progressive CKD. Although recent studies showed that a subset of parietal epithelial cells can serve as podocyte progenitors, the role of podocyte turnover and regeneration in repair, aging, and nephron loss remains unclear. Here, we combined genetic fate mapping with highly efficient podocyte isolation protocols to precisely quantify podocyte turnover and regeneration. We demonstrate that parietal epithelial cells can give rise to fully differentiated visceral epithelial cells indistinguishable from resident podocytes and that limited podocyte renewal occurs in a diphtheria toxin model of acute podocyte ablation. In contrast, the compensatory programs initiated in response to nephron loss evoke glomerular hypertrophy, but not de novo podocyte generation. In addition, no turnover of podocytes could be detected in aging mice under physiologic conditions. In the absence of podocyte replacement, characteristic features of aging mouse kidneys included progressive accumulation of oxidized proteins, deposits of protein aggregates, loss of podocytes, and glomerulosclerosis. In summary, quantitative investigation of podocyte regeneration in vivo provides novel insights into the mechanism and capacity of podocyte turnover and regeneration in mice. Our data reveal that podocyte generation is mainly confined to glomerular development and may occur after acute glomerular injury, but it fails to regenerate podocytes in aging kidneys or in response to nephron loss.
Collapse
|
44
|
Berger K, Schulte K, Boor P, Kuppe C, van Kuppevelt TH, Floege J, Smeets B, Moeller MJ. The regenerative potential of parietal epithelial cells in adult mice. J Am Soc Nephrol 2014; 25:693-705. [PMID: 24408873 DOI: 10.1681/asn.2013050481] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.
Collapse
|
45
|
Nielsen R, Mollet G, Esquivel EL, Weyer K, Nielsen PK, Antignac C, Christensen EI. Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney Int 2013; 84:902-10. [DOI: 10.1038/ki.2013.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/26/2022]
|
46
|
Eller K, Schroll A, Banas M, Kirsch AH, Huber JM, Nairz M, Skvortsov S, Weiss G, Rosenkranz AR, Theurl I. Lipocalin-2 expressed in innate immune cells is an endogenous inhibitor of inflammation in murine nephrotoxic serum nephritis. PLoS One 2013; 8:e67693. [PMID: 23861783 PMCID: PMC3701542 DOI: 10.1371/journal.pone.0067693] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/19/2013] [Indexed: 12/12/2022] Open
Abstract
Lipocalin-2 (Lcn-2) is involved in divergent processes such as acute kidney injury or bacterial host defence. Our study was designed to evaluate the functional role of Lcn-2 in nephrotoxic serum nephritis (NTS). Since Lcn-2 is expressed in tubular epithelial cells as well as in cells of innate immunity such as macrophages and polymorphonuclear neutrophils (PMN), we induced NTS in wild-type (WT), Lcn-2 knock-out (KO) mice and WT/Lcn-2 KO chimeras. Mice lacking Lcn-2 exhibited more glomerular damage with increased proteinuria and interstitial leukocyte accumulation compared to WT mice. Chimeras able to express Lcn-2 in macrophages and PMN but not in epithelial cells were found to develop NTS comparable to wild-type controls. In contrast, chimeras expressing Lcn-2 in tubular epithelial cells with no expression in innate immune cells developed increased NTS due to decreased concerted apoptosis but increased necrosis and formation of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB-1) in the kidney. In vivo blockade of HMGB-1, a toll-like receptor (TLR)-2 agonist, significantly reduced inflammation and NTS in Lcn-2 knock-out mice. In parallel, TLR-2 signalling was found to drive Lcn-2 transcription in vitro. Taken together, Lcn-2 expressed in innate immune cells is protective in NTS by inducing concerted apoptosis and inhibiting the formation of HMGB-1 thereby limiting cytokine production via TLR-2 signalling. In parallel, TLR-2 dependent transcription of Lcn-2 is an endogenous inhibitor of inflammation in NTS.
Collapse
Affiliation(s)
- Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- * E-mail: (KE); (IT)
| | - Andrea Schroll
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Miriam Banas
- Department of Nephrology, Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Alexander H. Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia M. Huber
- Laboratory for Molecular Cell Biology, Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | - Manfred Nairz
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander R. Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Igor Theurl
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine VI, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (KE); (IT)
| |
Collapse
|
47
|
Kaissling B, LeHir M, Kriz W. Renal epithelial injury and fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:931-9. [DOI: 10.1016/j.bbadis.2013.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 12/20/2022]
|
48
|
Erkan E. Proteinuria and progression of glomerular diseases. Pediatr Nephrol 2013; 28:1049-58. [PMID: 23124512 DOI: 10.1007/s00467-012-2335-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/21/2023]
Abstract
One of the major challenges of nephrology is to develop therapeutic strategies to halt the progression of kidney diseases. In clinical settings, nephrotic-range proteinuria correlates with the rate of progression, particularly in glomerular diseases. Hence, the degree of proteinuria has been utilized to monitor the response to treatment as well as to predict outcome. However, the pathophysiology of proteinuria-induced progression remains unknown. Albumin accounts for the majority of the protein in nephrotic urine and as a result of this clinical observation studies have focused on understanding the adverse effects of albumin overload in the kidney. Albumin is internalized by receptor-mediated endocytosis in proximal tubule cells via low density lipoprotein (LDL) type receptor, megalin. Albumin at high concentrations mimicking nephrotic milieu has resulted in the upregulation of pro-inflammatory/fibrogenic genes and apoptosis in proximal tubule cells in in vivo and in vitro models of albumin overload. These properties of albumin on proximal tubule cells may explain extensive tubulointerstitial fibrosis and tubular atrophy observed in end-stage kidney disease. In addition to tubular toxicity, podocytes respond to proteinuric states by cytoskeletal alterations and loss of the differentiation marker synaptopodin. Identifying the molecular network of proteins involved in albumin handling will enable us to manipulate the specific signaling pathways and prevent damage caused by proteinuria.
Collapse
Affiliation(s)
- Elif Erkan
- Division of Pediatric Nephrology, Children's Hospital of Pittsburgh, 530 45th Street 5th Floor, Office # 5129, Pittsburgh, PA 15201, USA.
| |
Collapse
|
49
|
Long DA, Kolatsi-Joannou M, Price KL, Dessapt-Baradez C, Huang JL, Papakrivopoulou E, Hubank M, Korstanje R, Gnudi L, Woolf AS. Albuminuria is associated with too few glomeruli and too much testosterone. Kidney Int 2013; 83:1118-29. [PMID: 23447063 PMCID: PMC3674403 DOI: 10.1038/ki.2013.45] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Normally, the glomerular filtration barrier almost completely excludes circulating albumin from entering the urine. Genetic variation and both pre- and postnatal environmental factors may affect albuminuria in humans. Here we determine whether glomerular gene expression in mouse strains with naturally occurring variations in albuminuria would allow identification of proteins deregulated in relatively 'leaky' glomeruli. Albuminuria increased in female B6 to male B6 to female FVB/N to male FVB/N mice, whereas the number of glomeruli/kidney was the exact opposite. Testosterone administration led to increased albuminuria in female B6 but not female FVB/N mice. A common set of 39 genes, many expressed in podocytes, were significantly differentially expressed in each of the four comparisons: male versus female B6 mice, male versus female FVB/N mice, male FVB/N versus male B6 mice, and female FVB/N versus female B6 mice. The transcripts encoded proteins involved in oxidation/reduction reactions, ion transport, and enzymes involved in detoxification. These proteins may represent novel biomarkers and even therapeutic targets for early kidney and cardiovascular disease.
Collapse
Affiliation(s)
- David A Long
- Nephro-Urology Unit, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
INTRODUCTION Erythropoiesis-stimulating agents (ESAs) are the mainstay of treatment in anemic chronic kidney disease (CKD) patients. A tailored ESA therapy should combine maximal efficacy and safety with greatest convenience in dosing. Peginesatide, recently approved in the US for once-monthly dosing in adult patients on dialysis, is a promising novel PEGylated erythropoietin-mimetic peptide for the treatment of renal disease-induced anemia. AREAS COVERED Published animal and human studies that evaluated the pharmacodynamics, pharmacokinetics, clinical efficacy and safety of peginesatide were critically analyzed. EXPERT OPINION Peginesatide has a well-studied pharmacological and immunological profile, and latest published data favor the use of peginesatide in place of epoetin in dialysis patients. A more detailed evaluation of its safety profile particularly in trials with CKD patients not requiring dialysis is urgently needed, as peginesatide could be a perfect treatment solution for these patients. In addition, clinical long-term data and results from supplemental studies, e.g., with the PEGylated continuous erythropoietin receptor activator as comparator, should briefly follow. The fate of peginesatide on the highly competitive ESA market is currently not predictable and depends on safety and efficacy results of upcoming trials as well as finally on market and price policy.
Collapse
Affiliation(s)
- Holger Schmid
- University of Munich, Department of Internal Medicine, Munich, D-80336, Germany.
| |
Collapse
|