1
|
Jeong SW, Lee IH, Kim Y, Kang K, Shim D, Hurry V, Ivanov AG, Park Y. Spectral unmixing of hyperspectral images revealed pine wilt disease sensitive endmembers. PHYSIOLOGIA PLANTARUM 2025; 177:e70090. [PMID: 39894933 PMCID: PMC11911716 DOI: 10.1111/ppl.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Throughout the entire cycle of leaf phenological events, leaf colour undergoes changes that are influenced by either abiotic stress or biotic infection. These changes in colouration are closely linked to the quantity and quality of photosynthetic pigments, which directly impact the primary productivity of plants. Therefore, monitoring and quantifying leaf colouration changes are crucial for distinguishing damage caused by pine wilt nematodes from natural tree senescence. In this study, a hyperspectral camera sensor was employed for the non-invasive and non-destructive evaluation of needle colour changes in coniferous trees grown in field tests. Three distinct needle colour variations of six coniferous tree species were selected and monitored using a hyperspectral sensor: those displaying seasonal autumn colours, undergoing nematode-infected necrosis processes, and experiencing natural death. To mitigate the inherently mixed spectral properties of hyperspectral data, endmembers were extracted from individual images using the Purity Pixel Index algorithm under the assumption of linear mixing of endmembers. From a total of 1,321 endmembers extracted from 378 hyperspectral images of six pine species, eight endmembers were ultimately chosen to reconstruct hyperspectral images and generate abundance maps. Among these eight endmembers, four represent varying levels of photosynthetic pigment contents-ranging from very low to high. Consequently, these coniferous endmembers hold promise for assessing seasonal leaf phenology and the extent of damage in pine trees infected by pine wilt nematodes. This comprehensive approach underscores the effectiveness of spectral unmixing of hyperspectral images in advancing precision forestry through meticulous coniferous needle trait analysis.
Collapse
Affiliation(s)
- Seok Won Jeong
- Department of Biological SciencesChungnam National UniversityKorea
| | - Il Hwan Lee
- Department of Forest Bio‐ResourcesNational Institute of Forest ScienceSuwonKorea
| | - Yang‐Gil Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulKorea
| | - Kyu‐Suk Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulKorea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityKorea
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Alexander G. Ivanov
- Institute of Biophysics and Biomedical EngineeringBulgarian Science Academy of SciencesSofiaBulgaria
- Department of BiologyUniversity of Western OntarioLondonCanada
| | - Youn‐Il Park
- Department of Biological SciencesChungnam National UniversityKorea
| |
Collapse
|
2
|
Belovsky GE, Slade JB. How often are ecosystems top-down controlled? Experiments in grassland, grasshopper, and bird systems over time and space. Ecosphere 2024; 15:e70066. [PMID: 39583755 PMCID: PMC11583287 DOI: 10.1002/ecs2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/26/2024] Open
Abstract
Ecosystems are frequently considered to be controlled by predation (top-down). Experiments examined this in four bird/spider/grasshopper/prairie habitats over 34 years, employing in each habitat three 100 m2 bird exclosures and controls (121 habitat/year cases) where plant, grasshopper, and spider abundances were measured. Top-down control (plants decrease and grasshoppers increase with bird exclusion) was observed in only 13.2% of cases, while plants increased and grasshoppers decreased in 33.1% of cases, plants decreased and grasshoppers decreased in 25.6% of cases, and plants increased and grasshoppers increased in 28.1% of cases. Therefore, top-down control was not common and system responses were not constant, but varied among sites, years, and directionally over time with climate change. This diversity of responses is expected given the variety of underlying processes in complex ecosystems. For example, decision tree/discriminant analysis found that plant decreases and increases with bird exclusion were correctly identified in 78.3% of cases by grasshopper hatchling abundance, plant cover, and annual net primary production (ANPP), while grasshopper decreases and increases with bird exclusion were correctly identified in 76.7% of cases by edible plant biomass per grasshopper hatchling, grasshopper hatchling abundance, and large grasshopper abundance. Analysis of other system-wide terrestrial trophic experiments indicates that the variety of responses observed by us over time and space may be common so that system-wide trophic responses may, in general, be more variable than either top-down or bottom-up as often considered.
Collapse
Affiliation(s)
- Gary E. Belovsky
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Jennifer B. Slade
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
3
|
Kabalan BA, Reisinger AJ, Pintor LM, Scarasso MA, Reisinger LS. Intraspecific variation in crayfish behavioral traits affects leaf litter breakdown in streams. Oecologia 2024; 205:515-531. [PMID: 38995365 DOI: 10.1007/s00442-024-05593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Although intraspecific trait variation is increasingly recognized as affecting ecosystem processes, few studies have examined the ecological significance of among-population variation in behavioral traits in natural ecosystems. In freshwater habitats, crayfish are consumers that can influence ecosystem structure (e.g., macroinvertebrate communities) and function (e.g., leaf litter breakdown). To test whether crayfish behavioral traits (activity, boldness, and foraging voracity) are major contributors of leaf litter breakdown rates in the field, we collected rusty crayfish (Faxonius rusticus) from eight streams across the midwestern USA and measured behaviors using laboratory assays. At the same streams, we measured breakdown rates of leaf packs that were accessible or inaccessible to crayfish. Our results provide evidence that among-population variation in crayfish boldness and foraging voracity was a strong predictor of leaf litter breakdown rates, even after accounting for commonly appreciated environmental drivers (water temperature and human land use). Our results suggest that less bold rusty populations (i.e., emerged from shelter more slowly) had greater direct impacts on leaf litter breakdown than bold populations (P = 0.001, r2 = 0.85), potentially because leaf packs can be both a shelter and food resource to crayfish. Additionally, we found that foraging voracity was negatively related to breakdown rates in leaf packs that were inaccessible to crayfish (P = 0.025, r2 = 0.60), potentially due to a trophic cascade from crayfish preying on other invertebrates that consume leaf litter. Overall, our results add to the growing evidence that trait variation in animals may be important for understanding freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Bana A Kabalan
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, 32653, USA.
| | - Alexander J Reisinger
- Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32603, USA
| | - Lauren M Pintor
- Environment and Natural Resources, Ohio State University, Columbus, OH, 43210, USA
| | - Marco A Scarasso
- Environment and Natural Resources, Ohio State University, Columbus, OH, 43210, USA
| | - Lindsey S Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, 32653, USA
| |
Collapse
|
4
|
Tomita KM, Hiura T. Brown bear digging decreases tree growth: Implication for ecological role of top predators in anthropogenic landscapes. Ecology 2024; 105:e4266. [PMID: 38425026 DOI: 10.1002/ecy.4266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Large carnivores have recently increased in number and recolonized in human-dominated landscapes; however, their ecological roles in these landscapes have not been well studied. In the Shiretoko World Heritage (SWH) site, brown bears have recolonized a previously abandoned mosaic landscape of natural forests and conifer plantations after land abandonment. We previously reported that the bears had recently begun to dig for cicada nymphs in association with the creation of larch plantations. As a result, this digging activity decreased soil nutrients. To deepen the understanding of the novel ecological role of brown bears within human-modified landscapes, we examined the impacts of brown bear digging on the growth of larch trees. We found that brown bear digging decreased fine root biomass of larch, soil water, and nitrogen availability. Brown bear digging negatively affected needle nitrogen content, but not carbon isotope ratios, a water stress index of trees. Tree ring data suggest that digging negatively affected the radial growth of larches. The results imply that digging decreases tree growth due to limited soil nitrogen uptake. Our findings indicate that the ecological roles of large carnivores may differ between natural and anthropogenic landscapes.
Collapse
Affiliation(s)
- Kanji M Tomita
- Faculty of Agriculture and Marine Science Kochi University, Nankoku, Japan
| | - Tsutom Hiura
- Department of Ecosystem Studies, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Sun X, Hu C, Liu T, Yue S, Peng J, Fu Q. Translating Virtual Prey-Predator Interaction to Real-World Robotic Environments: Enabling Multimodal Sensing and Evolutionary Dynamics. Biomimetics (Basel) 2023; 8:580. [PMID: 38132519 PMCID: PMC10742093 DOI: 10.3390/biomimetics8080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Prey-predator interactions play a pivotal role in elucidating the evolution and adaptation of various organism's traits. Numerous approaches have been employed to study the dynamics of prey-predator interaction systems, with agent-based methodologies gaining popularity. However, existing agent-based models are limited in their ability to handle multi-modal interactions, which are believed to be crucial for understanding living organisms. Conversely, prevailing prey-predator integration studies often rely on mathematical models and computer simulations, neglecting real-world constraints and noise. These elusive attributes, challenging to model, can lead to emergent behaviors and embodied intelligence. To bridge these gaps, our study designs and implements a prey-predator interaction scenario that incorporates visual and olfactory sensory cues not only in computer simulations but also in a real multi-robot system. Observed emergent spatial-temporal dynamics demonstrate successful transitioning of investigating prey-predator interactions from virtual simulations to the tangible world. It highlights the potential of multi-robotics approaches for studying prey-predator interactions and lays the groundwork for future investigations involving multi-modal sensory processing while considering real-world constraints.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou 510006, China; (X.S.); (C.H.); (S.Y.)
- School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Cheng Hu
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou 510006, China; (X.S.); (C.H.); (S.Y.)
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tian Liu
- MLTOR Numerical Control Technology Co., Ltd., Zhongshan 528400, China;
| | - Shigang Yue
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou 510006, China; (X.S.); (C.H.); (S.Y.)
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Jigen Peng
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou 510006, China; (X.S.); (C.H.); (S.Y.)
- School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Qinbing Fu
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou 510006, China; (X.S.); (C.H.); (S.Y.)
- School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Candolin U, Rahman T. Behavioural responses of fishes to anthropogenic disturbances: Adaptive value and ecological consequences. JOURNAL OF FISH BIOLOGY 2023; 103:773-783. [PMID: 36647916 DOI: 10.1111/jfb.15322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/14/2023] [Indexed: 05/17/2023]
Abstract
Aquatic ecosystems are changing at an accelerating rate because of human activities. The changes alter the abundance and distribution of fishes, with potential consequences for ecosystem structure and function. Behavioural responses often underlie these changes in population dynamics, such as altered habitat choice or foraging activity. Here, we present a framework for understanding how and why behaviour is affected by human activities and how the behavioural responses in turn influence higher ecological levels. We further review the literature to assess the present state of the field and identify gaps in our knowledge. We begin with discussing the factors that determine how an individual responds to a change in the environment and whether the response is adaptive or not. In particular, we explain the importance of the evolutionary history of the species. We then search the literature to assess our current knowledge of the impact of human disturbances on the behaviour of fishes and the consequences for ecosystems. The search reveals that much attention has been directed to the impact of human activities on the behaviour of fishes, but that worryingly little is known about the consequences of these responses for populations, communities and ecosystems. Yet, behavioural responses can have profound ecological consequences given that behaviour underly many, if not most, species interactions. Thus, more attention should be paid to the mechanisms and pathways through which behavioural responses influence higher ecological levels. Such information is needed if we are to determine the ultimate effects of human activities on biodiversity and the function and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Tawfiqur Rahman
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Enríquez-García AB, Cruz-Escalona VH, Carriquiry JD, Ehemann NR, Mejía-Falla PA, Marín-Enríquez E, Treinen-Crespo C, Vélez-Tacuri JR, Navia AF. Trophic assessment of three sympatric batoid species in the Southern Gulf of California. PeerJ 2023; 11:e16117. [PMID: 37753172 PMCID: PMC10519201 DOI: 10.7717/peerj.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
The competitive exclusion principle establishes that the coexistence of closely related species requires a certain degree of resource partitioning. However, populations have individuals with different morphological or behavioral traits (e.g., maturity stages, sexes, temporal or spatial segregation). This interaction often results in a multi-level differentiation in food preferences and habits. We explored such resource partitioning between and within three batoid species: Hypanus dipterurus, Narcine entemedor, and Rhinoptera steindachneri in the southern Gulf of California, Mexico, using a combination of stomach content (excluding R. steindachneri) and stable isotope analyses. We found a clear differentiation between H. dipterurus and N. entemedor, where the latter exhibited more benthic habitats, supported by a greater association to infaunal prey and higher δ13C values. Though the degree and patterns of intra-specific segregation varied among species, there was a notable differentiation in both sex and stage of maturity, corresponding to changes in specialization (i.e., isotopic niche breadth) or trophic spectrum (varying prey importance and isotopic values per group). This work is a promising step towards understanding the dietary niche dynamics of these species in a potentially important feeding area within the southern Gulf of California, as well as the biological and ecological mechanisms that facilitate their coexistence.
Collapse
Affiliation(s)
- Arturo Bell Enríquez-García
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Víctor Hugo Cruz-Escalona
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - José D. Carriquiry
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Nicolás R. Ehemann
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
- Department of Biology, University of Konstanz, Zoology and Evolutionary Biology, Konstanz, Germany
| | - Paola A. Mejía-Falla
- Wildlife Conservation Society, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Cali, Colombia
| | - Emigdio Marín-Enríquez
- Facultad de Ciencias del Mar, CONACyT, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, Mexico
| | - Christina Treinen-Crespo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - José R. Vélez-Tacuri
- Facultad Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Manabí, Ecuador
- Fundación RACSE, Red de Agentes por la Conservación y Sostenibilidad de los Ecosistemas, Manta, Manabí, Ecuador
| | - Andrés F. Navia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Cali, Colombia
| |
Collapse
|
8
|
Farina A, James P. The Landscape of Fear as a Safety Eco-Field: Experimental Evidence. BIOSEMIOTICS 2023; 16:61-84. [PMID: 37101821 PMCID: PMC9979121 DOI: 10.1007/s12304-023-09522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED In a development of the ecosemiotic vivo-scape concept, a 'safety eco-field' is proposed as a model of a species response to the safety of its environment. The safety eco-field is based on the ecosemiotic approach which considers environmental safety as a resource sought and chosen by individuals to counter predatory pressure. To test the relative safety of different locations within a landscape, 66 bird feeders (BF) were deployed in a regular 15 × 15 m grid in a rural area, surrounded by shrubs, small trees, hedgerows, and buildings. On each of 48 days in November 2021 and February and March 2022, dried mealworms were placed on each BF and counts of larvae at each BF were made at noon and dusk. The European robin (Erithacus rubecula) and the great tit (Parus major) were the most regular visitors to the BFs. Land cover at each BF was recorded. Bird behaviour at the BFs was noted from direct video recordings of the birds at nine selected BFs, totalling 32 daily sessions in March. The different behaviours of the European robin and the great tit were observable. The safety eco-field changed according to the month and the time of day. The distance of the BF from the woodland edges seemed to be important only in the morning. In the afternoon, BFs that were more distant from the woodland edges received the highest number of visits. Weather conditions were found to influence the number of mealworms removed, but this requires further investigation. A significant relationship between land cover and the number of mealworm larvae removed from the BFs was observed. Within the grid of BF, three regions were distinguishable which were related to land cover in the safety eco-field process. The experimental framework confirms the adequacy, at least for birds that have cryptic predators, to map the landscape as a proxy of safety resource. From the video recordings it was noted that the European robin visits were distributed throughout the day without apparent temporal preferences, while the great tit visits were concentrated in the central part of the day. This result has the limitation of the short period of observation (March) and should be extended to the entire period of the experiment to eventually capture seasonal variation. The experimental evidence obtained confirms that the ecosemiotic-based models of safety eco-field are an efficient approach to explain bird feeding preferences and behaviours. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12304-023-09522-1.
Collapse
Affiliation(s)
- Almo Farina
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - Philip James
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- School of Education, Environment and Development, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Zhu Y, Zhu D, Rillig MC, Yang Y, Chu H, Chen Q, Penuelas J, Cui H, Gillings M. Ecosystem Microbiome Science. MLIFE 2023; 2:2-10. [PMID: 38818334 PMCID: PMC10989922 DOI: 10.1002/mlf2.12054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/01/2024]
Abstract
The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.
Collapse
Affiliation(s)
- Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Matthias C. Rillig
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Qing‐Lin Chen
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBellaterraCataloniaSpain
- CREAFCerdanyola del VallèsCataloniaSpain
| | - Hui‐Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Michael Gillings
- ARC Centre of Excellence for Synthetic Biology, and Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Blanchard DC. Sex, defense, and risk assessment: Who could ask for anything more? Neurosci Biobehav Rev 2023; 144:104931. [PMID: 36471523 DOI: 10.1016/j.neubiorev.2022.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Over the 30 years since IBNS was founded, a central theme of "Translation" has emerged. This reflects increasing realization that mental disorders such as anxiety and depression are extremely widespread, expensive and painful to societies and individuals across the world. The Blanchard lab has been particularly involved in attempts to understand the evolutionary and functional mechanisms underlying defensive behaviors as a focal component of these disorders. This involved analysis of the relationships between threatening situations/stimuli, and the behaviors (flight, freezing, fight, and risk assessment) that respond to them, for rodents; and also attempts to link these relationships to human responsivity to similar threatening events: Linkages that are complicated by factors such as domestication and sex. In particular it is important to describe and characterize the organization of defensive patterns in people as well as nonhuman animals, and to understand how these patterns can become nonfunctional and pathological.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Scaling from optimal behavior to population dynamics and ecosystem function. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wang ZQ, Zhou XG, Xiao Q, Tang P, Chen XX. The Potential of Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae) as Biocontrol Agents for the Tea Grey Geometrid Ectropis grisescens (Lepidoptera). INSECTS 2022; 13:937. [PMID: 36292885 PMCID: PMC9604023 DOI: 10.3390/insects13100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The tea grey geometrid Ectropis grisescens has long been a significant insect pest of tea plants in China. Two parasitoids, Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae: Microgastrinae), are the most important parasitoids in the larval stage of E. grisescens. Yet, the potential of these two parasitoids for controlling the tea grey geometrid is not known. Here, we studied the parasitism performance of these two parasitoid species on different host densities under different temperatures as well as the interference effect of parasitoid density. The results showed that both parasitoid species, Pa. hyposidrae and Pr. immunis, exhibited a Type II functional response towards the tea grey geometrid E. grisescens at four tested temperatures. With increasing the density of E. grisescens larvae, the number of parasitized larvae increased until a maximum was reached. The highest number of hosts parasitized by Pa. hyposidrae or Pr. immunis reached 14.5 or 14.75 hosts d-1 at 22 °C, respectively. The estimated values of instantaneous searching efficiency (a) and handling time (h) for Pa. hyposidrae or Pr. immunis were 1.420 or 3.621 and 0.04 or 0.053 at 22 °C, respectively. Pr. immunis performed better than Pa. hyposidrae under higher temperatures. The parasitism rate by a single female parasitoid decreased with increasing parasitoid density at different temperatures, resulting in a reduction of searching efficiency. The findings of this study showed that Pr.immunis could be a better effective biocontrol agent than Pa. hyposidrae against the tea grey geometrid.
Collapse
Affiliation(s)
- Zi-Qi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Gui Zhou
- Ministry of Agriculture Key Laboratory of Tea Quality and Safety Control, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiang Xiao
- Ministry of Agriculture Key Laboratory of Tea Quality and Safety Control, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pu Tang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Guariento RD, Dalponti G, Carneiro LS, Caliman A. Prey defense phenotype mediates multiple-predator effects in tri-trophic food-webs. J Anim Ecol 2022; 91:2023-2036. [PMID: 35839141 DOI: 10.1111/1365-2656.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
1. The emphasis on mechanisms governing the interaction among predators (e.g., cooperation, competition, or intraguild predation) has driven the understanding of multiple-predator effects on prey survival and dynamics. However, overwhelming evidence shows that prey can adaptively respond to predators, exhibiting multiple defensive phenotypes to cope with predation. Nevertheless, there is still a relatively scarce theory connecting the emergence of prey defenses in complex multi-predator scenarios and their ecological consequences. 2. Using a mathematical approach, we evaluated the prevalence of defended prey phenotypes as a function of predator-induced mortality in a two-predator system, and how prey and phenotype dynamics affect trophic cascades. We also evaluated such responses when prey manifests a general defense against both predators (i.e., risk-reducing) or a specialized defense against one predator at the expense of defense against the other predator (i.e., risk trade-off), and when such phenotypes induce fitness and foraging costs. 3. We showed that the emergence of defended phenotypes under multiple predators depends on predator-induced mortality rates, the magnitude of phenotype costs, and the effect of the defensive phenotype on the performance of all predators. 4. Risk-reducing phenotypes enhance prioritized responses to predators with high killing rates, but prioritized responses are diminished when prey manifest risk trade-off phenotypes. Finally, we showed that resource abundance across the predation gradient directly depends on the prevalence of certain prey phenotypes and their effect on foraging costs. 5. Ultimately, our results depict the implications of prey defenses on prey and basal resources abundance in a multiple predators' environment, highlighting the role of the identity of defensive strategies in mediating the strength and nature of trophic cascades, via consumptive or non-consumptive effects.
Collapse
Affiliation(s)
- Rafael Dettogni Guariento
- Laboratório de Ecologia, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brasil
| | - Guilherme Dalponti
- Laboratório de Ecologia, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brasil
| | - Luciana Silva Carneiro
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59078-970, RN, Brasil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59078-970, RN, Brasil
| |
Collapse
|
14
|
Albecker MA, Trussell GC, Lotterhos KE. A novel analytical framework to quantify co-gradient and countergradient variation. Ecol Lett 2022; 25:1521-1533. [PMID: 35545439 DOI: 10.1111/ele.14020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Spatial covariance between genotypic and environmental influences on phenotypes (CovGE ) can result in the nonrandom distribution of genotypes across environmental gradients and is a potentially important factor driving local adaptation. However, a framework to quantify the magnitude and significance of CovGE has been lacking. We develop a novel quantitative/analytical approach to estimate and test the significance of CovGE from reciprocal transplant or common garden experiments, which we validate using simulated data. We demonstrate how power to detect CovGE changes over a range of experimental designs. We confirm an inverse relationship between gene-by-environment interactions (GxE) and CovGE , as predicted by first principles, but show how phenotypes can be influenced by both. The metric provides a way to measure how phenotypic plasticity covaries with genetic differentiation and highlights the importance of understanding the dual influences of CovGE and GxE on phenotypes in studies of local adaptation and species' responses to environmental change.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Geoffrey C Trussell
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Zhu J, Gosnell JS, Akallal L, Goltsman M. Fear changes traits and increases survival: a meta‐analysis evaluating the efficacy of antipredator training in captive‐rearing programs. Restor Ecol 2022. [DOI: 10.1111/rec.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jennifer Zhu
- PhD Program in Biology, The Graduate Center City University of New York 365 5th Ave New York New York 10016 United States
- Department of Natural Sciences, Baruch College City University of New York 17 Lexington Ave New York New York 10010 United States
| | - J. Stephen Gosnell
- PhD Program in Biology, The Graduate Center City University of New York 365 5th Ave New York New York 10016 United States
- Department of Natural Sciences, Baruch College City University of New York 17 Lexington Ave New York New York 10010 United States
| | - Laila Akallal
- Department of Natural Sciences, Baruch College City University of New York 17 Lexington Ave New York New York 10010 United States
| | - Micah Goltsman
- Department of Natural Sciences, Baruch College City University of New York 17 Lexington Ave New York New York 10010 United States
| |
Collapse
|
16
|
Zhang YZ, Jin Z, Miksanek JR, Tuda M. Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio. Sci Rep 2021; 11:23215. [PMID: 34853393 PMCID: PMC8636619 DOI: 10.1038/s41598-021-02713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
In an assemblage of multiple predators sharing a single prey species, the combined effects of the component species may scale unpredictably because of emergent interspecific interactions. Prior studies suggest that chaotic but persistent community dynamics are induced by intra-/interspecific interactions between native and nonnative parasitoids competing over a shared host. Here, we test the impact of the nonnative parasitoid Heterospilus prosopidis (Hymenoptera: Braconidae) on the intraspecific interference and offspring sex ratio of the native parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). We found that the nonnative parasitoid reduced intraspecific interference among native parasitoids and decreased the proportion of female offspring produced by the native parasitoid (predicted under conditions of reduced host availability). At higher host densities, the nonnative parasitoid contributed less to the total proportion of hosts parasitized, as its innate saturating Type II response changed to a dome-shaped Type IV response with increasing density of the native parasitoid, while the native parasitoid retained its increasing Type I response. This inverse host-density-dependent response between the two parasitoids and associated competitive superiority can explain the observed changes in parasitism; at high host densities, the searching efficiency of the native parasitoid increases via host feeding while the nonnative parasitoid experiences egg limitation. These results highlight the importance of the complementary top-down effects of multiple consumers on a single resource.
Collapse
Affiliation(s)
- Yao Zhuo Zhang
- Laboratory of Insect Natural Enemies, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Zhengya Jin
- grid.20561.300000 0000 9546 5767Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | | | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
17
|
Chow CFY, Wassénius E, Dornelas M, Hoey AS. Species differences drive spatial scaling of foraging patterns in herbivorous reef fishes. OIKOS 2021. [DOI: 10.1111/oik.08713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cher F. Y. Chow
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
| | - Emmy Wassénius
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Science Stockholm Sweden
- Stockholm Resilience Center, Stockholm Univ. Stockholm Sweden
| | - Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans Inst., School of Biology, Univ. of St Andrews St Andrews UK
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
| |
Collapse
|
18
|
Grunseich JM, Aguirre NM, Thompson MN, Ali JG, Helms AM. Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors. J Chem Ecol 2021; 47:822-833. [PMID: 34415500 PMCID: PMC8613145 DOI: 10.1007/s10886-021-01304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Chemical cues play important roles in predator-prey interactions. Semiochemicals can aid predator foraging and alert prey organisms to the presence of predators. Previous work suggests that predator traits differentially influence prey behavior, however, empirical data on how prey organisms respond to chemical cues from predator species with different hunting strategies, and how foraging predators react to cues from potential competitors, is lacking. Furthermore, most research in this area has focused on aquatic and aboveground terrestrial systems, while interactions among belowground, soiling-dwelling organisms have received relatively little attention. Here, we assessed how chemical cues from three species of entomopathogenic nematodes (EPNs), each with a different foraging strategy, influenced herbivore (cucumber beetle) and natural enemy (EPN) foraging behavior. We predicted these cues could serve as chemical indicators of increased predation risk, prey availability, or competition. Our findings revealed that foraging cucumber beetle larvae avoided chemical cues from Heterorhabditis bacteriophora (active-foraging cruiser EPNs), but not Steinernema carpocapsae (ambusher EPNs) or Steinernema riobrave (intermediate-foraging EPNs). In contrast, foraging H. bacteriophora EPNs were attracted to cues produced by the two Steinernema species but not conspecific cues. Notably, the three EPN species produced distinct blends of olfactory cues, with only a few semi-conserved compounds across species. These results indicate that a belowground insect herbivore responds differently to chemical cues from different EPN species, with some EPN species avoiding prey detection. Moreover, the active-hunting EPNs were attracted to heterospecific cues, suggesting these cues indicate a greater probability of available prey, rather than strong interspecific competition.
Collapse
Affiliation(s)
- John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Aguirre
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Sarà G, Giommi C, Giacoletti A, Conti E, Mulder C, Mangano MC. Multiple climate-driven cascading ecosystem effects after the loss of a foundation species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144749. [PMID: 33736396 DOI: 10.1016/j.scitotenv.2020.144749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Climate change is evolving so fast that the related adverse effects on the environment are becoming noticeable. Thus, there is an urgent need to explore and understand the effects generated by multiple extreme climatic events (MECEs) on marine ecosystem functioning and the services provided. Accordingly, we combined long-term in-situ empirical observations in the Mediterranean Sea with a mesocosm manipulation to investigate the concurrence of increasing temperature and hypoxia events. By focussing on a foundation mussel species, we were able to detect several cascade events triggered by a mass mortality event caused by stressful temperature and oxygen conditions, and resulting in a loss of ecosystem services. The measured rates of chlorophyll-a, carbohydrates, proteins and lipids - in both particulate and sedimentary organic matter - were used as proxies of ecosystem functioning during pre- and post- disturbance events (MECEs). In the past, MECEs were crucial for individual performance, mussel population dynamics and biomass. Their effect propagated along the ecological hierarchy negatively affecting the associated community and ecosystem. Our results suggest that the protection and/or restoration of coastal areas requires careful consideration of ecosystem functioning. SIGNIFICANCE STATEMENT: Our decadal time-series recorded by a near-term ecological forecasting network of thermal sensor allowed us to record and monitor multiple extreme climatic events (MECEs; heat wave and hypoxia events), warning on the environmental change recorded on a pond system. By integrating observational and manipulative approaches, we showed how a MECE triggered cascade events, from individual-based impaired functioning up to biodiversity loss (community composition and structure changes). Our results emphasize the key role played by a foundation species in driving ecosystem functioning, and the synergistic effects of climatic drivers acting simultaneously.
Collapse
Affiliation(s)
- Gianluca Sarà
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Chiara Giommi
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Antonio Giacoletti
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Erminia Conti
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 71, 95124 Catania, Italy
| | - Christian Mulder
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 71, 95124 Catania, Italy
| | - M Cristina Mangano
- Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy
| |
Collapse
|
20
|
Co-adaptive behavior of interacting populations in a habitat selection game significantly impacts ecosystem functions. J Theor Biol 2021; 523:110663. [PMID: 33862092 DOI: 10.1016/j.jtbi.2021.110663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022]
Abstract
Individuals of different interacting populations often adjust to prevailing conditions by changing their behavior simultaneously, with consequences for trophic relationships throughout the system. While we now have a good theoretical understanding of how individuals adjust their behavior, the population dynamical consequences of co-adaptive behaviors are rarely described. Further, mechanistic descriptions of ecosystem functions are based on population models that seldom take behavior into account. Here, we present a model that combines the population dynamics and adaptive behavior of organisms of two populations simultaneously. We explore how the Nash equilibrium of a system - i.e. the optimal behavior of its constituent organisms - can shape population dynamics, and conversely how population dynamics impact the Nash equilibrium of the system. We illustrate this for the case of diel vertical migration (DVM), the daily movement of marine organisms between food-depleted but safe dark depths and more risky nutrition-rich surface waters. DVM represents the archetypal example of populations choosing between a foraging arena (the upper sunlit ocean) and a refuge (the dark depths). We show that population sizes at equilibrium are significantly different if organisms can adapt their behavior, and that optimal DVM behaviors within the community vary significantly if population dynamics are considered. As a consequence, ecosystem function estimates such as trophic transfer efficiency and vertical carbon export differ greatly when fitness seeking behavior is included. Ignoring the role of behavior in multi-trophic population modeling can potentially lead to inaccurate predictions of population biomasses and ecosystem functions.
Collapse
|
21
|
Scrosati RA. Nonconsumptive Predator Effects on Prey Demography: Recent Advances Using Intertidal Invertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators influence prey demography through consumption, but the mere presence of predators may trigger behavioural changes in prey that, if persistent or intense, may also influence prey demography. A tractable system to study such nonconsumptive effects (NCEs) of predators involves intertidal invertebrates. This mini review summarises recent research using barnacles and mussels as prey and dogwhelks as predators. The field manipulation of dogwhelk density revealed that pelagic barnacle larvae avoid benthic settlement near dogwhelks, which limits barnacle recruitment, a relevant outcome because recruitment is the only source of population replenishment for barnacles, as they are sessile. This avoidance behaviour is likely triggered by waterborne dogwhelk cues and may have evolved to limit future predation risk. Increasing densities of barnacle recruits and adults can prevent such NCEs from occurring, seemingly because benthic barnacles attract conspecific larvae through chemical cues. Barnacle recruit density increased with the abundance of coastal phytoplankton (food for barnacle larvae and recruits), so barnacle food supply seems to indirectly limit dogwhelk NCEs. By inhibiting barnacle feeding, dogwhelk cues also limited barnacle growth and reproductive output. Wave action weakens dogwhelk NCEs likely through hydrodynamic influences. Dogwhelk cues also limit mussel recruitment, as mussel larvae also exhibit predator avoidance behaviour. The NCEs on recruitment are weaker for mussels than for barnacles, possibly because mussel larvae can detach themselves after initial settlement, an ability that barnacle larvae lack. Overall, these field experiments provide evidence of predator NCEs on prey demography for coastal marine systems.
Collapse
|
22
|
Wang D, Nkurunziza V, Barber NA, Zhu H, Wang J. Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia 2021; 195:1007-1018. [PMID: 33625579 DOI: 10.1007/s00442-021-04880-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Introduced ecosystem engineers are expected to have extensive ecological impacts on a broad range of resident biota by altering the physical-chemical structure of ecosystems. Livestock that are potentially important introduced ecosystem engineers in grassland systems could create and/or modify habitats for native plant-dwelling insects. Yet, there is little knowledge of how insects respond to engineering effects of introduced livestock. To bridge this gap, we tested how domestic sheep affects the behavior and abundance of a native grasshopper Euchorthippus unicolor at both low (11.8 ± 0.4 plant species per plot) and high (19.8 ± 0.5 plant species per plot) diversity sites. Results found grasshoppers shifted their resting and feeding locations from the upper to the intermediate or low layers of vegetation, and fed on more plants species following livestock engineering effects. In the low plant diversity habitats, grazing caused grasshoppers to increase switching frequency, spend more time searching for host plants, and reduce time spent feeding, but had opposite effects on all the three behaviors in the high-diversity habitats. Moreover, grazing engineering effects on behavioral changes of grasshoppers were potentially related to their abundance. Overall, this study highlights native insect species' behavior and abundance in responses to introduced ecological engineers, and suggests that ecosystem engineers of non-native species have strong and important impacts extending beyond their often most obvious and frequently documented direct ecological effects.
Collapse
Affiliation(s)
- Deli Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Venuste Nkurunziza
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Hui Zhu
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China. .,School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Jingting Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| |
Collapse
|
23
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
24
|
Abstract
The COVID-19 pandemic has altered human behaviour in profound ways, prompting some to question whether the associated economic and social impacts might outweigh disease impacts. This fits into a burgeoning ecological paradigm suggesting that for both predator-prey and parasite-host interactions, non-consumptive effects (avoidance) can be orders of magnitude stronger than consumptive effects (sickness and death). Just as avoidance of predators and parasites imposes substantial costs on prey and hosts, altered behaviour to reduce the transmission of COVID-19 has impacted human fitness and wellbeing. But the effects of infectious disease avoidance do not stop there; non-consumptive effects of predators and parasites often trigger cascading indirect effects in natural systems. Similarly, shifts in human behaviour due to COVID-19 have triggered myriad indirect effects on species and the environment, which can be positive, negative or neutral. We urge researchers to recognize that the environmental impacts associated with lockdowns are indirect effects of the virus. In short, the global response to COVID-19 suggests that the non-consumptive effects of a pathogen, and resulting indirect effects, can be profound.
Collapse
Affiliation(s)
- Julia C. Buck
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28409, USA
| | - Sara B. Weinstein
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
MÖller KO, St. John M, Temming A, Diekmann R, Peters J, Floeter J, Sell AF, Herrmann JP, Gloe D, Schmidt JO, Hinrichsen HH, MÖllmann C. Predation risk triggers copepod small-scale behavior in the Baltic Sea. JOURNAL OF PLANKTON RESEARCH 2020; 42:702-713. [PMID: 33239965 PMCID: PMC7677935 DOI: 10.1093/plankt/fbaa044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Predators not only have direct impact on biomass but also indirect, non-consumptive effects on the behavior their prey organisms. A characteristic response of zooplankton in aquatic ecosystems is predator avoidance by diel vertical migration (DVM), a behavior which is well studied on the population level. A wide range of behavioral diversity and plasticity has been observed both between- as well as within-species and, hence, investigating predator-prey interactions at the individual level seems therefore essential for a better understanding of zooplankton dynamics. Here we applied an underwater imaging instrument, the video plankton recorder (VPR), which allows the non-invasive investigation of individual, diel adaptive behavior of zooplankton in response to predators in the natural oceanic environment, providing a finely resolved and continuous documentation of the organisms' vertical distribution. Combing observations of copepod individuals observed with the VPR and hydroacoustic estimates of predatory fish biomass, we here show (i) a small-scale DVM of ovigerous Pseudocalanus acuspes females in response to its main predators, (ii) in-situ observations of a direct short-term reaction of the prey to the arrival of the predator and (iii) in-situ evidence of pronounced individual variation in this adaptive behavior with potentially strong effects on individual performance and ecosystem functioning.
Collapse
Affiliation(s)
| | - Michael St. John
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Copenhagen, Denmark
| | - Axel Temming
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany
| | - Rabea Diekmann
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - Janna Peters
- Deutsches Zentrum für Marine Biodiversitätsforschung, Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany
| | - Jens Floeter
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany
| | - Anne F Sell
- Thünen Institute, Institute of Sea Fisheries, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Jens-Peter Herrmann
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany
| | - Dominik Gloe
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany
| | - Jörn O Schmidt
- International Council for the Exploration of the Sea, Science Committee, H. C. Andersens Boulevard 44-46, 1553 Copenhagen V, Denmark
- Kiel University, Center for Ocean and Society, Neufeldtstrasse 10, 24118 Kiel, Germany
| | - Hans H Hinrichsen
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Ecology, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Christian MÖllmann
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany
- Center for Earth System Research and Sustainability (CEN), University of Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
| |
Collapse
|
26
|
Culshaw‐Maurer M, Sih A, Rosenheim JA. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 2020; 23:1693-1714. [PMID: 32902103 PMCID: PMC7692946 DOI: 10.1111/ele.13601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.
Collapse
Affiliation(s)
- Michael Culshaw‐Maurer
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
- Department of Evolution and EcologyUniversity of CaliforniaDavisCA95616USA
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCA95616USA
| | - Jay A. Rosenheim
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
27
|
Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS. Ecological impacts of human-induced animal behaviour change. Ecol Lett 2020; 23:1522-1536. [PMID: 32705769 DOI: 10.1111/ele.13571] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human-induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human-induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.
Collapse
Affiliation(s)
- Margaret W Wilson
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - April D Ridlon
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Kaitlyn M Gaynor
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA.,National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| |
Collapse
|
28
|
Lehman CP, Rominger EM, Neiles BY. Mountain goat survival and mortality during a period of increased puma abundance in the Black Hills, South Dakota. PeerJ 2020; 8:e9143. [PMID: 32523807 PMCID: PMC7263294 DOI: 10.7717/peerj.9143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
We investigated survival and cause-specific mortality for a mountain goat (Oreamnos americanus) population during a period when the puma (Puma concolor) population was growing in the Black Hills, South Dakota, 2006–2018. We obtained survival data from 47 adult goats (n = 33 females, n = 14 males). Annual survival varied from 0.538 (95% CI [0.285–0.773]) to 1.00 (95% CI [1.00–1.00]) and puma predation was the primary cause-specific mortality factor over a 12-year period. Cumulative hectares of mountain pine beetle (Dendroctonus ponderosae) disturbance was a covariate of importance (wi = 0.972; β = 0.580, 95% CI [0.302–0.859]) influencing survival. To our knowledge, this is the first account of puma being the primary mortality factor of mountain goats over a long-term study. The Black Hills system is unique because we could examine the expanded realized niche of puma in the absence of other large carnivores and their influence on mountain goats. We hypothesize that puma were being sustained at higher densities due to alternate prey sources (e.g., white-tailed deer; Odocoileous virginianus) and this small population of mountain goats was susceptible to predation by one or several specialized puma in the Black Hills. However, we also hypothesize a changing landscape with increased tree mortality due to insect infestation provided conditions for better predator detection by goats and increased survival. Alternatively, open canopy conditions may have increased understory forage production potentially increasing mountain goat survival but we did not evaluate this relationship. Survival and mortality rates of mountain goats should continue to be monitored as this small population may be highly susceptible to population declines due to slow growth rates.
Collapse
Affiliation(s)
- Chadwick P Lehman
- South Dakota Department of Game, Fish, and Parks, Custer, SD, United States of America
| | - Eric M Rominger
- New Mexico Department of Game and Fish, Santa Fe, NM, United States of America
| | - Brady Y Neiles
- South Dakota Department of Game, Fish, and Parks, Custer, SD, United States of America
| |
Collapse
|
29
|
Merems JL, Shipley LA, Levi T, Ruprecht J, Clark DA, Wisdom MJ, Jackson NJ, Stewart KM, Long RA. Nutritional-Landscape Models Link Habitat Use to Condition of Mule Deer (Odocoileus hemionus). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Montiglio PO, Gotanda KM, Kratochwil CF, Laskowski KL, Farine DR. Hierarchically embedded interaction networks represent a missing link in the study of behavioral and community ecology. Behav Ecol 2020; 31:279-286. [PMID: 32210523 PMCID: PMC7083094 DOI: 10.1093/beheco/arz168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Because genes and phenotypes are embedded within individuals, and individuals within populations, interactions within one level of biological organization are inherently linked to interactors at others. Here, we expand the network paradigm to consider that nodes can be embedded within other nodes, and connections (edges) between nodes at one level of organization form "bridges" for connections between nodes embedded within them. Such hierarchically embedded networks highlight two central properties of biological systems: 1) processes occurring across multiple levels of organization shape connections among biological units at any given level of organization and 2) ecological effects occurring at a given level of organization can propagate up or down to additional levels. Explicitly considering the embedded structure of evolutionary and ecological networks can capture otherwise hidden feedbacks and generate new insights into key biological phenomena, ultimately promoting a broader understanding of interactions in evolutionary theory.
Collapse
Affiliation(s)
- P O Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, Canada
| | - K M Gotanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - C F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Konstanz, Germany
| | - K L Laskowski
- Department of Biology, & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - D R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Edward Grey Institute of Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Allgeier JE, Cline TJ, Walsworth TE, Wathen G, Layman CA, Schindler DE. Individual behavior drives ecosystem function and the impacts of harvest. SCIENCE ADVANCES 2020; 6:eaax8329. [PMID: 32133397 PMCID: PMC7043911 DOI: 10.1126/sciadv.aax8329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Current approaches for biodiversity conservation and management focus on sustaining high levels of diversity among species to maintain ecosystem function. We show that the diversity among individuals within a single population drives function at the ecosystem scale. Specifically, nutrient supply from individual fish differs from the population average >80% of the time, and accounting for this individual variation nearly doubles estimates of nutrients supplied to the ecosystem. We test how management (i.e., selective harvest regimes) can alter ecosystem function and find that strategies targeting more active individuals reduce nutrient supply to the ecosystem up to 69%, a greater effect than body size-selective or nonselective harvest. Findings show that movement behavior at the scale of the individual can have crucial repercussions for the functioning of an entire ecosystem, proving an important challenge to the species-centric definition of biodiversity if the conservation and management of ecosystem function is a primary goal.
Collapse
Affiliation(s)
- Jacob E. Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy J. Cline
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Gus Wathen
- Eco Logical Research Inc., Providence, UT, USA
| | - Craig A. Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Daniel E. Schindler
- School of Aquatic and Fisheries Science, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Davison CW, Chapman PM, Wearn OR, Bernard H, Ewers RM. Shifts in the demographics and behavior of bearded pigs (
Sus barbatus
) across a land‐use gradient. Biotropica 2019. [DOI: 10.1111/btp.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles W. Davison
- Department of Life Sciences Imperial College London Berkshire UK
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | | | | | - Henry Bernard
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Robert M. Ewers
- Department of Life Sciences Imperial College London Berkshire UK
| |
Collapse
|
33
|
McMahan MD, Grabowski JH. Nonconsumptive effects of a range‐expanding predator on juvenile lobster ( Homarus americanus) population dynamics. Ecosphere 2019. [DOI: 10.1002/ecs2.2867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Marissa D. McMahan
- Marine Science Center Northeastern University 430 Nahant Rd Nahant Massachusetts 01908 USA
- Manomet 14 Maine Street Brunswick Maine 04011 USA
| | - Jonathan H. Grabowski
- Marine Science Center Northeastern University 430 Nahant Rd Nahant Massachusetts 01908 USA
| |
Collapse
|
34
|
Pessarrodona A, Boada J, Pagès JF, Arthur R, Alcoverro T. Consumptive and non‐consumptive effects of predators vary with the ontogeny of their prey. Ecology 2019; 100:e02649. [DOI: 10.1002/ecy.2649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Albert Pessarrodona
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC) Carrer d'Accés a la cala Sant Francesc 14 Blanes 17300 Spain
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC) Carrer d'Accés a la cala Sant Francesc 14 Blanes 17300 Spain
- Centre for Marine Bio‐Innovation School of Biological, Earth, and Environmental Sciences University of New South Wales Sydney New South Wales 2052 Australia
| | - Jordi F. Pagès
- School of Ocean Sciences Bangor University Menai Bridge LL59 5AB United Kingdom
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC) Carrer d'Accés a la cala Sant Francesc 14 Blanes 17300 Spain
- Nature Conservation Foundation Amritha, 1311, 12th Cross, Vijayanagara 1st stage Mysore 570017 India
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC) Carrer d'Accés a la cala Sant Francesc 14 Blanes 17300 Spain
- Nature Conservation Foundation Amritha, 1311, 12th Cross, Vijayanagara 1st stage Mysore 570017 India
| |
Collapse
|
35
|
Ware IM, Fitzpatrick CR, Senthilnathan A, Bayliss SLJ, Beals KK, Mueller LO, Summers JL, Wooliver RC, Van Nuland ME, Kinnison MT, Palkovacs EP, Schweitzer JA, Bailey JK. Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: Empirical evidence and future directions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ian M. Ware
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | | | | | - Shannon L. J. Bayliss
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Kendall K. Beals
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Liam O. Mueller
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Jennifer L. Summers
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Rachel C. Wooliver
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | | | | | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| |
Collapse
|
36
|
DeWitt PD, Visscher DR, Schuler MS, Thiel RP. Predation risks suppress lifetime fitness in a wild mammal. OIKOS 2019. [DOI: 10.1111/oik.05935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Philip D. DeWitt
- Science and Research Branch, Ontario Ministry of Natural Resources and Forestry, Peterborough ON K9J 3C7 Canada
| | | | - Matthew S. Schuler
- Dept of Biological Sciences, Darrin Fresh Water Inst., Rensselaer Polytechnic Institute Troy NY USA
| | | |
Collapse
|
37
|
Yamamichi M, Klauschies T, Miner BE, Velzen E. Modelling inducible defences in predator–prey interactions: assumptions and dynamical consequences of three distinct approaches. Ecol Lett 2018; 22:390-404. [DOI: 10.1111/ele.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies University of Tokyo 3‐8‐1 Komaba Meguro Tokyo153‐8902 Japan
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| | - Brooks E. Miner
- Department of Biology Ithaca College 953 Danby Rd. Ithaca NY14850 USA
| | - Ellen Velzen
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| |
Collapse
|
38
|
|
39
|
Stireman JO, Singer MS. Tritrophic niches of insect herbivores in an era of rapid environmental change. CURRENT OPINION IN INSECT SCIENCE 2018; 29:117-125. [PMID: 30551817 DOI: 10.1016/j.cois.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
A multi-trophic perspective improves understanding of the ecological and evolutionary consequences of rapid environmental change on insect herbivores. Loss of specialized enemies due to human impacts is predicted to dramatically reduce the number of tritrophic niches of herbivores compared to a bitrophic niche perspective. Habitat fragmentation and climate change promote the loss of both specialist enemies and herbivores, favoring ecological generalism across trophic levels. Species invasion can fundamentally alter trophic interactions toward various outcomes and contributes to ecological homogenization. Adaptive evolution on ecological timescales is expected to dampen tritrophic instabilities and diversify niches, yet its ability to compensate for tritrophic niche losses in the short term is unclear.
Collapse
Affiliation(s)
- John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
40
|
Zaguri M, Zohar Y, Hawlena D. Considerations Used by Desert Isopods to Assess Scorpion Predation Risk. Am Nat 2018; 192:630-643. [PMID: 30332584 DOI: 10.1086/699840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Animals adjust behaviors to balance changes in predation risk against other vital needs. Animals must therefore collect sensory information and use a complex risk-assessment process that estimates risks and weighs costs and benefits entailed in different reactions. Studying this cognitive process is challenging, especially in nature, because it requires inferring sensory abilities and conscious decisions from behavioral reactions. Our goal was to address this empirical challenge by implementing psychophysical principles to field research that explores considerations used by desert isopods (Hemilepistus reaumuri) to assess the risk of scorpions that hunt exclusively from within their burrows. We introduced various combinations of chemical and physical cues to the vicinity of isopod burrows and recorded their detailed reactions on first encountering the cues. The isopods reacted defensively to scorpion odor but only when accompanied with excavated soil or other odors typically found near scorpion burrows. Isopods also reacted defensively to piles of excavated soil without scorpion olfactory cues, suggesting that isopods take precautions even against physical disturbances that do not necessarily reflect predator activity. Simultaneous presence of different cues provoked graded responses, possibly reflecting an additive increase in risk estimation. We conclude that wild isopods use defensive reactions toward environmental signals only when the integrated perceptual information implies an active scorpion burrow or when they lack data to refute this possibility.
Collapse
|
41
|
Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun 2018; 9:2989. [PMID: 30065285 PMCID: PMC6068104 DOI: 10.1038/s41467-018-05421-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Human-induced biodiversity change impairs ecosystem functions crucial to human well-being. However, the consequences of this change for ecosystem multifunctionality are poorly understood beyond effects of plant species loss, particularly in regions with high biodiversity across trophic levels. Here we adopt a multitrophic perspective to analyze how biodiversity affects multifunctionality in biodiverse subtropical forests. We consider 22 independent measurements of nine ecosystem functions central to energy and nutrient flow across trophic levels. We find that individual functions and multifunctionality are more strongly affected by the diversity of heterotrophs promoting decomposition and nutrient cycling, and by plant functional-trait diversity and composition, than by tree species richness. Moreover, cascading effects of higher trophic-level diversity on functions originating from lower trophic-level processes highlight that multitrophic biodiversity is key to understanding drivers of multifunctionality. A broader perspective on biodiversity-multifunctionality relationships is crucial for sustainable ecosystem management in light of non-random species loss and intensified biotic disturbances under future environmental change. Biodiversity change can impact ecosystem functioning, though this is primarily studied at lower trophic levels. Here, Schuldt et al. find that biodiversity components other than tree species richness are particularly important, and higher trophic level diversity plays a role in multifunctionality.
Collapse
|
42
|
Kohl MT, Stahler DR, Metz MC, Forester JD, Kauffman MJ, Varley N, White PJ, Smith DW, MacNulty DR. Diel predator activity drives a dynamic landscape of fear. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1313] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michel T. Kohl
- Department of Wildland Resources and Ecology Center; Utah State University; Logan Utah 84322 USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources; National Park Service; Yellowstone National Park; Wyoming Montana 82190 USA
| | - Matthew C. Metz
- Yellowstone Center for Resources; National Park Service; Yellowstone National Park; Wyoming Montana 82190 USA
- Wildlife Biology Program; University of Montana; Missoula Montana 59812 USA
| | - James D. Forester
- Department of Fisheries, Wildlife, and Conservation Biology; University of Minnesota; St. Paul Minnesota 55108 USA
| | - Matthew J. Kauffman
- U.S. Geological Survey; Wyoming Cooperative Fish and Wildlife Research Unit; Department of Zoology and Physiology; University of Wyoming; Laramie Wyoming 82071 USA
| | - Nathan Varley
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| | - P. J. White
- Yellowstone Center for Resources; National Park Service; Yellowstone National Park; Wyoming Montana 82190 USA
| | - Douglas W. Smith
- Yellowstone Center for Resources; National Park Service; Yellowstone National Park; Wyoming Montana 82190 USA
| | - Daniel R. MacNulty
- Department of Wildland Resources and Ecology Center; Utah State University; Logan Utah 84322 USA
| |
Collapse
|
43
|
Tholt G, Kis A, Medzihradszky A, Szita É, Tóth Z, Havelda Z, Samu F. Could vectors' fear of predators reduce the spread of plant diseases? Sci Rep 2018; 8:8705. [PMID: 29880845 PMCID: PMC5992157 DOI: 10.1038/s41598-018-27103-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/29/2018] [Indexed: 11/09/2022] Open
Abstract
Predators influence the behaviour of prey and by doing so they potentially reduce pathogen transmission by a vector. Arthropod predators have been shown to reduce the consumption of plant biomass by pest herbivores, but their cascading non-consumptive effect on vector insects' feeding behaviour and subsequent pathogen transmission has not been investigated experimentally before. Here we experimentally examined predator-mediated pathogen transmission mechanisms using the plant pathogen Wheat Dwarf Virus that is transmitted by the leafhopper, Psammotettix alienus. We applied in situ hybridization to localize which leaf tissues were infected with transmitted virus DNA in barley host plants, proving that virus occurrence is restricted to phloem tissues. In the presence of the spider predator, Tibellus oblongus, we recorded the within leaf feeding behaviour of the herbivore using electrical penetration graph. The leafhopper altered its feeding behaviour in response to predation risk. Phloem ingestion, the feeding phase when virus acquisition occurs, was delayed and was less frequent. The phase when pathogen inoculation takes place, via the secretion of virus infected vector saliva, was shorter when predator was present. Our study thus provides experimental evidence that predators can potentially limit the spread of plant pathogens solely through influencing the feeding behaviour of vector organisms.
Collapse
Affiliation(s)
- G Tholt
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary.,Department of Systematic Zoology and Ecology, Faculty of Science, Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, H-1117, Hungary
| | - A Kis
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - A Medzihradszky
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - É Szita
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Z Tóth
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Z Havelda
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - F Samu
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary.
| |
Collapse
|
44
|
Salo T, Räsänen K, Stamm C, Burdon FJ, Seppälä O. Simultaneous exposure to a pulsed and a prolonged anthropogenic stressor can alter consumer multifunctionality. OIKOS 2018. [DOI: 10.1111/oik.05310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tiina Salo
- Dept of Aquatic Ecology; Eawag, Swiss Federal Inst. of Aquatic Science and Technology; Dübendorf Switzerland
- Dept of Ecology, Environment and Plant Sciences; Stockholm Univ.; Stockholm Sweden
- Inst. of Integrative Biology; ETH Zürich; Zürich Switzerland
| | - Katja Räsänen
- Dept of Aquatic Ecology; Eawag, Swiss Federal Inst. of Aquatic Science and Technology; Dübendorf Switzerland
- Inst. of Integrative Biology; ETH Zürich; Zürich Switzerland
| | - Christian Stamm
- Dept of Environmental Chemistry; Eawag, Swiss Federal Inst. of Aquatic Science and Technology; Dübendorf Switzerland
| | - Francis J. Burdon
- Dept of Aquatic Ecology; Eawag, Swiss Federal Inst. of Aquatic Science and Technology; Dübendorf Switzerland
- Dept of Aquatic Sciences and Assessment; Swedish Univ. of Agricultural Sciences; Uppsala Sweden
| | - Otto Seppälä
- Dept of Aquatic Ecology; Eawag, Swiss Federal Inst. of Aquatic Science and Technology; Dübendorf Switzerland
- Inst. of Integrative Biology; ETH Zürich; Zürich Switzerland
| |
Collapse
|
45
|
Guariento RD, Luttbeg B, Carneiro LS, Caliman A. Prey adaptive behaviour under predation risk modify stoichiometry predictions of predator‐induced stress paradigms. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Barney Luttbeg
- Department of Integrative BiologyOklahoma State University Stillwater OK USA
| | | | - Adriano Caliman
- Department of EcologyFederal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
46
|
Vu HD, Pennings SC. Predators mediate above‐ vs. belowground herbivory in a salt marsh crab. Ecosphere 2018. [DOI: 10.1002/ecs2.2107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Huy D. Vu
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| |
Collapse
|
47
|
Beleznai O, Dreyer J, Tóth Z, Samu F. Natural enemies partially compensate for warming induced excess herbivory in an organic growth system. Sci Rep 2017; 7:7266. [PMID: 28779159 PMCID: PMC5544682 DOI: 10.1038/s41598-017-07509-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 11/12/2022] Open
Abstract
Predators can limit prey abundance and/or levels of activity. The magnitudes of these effects are contingent on predator and prey traits that may change with environmental conditions. Aberrant thermal regimes could disrupt pest suppression through asymmetric effects, e.g. heat-sensitive predator vs. heat-tolerant prey. To explore potential effects of warming on suppressing pests and controlling herbivory in a vegetable crop, we performed laboratory experiments exposing an important pest species to two spider predator species at different temperatures. Heat tolerance was characterised by the critical thermal maxima parameter (CTM50) of the cucumber beetle (Diabrotica undecimpunctata), wolf spider (Tigrosa helluo), and nursery web spider (Pisaurina mira). Cucumber beetles and wolf spiders were equally heat tolerant (CTM50 > 40 °C), but nursery web spiders had limited heat tolerance (CTM50 = 34 °C). Inside mesocosms, beetle feeding increased with temperature, wolf spiders were always effective predators, nursery web spiders were less lethal at high temperature (38 °C). Neither spider species reduced herbivory at ambient temperature (22 °C), however, at warm temperature both species reduced herbivory with evidence of a dominant non-consumptive effect. Our experiments highlight the contingent nature of predator-prey interactions and suggest that non-consumptive effects should not be ignored when assessing the impact of temperature change.
Collapse
Affiliation(s)
- Orsolya Beleznai
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Nagykovácsi út 26-30, H-1029, Hungary.
| | - Jamin Dreyer
- Department of Entomology, University of Kentucky, S-225 Ag Science Center N Lexington, Kentucky, 40506-0091, USA
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Herman Ottó út 15, H-1022, Hungary
| | - Ferenc Samu
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Nagykovácsi út 26-30, H-1029, Hungary
| |
Collapse
|
48
|
Schmitz OJ, Rosenblatt AE. The Temperature Dependence of Predation Stress and Prey Nutritional Stoichiometry. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Long RA, Wambua A, Goheen JR, Palmer TM, Pringle RM. Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use. J Anim Ecol 2017; 86:739-748. [PMID: 28342277 DOI: 10.1111/1365-2656.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East Africa (as predicted in many recent climate-model simulations) may relax constraints on small-mammal distribution where LMH are rare or absent, whereas increased aridity and/or drought frequency may tighten them.
Collapse
Affiliation(s)
- Ryan A Long
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alois Wambua
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| | - Jacob R Goheen
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Todd M Palmer
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| |
Collapse
|
50
|
Stephan JG, Stenberg JA, Björkman C. Consumptive and nonconsumptive effect ratios depend on interaction between plant quality and hunting behavior of omnivorous predators. Ecol Evol 2017; 7:2327-2339. [PMID: 28405296 PMCID: PMC5383501 DOI: 10.1002/ece3.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/05/2022] Open
Abstract
Predators not only consume prey but exert nonconsumptive effects in form of scaring, consequently disturbing feeding or reproduction. However, how alternative food sources and hunting mode interactively affect consumptive and nonconsumptive effects with implications for prey fitness have not been addressed, impending functional understanding of such tritrophic interactions. With a herbivorous beetle, two omnivorous predatory bugs (plant sap as alternative food, contrasting hunting modes), and four willow genotypes (contrasting suitability for beetle/omnivore), we investigated direct and indirect effects of plant quality on the beetles key reproductive traits (oviposition rate, clutch size). Using combinations of either or both omnivores on different plant genotypes, we calculated the contribution of consumptive (eggs predated) and nonconsumptive (fewer eggs laid) effect on beetle fitness, including a prey density‐independent measure (c:nc ratio). We found that larger clutches increase egg survival in presence of the omnivore not immediately consuming all eggs. However, rather than lowering mean, the beetles generally responded with a frequency shift toward smaller clutches. However, female beetles decreased mean and changed clutch size frequency with decreasing plant quality, therefore reducing intraspecific exploitative competition among larvae. More importantly, variation in host plant quality (to omnivore) led to nonconsumptive effects between one‐third and twice as strong as the consumptive effects. Increased egg consumption on plants less suitable to the omnivore may therefore be accompanied by less searching and disturbing the beetle, representing a “cost” to the indirect plant defense in the form of a lower nonconsumptive effect. Many predators are omnivores and altering c:nc ratios (with egg retention as the most direct link to prey fitness) via plant quality and hunting behavior should be fundamental to advance ecological theory and applications. Furthermore, exploring modulation of fitness traits by bottom‐up and top‐down effects will help to explain how and why species aggregate.
Collapse
Affiliation(s)
- Jörg G. Stephan
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Johan A. Stenberg
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|