1
|
Matano T, Naitou K, Ferdous J, Shiina T, Shiraishi M. Proposal for a simple and easy-to-implement protocol for three-dimensional tissue imaging that is compatible with observation using a confocal microscope. Acta Histochem 2025; 127:152257. [PMID: 40273593 DOI: 10.1016/j.acthis.2025.152257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Tissue observation has traditionally been limited to obtaining two-dimensional information from thinly sliced tissues due to issues with light transmission and antibody penetration. In recent years, three-dimensional tissue observation methods combining tissue clearing and deep immunostaining methods have been reported. However, due to the significantly different procedures in these methods from conventional immunostaining methods and the requirement for an expensive and specialized light-sheet microscope for tissue observation, the widespread adoption of these methods has been limited. To promote the shift from the current two-dimensional tissue observation to three-dimensional tissue observation using a combination of tissue clearing and immunostaining, it is essential to establish a simple and easy-to-implement protocol that is compatible with observation using a confocal microscope, which is available in many facilities. In this study, we first examined the effects of tissue clearing and staining conditions of immunostaining with thin tissue slices. We showed that CUBIC-L enhances immunolabeling without diminishing the immunoreactivity of antigens. We also showed that high detergent concentrations enhance the intensity of immunoreactivity and that a two-step staining procedure is suitable for our proposed protocol. Based on the results, we propose a simple protocol that can be easily adapted from conventional methods and is compatible with confocal microscopes. The results of this study are expected to facilitate a shift from traditional methods to three-dimensional tissue observation techniques that combine tissue clearing and immunostaining, contributing to the broader adoption of three-dimensional tissue observation.
Collapse
Affiliation(s)
- Takuto Matano
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Jannatul Ferdous
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Kinoshita Y, Kobayashi E, Matsui K, Inage Y, Morimoto K, Yamamoto S, Iwai S, Kitada K, Iwasawa K, Saito Y, Fujimoto T, Matsumoto K, Nagamori S, Nishiyama A, Kume H, Takebe T, Yokoo T, Yamanaka S. Life-supporting functional kidney replacement by integration of embryonic metanephros-bladder composite tissue transplants. Kidney Int 2025; 107:1051-1063. [PMID: 40122339 DOI: 10.1016/j.kint.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Novel transplantable organs need to be developed to address the global organ shortage. Transplantation of embryonic kidney tissue, or metanephros, facilitates glomerular and tubular maturation and offers partial organ functional support. However, adult environments do not permit exponential growth in size, limiting the life-supporting functionality and organ replacement effect of this approach. Here, we developed a novel strategy that combines the fusion of embryonic bladders with multiple anastomoses to the host ureter, enabling a significant increase in metanephros transplantation and urinary tract integration. By surgically anastomosing divided bladder segments, we reconstructed the excretory pathways by merging four metanephroi into each bladder and integrating them with the host ureter. Following the transplantation and integration of 20 metanephroi at the para-aortic region, anephric rats survived for over a month and generated approximately 50,000 nephrons in vivo. Ultrastructural and single-cell-transcriptomic analyses revealed that the maturity of the transplanted metanephroi was comparable to that of adult kidneys, although their small size likely contributed to their decreased urine concentration ability. Postoperative support helped normalize physiological homeostasis, including solute clearance, acid-base balance, electrolyte levels, and kidney hormone levels, within vital ranges. Our findings underscore the functional maturation capacity and dose-dependent therapeutic efficacy of embryonic kidney tissue, suggesting its potential as a transplantable organ system.
Collapse
Affiliation(s)
- Yoshitaka Kinoshita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuka Inage
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shutaro Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Ohio, USA
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Department of Genome Biology, The University of Osaka, Osaka, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Lin LE, Colazo A, Bi X, Du J, Wei L. High-Throughput Volumetric Mapping Facilitated by Active Tissue SHRINK. SMALL METHODS 2025:e2500382. [PMID: 40195911 DOI: 10.1002/smtd.202500382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Comprehensive visualization of tissue architecture in large organs such as the brain is crucial for understanding functional relationships across key tissue regions. However, the large size of whole organs makes it challenging to image their entirety with subcellular resolution, often requiring prolonged imaging sessions, volume reconstruction, and compromises in spatial coverage. Here, Scalable Hydrogel-embedded Rapid Imaging of tissue NetworK (SHRINK) is reported to address this challenge through active tissue shrinkage and clearing. Utilizing the identified hydrogel network to preserve the spatial pattern of proteins in situ and remove the uncrosslinked biomolecules to create space, it is shown that SHRINK isotropically drives the reduction of sample sizes down to 16% of their original volume while maintaining high cellular and tissue-level integrity in a reversible manner. The size reduction and the corresponding 3D concentrating of the biomolecules render a more than sixfold enhancement for throughput and signal respectively, which addresses a key bottleneck for the stimulated Raman scattering (SRS) microscopy, ideal for 3D, label-free and super-multiplex tissue mapping. It is further demonstrated that SHRINK-SRS achieves organ-scale mapping of brain, intestine, heart, and kidney tissues. SHRINK offers a powerful approach to overcome traditional imaging barriers, enabling rapid and detailed visualization of large organs.
Collapse
Affiliation(s)
- Li-En Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Adrian Colazo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
4
|
Scarlat A, Trionfini P, Rizzo P, Conti S, Longaretti L, Breno M, Longhi L, Xinaris C, Remuzzi G, Benigni A, Tomasoni S. PKD1 mutation perturbs morphogenesis in tubular epithelial organoids derived from human pluripotent stem cells. Sci Rep 2025; 15:10375. [PMID: 40140667 PMCID: PMC11947130 DOI: 10.1038/s41598-025-94855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common renal genetic disease, with most patients carrying mutations in PKD1. The main feature is the formation of bilateral renal cysts, leading to end stage renal failure in a significant proportion of those affected. Despite recent advances made in understanding ADPKD, there are currently no effective curative therapies. The emergence of human induced pluripotent stem cell (hiPSC)-derived kidney disease models has led to renewed hope that more physiological systems will allow for the development of novel treatments. hiPSC-derived organoid models have been used to recapitulate ADPKD, however they present numerous limitations which remain to be addressed. In the present study, we report an efficient method for generating organoids containing a network of polarised and ciliated epithelial tubules. PKD1 null (PKD1-/-) organoids spontaneously develop dilated tubules, recapitulating early ADPKD cystogenesis. Furthermore, PKD1-/- tubules present primary cilia defects when dilated. Our model could therefore serve as a valuable tool to study early ADPKD cystogenesis and to develop novel therapies.
Collapse
Affiliation(s)
- Alexandru Scarlat
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Rizzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorena Longaretti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Matteo Breno
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorenzo Longhi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
5
|
Lee DD, Davis DL, Smyth LCD, Telfer KA, Ravindran R, Czepielewski RS, Huckstep CG, Du S, Kurashima K, Jain AK, Kipnis J, Zinselmeyer BH, Randolph GJ. ADAPT-3D: Accelerated Deep Adaptable Processing of Tissue for 3-Dimensional Fluorescence Tissue Imaging for Research and Clinical Settings. RESEARCH SQUARE 2025:rs.3.rs-6109657. [PMID: 40195996 PMCID: PMC11975028 DOI: 10.21203/rs.3.rs-6109657/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Light sheet microscopy and preparative clearing methods that improve light penetration in 3D tissues have revolutionized imaging in biomedical research. While most clearing methods focus on removing molecules that scatter light, the methods generally involve immersing tissues in solutions that minimize refraction of light to enhance detection of fluorescent signal deeper into tissues. Here, we developed a new tissue preparative method called ADAPT-3D with broad applicability across species and tissue types. This method enables efficient antibody staining and detection of endogenous fluorophores and offers advantages in terms of speed at which tissue staining and clearing is achieved. In about 4 days from tissue harvest to imaging, human intestinal tissue could be Axed, decolored and delipidated to remove light-interfering substances and stained with antibodies for imaging. In the intact mouse skull and brain, involving an 8-day protocol from tissue harvest to completion of imaging, the aqueous and non-shrinking ADAPT-3D method allowed the specialized channels between skull and underlying tissue to be detected without meningeal tearing. Overall, ADAPT-3D provides a highly versatile preparative method for 3D fixed tissue imaging with superior time savings, sensitivity and preservation of tissue morphology compared with previously described methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Siling Du
- Washington University School of Medicine
| | | | | | | | | | | |
Collapse
|
6
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
7
|
Hickey MJ, Sudhakar V. Looking below the surface: using intravital imaging to decipher inflammatory renal disease and renal cell injury. Am J Physiol Renal Physiol 2025; 328:F418-F430. [PMID: 39918796 DOI: 10.1152/ajprenal.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Renal function can be perturbed by a range of stimuli that cause cellular injury and inflammation in the kidney. These injurious and inflammatory processes are typically dynamic and progressive, involving the actions of highly migratory cells such as leukocytes and cellular responses that occur over time spans ranging from seconds to weeks. Understanding these dynamic responses has entailed the use of imaging technologies that allow visualization and capture of events over different time spans, ideally in intact organs in live, experimental animals. The technique that allows this is intravital imaging. Intravital imaging, particularly multiphoton intravital microscopy, has been crucial to the investigation of dynamic physiological and pathophysiological processes in the kidney for many years, driving key developments in our understanding of renal (patho)physiology. This includes the mechanisms of ultrafiltrate generation, the response to acute kidney injury, and how inflammatory leukocytes are recruited to and cause injury in the kidney. This review describes the key studies that have applied intravital imaging to the investigation of models of inflammatory renal disease. The responses examined include those restricted to the glomerulus and the effects of acute kidney injury on the tubulointerstitium. Future innovations and directions in this field of research are also discussed.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Vaishnavi Sudhakar
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Nakamura K, Morishita K, Onda N, Sakai I, Matsumoto S, Tamura E, Kouyama Y, Ogawa Y, Misawa M, Hayashi T, Miyachi H, Kudo SE, Nemoto T. Three-dimensional optically cleared tissue imaging for analyzing endoscopic images of gastrointestinal neoplasms (with video). Dig Endosc 2025. [PMID: 39900518 DOI: 10.1111/den.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVES To develop a procedure that matches magnifying endoscopic images with narrow-band imaging to 3D tissue structures using a tissue-clearing technique and to qualitatively and quantitatively analyze specified structures in gastrointestinal neoplasms. METHODS Endoscopically resected formalin-fixed paraffin-embedded gastrointestinal tissues (three esophagus, four stomach, seven colon) were made transparent by ethyl cinnamate. They were then subjected to fluorescent staining of nuclei and blood vessels followed by 3D imaging using a confocal laser scanning microscope. A one-to-one correspondence between magnifying endoscopic and 3D reconstructed images was established using vessels and crypts with characteristic shapes as guides, and the depth and caliber of specified vessels were measured. RESULTS All tissues were optically cleared, which allowed 3D visualization of vascular structures and nuclei in all layers. In the esophagus, intraepithelial papillary capillary loops and subepithelial capillary networks were identified. In the upper part of the stomach, polygonal subepithelial capillary loops surrounding the pits were observed, while in the lower part, surface epithelium with ridge-like structures and coiled vessels were observed. A honeycomb pit structure and surrounding vascular structures were identified in the colon. Quantitative analysis showed the various contrasts of a single continuous vessel in the endoscopic image were due to different depths at which the vessel tortuously ran. CONCLUSION We established a procedure to allow one-to-one correspondence between magnifying endoscopic and 3D reconstructed images and to measure the depth and caliber of endoscopically visualized vessels of interest. This method is expected to improve endoscopic diagnosis and further the development of endoscopic imaging technologies.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Biological Evaluation Analysis Technology, Olympus Medical Systems Corp., Tokyo, Japan
| | - Koki Morishita
- Department of Optical Engineering, Olympus Medical Systems Corp., Tokyo, Japan
| | - Nobuhiko Onda
- Department of Biological Evaluation Analysis Technology, Olympus Medical Systems Corp., Tokyo, Japan
| | - Ikuko Sakai
- Department of Optical Engineering, Olympus Medical Systems Corp., Tokyo, Japan
| | - Shinya Matsumoto
- Department of Optical Engineering, Olympus Medical Systems Corp., Tokyo, Japan
| | - Eri Tamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Kouyama
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tetsuo Nemoto
- Department of Diagnostic Pathology and Laboratory Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
9
|
Ni Y, Wu J, Liu F, Yi Y, Meng X, Gao X, Xiao L, Zhou W, Chen Z, Chu P, Xing D, Yuan Y, Ding D, Shen G, Yang M, Wu R, Wang L, Melo LMN, Lin S, Cheng X, Li G, Tasdogan A, Ubellacker JM, Zhao H, Fang S, Shen B. Deep imaging of LepR + stromal cells in optically cleared murine bone hemisections. Bone Res 2025; 13:6. [PMID: 39800733 PMCID: PMC11725602 DOI: 10.1038/s41413-024-00387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR+) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR+ stromal cells, within optically cleared bone hemisections. Our method preserves the 3D tissue architecture and is extendable to other hematopoietic sites such as calvaria and vertebrae. The protocol entails tissue fixation, decalcification, and cryosectioning to reveal the marrow cavity. Completed within approximately 12 days, this process yields highly transparent tissues that maintain genetically encoded or antibody-stained fluorescent signals. The bone hemisections are compatible with diverse antibody labeling strategies. Confocal microscopy of these transparent samples allows for qualitative and quantitative image analysis using Aivia or Bitplane Imaris software, assessing a spectrum of parameters. With proper storage, the fluorescent signal in the stained and cleared bone hemisections remains intact for at least 2-3 months. This protocol is robust, straightforward to implement, and highly reproducible, offering a valuable tool for tissue architecture and cellular interaction studies.
Collapse
Affiliation(s)
- Yuehan Ni
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Jiamiao Wu
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fengqi Liu
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Yating Yi
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China
| | - Xiangjiao Meng
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Xiang Gao
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Luyi Xiao
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Weiwei Zhou
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zexi Chen
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China
| | - Peng Chu
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, 100044, Beijing, China
| | - Ye Yuan
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, 100044, Beijing, China
| | - Donghui Ding
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Ge Shen
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Yang
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China
| | - Ronjie Wu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, National Center for Orthopaedics, 100035, Beijing, China
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, National Center for Orthopaedics, 100035, Beijing, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Shatin, Hong Kong SAR, PR China
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, 45147, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing (CIBR), 102206, Beijing, China.
| | - Shentong Fang
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Bo Shen
- National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
10
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
11
|
Zhao K, Zhu GZ, Li HZ, Gao JW, Tu C, Wu DZ, Huang YS, Han D, Chen XY, Wu LY, Zhong ZM. Accumulation of Advanced Oxidation Protein Products Promotes Age-Related Decline of Type H Vessels in Bone. J Gerontol A Biol Sci Med Sci 2024; 80:glae271. [PMID: 39506899 DOI: 10.1093/gerona/glae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 11/08/2024] Open
Abstract
Type H vessels have been proven to couple angiogenesis and osteogenesis. The decline of type H vessels contributes to bone loss in the aging process. Aging is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, whether AOPP accumulation is involved in age-related decline of type H vessels is unclear. Here, we show that the increase of AOPP levels in plasma and bone was correlated with the decline of type H vessels and loss of bone mass in old mice. Exposure of microvascular endothelial cells to AOPPs significantly inhibited cell proliferation, migration, and tube formation; increased NADPH oxidase activity and excessive reactive oxygen species generation; upregulated the expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1; and eventually impaired angiogenesis, which was alleviated by redox modulator N-acetylcysteine and NADPH oxidase inhibitor apocynin. Furthermore, reduced AOPP accumulation by NAC treatment was able to alleviate significantly the decline of type H vessels, bone mass loss, and deterioration of bone microstructure in old mice. Collectively, these findings suggest that AOPPs accumulation contributes to the decline of type H vessels in the aging process, and illuminate a novel potential mechanism underlying age-related bone loss.
Collapse
Affiliation(s)
- Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Long-Yan Wu
- Department of Ultrasound Medicine, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Ali A, Liu Z, Ye K, Guan Y, Chen S, Liu T, Guo Z, Wong MK, Vasquez P, Poudel C, Mustonen BC, Eng DG, Pippin JW, Shankland SJ, Wang S, Vaughan JC. Nanoscale Optical Imaging, Reconstruction, and Spatial Analysis of Whole Mouse Glomeruli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.620364. [PMID: 39554089 PMCID: PMC11565967 DOI: 10.1101/2024.10.31.620364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Renal glomeruli have traditionally been studied by micrometer-scale optical microscopy to interrogate overall physiology or molecular distributions and by nanoscale electron microscopy to interrogate the ultrastructure of thin sections. While these approaches are powerful, they have been limited in their ability to obtain detailed views of the glomeruli as holistic 3D functional units. To fill this knowledge gap, we have developed a novel pipeline for imaging, reconstructing, and analyzing whole mouse glomeruli at 100 nm resolution using super-resolution fluorescence microscopy. This pipeline integrates both manual and machine learning approaches to annotate and analyze glomerular structures. Using this method, we created 18 detailed glomerulus models, from a range of healthy, aged, and model diseased mice, that outline all major structures and cell types. These models have been made publicly accessible in an online repository, providing a valuable resource for further studies. Our results also uncovered a diverse set of novel phenotypes including nuclear enlargement in all glomerular cell types in aging and disease, as well as an aging-related pattern of regional thickening of the Bowman's capsule basement membrane near the tubular-glomerular junction.
Collapse
Affiliation(s)
- Adilijiang Ali
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Zixuan Liu
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Kenan Ye
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Yun Guan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Siying Chen
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Tingxuan Liu
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Ziyu Guo
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Madeline K Wong
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Pedro Vasquez
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Imberti B, Benigni A. Renal Endowment in Men and Women: Start from the Beginning. Nephron Clin Pract 2024; 149:207-212. [PMID: 39510055 DOI: 10.1159/000542411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024] Open
Abstract
The development of the human kidney leads to the establishment of nephron endowment through a process influenced by both genetic and environmental factors. There is individual variability regarding nephron endowment and factors including aging and pathological conditions contribute to the decline in the number of nephrons, impacting renal function. Genetic determinants, such as mutations in crucial developmental genes like Pax2, and epigenetic mechanisms mediated by key enzymes including sirtuin 3, play critical roles in the regulation of the number of nephrons, with implications for kidney disease susceptibility. Sexual dimorphism significantly influences kidney development and function, with the number of nephrons being significantly lower in females, consistent with lower female birth weight, which is considered a surrogate for nephron endowment. Also, although females have fewer nephrons, they experience a slower decline in GFR compared to males. Gender disparity in chronic kidney disease progression has been attributed to factors such as metabolism, oxidative stress, renal hemodynamics, and sex hormones. Understanding the complexities of nephron endowment variability, genetic determinants, and sexual dimorphism in kidney development and function is crucial for elucidating the mechanisms underlying individual kidney disease susceptibility and progression. Further research in this field holds promise for the development of personalized approaches to kidney disease prevention, management, and treatment.
Collapse
Affiliation(s)
- Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
14
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
15
|
Vajpayee S, Picascia T, Casciano F, Viale E, Ronda L, Bettati S, Milani D, Gretz N, Perciaccante R. Fluorescent Water-Soluble Polycationic Chitosan Polymers as Markers for Biological 3D Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:721-730. [PMID: 39483637 PMCID: PMC11522997 DOI: 10.1021/cbmi.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024]
Abstract
Over the last decades, various tissue-clearing techniques have broken the ground for the optical imaging of whole organs and whole-organisms, providing complete representative data sets of three-dimensional biological structures. Along with advancements in this field, the development of fluorescent markers for staining vessels and capillaries has offered insights into the complexity of vascular networks and their impact on disease progression. Here we describe the use of a modified water-soluble chitosan linked to cyanine dyes in combination with ethyl cinnamate-based optical tissue clearing for the 3D visualization of tissue vasculature in depth. The water-soluble fluorescent Chitosans have proven to be an optimal candidate for labeling both vessels and capillaries ex vivo thanks to their increased water solubility, high photostability, and optical properties in the near-infrared window. In addition, the nontoxicity of these markers broadens their applicability to in vitro and in vivo biological applications. Despite the availability of other fluorescent molecules for vascular staining, the present study, for the first time, demonstrates the potential of fluorescent chitosans to depict vessels at the capillary level and opens avenues for advancing the diagnostic field by reducing the complexity and costs of the currently available procedures.
Collapse
Affiliation(s)
- Srishti Vajpayee
- Cyanagen
Srl, Via degli Stradelli
Guelfi 40/C, 40138 Bologna, Italy
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tiziana Picascia
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Fabio Casciano
- Department
of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Department
of Translational Medicine, University of
Ferrara, 44121 Ferrara, Italy
| | - Elisabetta Viale
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Luca Ronda
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniela Milani
- Department
of Translational Medicine, University of
Ferrara, 44121 Ferrara, Italy
| | - Norbert Gretz
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | |
Collapse
|
16
|
Martínez Mir C, Pisterzi P, De Poorter I, Rilou M, van Kranenburg M, Heijs B, Alemany A, Sage F, Geijsen N. Spatial multi-omics in whole skeletal muscle reveals complex tissue architecture. Commun Biol 2024; 7:1272. [PMID: 39369093 PMCID: PMC11455876 DOI: 10.1038/s42003-024-06949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Myofibers are large multinucleated cells that have long thought to have a rather simple organization. Single-nucleus transcriptomics, spatial transcriptomics and spatial metabolomics analysis have revealed distinct transcription profiles in myonuclei related to myofiber type. However, the use of local tissue collection or dissociation methods have obscured the spatial organization. To elucidate the full tissue architecture, we combine two spatial omics, RNA tomography and mass spectrometry imaging. This enables us to map the spatial transcriptomic, metabolomic and lipidomic organization of the whole murine tibialis anterior muscle. Our findings on heterogeneity in fiber type proportions are validated with multiplexed immunofluorescence staining in tibialis anterior, extensor digitorum longus and soleus. Our results demonstrate unexpectedly strong regionalization of gene expression, metabolic differences and variable myofiber type proportion along the proximal-distal axis. These new insights in whole-tissue level organization reconcile sometimes conflicting results coming from previous studies relying on local sampling methods.
Collapse
Affiliation(s)
- Clara Martínez Mir
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Paola Pisterzi
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Isabel De Poorter
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Maria Rilou
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Melissa van Kranenburg
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden Node, Leiden, The Netherlands.
| |
Collapse
|
17
|
Wang Z, Xiao X, Zhou Z, Chen Y, Xia T, Sheng X, Han Y, Gong W, Si K. FLUID: a fluorescence-friendly lipid-compatible ultrafast clearing method. BIOMEDICAL OPTICS EXPRESS 2024; 15:5609-5624. [PMID: 39421767 PMCID: PMC11482171 DOI: 10.1364/boe.533072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Many clearing methods achieve high transparency by removing lipid components from tissues, which damages microstructure and limits their application in lipid research. As for methods which preserve lipid, it is difficult to balance transparency, fluorescence preservation and clearing speed. In this study, we propose a rapid water-based clearing method that is fluorescence-friendly and preserves lipid components. FLUID allows for preservation of endogenous fluorescence over 60 days. It shows negligible tissue distortion and is compatible with various types of fluorescent labeling and tissue staining methods. High quality imaging of human brain tissue and compatibility with pathological staining demonstrated the potential of our method for three-dimensional (3D) biopsy and clinical pathological diagnosis.
Collapse
Affiliation(s)
- Zizheng Wang
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao Xiao
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Ziwen Zhou
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunyin Chen
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Tianqi Xia
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiangyi Sheng
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiping Han
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Gong
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Lingang Laboratory, Shanghai 200031, China
| | - Ke Si
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Sadeghinezhad J, Lazzarini G, Bojarzadeh H, Gatta A, Rezai S, Pirone A, Miragliotta V. Three-dimensional morphometry of kidney in New Zealand rabbit using unbiased design-based stereology. Microsc Res Tech 2024; 87:2053-2062. [PMID: 38655680 DOI: 10.1002/jemt.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The rabbit is widely used as a laboratory animal in experimental models of kidney diseases. This species is also important from a veterinary perspective as a companion animal. Stereology has been accepted as an accurate approach to kidney morphometry. The objective of the present project was to provide normal quantitative stereological parameters for adult rabbit kidneys. The left kidneys of five adult male New Zealand rabbits were used. Isotropic sections were obtained using the orientation method. Total kidney volume was calculated by the Cavalieri principle. The volume fraction of the renal structures was estimated using the point counting system. The lengths of the proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) were calculated using counting frames. The total glomerular number was accounted for using the physical/fractionator technique. The mean glomerular volume was obtained by dividing the total volume of glomeruli by their total number. The total volume of rabbit kidneys calculated was 10.39 ± 1.98 cm3. The fractional volume of the kidney cortex and medulla accounted for 57.79 ± 0.65% and 42.2 ± 0.65%, respectively. The total glomerular volume was 2.18 ± 0.32% of the whole kidney. The total number of glomeruli in the rabbit kidney was estimated as 204.68 ± 12 × 103. The mean glomerular volume measured 1.07 ± 0.12 × 106 μm3. The total length of PCT and DCT was 2.96 ± 0.29 km and 1.38 ± 0.24 km, respectively. These findings can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals by comparing with available data on humans and other species. RESEARCH HIGHLIGHTS: Three-dimensional morphometry of adult rabbit kidney structures was analyzed using quantitative stereology. Total volume of kidney, fractional volume of cortex and medulla, length of renal tubules and number of nephrons were estimated. These three-dimensional morphometrical data can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alessandra Gatta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Sobhan Rezai
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
19
|
Jacob AM, Lindemann AF, Wagenpfeil J, Geiger S, Layer YC, Salam B, Panahabadi S, Kurt D, Wintergerst MWM, Schildberg FA, Kuetting D, Attenberger UI, Abdullah Z, Böhner AMC. Autofluorescence-based tissue characterization enhances clinical prospects of light-sheet-microscopy. Sci Rep 2024; 14:18033. [PMID: 39098935 PMCID: PMC11298517 DOI: 10.1038/s41598-024-67366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is a transformative imaging method that enables the visualization of non-dissected specimen in real-time 3D. Optical clearing of tissues is essential for LSFM, typically employing toxic solvents. Here, we test the applicability of a non-hazardous alternative, ethyl cinnamate (ECi). We comprehensively characterized autofluorescence (AF) spectra in diverse murine tissues-ocular globe, knee, and liver-employing LSFM under various excitation wavelengths (405-785 nm) to test the feasibility of unstained samples for diagnostic purposes, in particular regarding percutaneous biopsies, as they constitute to most harvested type of tissue sample in clinical routine. Ocular globe structures were best discerned with 640 nm excitation. Knee tissue showed complex variation in AF spectra variation influenced by tissue depth and structure. Liver exhibited a unique AF pattern, likely linked to vasculature. Hepatic tissue samples were used to demonstrate the compatibility of our protocol for antibody staining. Furthermore, we employed machine learning to augment raw images and segment liver structures based on AF spectra. Radiologists rated representative samples transferred to the clinical assessment software. Learning-generated images scored highest in quality. Additionally, we investigated an actual murine biopsy. Our study pioneers the application of AF spectra for tissue characterization and diagnostic potential of optically cleared unstained percutaneous biopsies, contributing to the clinical translation of LSFM.
Collapse
Affiliation(s)
- Alice M Jacob
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna F Lindemann
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julia Wagenpfeil
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sergej Geiger
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Yannik C Layer
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Babak Salam
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sarah Panahabadi
- Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Darius Kurt
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander M C Böhner
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
20
|
Rinta-Jaskari MM, Naillat F, Ruotsalainen HJ, Ronkainen VP, Heljasvaara R, Akram SU, Izzi V, Miinalainen I, Vainio SJ, Pihlajaniemi TA. Collagen XVIII regulates extracellular matrix integrity in the developing nephrons and impacts nephron progenitor cell behavior. Matrix Biol 2024; 131:30-45. [PMID: 38788809 DOI: 10.1016/j.matbio.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice. The results show that the short ColXVIII isoform predominates in the early epithelialized nephron structures whereas the two longer isoforms are expressed only in the later phases of glomerular formation. Meanwhile, electron microscopy showed that the ColXVIII mutant embryonic kidneys have ultrastructural defects at least from embryonic day 16.5 onwards. Similar structural defects had previously been observed in adult ColXVIII-deficient mice, indicating a congenital origin. The lack of ColXVIII led to a reduced NPC population in which changes in NPC proliferation and maintenance and in macrophage influx were perceived to play a role. The changes in NPC behavior in turn led to notably reduced overall nephron formation. In conclusion, the results show that ColXVIII has multiple roles in renal development, both in ureteric branching and in NPC behavior.
Collapse
Affiliation(s)
- Mia M Rinta-Jaskari
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Florence Naillat
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Heli J Ruotsalainen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | | | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland
| | - Saad U Akram
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Helsinki, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| | | | - Seppo J Vainio
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland; InfoTech Oulu, Finland; Kvantum Institute, University of Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, Oulu 90230, Finland.
| |
Collapse
|
21
|
Rahmani S, Jafree DJ, Lee PD, Tafforeau P, Brunet J, Nandanwar S, Jacob J, Bellier A, Ackermann M, Jonigk DD, Shipley RJ, Long DA, Walsh CL. Mapping the blood vasculature in an intact human kidney using hierarchical phase-contrast tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534566. [PMID: 37034801 PMCID: PMC10081185 DOI: 10.1101/2023.03.28.534566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The architecture of the kidney vasculature is essential for its function. Although structural profiling of the intact rodent kidney vasculature has been performed, it is challenging to map vascular architecture of larger human organs. We hypothesised that hierarchical phase-contrast tomography (HiP-CT) would enable quantitative analysis of the entire human kidney vasculature. Combining label-free HiP-CT imaging of an intact kidney from a 63-year-old male with topology network analysis, we quantitated vasculature architecture in the human kidney down to the scale of arterioles. Although human and rat kidney vascular topologies are comparable, vascular radius decreases at a significantly faster rate in humans as vessels branch from artery towards the cortex. At branching points of large vessels, radii are theoretically optimised to minimise flow resistance, an observation not found for smaller arterioles. Structural differences in the vasculature were found in different spatial zones of the kidney reflecting their unique functional roles. Overall, this represents the first time the entire arterial vasculature of a human kidney has been mapped providing essential inputs for computational models of kidney vascular flow and synthetic vascular architectures, with implications for understanding how the structure of individual blood vessels collectively scales to facilitate organ function.
Collapse
Affiliation(s)
- Shahrokh Rahmani
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Daniyal J Jafree
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK, WC1N 1EH
- UCL MB/PhD Programme, Faculty of Medical Science, University College London, London, UK, WC1E 6BT
- UCL Centre of Kidney and Bladder Health, UCL London UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France, 38043
| | - Joseph Brunet
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
- European Synchrotron Radiation Facility, Grenoble, France, 38043
| | - Sonal Nandanwar
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
| | - Joseph Jacob
- Satsuma Lab, Centre for Medical Image Computing, UCL, London, UK
- Lungs for Living Research Centre, UCL, London, UK
| | - Alexandre Bellier
- Department of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France, 38058
| | - Maximilian Ackermann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
- Institute of Pathology, RWTH Aachen Medical University, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, RWTH Aachen Medical University, Aachen, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
| | - David A Long
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK, WC1N 1EH
- UCL Centre of Kidney and Bladder Health, UCL London UK
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, UK, WC1E 6BT
| |
Collapse
|
22
|
Otomo K, Omura T, Nozawa Y, Edwards SJ, Sato Y, Saito Y, Yagishita S, Uchida H, Watakabe Y, Naitou K, Yanai R, Sahara N, Takagi S, Katayama R, Iwata Y, Shiokawa T, Hayakawa Y, Otsuka K, Watanabe-Takano H, Haneda Y, Fukuhara S, Fujiwara M, Nii T, Meno C, Takeshita N, Yashiro K, Rosales Rocabado JM, Kaku M, Yamada T, Oishi Y, Koike H, Cheng Y, Sekine K, Koga JI, Sugiyama K, Kimura K, Karube F, Kim H, Manabe I, Nemoto T, Tainaka K, Hamada A, Brismar H, Susaki EA. descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques. Nat Commun 2024; 15:4941. [PMID: 38866781 PMCID: PMC11169475 DOI: 10.1038/s41467-024-49131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.
Collapse
Affiliation(s)
- Kohei Otomo
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takaki Omura
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery, University of Tokyo, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Nozawa
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
| | - Steven J Edwards
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yukihiko Sato
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigehiro Yagishita
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Uchida
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Watakabe
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yuka Haneda
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Miku Fujiwara
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Takeshita
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yashiro
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Juan Marcelo Rosales Rocabado
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuya Yamada
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Yumiko Oishi
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yinglan Cheng
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun-Ichiro Koga
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenichi Kimura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinobu Hamada
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan.
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
23
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
24
|
André M, Dinvaut S, Castellani V, Falk J. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing. BMC Biol 2024; 22:131. [PMID: 38831263 PMCID: PMC11149291 DOI: 10.1186/s12915-024-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.
Collapse
Affiliation(s)
- Maëlys André
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| | - Sarah Dinvaut
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Valérie Castellani
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Julien Falk
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
25
|
Schmid R, Schmidt SK, Schrüfer S, Schubert DW, Heltmann-Meyer S, Schicht M, Paulsen F, Horch RE, Bosserhoff AK, Kengelbach-Weigand A, Arkudas A. A vascularized in vivo melanoma model suitable for metastasis research of different tumor stages using fundamentally different bioinks. Mater Today Bio 2024; 26:101071. [PMID: 38736612 PMCID: PMC11081803 DOI: 10.1016/j.mtbio.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Although 2D cancer models have been the standard for drug development, they don't resemble in vivo properties adequately. 3D models can potentially overcome this. Bioprinting is a promising technique for more refined models to investigate central processes in tumor development such as proliferation, dormancy or metastasis. We aimed to analyze bioinks, which could mimic these different tumor stages in a cast vascularized arteriovenous loop melanoma model in vivo. It has the advantage to be a closed system with a defined microenvironment, supplied only with one vessel-ideal for metastasis research. Tested bioinks showed significant differences in composition, printability, stiffness and microscopic pore structure, which led to different tumor stages (Matrigel and Alg/HA/Gel for progression, Cellink Bioink for dormancy) and resulted in different primary tumor growth (Matrigel significantly higher than Cellink Bioink). Light-sheet fluorescence microscopy revealed differences in vascularization and hemorrhages with no additional vessels found in Cellink Bioink. Histologically, typical human melanoma with different stages was demonstrated. HMB-45-positive tumors in progression inks were infiltrated by macrophages (CD163), highly proliferative (Ki67) and metastatic (MITF/BRN2, ATX, MMP3). Stainings of lymph nodes revealed metastases even without significant primary tumor growth in Cellink Bioink. This model can be used to study tumor pathology and metastasis of different tumor stages and therapies.
Collapse
Affiliation(s)
- Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Sonja K. Schmidt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Dirk W. Schubert
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Martin Schicht
- Department of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstraße 19, 91054, Erlangen, Germany
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstraße 19, 91054, Erlangen, Germany
| | - Raymund E. Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
26
|
Böhner AMC, Effland A, Jacob AM, Böhner KAM, Abdullah Z, Brähler S, Attenberger UI, Rumpf M, Kurts C. Determining individual glomerular proteinuria and periglomerular infiltration in a cleared murine kidney by a 3-dimensional fast marching algorithm. Kidney Int 2024; 105:1254-1262. [PMID: 38458475 DOI: 10.1016/j.kint.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
Three-dimensional (3D) imaging has advanced basic research and clinical medicine. However, limited resolution and imperfections of real-world 3D image material often preclude algorithmic image analysis. Here, we present a methodologic framework for such imaging and analysis for functional and spatial relations in experimental nephritis. First, optical tissue-clearing protocols were optimized to preserve fluorescence signals for light sheet fluorescence microscopy and compensated attenuation effects using adjustable 3D correction fields. Next, we adapted the fast marching algorithm to conduct backtracking in 3D environments and developed a tool to determine local concentrations of extractable objects. As a proof-of-concept application, we used this framework to determine in a glomerulonephritis model the individual proteinuria and periglomerular immune cell infiltration for all glomeruli of half a mouse kidney. A correlation between these parameters surprisingly did not support the intuitional assumption that the most inflamed glomeruli are the most proteinuric. Instead, the spatial density of adjacent glomeruli positively correlated with the proteinuria of a given glomerulus. Because proteinuric glomeruli appear clustered, this suggests that the exact location of a kidney biopsy may affect the observed severity of glomerular damage. Thus, our algorithmic pipeline described here allows analysis of various parameters of various organs composed of functional subunits, such as the kidney, and can theoretically be adapted to processing other image modalities.
Collapse
Affiliation(s)
- Alexander M C Böhner
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Effland
- Institute for Applied Mathematics, University of Bonn, Bonn, Germany
| | - Alice M Jacob
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Karin A M Böhner
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Brähler
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Martin Rumpf
- Institute for Numerical Simulation, University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Revealing the MRI-Contrast in Optically Cleared Brains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400316. [PMID: 38647385 PMCID: PMC11165557 DOI: 10.1002/advs.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods' substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Galit Saar
- Biomedical Core FacilityFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Shunit Olszakier
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Ronit Heinrich
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico‐Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine
| | - Shai Berlin
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| |
Collapse
|
28
|
Hill O, Wollweber M, Biermann T, Ripken T, Lachmayer R. Imperfect refractive index matching in scanning laser optical tomography and a method for digital correction. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066004. [PMID: 38751827 PMCID: PMC11095122 DOI: 10.1117/1.jbo.29.6.066004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Significance Scanning laser optical tomography (SLOT) is a volumetric multi-modal imaging technique that is comparable to optical projection tomography and computer tomography. Image quality is crucially dependent on matching the refractive indexes (RIs) of the sample and surrounding medium, but RI matching often requires some effort and is never perfect. Aim Reducing the burden of RI matching between the immersion medium and sample in biomedical imaging is a challenging and interesting task. We aim at implementing a post processing strategy for correcting SLOT measurements that have errors caused by RI mismatch. Approach To better understand the problems with poorly matched Ris, simulated SLOT measurements with imperfect RI matching of the sample and medium are performed and presented here. A method to correct distorted measurements was developed and is presented and evaluated. This method is then applied to a sample containing fluorescent polystyrene beads and a sample made of olydimethylsiloxane with embedded fluorescent nanoparticles. Results From the simulations, it is evident that measurements with an RI mismatch larger than 0.02 and no correction yield considerably worse results compared to perfectly matched measurements. RI mismatches larger than 0.05 make it almost impossible to resolve finer details and structures. By contrast, the simulations imply that a measurement with an RI mismatch of up to 0.1 can still yield reasonable results if the presented correction method is applied. The experiments validate the simulated results for an RI mismatch of about 0.09. Conclusions The method significantly improves the SLOT image quality for samples with imperfectly matched Ris. Although the absolutely best imaging quality will be achieved with perfect RI matching, these results pave the way for imaging in SLOT with RI mismatches while maintaining high image quality.
Collapse
Affiliation(s)
- Ole Hill
- Leibniz University Hanover, Hannover, Germany
- Laser Zentrum Hannover e.V., Hannover, Germany
| | | | | | | | | |
Collapse
|
29
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
30
|
Ascheid D, Baumann M, Pinnecker J, Friedrich M, Szi-Marton D, Medved C, Bundalo M, Ortmann V, Öztürk A, Nandigama R, Hemmen K, Ergün S, Zernecke A, Hirth M, Heinze KG, Henke E. A vascularized breast cancer spheroid platform for the ranked evaluation of tumor microenvironment-targeted drugs by light sheet fluorescence microscopy. Nat Commun 2024; 15:3599. [PMID: 38678014 PMCID: PMC11055956 DOI: 10.1038/s41467-024-48010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.
Collapse
Affiliation(s)
- David Ascheid
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Baumann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jürgen Pinnecker
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mike Friedrich
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Daniel Szi-Marton
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cornelia Medved
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Maja Bundalo
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Vanessa Ortmann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Asli Öztürk
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Katherina Hemmen
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Süleymann Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Matthias Hirth
- Institut für Medientechnik, Technische Universität Illmenau, Illmenau, Germany
| | - Katrin G Heinze
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Graduate School for Life Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
31
|
Dequiedt L, Forjaz A, Lo JO, McCarty O, Wu PH, Rosenberg A, Wirtz D, Kiemen A. Three-dimensional reconstruction of fetal rhesus macaque kidneys at single-cell resolution reveals complex inter-relation of structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570622. [PMID: 38106004 PMCID: PMC10723390 DOI: 10.1101/2023.12.07.570622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however, these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve our ability to compare many microanatomical structures at once, paving the way for further works investigating renal pathologies.
Collapse
Affiliation(s)
- Lucie Dequiedt
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health and Sciences University
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Owen McCarty
- Department of Biomedical Engineering, Oregon Health and Sciences University
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
| | - Avi Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine
- Department of Oncology, Johns Hopkins School of Medicine
| | - Ashley Kiemen
- Institute for NanoBioTechnology, Johns Hopkins University
- Department of Pathology, Johns Hopkins School of Medicine
- Department of Oncology, Johns Hopkins School of Medicine
| |
Collapse
|
32
|
Bishop KW, Erion Barner LA, Han Q, Baraznenok E, Lan L, Poudel C, Gao G, Serafin RB, Chow SSL, Glaser AK, Janowczyk A, Brenes D, Huang H, Miyasato D, True LD, Kang S, Vaughan JC, Liu JTC. An end-to-end workflow for nondestructive 3D pathology. Nat Protoc 2024; 19:1122-1148. [PMID: 38263522 DOI: 10.1038/s41596-023-00934-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. Although 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol focuses on the use of a fluorescent analog of hematoxylin and eosin, which remains the most common stain used for gold-standard pathological reports. We present our guidelines for a broad range of end users (e.g., biologists, clinical researchers and engineers) in a simple format. The end-to-end workflow requires 3-6 d to complete, bearing in mind that data analysis may take longer.
Collapse
Affiliation(s)
- Kevin W Bishop
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Qinghua Han
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Elena Baraznenok
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lydia Lan
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Gan Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Robert B Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Sarah S L Chow
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Adam K Glaser
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Andrew Janowczyk
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
- Department of Oncology, Division of Precision Oncology, University Hospital of Geneva, Geneva, Switzerland
- Department of Diagnostics, Division of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - David Brenes
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Hongyi Huang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Dominie Miyasato
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
33
|
Vladimirov N, Voigt FF, Naert T, Araujo GR, Cai R, Reuss AM, Zhao S, Schmid P, Hildebrand S, Schaettin M, Groos D, Mateos JM, Bethge P, Yamamoto T, Aerne V, Roebroeck A, Ertürk A, Aguzzi A, Ziegler U, Stoeckli E, Baudis L, Lienkamp SS, Helmchen F. Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for cleared samples. Nat Commun 2024; 15:2679. [PMID: 38538644 PMCID: PMC10973490 DOI: 10.1038/s41467-024-46770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.
Collapse
Grants
- U01 NS090475 NINDS NIH HHS
- This work was supported by the University Research Priority Program (URPP) “Adaptive Brain Circuits in Development and Learning (AdaBD)” of the University of Zurich (N.V., E.S. and F.H.). Additionally, F.F.V. is supported by an HFSP fellowship (LT00687), T.N. received funding from H2020 Marie Skłodowska-Curie Actions (xenCAKUT - 891127), A.R. and S.H. were supported by a Dutch Science Foundation VIDI Grant (14637), and A.R. was supported by an ERC Starting Grant (MULTICONNECT, 639938). Further funding support came from the Swiss National Science Foundation (SNF grant nos. 31003B-170269, 310030_192617 and CRSII5-18O316 to F.H., 310030_189102 to S.S.L., 200020_204950 to L.B., G.R.A, and V.A.); from an ERC Starting Grant by the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 804474, DiRECT, S.S.L); and the US Brain Initiative (1U01NS090475-01, F.H.).
Collapse
Affiliation(s)
- Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland.
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Naert
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | | | - Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anna Maria Reuss
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Shan Zhao
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Patricia Schmid
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - José María Mateos
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Taiyo Yamamoto
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Valentino Aerne
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Adriano Aguzzi
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Esther Stoeckli
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Baudis
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Kim N, Li Y, Yu R, Kwon HS, Song A, Jun MH, Jeong JY, Lee JH, Lim HH, Kim MJ, Kim JW, Oh WJ. Repulsive Sema3E-Plexin-D1 signaling coordinates both axonal extension and steering via activating an autoregulatory factor, Mtss1. eLife 2024; 13:e96891. [PMID: 38526535 PMCID: PMC11001299 DOI: 10.7554/elife.96891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Axon guidance molecules are critical for neuronal pathfinding because they regulate directionality and growth pace during nervous system development. However, the molecular mechanisms coordinating proper axonal extension and turning are poorly understood. Here, metastasis suppressor 1 (Mtss1), a membrane protrusion protein, ensured axonal extension while sensitizing axons to the Semaphorin 3E (Sema3E)-Plexin-D1 repulsive cue. Sema3E-Plexin-D1 signaling enhanced Mtss1 expression in projecting striatonigral neurons. Mtss1 localized to the neurite axonal side and regulated neurite outgrowth in cultured neurons. Mtss1 also aided Plexin-D1 trafficking to the growth cone, where it signaled a repulsive cue to Sema3E. Mtss1 ablation reduced neurite extension and growth cone collapse in cultured neurons. Mtss1-knockout mice exhibited fewer striatonigral projections and irregular axonal routes, and these defects were recapitulated in Plxnd1- or Sema3e-knockout mice. These findings demonstrate that repulsive axon guidance activates an exquisite autoregulatory program coordinating both axonal extension and steering during neuronal pathfinding.
Collapse
Affiliation(s)
- Namsuk Kim
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Yan Li
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Ri Yu
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Hyo-Shin Kwon
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Anji Song
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Mi-Hee Jun
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Jin-Young Jeong
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea
| | - Ji Hyun Lee
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Mi-Jin Kim
- Department of Life Sciences, Chung-Ang UniversitySeoulRepublic of Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang UniversitySeoulRepublic of Korea
| | - Won-Jong Oh
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
35
|
Li Y, Cao J, Zhang Q, Li J, Li X, Zhou H, Li A, Jiang T. Precise reconstruction of the entire mouse kidney at cellular resolution. BIOMEDICAL OPTICS EXPRESS 2024; 15:1474-1485. [PMID: 38495699 PMCID: PMC10942701 DOI: 10.1364/boe.515527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
The kidney is an important organ for excreting metabolic waste and maintaining the stability of the body's internal environment. The renal function involves multiple complex and fine structures in the whole kidney, and any change in these structures may cause impaired nephric function. Consequently, achieving three-dimensional (3D) reconstruction of the entire kidney at a single-cell resolution is of significant importance for understanding the kidney's structural characteristics and exploring the pathogenesis of kidney diseases. In this paper, we propose a pipeline from sample preparation to optical microscopic imaging of the entire kidney, followed by data processing for 3D reconstruction of the whole mouse kidney. We employed transgenic fluorescent labeling and propidium iodide (PI) labeling to obtain detailed information about the vascular structure and cytoarchitecture of the kidney. Subsequently, the entire mouse kidney was imaged at submicron-resolution using high-definition fluorescent micro-optical sectioning tomography (HD-fMOST). Finally, we reconstructed the structures of interest through various data processing methods on the original images. This included detecting glomeruli throughout the entire kidney, as well as the segmentation and visualization of the renal arteries, veins, and three different types of nephrons. Our method provides a powerful tool for studying the renal microstructure and its spatial relationships throughout the entire kidney.
Collapse
Affiliation(s)
- Yuxin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Jia Cao
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Qianlong Zhang
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Junhuai Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Xiangning Li
- State key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| | - Hongfang Zhou
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| |
Collapse
|
36
|
Mertens TF, Liebheit AT, Ehl J, Köhler R, Rakhymzhan A, Woehler A, Katthän L, Ebel G, Liublin W, Kasapi A, Triantafyllopoulou A, Schulz TJ, Niesner RA, Hauser AE. MarShie: a clearing protocol for 3D analysis of single cells throughout the bone marrow at subcellular resolution. Nat Commun 2024; 15:1764. [PMID: 38409121 PMCID: PMC10897183 DOI: 10.1038/s41467-024-45827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Analyzing immune cell interactions in the bone marrow is vital for understanding hematopoiesis and bone homeostasis. Three-dimensional analysis of the complete, intact bone marrow within the cortex of whole long bones remains a challenge, especially at subcellular resolution. We present a method that stabilizes the marrow and provides subcellular resolution of fluorescent signals throughout the murine femur, enabling identification and spatial characterization of hematopoietic and stromal cell subsets. By combining a pre-processing algorithm for stripe artifact removal with a machine-learning approach, we demonstrate reliable cell segmentation down to the deepest bone marrow regions. This reveals age-related changes in the marrow. It highlights the interaction between CX3CR1+ cells and the vascular system in homeostasis, in contrast to other myeloid cell types, and reveals their spatial characteristics after injury. The broad applicability of this method will contribute to a better understanding of bone marrow biology.
Collapse
Affiliation(s)
- Till Fabian Mertens
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Tabea Liebheit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Ehl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Ralf Köhler
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Lukas Katthän
- Miltenyi Biotec B.V. and Co. Bertha-von-Suttner-Straße 5, 37085, Göttingen, Germany
| | - Gernot Ebel
- Miltenyi Biotec B.V. and Co. Bertha-von-Suttner-Straße 5, 37085, Göttingen, Germany
| | - Wjatscheslaw Liublin
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Ana Kasapi
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Antigoni Triantafyllopoulou
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Tim Julius Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764, Munich-Neuherberg, Germany
| | - Raluca Aura Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja Erika Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
37
|
Andreev D, Kachler K, Liu M, Chen Z, Krishnacoumar B, Ringer M, Frey S, Krönke G, Voehringer D, Schett G, Bozec A. Eosinophils preserve bone homeostasis by inhibiting excessive osteoclast formation and activity via eosinophil peroxidase. Nat Commun 2024; 15:1067. [PMID: 38316791 PMCID: PMC10844633 DOI: 10.1038/s41467-024-45261-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Eosinophils are involved in tissue homeostasis. Herein, we unveiled eosinophils as important regulators of bone homeostasis. Eosinophils are localized in proximity to bone-resorbing osteoclasts in the bone marrow. The absence of eosinophils in ΔdblGATA mice results in lower bone mass under steady-state conditions and amplified bone loss upon sex hormone deprivation and inflammatory arthritis. Conversely, increased numbers of eosinophils in IL-5 transgenic mice enhance bone mass under steady-state conditions and protect from hormone- and inflammation- mediated bone loss. Eosinophils strongly inhibit the differentiation and demineralization activity of osteoclasts and lead to profound changes in the transcriptional profile of osteoclasts. This osteoclast-suppressive effect of eosinophils is based on the release of eosinophil peroxidase causing impaired reactive oxygen species and mitogen-activated protein kinase induction in osteoclast precursors. In humans, the number and the activity of eosinophils correlates with bone mass in healthy participants and rheumatoid arthritis patients. Taken together, experimental and human data indicate a regulatory function of eosinophils on bone.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Mengdan Liu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Rheumatology, Zhejiang University - School of Medicine, Hangzhou, China
| | - Zhu Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, China
| | - Brenda Krishnacoumar
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Ringer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
38
|
Martínez-Torres D, Maldonado V, Pérez-Gallardo C, Yañez R, Candia V, Kalaidzidis Y, Zerial M, Morales-Navarrete H, Segovia-Miranda F. Phenotypic characterization of liver tissue heterogeneity through a next-generation 3D single-cell atlas. Sci Rep 2024; 14:2823. [PMID: 38307948 PMCID: PMC10837128 DOI: 10.1038/s41598-024-53309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Three-dimensional (3D) geometrical models are potent tools for quantifying complex tissue features and exploring structure-function relationships. However, these models are generally incomplete due to experimental limitations in acquiring multiple (> 4) fluorescent channels in thick tissue sections simultaneously. Indeed, predictive geometrical and functional models of the liver have been restricted to few tissue and cellular components, excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells (KCs). Here, we combined deep-tissue immunostaining, multiphoton microscopy, deep-learning techniques, and 3D image processing to computationally expand the number of simultaneously reconstructed tissue structures. We then generated a spatial single-cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) hepatic morphodynamics from early post-natal development to adulthood, and 2) the effect on the liver's overall structure when changing the hepatic environment after removing KCs. In addition to a complete description of bile canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs results in morphological changes in hepatocytes and HSCs. These findings reveal novel characteristics of liver heterogeneity and have important implications for both the structural organization of liver tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver tissue architecture, opening up avenues for in-depth investigations into tissue structure across both normal and pathological conditions.
Collapse
Affiliation(s)
- Dilan Martínez-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valentina Maldonado
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Cristian Pérez-Gallardo
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Yañez
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valeria Candia
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hernán Morales-Navarrete
- Department of Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Facultad de Ciencias Técnicas, Universidad Internacional Del Ecuador UIDE, Quito, Ecuador.
| | - Fabián Segovia-Miranda
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
39
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Datasets assessing lipid-content in optically cleared brains. Data Brief 2024; 52:109795. [PMID: 38146303 PMCID: PMC10749242 DOI: 10.1016/j.dib.2023.109795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
Multi-modal imaging, by light-microscopy (LM) and Magnetic Resonance Imaging (MRI), holds promise for examining the brain across various resolutions and scales. While MRI acquires images in three dimensions, acquisition of intact whole-brain by LM requires a process of tissue clearing that renders the brain transparent. Removal of lipids (delipidation) is a critical step in the tissue clearing process, and was previsouly suggested to be the cause for absence of MRI contrast in cleared brains. Yet, the association between MRI contrast, delipidation and the different clearing techniques is debatable. Here, we provide datasets concerning lipid-content in cleared brain tissues obtained by various approaches. Fixed mouse and rat brains were cleared by CLARITY, Scale, uDISCO and ECi clearing techniques. Lipid-content was assessed at various intermediate steps of the different clearing methods, as well as at the end of the processes. Methods employed included whole brain MRI acquisition, Oil Red O (ORO)- and carbocyanine DiI-staining of cryosections, and DiI-washout assay from brain slices. MRI contrast-to-noise ratio, staining intensities and integrity of tissue were systematically analyzed. We demonstrate that lipid electrophoresis, an essential step of the CLARITY approach, engenders progressive reduction in MRI contrast in non-cleared (PFA-fixed) control brains, as well as strongly reduces contrast from uDISCO and ECi-cleared brains. ORO minimally stained CLARITY-cleared brains, however efficiently labelled uDISCO and ECi-cleared brains. Conversely, and in contrast to ORO-staining, DiI equally stained control, CLARITY, ECi and uDISCO-cleared brains. Both ORO- and DiI-staining demonstrated impairment in brain tissue integrity following CLARITY, but less so in uDISCO and ECi brains. DiI-washout assay demonstrated that each of the solvents employed along the process of uDISCO and ECi are highly delipidating, as well as the SDS-electrophoresis employed during CLARITY clearing. However, Scale treatment preserved most of the DiI dye. These data emphasize the variability in lipid assessment of cleared tissues by common techniques, and may help to resolve the contribution of lipids in brain MRI contrast.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shunit Olszakier
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Shai Berlin
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Khatif H, Bazzi H. Generation and characterization of a Dkk4-Cre knock-in mouse line. Genesis 2024; 62:e23532. [PMID: 37435631 DOI: 10.1002/dvg.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Ectodermal appendages in mammals, such as teeth, mammary glands, sweat glands and hair follicles, are generated during embryogenesis through a series of mesenchymal-epithelial interactions. Canonical Wnt signaling and its inhibitors are implicated in the early steps of ectodermal appendage development and patterning. To study the activation dynamics of the Wnt target and inhibitor Dickkopf4 (Dkk4) in ectodermal appendages, we used CRSIPR/Cas9 to generate a Dkk4-Cre knock-in mouse (Mus musculus) line, where the Cre recombinase cDNA replaces the expression of endogenous Dkk4. Using Cre reporters, the Dkk4-Cre activity was evident at the prospective sites of ectodermal appendages, overlapping with the Dkk4 mRNA expression. Unexpectedly, a predominantly mesenchymal cell population in the embryo posterior also showed Dkk4-Cre activity. Lineage-tracing suggested that these cells are likely derived from a few Dkk4-Cre-expressing cells in the epiblast at early gastrulation. Finally, our analyses of Dkk4-Cre-expressing cells in developing hair follicle epithelial placodes revealed intra- and inter-placodal cellular heterogeneity, supporting emerging data on the positional and transcriptional cellular variability in placodes. Collectively, we propose the new Dkk4-Cre knock-in mouse line as a suitable model to study Wnt and DKK4 inhibitor dynamics in early mouse development and ectodermal appendage morphogenesis.
Collapse
Affiliation(s)
- Houda Khatif
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Voigt FF, Reuss AM, Naert T, Hildebrand S, Schaettin M, Hotz AL, Whitehead L, Bahl A, Neuhauss SCF, Roebroeck A, Stoeckli ET, Lienkamp SS, Aguzzi A, Helmchen F. Reflective multi-immersion microscope objectives inspired by the Schmidt telescope. Nat Biotechnol 2024; 42:65-71. [PMID: 36997681 PMCID: PMC10791577 DOI: 10.1038/s41587-023-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
Abstract
Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem. We demonstrate that a multi-photon variant of the Schmidt objective is compatible with all homogeneous immersion media and achieves an NA of 1.08 at a refractive index of 1.56, 1.1-mm FOV and 11-mm WD. We highlight its versatility by imaging cleared samples in various media ranging from air and water to benzyl alcohol/benzyl benzoate, dibenzyl ether and ethyl cinnamate and by imaging of neuronal activity in larval zebrafish in vivo. In principle, the concept can be extended to any imaging modality, including wide-field, confocal and light-sheet microscopy.
Collapse
Affiliation(s)
- Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Adriana L Hotz
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Stephan C F Neuhauss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Esther T Stoeckli
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| | | | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| |
Collapse
|
42
|
Chen L, Meng J, Zhou Y, Zhao F, Ma Y, Feng W, Chen X, jin J, Gao S, Liu J, Zhang M, Liu A, Hong Z, Tang J, Kuang D, Huang L, Zhang Y, Fei P. Efficient 3D imaging and pathological analysis of the human lymphoma tumor microenvironment using light-sheet immunofluorescence microscopy. Theranostics 2024; 14:406-419. [PMID: 38164148 PMCID: PMC10750216 DOI: 10.7150/thno.86221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: The composition and spatial structure of the lymphoma tumor microenvironment (TME) provide key pathological insights for tumor survival and growth, invasion and metastasis, and resistance to immunotherapy. However, the 3D lymphoma TME has not been well studied owing to the limitations of current imaging techniques. In this work, we take full advantage of a series of new techniques to enable the first 3D TME study in intact lymphoma tissue. Methods: Diverse cell subtypes in lymphoma tissues were tagged using a multiplex immunofluorescence labeling technique. To optically clarify the entire tissue, immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+), clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) and stabilization to harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD) were comprehensively compared with the ultimate dimensional imaging of solvent-cleared organs (uDISCO) approach selected for clearing lymphoma tissues. A Bessel-beam light-sheet fluorescence microscope (B-LSFM) was developed to three-dimensionally image the clarified tissues at high speed and high resolution. A customized MATLAB program was used to quantify the number and colocalization of the cell subtypes based on the acquired multichannel 3D images. By combining these cutting-edge methods, we successfully carried out high-efficiency 3D visualization and high-content cellular analyses of the lymphoma TME. Results: Several antibodies, including CD3, CD8, CD20, CD68, CD163, CD14, CD15, FOXP3 and Ki67, were screened for labeling the TME in lymphoma tumors. The 3D imaging results of the TME from three types of lymphoma, reactive lymphocytic hyperplasia (RLN), diffuse large B-cell lymphoma (DLBCL), and angioimmunoblastic T-cell lymphoma (AITL), were quantitatively analyzed, and their cell number, localization, and spatial correlation were comprehensively revealed. Conclusion: We present an advanced imaging-based method for efficient 3D visualization and high-content cellular analysis of the lymphoma TME, rendering it a valuable tool for tumor pathological diagnosis and other clinical research.
Collapse
Affiliation(s)
- Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yao Zhou
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhao
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ma
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyang Feng
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Chen
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jin jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimeng Gao
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jianchao Liu
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Man Zhang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Tang
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Yamada H, Makino SI, Okunaga I, Miyake T, Yamamoto-Nonaka K, Oliva Trejo JA, Tominaga T, Empitu MA, Kadariswantiningsih IN, Kerever A, Komiya A, Ichikawa T, Arikawa-Hirasawa E, Yanagita M, Asanuma K. Beyond 2D: A scalable and highly sensitive method for a comprehensive 3D analysis of kidney biopsy tissue. PNAS NEXUS 2024; 3:pgad433. [PMID: 38193136 PMCID: PMC10772983 DOI: 10.1093/pnasnexus/pgad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
The spatial organization of various cell populations is critical for the major physiological and pathological processes in the kidneys. Most evaluation of these processes typically comes from a conventional 2D tissue cross-section, visualizing a limited amount of cell organization. Therefore, the 2D analysis of kidney biopsy introduces selection bias. The 2D analysis potentially omits key pathological findings outside a 1- to 10-μm thin-sectioned area and lacks information on tissue organization, especially in a particular irregular structure such as crescentic glomeruli. In this study, we introduce an easy-to-use and scalable method for obtaining high-quality images of molecules of interest in a large tissue volume, enabling a comprehensive evaluation of the 3D organization and cellular composition of kidney tissue, especially the glomerular structure. We show that CUBIC and ScaleS clearing protocols could allow a 3D analysis of the kidney tissues in human and animal models of kidney disease. We also demonstrate that the paraffin-embedded human biopsy specimens previously examined via 2D evaluation could be applicable to 3D analysis, showing a potential utilization of this method in kidney biopsy tissue collected in the past. In summary, the 3D analysis of kidney biopsy provides a more comprehensive analysis and a minimized selection bias than 2D tissue analysis. Additionally, this method enables a quantitative evaluation of particular kidney structures and their surrounding tissues, with the potential utilization from basic science investigation to applied diagnostics in nephrology.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Primary Care and Emergency, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shin-ichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Issei Okunaga
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Takafumi Miyake
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kanae Yamamoto-Nonaka
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Juan Alejandro Oliva Trejo
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
| | - Takahiro Tominaga
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | | | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Akira Komiya
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Motoko Yanagita
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- The Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
44
|
Jeong JY, Lee HJ, Kim N, Li Y, Rah JC, Oh WJ. Impaired neuronal activity as a potential factor contributing to the underdeveloped cerebrovasculature in a young Parkinson's disease mouse model. Sci Rep 2023; 13:22613. [PMID: 38114623 PMCID: PMC10730707 DOI: 10.1038/s41598-023-49900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Misfolding of α-synuclein (α-Syn) in the brain causes cellular dysfunction, leading to cell death in a group of neurons, and consequently causes the progression of Parkinson's disease (PD). Although many studies have demonstrated the pathological connections between vascular dysfunction and neurodegenerative diseases, it remains unclear how neuronal accumulation of α-Syn affects the structural and functional aspects of the cerebrovasculature to accelerate early disease progression. Here, we demonstrated the effect of aberrant α-Syn expression on the brain vasculature using a PD mouse model expressing a familial mutant form of human α-Syn selectively in neuronal cells. We showed that young PD mice have an underdeveloped cerebrovasculature without significant α-Syn accumulation in the vasculature. During the early phase of PD, toxic α-Syn was selectively increased in neuronal cells, while endothelial cell proliferation was decreased in the absence of vascular cell death or neuroinflammation. Instead, we observed altered neuronal activation and minor changes in the activity-dependent gene expression in brain endothelial cells (ECs) in young PD mice. These findings demonstrated that neuronal expression of mutant α-Syn in the early stage of PD induces abnormal neuronal activity and contributes to vascular patterning defects, which could be associated with a reduced angiogenic potential of ECs.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea
| | - Hyun Jung Lee
- Sensory and Motor System Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Namsuk Kim
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Yan Li
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Jong-Cheol Rah
- Sensory and Motor System Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Won-Jong Oh
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea.
| |
Collapse
|
45
|
Vladimirov N, Voigt FF, Naert T, Araujo GR, Cai R, Reuss AM, Zhao S, Schmid P, Hildebrand S, Schaettin M, Groos D, Mateos JM, Bethge P, Yamamoto T, Aerne V, Roebroeck A, Ertürk A, Aguzzi A, Ziegler U, Stoeckli E, Baudis L, Lienkamp SS, Helmchen F. The Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for large cleared samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545256. [PMID: 38168219 PMCID: PMC10760166 DOI: 10.1101/2023.06.16.545256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of light-sheet microscopy. Here, we introduce the next-generation mesoSPIM ("Benchtop") with significantly increased field of view, improved resolution, higher throughput, more affordable cost and simpler assembly compared to the original version. We developed a new method for testing objectives, enabling us to select detection objectives optimal for light-sheet imaging with large-sensor sCMOS cameras. The new mesoSPIM achieves high spatial resolution (1.5 μm laterally, 3.3 μm axially) across the entire field of view, a magnification up to 20x, and supports sample sizes ranging from sub-mm up to several centimetres, while being compatible with multiple clearing techniques. The new microscope serves a broad range of applications in neuroscience, developmental biology, and even physics.
Collapse
Affiliation(s)
- Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Fabian F. Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Naert
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | | | - Ruiyao Cai
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, German
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Shan Zhao
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Patricia Schmid
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martina Schaettin
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - José María Mateos
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Taiyo Yamamoto
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Valentino Aerne
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, German
| | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Esther Stoeckli
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Baudis
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Soeren S. Lienkamp
- Institute of Anatomy and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Oh D, Lee D, Heo J, Kweon J, Yong U, Jang J, Ahn YJ, Kim C. Contrast Agent-Free 3D Renal Ultrafast Doppler Imaging Reveals Vascular Dysfunction in Acute and Diabetic Kidney Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303966. [PMID: 37847902 PMCID: PMC10754092 DOI: 10.1002/advs.202303966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Indexed: 10/19/2023]
Abstract
To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.
Collapse
Affiliation(s)
- Donghyeon Oh
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Donghyun Lee
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinseok Heo
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jooyoung Kweon
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Uijung Yong
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinah Jang
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Yong Joo Ahn
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
47
|
Esser TU, Anspach A, Muenzebrock KA, Kah D, Schrüfer S, Schenk J, Heinze KG, Schubert DW, Fabry B, Engel FB. Direct 3D-Bioprinting of hiPSC-Derived Cardiomyocytes to Generate Functional Cardiac Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305911. [PMID: 37655652 DOI: 10.1002/adma.202305911] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Indexed: 09/02/2023]
Abstract
3D-bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D-bioprint human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes embedded in a collagen-hyaluronic acid ink, generating centimeter-sized functional ring- and ventricle-shaped cardiac tissues in an accurate and reproducible manner. The printed tissues contain hiPSC-derived cardiomyocytes with well-organized sarcomeres and exhibit spontaneous and regular contractions, which persist for several months and are able to contract against passive resistance. Importantly, beating frequencies of the printed cardiac tissues can be modulated by pharmacological stimulation. This approach opens up new possibilities for generating complex functional cardiac tissues as models for advanced drug screening or as tissue grafts for organ repair or replacement.
Collapse
Affiliation(s)
- Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Annalise Anspach
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Katrin A Muenzebrock
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Joachim Schenk
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), 97080, Würzburg, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| |
Collapse
|
48
|
Gaupp C, Schmid B, Tripal P, Edwards A, Daniel C, Zimmermann S, Goppelt-Struebe M, Willam C, Rosen S, Schley G. Reconfiguration and loss of peritubular capillaries in chronic kidney disease. Sci Rep 2023; 13:19660. [PMID: 37952029 PMCID: PMC10640592 DOI: 10.1038/s41598-023-46146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Functional and structural alterations of peritubular capillaries (PTCs) are a major determinant of chronic kidney disease (CKD). Using a software-based algorithm for semiautomatic segmentation and morphometric quantification, this study analyzes alterations of PTC shape associated with chronic tubulointerstitial injury in three mouse models and in human biopsies. In normal kidney tissue PTC shape was predominantly elongated, whereas the majority of PTCs associated with chronic tubulointerstitial injury had a rounder shape. This was reflected by significantly reduced PTC luminal area, perimeter and diameters as well as by significantly increased circularity and roundness. These morphological alterations were consistent in all mouse models and human kidney biopsies. The mean circularity of PTCs correlated significantly with categorized glomerular filtration rates and the degree of interstitial fibrosis and tubular atrophy (IFTA) and classified the presence of CKD or IFTA. 3D reconstruction of renal capillaries revealed not only a significant reduction, but more importantly a substantial simplification and reconfiguration of the renal microvasculature in mice with chronic tubulointerstitial injury. Computational modelling predicted that round PTCs can deliver oxygen more homogeneously to the surrounding tissue. Our findings indicate that alterations of PTC shape represent a common and uniform reaction to chronic tubulointerstitial injury independent of the underlying kidney disease.
Collapse
Affiliation(s)
- Charlotte Gaupp
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Stefan Zimmermann
- Department of Computer Science, University of Applied Sciences Worms, Worms, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
49
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
50
|
Bishop KW, Hu B, Vyawhare R, Yang Z, Liang DC, Gao G, Baraznenok E, Han Q, Lan L, Chow SSL, Sanai N, Liu JTC. Miniature line-scanned dual-axis confocal microscope for versatile clinical use. BIOMEDICAL OPTICS EXPRESS 2023; 14:6048-6059. [PMID: 38021137 PMCID: PMC10659777 DOI: 10.1364/boe.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
A miniature optical-sectioning fluorescence microscope with high sensitivity and resolution would enable non-invasive and real-time tissue inspection, with potential use cases including early disease detection and intraoperative guidance. Previously, we developed a miniature MEMS-based dual-axis confocal (DAC) microscope that enabled video-rate optically sectioned in vivo microscopy of human tissues. However, the device's clinical utility was limited due to a small field of view, a non-adjustable working distance, and a lack of a sterilization strategy. In our latest design, we have made improvements to achieve a 2x increase in the field of view (600 × 300 µm) and an adjustable working distance range of 150 µm over a wide range of excitation/emission wavelengths (488-750 nm), all while maintaining a high frame rate of 15 frames per second (fps). Furthermore, the device is designed to image through a disposable sterile plastic drape for convenient clinical use. We rigorously characterize the performance of the device and show example images of ex vivo tissues to demonstrate the optical performance of our new design, including fixed mouse skin and human prostate, as well as fresh mouse kidney, mouse intestine, and human head and neck surgical specimens with corresponding H&E histology. These improvements will facilitate clinical testing and translation.
Collapse
Affiliation(s)
- Kevin W. Bishop
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bingwen Hu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rajat Vyawhare
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Zelin Yang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - David C. Liang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gan Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Elena Baraznenok
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Qinghua Han
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lydia Lan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Sarah S. L. Chow
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix 85013, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix 85013, AZ, USA
| | - Jonathan T. C. Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|