1
|
Espinal-Palomino R, Montes de Oca-Aguilar AC, Ibarra-López MP, Vidal-Martínez VM, Ibarra-Cerdeña CN. Bat microfilariae in the cityscape: a transmission tale between bats, mites, and bat flies. Int J Parasitol 2025; 55:79-94. [PMID: 39521164 DOI: 10.1016/j.ijpara.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Litomosoides includes filarial nematodes capable of infecting various vertebrate species. While Litomosoides has been extensively studied in rodents, research on its association with bats remains limited. The transmission dynamics of this parasite are complex, involving moving between different invertebrate hosts before reaching the final host. Most investigations concerning microfilariae have concentrated on their morphological characteristics, with scant attention paid to ecological aspects, particularly in human-altered landscapes. This study represents the first known documentation of Litomosoides in bats within an urban environment. It investigates their response to urbanization in their interaction with the synanthropic bat Artibeus jamaicensis and its ectoparasites. The objective was to explore the influence of urban landscapes on Litomosoides prevalence in synanthropic hosts. Blood samples were collected along urban-rural gradients, and parasite presence was confirmed through direct observation in blood smears and PCR. Phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit 1 gene (COX1), which exhibited robust support values, indicates that the microfilaria found in A. jamaicensis is closely related to Litomosoides chandleri. However, it also suggests the possibility of an unidentified, and therefore potentially new, species within the genus Litomosoides. Additionally, Litomosoides DNA was detected in Periglischrus iheringi (Acari: Spinturnicidae) and in the bat fly Trichobius intermedius collected from the bat. The parasite sequences obtained from these three interacting species exhibited a genetic distance as low as 0.002. The highest prevalences were recorded in forested areas (28.6%) compared with urban areas (21.2%). However, within the urban landscape, prevalence varied from 3.8% to 21.2%, being highest in densely built-up areas. Analysis of the urban landscape suggested that the prevalence of Litomosoides in A. jamaicensis is the result of a multifactorial and synergistic process involving ectoparasite load, host abundance, and the extent of impervious surfaces (NDBI).
Collapse
Affiliation(s)
- Román Espinal-Palomino
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México
| | - Ana Celia Montes de Oca-Aguilar
- Laboratorio de Inmunología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Martha Pilar Ibarra-López
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México; Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán, Jalisco, México
| | - Víctor M Vidal-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310 Mérida, Yucatán, México
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Dean AD, Childs DZ, Corripio‐Miyar Y, Evans M, Hayward A, Kenyon F, McNally L, McNeilly TN, Pakeman RJ, Sweeny AR, Nussey DH, Pedersen AB, Fenton A. Host resources and parasite traits interact to determine the optimal combination of host parasite-mitigation strategies. Ecol Evol 2024; 14:e11310. [PMID: 38903143 PMCID: PMC11187858 DOI: 10.1002/ece3.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life-history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite-mitigation strategies, we developed a mathematical model of within-host, parasite-immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non-immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite-mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance. Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.
Collapse
Affiliation(s)
- Andrew D. Dean
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | | | - Mike Evans
- Department for Disease ControlMoredun Research InstitutePenicuikUK
- The University of Edinburgh Royal (Dick) School of Veterinary StudiesRoslinUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adam Hayward
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Fiona Kenyon
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Luke McNally
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Tom N. McNeilly
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | | | - Amy R. Sweeny
- School of BiosciencesThe University of SheffieldSheffieldUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Mair I, Fenn J, Wolfenden A, Lowe AE, Bennett A, Muir A, Thompson J, Dieumerci O, Logunova L, Shultz S, Bradley JE, Else KJ. The adaptive immune response to Trichuris in wild versus laboratory mice: An established model system in context. PLoS Pathog 2024; 20:e1012119. [PMID: 38626206 PMCID: PMC11051619 DOI: 10.1371/journal.ppat.1012119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024] Open
Abstract
Laboratory model organisms have provided a window into how the immune system functions. An increasing body of evidence, however, suggests that the immune responses of naive laboratory animals may differ substantially to those of their wild counterparts. Past exposure, environmental challenges and physiological condition may all impact on immune responsiveness. Chronic infections of soil-transmitted helminths, which we define as establishment of adult, fecund worms, impose significant health burdens on humans, livestock and wildlife, with limited treatment success. In laboratory mice, Th1 versus Th2 immune polarisation is the major determinant of helminth infection outcome. Here we compared antigen-specific immune responses to the soil-transmitted whipworm Trichuris muris between controlled laboratory and wild free-ranging populations of house mice (Mus musculus domesticus). Wild mice harbouring chronic, low-level infections produced lower levels of cytokines in response to Trichuris antigen than laboratory-housed C57BL/6 mice. Wild mouse effector/memory CD4+ T cell phenotype reflected the antigen-specific cytokine response across the Th1/Th2 spectrum. Increasing egg shedding was associated with body condition loss. However, local Trichuris-specific Th1/Th2 balance was positively associated with worm burden only in older wild mice. Thus, although the fundamental relationships between the CD4+ T helper cell response and resistance to T. muris infection are similar in both laboratory and wild M. m. domesticus, there are quantitative differences and age-specific effects that are analogous to human immune responses. These context-dependent immune responses demonstrate the fundamental importance of understanding the differences between model and natural systems for translating mechanistic models to 'real world' immune function.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Environmental Research Institute, Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ann E. Lowe
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alex Bennett
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew Muir
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jacob Thompson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Olive Dieumerci
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Susanne Shultz
- School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Janette E. Bradley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Helminth parasites of the wood mouse Apodemus sylvaticus in Southern England: levels of infection, species richness and interactions between species. J Helminthol 2023; 97:e18. [PMID: 36747489 DOI: 10.1017/s0022149x22000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helminth parasites of the wood mouse, Apodemus sylvaticus (n = 440), were surveyed in five localities, comprising woodland and grassland sites, in Southern England. Seven species of helminths were identified, among which Heligmosomoides polygyrus and Syphacia stroma were dominant (prevalence = 79.1% and 54.1%, respectively). Less common species were the trematode Corrigia vitta (14.8%), cestodes Catenotaenia pusilla (8.4%), Hydatigera taeniaeformis (4.1%) and Microsomacanthus crenata (3.4%) and the nematode Aonchotheca murissylvatici (0.2%). Differences in prevalences between localities were found for H. polygyrus, H. taeniaeformis and M. crenata and in abundances of H. polygyrus, S. stroma and C. vitta. Age-dependent increases in both parameters were identified among species and for helminth species richness. The only species to show significant host sex bias was S. stroma with prevalence values being higher in male mice. A number of different methods for exploiting raw data, and data corrected for significant confounding factors, were used to determine whether there were significant associations (prevalence) between species or quantitative interactions (abundance). The strongest evidence for a positive association was shown in concurrent infections with the trematode C. vitta and the cestode C. pusilla (significant in the whole dataset and evident in each locality, both sexes and both age classes). The abundance of C. pusilla was also higher in mice with C. vitta and vice versa. Overall, however, there was little support for associations or quantitative interactions between species, especially after data had been corrected for significant extrinsic/intrinsic factors, and we conclude that the helminths of wood mice in these communities are largely non-interactive and hence, perhaps better referred to as assemblages.
Collapse
|
5
|
Wilsterman K, Cunningham K. Evolution in reproductive tempo and investment across the Peromyscus radiation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:13-27. [PMID: 36289026 PMCID: PMC10092142 DOI: 10.1002/jez.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Mammals display diverse reproductive strategies, however, the ultimate and proximate mechanisms that underlie this diversity and its composite traits remain poorly understood from both evolutionary and physiological perspectives. The Peromyscus genus of rodents, which is found throughout the north and central Americas, has diversified along life history gradients, varying both within and among species in reproductive strategies. This variation provides a useful model for studying reproductive diversity. Here, we combine a literature review with new analyses of captive colony breeding records from six Peromyscus species to assess our current understanding of how plasticity and local adaptation contribute to diversity in two classes of reproductive traits: phenology and litter investment. There is substantial evidence that many traits underlying phenology and litter investment have diverged among populations in ways that are likely to be locally adaptive, though plasticity in these traits remains common. However, these conclusions are largely based on data collected from the two most widespread Peromyscus species: P. maniculatus and P. leucopus. The majority of Peromyscus species diversity remains understudied regarding reproductive phenology and litter traits. We conclude by discussing key challenges and considerations relevant to using Peromyscus as a mammalian model for reproductive trait diversity and evolution moving forward.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Kirksey Cunningham
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Schoepf I, Olson S, Moore IT, Bonier F. Experimental reduction of haemosporidian infection affects maternal reproductive investment, parental behaviour and offspring condition. Proc Biol Sci 2022; 289:20221978. [PMID: 36448284 PMCID: PMC9709520 DOI: 10.1098/rspb.2022.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
When hosts have a long coevolutionary history with their parasites, fitness costs of chronic infection have often been assumed to be negligible. Yet, experimental manipulation of infections sometimes reveals effects of parasites on their hosts, particularly during reproduction. Whether these effects translate into fitness costs remains unclear. Here, we present the results of an experimental study conducted in a free-ranging population of red-winged blackbirds (Agelaius phoeniceus) naturally experiencing a high prevalence of haemosporidian infections, with more than 95% of breeding adults infected with parasites from one or more haemosporidian genus. To assess effects of infection during reproduction, we manipulated adult red-winged blackbird females' parasite burden by administering an anti-haemosporidian medication before onset of egg-laying. Experimental reduction of infection resulted in significant benefits to mothers and their offspring. Medicated females laid heavier clutches, invested more in incubation and provisioning behaviour, and produced more fledglings than control females. Nestlings of medicated females had higher haematocrit, higher blood glucose, and lower reactive oxygen metabolites than nestlings of control females. Overall, our results provide evidence that, even in a species with high prevalence of infection, parasites can lead to decreased maternal investment and offspring quality, substantially reducing fitness.
Collapse
Affiliation(s)
- Ivana Schoepf
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
- University of Alberta, Augustana Campus, 4901 46 Avenue, Camrose, Alberta, Canada T4V 2R3
| | - Sarena Olson
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Ignacio T. Moore
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Frances Bonier
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
7
|
Mallinger EC, Olson ER, Vincent GP, Van Stappen J, Van Deelen T. Factors influencing the presence of parasitic trombiculids on red-backed voles in a temperate archipelago. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites can influence host population health and dynamics and are often an overlooked aspect of the ecology of ecosystems. Understanding the impacts of ecological interactions between parasites and small mammals can provide insights into ecosystem dynamics. We live trapped small mammals within the Apostle Islands archipelago (2017-2020) and assessed factors influencing the presence of mites from the Trombiculidae family. Archipelagos provide unique research opportunities because in small mammal-parasitic trombiculid systems, they are essentially closed systems. We detected trombiculids on 47% of Myodes gapperi (Vigors, 1830; red-backed vole) individuals but rarely detected trombiculids on other species. We developed and ranked a set of a priori logistic regression models of trombiculid presence relative to habitat quality, host abundance, body condition, sex, and sexual maturity to identify factors significant in predicting trombiculid infection for M. gapperi. Parasitic trombiculids were more likely when M. gapperi abundance was high and body condition was poor, however it is unknown whether trombiculids affect condition or if trombiculids are more likely to parasitize hosts in poor condition. The significance of host abundance may indicate density-dependent transmission. Our work suggests that host density and body condition are important factors influencing parasitism by trombiculids in M. gapperi populations.
Collapse
Affiliation(s)
| | - Erik R Olson
- Northland College, 1341, Natural Resources, 1411 Ellis Ave, Ashland, Wisconsin, United States, 54806-3999
| | | | - Julie Van Stappen
- Apostle Islands National Lakeshore, Resource Management , Bayfield , Wisconsin, United States
| | - T.R. Van Deelen
- University of Wisconsin, Department of Wildlife Ecology, 217 Russell Labs, Madison, Wisconsin, United States, 53706,
| |
Collapse
|
8
|
Ectoparasite load of small mammals in the Serengeti Ecosystem: effects of land use, season, host species, age, sex and breeding status. Parasitol Res 2022; 121:823-838. [PMID: 35122139 PMCID: PMC8858283 DOI: 10.1007/s00436-022-07439-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
Abstract
Ectoparasite load in small mammals can be influenced by both environmental conditions and host species characteristics. However, the nature of these influences is poorly understood in many ecosystems. We used zero-inflated negative binomial (ZINB) regression models with a log link function to assess variation in ectoparasite load among 19 small mammal host species across different land uses (protection in a park, pastoralism and agriculture), habitat types, seasons, age classes, sexes and breeding statuses. We collected 4258 ectoparasites from 612 individual belonging to 19 different species of small mammals. The average ectoparasite load per individual was higher in the pastoral and agricultural lands than in the National Park. Ectoparasite load varied among species and was the highest for the four common and generalist small mammal species (Aethomys sp., Arvicanthis niloticus, Mastomys natalensis, and Gerbilliscus vicinus), most notably in the disturbed pastoral and agricultural lands. It was also higher in the dry than the wet season and for adult males than adult females. These patterns partly reflect the greater mobility of small mammals in the drier conditions; in addition the large body size and home range of males increase the likelihood of encountering parasites. Human disturbance was associated with elevated ectoparasitic load among the small mammals and hence elevated risk of transmission of ectoparasites to humans. As a result, understanding the effect of habitat disturbance on ectoparasite load and its link to zoonotic disease risk should be an important conservation goal and public health priority. Moreover, effective pest control strategies should consider variation in ectoparasite load with land use, habitat type, season and species characteristics.
Collapse
|
9
|
Hurtado G, Mayer G, Mabry KE. Does urbanization ameliorate the effect of endoparasite infection in kangaroo rats? Ecol Evol 2021; 11:13390-13400. [PMID: 34646477 PMCID: PMC8495810 DOI: 10.1002/ece3.8062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Urban development can fragment and degrade remnant habitat. Such habitat alterations can have profound impacts on wildlife, including effects on population density, parasite infection status, parasite prevalence, and body condition. We investigated the influence of urbanization on populations of Merriam's kangaroo rat (Dipodomys merriami) and their parasites. We predicted that urban development would lead to reduced abundance, increased parasite prevalence in urban populations, increased probability of parasite infection for individual animals, and decreased body condition of kangaroo rats in urban versus wildland areas. We live trapped kangaroo rats at 5 urban and 5 wildland sites in and around Las Cruces, NM, USA from 2013 to 2015, collected fecal samples from 209 kangaroo rats, and detected endoparasites using fecal flotation and molecular barcoding. Seven parasite species were detected, although only two parasitic worms, Mastophorus dipodomis and Pterygodermatites dipodomis, occurred frequently enough to allow for statistical analysis. We found no effects of urbanization on population density or probability of parasite infection. However, wildland animals infected with P. dipodomis had lower body condition scores than infected animals in urban areas or uninfected animals in either habitat. Our results suggest that urban environments may buffer Merriam's kangaroo rats from the detrimental impacts to body condition that P. dipodomis infections can cause.
Collapse
Affiliation(s)
- Gizelle Hurtado
- Department of BiologyNew Mexico State UniversityLas CrucesNMUSA
- Norris Natural History MuseumUniversity of California Santa CruzSanta CruzCAUSA
| | | | - Karen E. Mabry
- Department of BiologyNew Mexico State UniversityLas CrucesNMUSA
| |
Collapse
|
10
|
Albery GF, Morris A, Morris S, Kenyon F, Nussey DH, Pemberton JM. Fitness Costs of Parasites Explain Multiple Life-History Trade-Offs in a Wild Mammal. Am Nat 2021; 197:324-335. [PMID: 33625970 DOI: 10.1086/712633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractReproduction in wild animals can divert limited resources away from immune defense, resulting in increased parasite burdens. A long-standing prediction of life-history theory states that these parasites can harm the reproductive individual, reducing its subsequent survival and fecundity, producing reproduction-fitness trade-offs. Here, we examined associations among reproductive allocation, immunity, parasitism, and subsequent survival and fecundity in a wild population of individually identified red deer (Cervus elaphus). Using path analysis, we investigated whether costs of lactation in terms of downstream survival and fecundity were mediated by changes in strongyle nematode count and mucosal antibody levels. Lactating females exhibited increased parasite counts, which were in turn associated with substantially decreased fitness in the following year in terms of overwinter survival, fecundity, subsequent calf weight, and parturition date. This study offers observational evidence for parasite regulation of multiple life-history trade-offs, supporting the role of parasites as an important mediating factor in wild mammal populations.
Collapse
|
11
|
Tufts DM, Diuk-Wasser MA. Vertical Transmission: A Vector-Independent Transmission Pathway of Babesia microti in the Natural Reservoir Host Peromyscus leucopus. J Infect Dis 2020; 223:1787-1795. [PMID: 32959880 DOI: 10.1093/infdis/jiaa595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Babesia microti, a malaria-like pathogen, is increasing in mammal and human populations in endemic areas and is unlikely to be the sole result of horizontal pathogen transmission. METHODS Peromyscus leucopus mice, natural reservoir hosts, were infected via Ixodes scapularis nymphs. Infected parental females (n = 6) produced F1 offspring (n = 36) that were screened for B. microti using quantitative PCR. Xenodiagnostic larvae were fed on infected offspring to determine horizontal transmission and pathogen viability. Fifty engorged larvae were screened; the rest were allowed to molt and then screened to determine transstadial transmission. Infected F1 generation offspring were placed in breeding groups, producing 34 F2 offspring and screened for B. microti infection. Chronic infection was monitored in parental females since time of initial vector infection. RESULTS Vertical transmission of B. microti was 74% efficient in offspring born in the first 6 months. Horizontal transmission occurred in larvae (61% prevalence) and molted nymphs (58% prevalence); these nymphs were able to infect susceptible hosts. F2 generation offspring infection prevalence was 38%. Chronic infection persisted for 1 year in some adults. CONCLUSIONS These results demonstrate that vertical transmission is an important nonvector-mediated pathway of B. microti transmission in the natural reservoir host.
Collapse
Affiliation(s)
- Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, New York, New York, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
"Weight of evidence" as a tool for evaluating disease in wildlife: An example assessing parasitic infection in Northern bobwhite ( Colinus virginianus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:27-37. [PMID: 32793414 PMCID: PMC7415643 DOI: 10.1016/j.ijppaw.2020.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
The potential of parasites to affect host abundance has been a topic of heated contention within the scientific community for some time, with many maintaining that issues such as habitat loss are more important in regulating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the Northern bobwhite quail (Colinus virginanus), an iconic game bird that is one of the most extensively studied vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some have referred to as “our greatest wildlife tragedy”. Here, we will discuss the history of disease and wildlife conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a “weight of evidence” approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling Plains of Texas. Through this, we highlight the potential of using “weight of the evidence” to better understand the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in wildlife conservation. Wildlife disease has gained increased recognition as a potentially significant mechanism affecting animal populations. Global change associated with anthropogenic factors may increase the intensity and proliferation of wildlife diseases. Disease effects may be discreet and contextually dependent, confounding efforts to quantify their impacts. A weight of the evidence (WOE) approach evaluates and integrates multiple lines of evidence to identify causal factors. WOE may provide an effective means to discern significant disease impacts, setting foundations for further empirical study.
Collapse
|
13
|
Estevam LGTM, Fonseca Junior AA, Silvestre BT, Hemetrio NS, Almeida LR, Oliveira MM, Silva SM, Ribeiro MFB, Silveira JAG. Seven years of evaluation of ectoparasites and vector-borne pathogens among ring-tailed coatis in an urban park in southeastern Brazil. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 21:100442. [PMID: 32862904 DOI: 10.1016/j.vprsr.2020.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 11/19/2022]
Abstract
Wild animals have been recognized as potential reservoirs of vector-borne pathogens. Proximity between these animals and urban areas increases the need to know which pathogens these are and whether they can infect domestic animals and humans. In Mangabeiras Municipal Park in Belo Horizonte, Brazil, coatis live near the urban area, which is mainly occupied by human residents and their domestic animals. Therefore, the objective of this study was to detect, through molecular and direct methods, the presence of ectoparasites and hemoparasites in coatis. A total of 216 samples were collected, of which 209 samples were from first-captures and seven were from recaptures. The following parasites were found: ticks of the genus Amblyomma, lice of the species Neotrichodectes pallidus and fleas of the species Rhopalopsyllus lutzi lutzi and Ctenocephalides felis felis. All the samples were negative for the family Anaplasmataceae and the species Leishmania sp. and Trypanosoma cruzi. The hemoparasites Trypanosoma evansi, Hepatozoon procyonis, Babesia sp. and Sarcocystis neurona were found. The area of the present study is not endemic for T. evansi, which therefore suggests that these coatis may be acting as reservoirs or sentinels of this parasite. This finding is of great epidemiological importance and should be investigated more closely. Thus, this study showed that there is a great variety of pathogens in the park that transit among coatis and, probably, among other animals that inhabit or live close to the park.
Collapse
Affiliation(s)
- L G T M Estevam
- Departament of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A A Fonseca Junior
- National Agriculture and Livestock Laboratory - LANAGRO, Ministry of Agriculture, Livestock and Food Supply - MAPA, Minas Gerais, Brazil
| | - B T Silvestre
- Departament of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - N S Hemetrio
- City Hall of Belo Horizonte, Municipal Parks Foundation, Minas Gerais, Brazil
| | - L R Almeida
- Departament of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M M Oliveira
- Departament of Imunology, Microbiology and Parasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - S M Silva
- Departament of Imunology, Microbiology and Parasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - M F B Ribeiro
- Departament of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - J A G Silveira
- Departament of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Rynkiewicz EC, Clerc M, Babayan SA, Pedersen AB. Variation in Local and Systemic Pro-Inflammatory Immune Markers of Wild Wood Mice after Anthelmintic Treatment. Integr Comp Biol 2020; 59:1190-1202. [PMID: 31368489 PMCID: PMC6863754 DOI: 10.1093/icb/icz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immune system represents a host's main defense against infection to parasites and pathogens. In the wild, a host's response to immune challenges can vary due to physiological condition, demography (age, sex), and coinfection by other parasites or pathogens. These sources of variation, which are intrinsic to natural populations, can significantly impact the strength and type of immune responses elicited after parasite exposure and infection. Importantly, but often neglected, a host's immune response can also vary within the individual, across tissues and between local and systemic scales. Consequently, how a host responds at each scale may impact its susceptibility to concurrent and subsequent infections. Here we analyzed how characteristics of hosts and their parasite infections drive variation in the pro-inflammatory immune response in wild wood mice (Apodemus sylvaticus) at both the local and systemic scale by experimentally manipulating within-host parasite communities through anthelmintic drug treatment. We measured concentrations of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced in vitro in response to a panel of toll-like receptor agonists at the local (mesenteric lymph nodes [MLNs]) and systemic (spleen) scales of individuals naturally infected with two gastrointestinal parasites, the nematode Heligmosomoides polygyrus and the protozoan Eimeria hungaryensis. Anthelmintic-treated mice had a 20-fold lower worm burden compared to control mice, as well as a four-fold higher intensity of the non-drug targeted parasite E. hungaryensis. Anthelmintic treatment differentially impacted levels of TNF-α expression in males and females at the systemic and local scales, with treated males producing higher, and treated females lower, levels of TNF-α, compared to control mice. Also, TNF-α was affected by host age, at the local scale, with MLN cells of young, treated mice producing higher levels of TNF-α than those of old, treated mice. Using complementary, but distinct, measures of inflammation measured across within-host scales allowed us to better assess the wood mouse immune response to changes in parasite infection dynamics after anthelmintic treatment. This same approach could be used to understand helminth infections and responses to parasite control measures in other systems in order to gain a broader view of how variation impacts the immune response.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Fashion Institute of Technology, State University of New York, New York, NY 10001, USA
| | - Melanie Clerc
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
15
|
van der Veen DR, Riede SJ, Heideman PD, Hau M, van der Vinne V, Hut RA. Flexible clock systems: adjusting the temporal programme. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0254. [PMID: 28993498 DOI: 10.1098/rstb.2016.0254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Under natural conditions, many aspects of the abiotic and biotic environment vary with time of day, season or even era, while these conditions are typically kept constant in laboratory settings. The timing information contained within the environment serves as critical timing cues for the internal biological timing system, but how this system drives daily rhythms in behaviour and physiology may also depend on the internal state of the animal. The disparity between timing of these cues in natural and laboratory conditions can result in substantial differences in the scheduling of behaviour and physiology under these conditions. In nature, temporal coordination of biological processes is critical to maximize fitness because they optimize the balance between reproduction, foraging and predation risk. Here we focus on the role of peripheral circadian clocks, and the rhythms that they drive, in enabling adaptive phenotypes. We discuss how reproduction, endocrine activity and metabolism interact with peripheral clocks, and outline the complex phenotypes arising from changes in this system. We conclude that peripheral timing is critical to adaptive plasticity of circadian organization in the field, and that we must abandon standard laboratory conditions to understand the mechanisms that underlie this plasticity which maximizes fitness under natural conditions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Daan R van der Veen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sjaak J Riede
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Michaela Hau
- Max-Planck-Institute for Ornithology, Seewiesen, Germany and University of Konstanz, Konstanz, Germany
| | - Vincent van der Vinne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Conner England J, Levengood JM, Osborn JM, Yetter AP, Suski CD, Cole RA, Hagy HM. Associations of intestinal helminth infections with health parameters of spring-migrating female lesser scaup (Aythya affinis) in the upper Midwest, USA. Parasitol Res 2018; 117:1877-1890. [PMID: 29696395 DOI: 10.1007/s00436-018-5879-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
Thousands of lesser scaup (Aythya affinis) die during spring and fall migrations through the upper Midwest, USA, from infections with Cyathocotyle bushiensis and Sphaeridiotrema spp. (Class: Trematoda) after ingesting infected intermediate hosts, such as non-native faucet snails (Bithynia tentaculata). The lesser scaup is a species of conservation concern and is highly susceptible to these infections. We collected female lesser scaup from spring migratory stopover locations throughout Illinois and Wisconsin and assessed biochemical and morphological indicators of health in relation to intestinal helminth loads. Helminth species diversity, total trematode abundance, and the infection intensities of the trematodes C. bushiensis and Sphaeridiotrema spp. were associated with percent body fat, blood metabolites, hematological measures, and an index of foraging habitat quality. Helminth diversity was negatively associated with percent body fat, albumin concentrations, and monocytes, whereas glucose concentrations displayed a slight, positive association. Total trematode abundance was negatively associated with blood concentrations of non-esterified fatty acids and albumin. Infections of C. bushiensis were positively related to basophil levels, whereas Sphaeridiotrema spp. infection intensity was negatively associated with packed cell volume and foraging habitat quality. Thus, commonly measured health metrics may indicate intestinal parasite infections and help waterfowl managers understand overall habitat quality. Intestinal parasitic loads offer another plausible mechanism underlying the spring condition hypothesis.
Collapse
Affiliation(s)
- J Conner England
- Frank C. Bellrose Waterfowl Research Center, Forbes Biological Station, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, 20003 CR 1770E, Havana, IL, 62644, USA.
| | - Jeffrey M Levengood
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, Illinois, 61820, USA
| | - Josh M Osborn
- Frank C. Bellrose Waterfowl Research Center, Forbes Biological Station, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, 20003 CR 1770E, Havana, IL, 62644, USA
| | - Aaron P Yetter
- Frank C. Bellrose Waterfowl Research Center, Forbes Biological Station, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, 20003 CR 1770E, Havana, IL, 62644, USA
| | - Cory D Suski
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, Illinois, 61820, USA
| | - Rebecca A Cole
- US Geological Survey-National Wildlife Health Center, 6006 Schroeder Rd, Madison, Wisconsin, 53711, USA
| | - Heath M Hagy
- Frank C. Bellrose Waterfowl Research Center, Forbes Biological Station, Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, 20003 CR 1770E, Havana, IL, 62644, USA.,United States Fish and Wildlife Service, 6772 Highway 76S, Stanton, Tennessee, 38069, USA
| |
Collapse
|
17
|
Shaner PJL, Yu AY, Li SH, Hou CH. The effects of food and parasitism on reproductive performance of a wild rodent. Ecol Evol 2018; 8:4162-4172. [PMID: 29721288 PMCID: PMC5916304 DOI: 10.1002/ece3.3997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 03/02/2018] [Indexed: 11/15/2022] Open
Abstract
Food and parasitism can have complex effects on small mammal reproduction. In this study, we tested the effects of sex, food, and parasitism on reproductive performance of the Taiwan field mouse (Apodemus semotus). In a field experiment, we increased food availability for a portion of the mice in the population by providing sorghum seeds to a set of food stations. We reduced parasite intensity of randomly chosen mice through ivermectin treatment. We determined the number and quality of offspring for the mice using paternity analysis. We quantified seed consumption with stable carbon isotope values of mouse plasma and parasite intensity with fecal egg counts of intestinal nematodes and cestodes (FEC). In a laboratory experiment, we reduced parasite intensity of randomly chosen mice through ivermectin treatment. We quantified their immune functions by total white blood cell count, percent granulocyte count, and percent lymphocyte count through hematological analyses. We measured the FEC and energy intake of the mice. From the field experiment, the number of offspring in A. semotus increased with increasing seed consumption. Due to the trade‐off between number and quality of offspring, the offspring quality decreased with increasing seed consumption for the females. The ivermectin treatment did not affect offspring number or quality. However, the FEC was positively correlated with number of offspring. In the laboratory experiment, the percent lymphocyte/granulocyte count changed with parasite intensity at low energy intake, which was relaxed at high energy intake. This study demonstrated positive effects of food availability and neutral effects of parasitism on A. semotus reproduction. However, the benefits of food availability for the females need to take into account the offspring number–quality trade‐off, and at high infection intensity, parasitism might negatively affect offspring quality for the males. We suggest that food availability could mediate the relationships between parasite intensity and immune responses.
Collapse
Affiliation(s)
- Pei-Jen L Shaner
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Ai-Yun Yu
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Shou-Hsien Li
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Ching-Ho Hou
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
18
|
Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys. Sci Rep 2017; 7:12778. [PMID: 28986531 PMCID: PMC5630591 DOI: 10.1038/s41598-017-12803-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
Nutritional stress may predispose individuals to infection, which in turn can have further detrimental effects on physical condition, thus creating an opportunity for reciprocal effects between nutrition and parasitism. Little experimental investigation has been conducted on this “vicious circle” hypothesis in wild animals, especially under natural conditions. We evaluated the reciprocal effects of nutritional status and parasitism using an experimental approach in two groups of wild black capuchin monkeys (Sapajus nigritus). Across two consecutive winters, we collected faecal samples from identified capuchins to determine presence and load of gastrointestinal helminthes, and measured individual body mass as a proxy of physical condition. Food availability was manipulated by provisioning monkeys with bananas, and parasite burdens by applying antiparasitic drugs to selected individuals. We found no effect of antiparasitic drugs on physical condition, but parasite loads decreased in response to high levels of food availability. Our results represent the first experimental evidence that the nutritional status may drive parasite dynamics in a primate.
Collapse
|
19
|
Shaner PL, Yu A, Ke L, Li S. Spacing behaviors and spatial recruitment of a wild rodent in response to parasitism. Ecosphere 2017. [DOI: 10.1002/ecs2.1780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Pei‐Jen L. Shaner
- Department of Life Science National Taiwan Normal University No. 88, Sec. 4, Tingzhou Road Taipei 11677 Taiwan
| | - Ai‐Yun Yu
- Department of Life Science National Taiwan Normal University No. 88, Sec. 4, Tingzhou Road Taipei 11677 Taiwan
| | - Linghua Ke
- Department of Life Science National Taiwan Normal University No. 88, Sec. 4, Tingzhou Road Taipei 11677 Taiwan
| | - Shou‐Hsien Li
- Department of Life Science National Taiwan Normal University No. 88, Sec. 4, Tingzhou Road Taipei 11677 Taiwan
| |
Collapse
|
20
|
Forbes KM, Mappes T, Sironen T, Strandin T, Stuart P, Meri S, Vapalahti O, Henttonen H, Huitu O. Food limitation constrains host immune responses to nematode infections. Biol Lett 2016; 12:rsbl.2016.0471. [PMID: 27677814 DOI: 10.1098/rsbl.2016.0471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles (Microtus agrestis) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility.
Collapse
Affiliation(s)
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Peter Stuart
- Department of Zoology, Trinity College, Dublin, Ireland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland Immunobiology Reseach Programme, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heikki Henttonen
- Forest and Animal Ecology, Natural Resources Institute Finland, Vantaa, Finland
| | - Otso Huitu
- Forest and Animal Ecology, Natural Resources Institute Finland, Vantaa, Finland
| |
Collapse
|
21
|
Vandegrift KJ, Critchlow JT, Kapoor A, Friedman DA, Hudson PJ. Peromyscus as a model system for human hepatitis C: An opportunity to advance our understanding of a complex host parasite system. Semin Cell Dev Biol 2016; 61:123-130. [PMID: 27498234 DOI: 10.1016/j.semcdb.2016.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
Abstract
Worldwide, there are 185 million people infected with hepatitis C virus and approximately 350,000 people die each year from hepatitis C associated liver diseases. Human hepatitis C research has been hampered by the lack of an appropriate in vivo model system. Most of the in vivo research has been conducted on chimpanzees, which is complicated by ethical concerns, small sample sizes, high costs, and genetic heterogeneity. The house mouse system has led to greater understanding of a wide variety of human pathogens, but it is unreasonable to expect Mus musculus to be a good model system for every human pathogen. Alternative animal models can be developed in these cases. Ferrets (influenza), cotton rats (human respiratory virus), and woodchucks (hepatitis B) are all alternative models that have led to a greater understanding of human pathogens. Rodent models are tractable, genetically amenable and inbred and outbred strains can provide homogeneity in results. Recently, a rodent homolog of hepatitis C was discovered and isolated from the liver of a Peromyscus maniculatus. This represents the first small mammal (mouse) model system for human hepatitis C and it offers great potential to contribute to our understanding and ultimately aid in our efforts to combat this serious public health concern. Peromyscus are available commercially and can be used to inform questions about the origin, transmission, persistence, pathology, and rational treatment of hepatitis C. Here, we provide a disease ecologist's overview of this new virus and some suggestions for useful future experiments.
Collapse
Affiliation(s)
- Kurt J Vandegrift
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Justin T Critchlow
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Amit Kapoor
- Center for Vaccines and Immunity, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States
| | - David A Friedman
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Peter J Hudson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
22
|
Hoye BJ, Munster VJ, Huig N, de Vries P, Oosterbeek K, Tijsen W, Klaassen M, Fouchier RAM, van Gils JA. Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integr Comp Biol 2016; 56:317-29. [PMID: 27252210 PMCID: PMC5007603 DOI: 10.1093/icb/icw038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.
Collapse
Affiliation(s)
- Bethany J Hoye
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Vincent J Munster
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naomi Huig
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter de Vries
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees Oosterbeek
- SOVON Texel, Dutch Center for Field Ornithology, Den Burg (Texel), The Netherlands
| | - Wim Tijsen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ron A M Fouchier
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg (Texel), The Netherlands
| |
Collapse
|
23
|
Olifiers N, Jansen AM, Herrera HM, Bianchi RDC, D’Andrea PS, Mourão GDM, Gompper ME. Co-Infection and Wild Animal Health: Effects of Trypanosomatids and Gastrointestinal Parasites on Coatis of the Brazilian Pantanal. PLoS One 2015; 10:e0143997. [PMID: 26657699 PMCID: PMC4678147 DOI: 10.1371/journal.pone.0143997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/12/2015] [Indexed: 12/30/2022] Open
Abstract
Wild animals are infected by diverse parasites, but how they influence host health is poorly understood. We examined the relationship of trypanosomatids and gastrointestinal parasites with health of wild brown-nosed coatis (Nasua nasua) from the Brazilian Pantanal. We used coati body condition and hematological parameters as response variables in linear models that were compared using an information theoretic approach. Predictors were high/low parasitemias by Trypanosoma cruzi and T. evansi, and indices representing the abundance of distinct groups of gastrointestinal parasites. We also analyzed how host health changed with host sex and reproductive seasonality. Hemoparasites was best related to coati body condition and hematological indices, whereas abundance of gastrointestinal parasites was relatively less associated with coati health. Additionally, some associations were best predicted by models that incorporated reproductive seasonality and host sex. Overall, we observed a lower health condition during the breeding season, when coatis are under reproductive stress and may be less able to handle infection. In addition, females seem to handle infection better than males. Body condition was lower in coatis with high parasitemias of T. evansi, especially during the reproductive season. Total red blood cell counts, packed cell volume, platelets and eosinophils were also lower in animals with high T. evansi parasitemias. Total white blood cell counts and mature neutrophils were lower in animals with high parasitemias for both Trypanosoma species, with neutrophils decreasing mainly during the reproductive season. Overall, decreases in hematological parameters of females with T. evansi high parasitemias were less evident. For T. cruzi, monocytes decreased in individuals with high parasitemias. High abundances of microfilariae in the bloodstream, and cestode eggs and coccidian oocysts in feces were also associated with coati blood parameters. This study shows the potential value of examining hematological parameters as an approach to better understand the ecological relevance of parasite-host interactions.
Collapse
Affiliation(s)
- Natalie Olifiers
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Laboratório de Parasitologia Animal, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cassia Bianchi
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | - Paulo Sergio D’Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme de Miranda Mourão
- Laboratório de Vida Selvagem, Centro de Pesquisa Agropecuária do Pantanal, Empresa Brasileira de Pesquisa Agropecuária, Mato Grosso do Sul, Corumbá, Brazil
| | - Matthew Edzart Gompper
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri, Unites States of America
| |
Collapse
|
24
|
|
25
|
Rynkiewicz EC, Pedersen AB, Fenton A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 2015; 31:212-21. [PMID: 25814004 DOI: 10.1016/j.pt.2015.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Hosts are typically coinfected by multiple parasite species, resulting in potentially overwhelming levels of complexity. We argue that an individual host can be considered to be an ecosystem in that it is an environment containing a diversity of entities (e.g., parasitic organisms, commensal symbionts, host immune components) that interact with each other, potentially competing for space, energy, and resources, ultimately influencing the condition of the host. Tools and concepts from ecosystem ecology can be applied to better understand the dynamics and responses of within-individual host-parasite ecosystems. Examples from both wildlife and human systems demonstrate how this framework is useful in breaking down complex interactions into components that can be monitored, measured, and managed to inform the design of better disease-management strategies.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
26
|
Pedersen AB, Fenton A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol 2015; 31:200-11. [PMID: 25778845 DOI: 10.1016/j.pt.2015.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that parasites can have significant impacts on the dynamics of wildlife populations. Recently, researchers have shifted from using observational approaches to infer the impact of parasites on the health and fitness of individuals to using antiparasite drug treatments to test directly the consequences of infection. However, it is not clear the extent to which these experiments work in wildlife systems, or whether the results of these individual-level treatment experiments can predict the population-level consequences of parasitism. Here, we assess the results of treatment experiments, laying out the benefits and limitations of this approach, and discuss how they can be used to improve our understanding of the role of parasites in wildlife populations.
Collapse
Affiliation(s)
- Amy B Pedersen
- Institute of Evolutionary Biology & Centre for Immunity, Infection, and Evolution, School of Biological Sciences, Kings Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
27
|
Voordouw MJ, Lachish S, Dolan MC. The lyme disease pathogen has no effect on the survival of its rodent reservoir host. PLoS One 2015; 10:e0118265. [PMID: 25688863 PMCID: PMC4331372 DOI: 10.1371/journal.pone.0118265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/07/2015] [Indexed: 01/06/2023] Open
Abstract
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.
Collapse
Affiliation(s)
- Maarten J. Voordouw
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Shelly Lachish
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Marc C. Dolan
- Division of Vector-Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
28
|
Barrett GW, Barrett TL, Pratt NL. Survivorship and Reproductive Success of Released Laboratory-bred and Native Golden Mice within a Forest-edge Habitat. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/0003-0031-173.1.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Lin JW, Lo HY, Wang HC, Shaner PJL. The effects of mite parasitism on the reproduction and survival of the Taiwan field mice (Apodemus semotus). Zool Stud 2014. [DOI: 10.1186/s40555-014-0079-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The effects of parasitism on host survival and reproduction can be highly complex depending on the type of parasites, host sex and life-history characteristics, and ecological conditions. In this study, we tested sex-biased parasitism from Trombiculid mites (Acarina: Trombiculidae) and their sex-specific effects on host reproduction and survival, in a natural population of the Taiwan field mouse (Apodemus semotus). We performed surveys of A. semotus and their Trombiculid mites between April 2010 and August 2011 and again between June and September 2012 in a subtropical evergreen forest in Taiwan.
Results
Contrary to the commonly reported male-biased parasitism in mammals, we did not find sex-biased parasitism in A. semotus. We found that mite abundance was negatively associated with A. semotus reproduction and survival in both males and females. The mite abundance and rodent reproduction fluctuated seasonally, and the peak reproductive season coincided with the time period of relatively low mite abundance.
Conclusions
Trombiculid mites could potentially regulate A. semotus populations through reducing their reproduction and survival. The overlapping periods of peak reproduction and low parasitism implied that A. semotus may adjust their reproductive phenology to avoid periods of high parasitism or be constrained by parasites to reproduce only during periods of low parasitism. Although our results are correlational, host breeding season has been shown to increase in response to experimental reduction of parasitism. We suggest that parasites may shape host reproduction phenology through which they may influence host population dynamics.
Collapse
|
30
|
Sex-specific effects of parasitism on survival and reproduction of a rodent host in a subtropical montane region. Oecologia 2014; 177:657-667. [PMID: 25417000 DOI: 10.1007/s00442-014-3160-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Parasites can generate complex life history trade-offs in a host. In this study, we experimentally reduced the infection level of intestinal helminth parasites in the Taiwan field mouse (Apodemus semotus) to test (1) whether parasite richness and load are biased towards male or female mice (sex-biased parasitism) and (2) whether the effects of parasitism on the host's survival and reproduction are different between the sexes (sex-specific effects of parasitism). Our findings indicate that neither parasite richness (number of helminth taxa found in a fecal sample) nor parasite load (number of helminth eggs per gram of fecal material) was sexually biased in our A. semotus study population. These results are in agreement with those of previous studies on endoparasites in Apodemus spp., but are in contrast to those on ectoparasites in Apodemus spp. Parasite removal reduced the survival rate of reproducing females, possibly by allowing reproducing females to increase maternal investment in their current litters at the cost of their own future survival. Single-litter mothers with reduced parasitism had a higher body mass than the untreated single-litter mothers, suggesting an increased maternal investment. In addition, the reproductively more active A. semotus, particularly the females, carried higher parasite loads, suggesting a trade-off between reproduction and parasite defense. By demonstrating that parasites can affect life history trade-offs in A. semotus, our results highlight the importance of maintaining variation in life history traits under parasitism risks and illustrate the subtle demographic processes (e.g. reduced future survival among healthy reproducing females) that might be driven by parasitism.
Collapse
|
31
|
Forbes KM, Stuart P, Mappes T, Henttonen H, Huitu O. Food resources and intestinal parasites as limiting factors for boreal vole populations during winter. Ecology 2014. [DOI: 10.1890/13-2381.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Rödel HG, Starkloff A. Social environment and weather during early life influence gastro-intestinal parasite loads in a group-living mammal. Oecologia 2014; 176:389-98. [PMID: 25004871 DOI: 10.1007/s00442-014-3017-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/25/2014] [Indexed: 11/25/2022]
Abstract
Conditions experienced during early life have been frequently shown to exert long-term consequences on an animal's fitness. In mammals and birds, the time around and shortly after weaning is one of the crucial periods early in life. However, little is known about how social and abiotic environmental conditions experienced around this time affect fitness-related traits such as endoparasite loads. We studied consequences of social interactions and rainy weather conditions around and after weaning on gastro-intestinal nematode loads in juvenile European rabbits Oryctolagus cuniculus. Infestations with the gastric nematode Graphidium strigosum and with the intestinal nematode Passalurus ambiguus were higher in animals experiencing more rain during early life. This might have been due to the higher persistence of nematodes' infective stages outside the host body together with the animals' lower energy allocation for immune defence under more humid and thus energetically challenging conditions. In contrast, infestations with P. ambiguus were lower in animals with more positive social interactions with mother and litter siblings. We propose that social support provided by familiar group members buffered negative stress effects on immune function, lowering endoparasite infestations. This is supported by the negative correlation between positive social behaviour and serum corticosterone concentrations, indicating lower stress in juveniles which integrated more successfully into the social network of their group. In conclusion, the findings offer a pathway showing how differences in the abiotic environment and social life conditions experienced early in life could translate into long-term fitness consequences via the effects on endoparasite loads.
Collapse
Affiliation(s)
- Heiko G Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité, 93430, Villetaneuse, France,
| | | |
Collapse
|
33
|
Thompson RCA. Parasite zoonoses and wildlife: One Health, spillover and human activity. Int J Parasitol 2013; 43:1079-88. [PMID: 23892130 PMCID: PMC7126848 DOI: 10.1016/j.ijpara.2013.06.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 01/16/2023]
Abstract
This review examines parasite zoonoses and wildlife in the context of the One Health triad that encompasses humans, domestic animals, wildlife and the changing ecosystems in which they live. Human (anthropogenic) activities influence the flow of all parasite infections within the One Health triad and the nature and impact of resulting spillover events are examined. Examples of spillover from wildlife to humans and/or domestic animals, and vice versa, are discussed, as well as emerging issues, particularly the need for parasite surveillance of wildlife populations. Emphasis is given to Trypanosoma cruzi and related species in Australian wildlife, Trichinella, Echinococcus, Giardia, Baylisascaris, Toxoplasma and Leishmania.
Collapse
Affiliation(s)
- R C Andrew Thompson
- School of Veterinary and Health Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
34
|
Zwolak R, Meagher S, Vaughn JW, Dziemian S, Crone EE. Reduced ectoparasite loads of deer mice in burned forest: From fleas to trees? Ecosphere 2013. [DOI: 10.1890/es13-00138.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Watson MJ. What drives population-level effects of parasites? Meta-analysis meets life-history. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2013; 2:190-6. [PMID: 24533334 PMCID: PMC3862538 DOI: 10.1016/j.ijppaw.2013.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
Abstract
Parasites are considered drivers of population regulation in some species; unfortunately the research leading to this hypothesis has all been conducted on managed populations. Still unclear is whether parasites have population-level effects in truly wild populations and what life-history traits drive observed virulence. A meta-analysis of 38 data sets where parasite loads were altered on non-domesticated, free-ranging wild vertebrate hosts (31 birds, 6 mammals, 1 fish) was conducted and found a strong negative effect of parasites at the population-level (g = 0.49). Among different categories of response variables measured, parasites significantly affected clutch size, hatching success, young produced, and survival, but not overall breeding success. A meta-regression of effect sizes and life-history traits thought to determine parasite virulence indicate that average host life span may be the single most important driver for understanding the effects of parasites. Further studies, especially of long-lived hosts, are necessary to prove this hypothesis.
Collapse
Affiliation(s)
- Maggie J Watson
- School of Animal & Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2642, Australia
| |
Collapse
|
36
|
Abstract
Individuals are often co-infected with several parasite species, yet the consequences of drug treatment on the dynamics of parasite communities in wild populations have rarely been measured. Here, we experimentally reduced nematode infection in a wild mouse population and measured the effects on other non-target parasites. A single oral dose of the anthelmintic, ivermectin, significantly reduced nematode infection, but resulted in a reciprocal increase in other gastrointestinal parasites, specifically coccidial protozoans and cestodes. These results highlight the possibility that drug therapy may have unintended consequences for non-target parasites and that host–parasite dynamics cannot always be fully understood in the framework of single host–parasite interactions.
Collapse
Affiliation(s)
- Amy B Pedersen
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
37
|
MacManes MD, Lacey EA. Is promiscuity associated with enhanced selection on MHC-DQα in mice (genus Peromyscus)? PLoS One 2012; 7:e37562. [PMID: 22649541 PMCID: PMC3359288 DOI: 10.1371/journal.pone.0037562] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/25/2012] [Indexed: 12/24/2022] Open
Abstract
Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu.
Collapse
Affiliation(s)
- Matthew D MacManes
- Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America.
| | | |
Collapse
|
38
|
Grear DA, Luong LT, Hudson PJ. Sex-biased transmission of a complex life-cycle parasite: why males matter. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.20358.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Zwolak R, Pearson D, Ortega Y, Crone E. Mechanisms driving postfire abundance of a generalist mammal. CAN J ZOOL 2012. [DOI: 10.1139/z11-111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in vertebrate abundance following disturbance are commonly attributed to shifts in food resources or predation pressure, but underlying mechanisms have rarely been tested. We examined four hypotheses for the commonly reported increase in abundance of deer mouse ( Peromyscus maniculatus (Wagner, 1845)) following forest fires: source–sink dynamics, decreased predation, increased food resources, and increased foraging efficiency. We found that reproduction of deer mouse was considerably higher in burned versus unburned forests and survival did not differ between habitats, indicating that burned forests were not sink habitats. Comparable survival also suggested that predation rates were similar between habitats. Increased reproduction in burned versus unburned forest suggested better resource conditions, but abundance of seeds and arthropods (the primary food resources for mice) either did not differ between habitats or were higher overall in unburned forest. Foraging experiments indicated that seed removal from depots was substantially higher in burned versus unburned forests after controlling for mouse density. Additionally, in both habitats, mice were captured more often in open microhabitats and the odds of individual insect removal increased with decreasing cover during certain sampling periods. Of the four hypotheses tested, greater foraging efficiency provided the best explanation for elevated populations of deer mouse. However, predation risk may have influenced foraging success.
Collapse
Affiliation(s)
- R. Zwolak
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - D.E. Pearson
- U.S. Department of Agriculture (USDA) Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, MT 59801, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Y.K. Ortega
- U.S. Department of Agriculture (USDA) Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, MT 59801, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - E.E. Crone
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
40
|
MacManes MD. Promiscuity in mice is associated with increased vaginal bacterial diversity. Naturwissenschaften 2011; 98:951-60. [PMID: 21964973 DOI: 10.1007/s00114-011-0848-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents--Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.
Collapse
Affiliation(s)
- Matthew David MacManes
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Complex life cycle of Pterygodermatites peromysci, a trophically transmitted parasite of the white-footed mouse (Peromyscus leucopus). Parasitol Res 2011; 110:483-7. [DOI: 10.1007/s00436-011-2542-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
42
|
Strong density-dependent competition and acquired immunity constrain parasite establishment: Implications for parasite aggregation. Int J Parasitol 2011; 41:505-11. [DOI: 10.1016/j.ijpara.2010.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
|
43
|
Raffel TR, Lloyd-Smith JO, Sessions SK, Hudson PJ, Rohr JR. Does the early frog catch the worm? Disentangling potential drivers of a parasite age-intensity relationship in tadpoles. Oecologia 2010; 165:1031-42. [PMID: 20852894 PMCID: PMC3057004 DOI: 10.1007/s00442-010-1776-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 08/30/2010] [Indexed: 11/11/2022]
Abstract
The manner in which parasite intensity and aggregation varies with host age can provide insights into parasite dynamics and help identify potential means of controlling infections in humans and wildlife. A significant challenge is to distinguish among competing mechanistic hypotheses for the relationship between age and parasite intensity or aggregation. Because different mechanisms can generate similar relationships, testing among competing hypotheses can be difficult, particularly in wildlife hosts, and often requires a combination of experimental and model fitting approaches. We used field data, experiments, and model fitting to distinguish among ten plausible drivers of a curvilinear age–intensity relationship and increasing aggregation with host age for echinostome trematode infections of green frogs. We found little support for most of these proposed drivers but did find that the parsimonious explanation for the observed age–intensity relationship was seasonal exposure to echinostomes. The parsimonious explanation for the aggregated distribution of parasites in this host population was heterogeneity in exposure. A predictive model incorporating seasonal exposure indicated that tadpoles hatching early or late in the breeding season should have lower trematode burdens at metamorphosis, particularly with simulated warmer climates. Application of this multi-pronged approach (field surveys, lab experiments, and modeling) to additional parasite–host systems could lead to discovery of general patterns in the drivers of parasite age–intensity and age–distribution relationships.
Collapse
Affiliation(s)
- Thomas R Raffel
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | | | |
Collapse
|
44
|
Oppelt C, Starkloff A, Rausch P, Von Holst D, Rödel HG. Major histocompatibility complex variation and age-specific endoparasite load in subadult European rabbits. Mol Ecol 2010; 19:4155-67. [PMID: 20723049 DOI: 10.1111/j.1365-294x.2010.04766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a fundamental role in the vertebrate immune response and are amongst the most polymorphic genes in vertebrate genomes. It is generally agreed that the highly polymorphic nature of the MHC is maintained through host-parasite co-evolution. Two nonexclusive mechanisms of selection are supposed to act on MHC genes: superiority of MHC heterozygous individuals (overdominance) and an advantage for rare MHC alleles. However, the precise mechanisms and their relative importance are still unknown. Here, we examined MHC dependent parasite load in European rabbits (Oryctolagus cuniculus) from a distinct population with low MHC diversity (three alleles, six genotypes). Using a multivariate approach, we tested for associations of individual MHC class II DRB constitution and the rabbits' intestinal burden with nematodes and coccidia. Rabbits having a particular allele showed lower infestations with hepatic coccidia (E. stiedai). However, a comparison of all six genotypes in the population revealed that carriers of this allele only benefit when they are heterozygous, and furthermore, MHC heterozygosity in general did not affect individual parasite load. In conclusion, this study suggests an immunogenetic basis of European rabbit resistance to hepatic coccidiosis, which can strongly limit survival to maturity in this species. Our study gives a complex picture of MHC-parasite correlations, unveiling the limits of the classical hypotheses of how MHC polymorphism is maintained in natural systems.
Collapse
Affiliation(s)
- Claus Oppelt
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, GermanyLimnological Institute, University of Konstanz, D-78464 Konstanz, Germany
| | | | | | | | | |
Collapse
|
45
|
Previtali MA, Lehmer EM, Pearce-Duvet JMC, Jones JD, Clay CA, Wood BA, Ely PW, Laverty SM, Dearing MD. Roles of human disturbance, precipitation, and a pathogen on the survival and reproductive probabilities of deer mice. Ecology 2010; 91:582-92. [PMID: 20392022 DOI: 10.1890/08-2308.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Climate change, human disturbance, and disease can have large impacts on the dynamics of a species by affecting the likelihood of survival and reproduction of individuals. We investigated the roles of precipitation, off-road vehicle (ORV) alteration of habitat, and infection with Sin Nombre virus on the survival and reproductive probabilities of deer mice (Peromyscus maniculatus). We used generalized linear mixed models to estimate the effects of these factors and their interactions by fitting capture-recapture data collected seasonally from 2002 to 2007 at 17 sites in the Great Basin Desert of central Utah, USA. During periods with high precipitation, we found no difference in survival and reproductive probabilities between seasons, but during drier periods, we found a reduction of overwinter survival and fall reproductive activity. Precipitation also interacted with disturbance to affect survival probabilities and female reproduction; in periods with low precipitation, deer mice on highly disturbed sites had extremely low survival probabilities and low reproductive probabilities of females compared to those of individuals from low-disturbance sites. However, high precipitation ameliorated the effect of disturbance on both parameters. Deer mice from sites with high impact of ORV disturbance also had low survival over summer. Additionally, male reproductive probabilities were diminished on highly disturbed sites in both seasons; in contrast, they were reduced only in the fall on low-disturbance sites. Density had an overall negative effect on survival and reproductive probabilities of deer mice. For females, the negative effect on reproductive activity was amplified in highly disturbed sites. We found no effect of hantavirus infection on survival probabilities of deer mice. Overall, this study revealed complexity in the determinants of deer mouse survival and reproduction given by the effects of a number of significant interactions among explanatory variables. Thus, factors that may not appear to have a strong effect when investigated alone can still be influential by modulating the effect of a different factor.
Collapse
Affiliation(s)
- M Andrea Previtali
- Department of Biology, 257 S 1400 E, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Teichroeb JA, Kutz SJ, Parkar U, Thompson RCA, Sicotte P. Ecology of the gastrointestinal parasites of Colobus vellerosus at Boabeng-Fiema, Ghana: possible anthropozoonotic transmission. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 140:498-507. [PMID: 19434756 DOI: 10.1002/ajpa.21098] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parasite richness and prevalence in wild animals can be used as indicators of population and ecosystem health. In this study, the gastrointestinal parasites of ursine colobus monkeys (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary (BFMS), Ghana, were investigated. BFMS is a sacred grove where monkeys and humans have long lived in relatively peaceful proximity. Fecal samples (n = 109) were collected opportunistically from >27 adult and subadult males in six bisexual groups and one all-male band from July 2004 to August 2005. Using fecal floatation, we detected three protozoans (two Entamoeba sp., Isospora sp.), five nematodes (Ascaris sp., Enterobius sp., Trichuris sp., two strongyle sp.), and one digenean trematode. Using fluorescein labeled antibodies, we detected an additional protozoan (Giardia sp.), and with PCR techniques, we characterized this as G. duodenalis Assemblage B and also identified a protistan (Blastocystis sp., subtype 2). The most prevalent parasite species were G. duodenalis and Trichuris sp. Parasites were more prevalent in the long wet season than the long dry. Parasite prevalence did not vary by age, and average parasite richness did not differ by rank for males whose status remained unchanged. However, males that changed rank tended to show higher average parasite richness when they were lower ranked. Individuals that spent more time near human settlements had a higher prevalence of Isospora sp. that morphologically resembled the human species I. belli. The presence of this parasite and G. duodenalis Assemblage B indicates possible anthropozoonotic and/or zoonotic transmission between humans and colobus monkeys at this site.
Collapse
Affiliation(s)
- Julie A Teichroeb
- Department of Anthropology, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | | | |
Collapse
|
47
|
Balmer O, Stearns SC, Schötzau A, Brun R. Intraspecific competition between co-infecting parasite strains enhances host survival in African trypanosomes. Ecology 2009; 90:3367-78. [DOI: 10.1890/08-2291.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Vandegrift KJ, Hudson PJ. Could parasites destabilize mouse populations? The potential role of Pterygodermatites peromysci in the population dynamics of free-living mice, Peromyscus leucopus. Int J Parasitol 2009; 39:1253-62. [DOI: 10.1016/j.ijpara.2009.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/20/2009] [Accepted: 02/22/2009] [Indexed: 10/20/2022]
|
49
|
Grear DA, Perkins SE, Hudson PJ. Does elevated testosterone result in increased exposure and transmission of parasites? Ecol Lett 2009; 12:528-37. [PMID: 19392718 DOI: 10.1111/j.1461-0248.2009.01306.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Male-biased infection is a common phenomenon in vertebrate-parasite systems and male-biased transmission has been experimentally demonstrated. One mechanism that is hypothesized to create male-biased transmission is the immuno-suppressive effect of testosterone because it increases susceptibility to infection. Testosterone also influences host behaviour and, consequently, may increase exposure to parasites. To test how testosterone could increase exposure and transmission, we undertook a longitudinal mark-recapture study where we experimentally elevated testosterone levels in wild male rodents. Individuals in control populations reduced the average number of contacts over the treatment period, while populations with experimentally elevated testosterone levels maintained the number of contacts between hosts. As a result, the transmission potential was higher in testosterone treated populations compared to controls. Our results indicated that males with high-testosterone levels alter the population-level contacts, producing different social networks and increasing transmission potential compared to those where testosterone is at background levels.
Collapse
Affiliation(s)
- Daniel A Grear
- Center for Infectious Disease Dynamics, Pennsylvania State University, 208 Mueller Laboratories, University Park, PA 16801, USA.
| | | | | |
Collapse
|
50
|
Vandegrift KJ, Hudson PJ. Response to enrichment, type and timing: small mammals vary in their response to a springtime cicada but not a carbohydrate pulse. J Anim Ecol 2009; 78:202-9. [DOI: 10.1111/j.1365-2656.2008.01456.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|