1
|
Valdés-Correcher E, Kadiri Y, Bourdin A, Mrazova A, Bălăcenoiu F, Branco M, Bogdziewicz M, Bjørn MC, Damestoy T, Dobrosavljević J, Faticov M, Gripenberg S, Gossner MM, de Groot M, Hagge J, Hoopen JT, Lövei GL, Milanović S, Musolin DL, Mäntylä E, Moreira X, Piotti A, Rodríguez VM, Saez-Asensio C, Sallé A, Sam K, Sobral M, Tack AJM, Varela Z, Castagneyrol B. Effects of climate on leaf phenolics, insect herbivory, and their relationship in pedunculate oak (Quercus robur) across its geographic range in Europe. Oecologia 2025; 207:61. [PMID: 40186748 PMCID: PMC11972190 DOI: 10.1007/s00442-025-05696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
An increase in biotic interactions towards lower latitudes is one of the most consistent patterns in ecology. Higher temperatures and more stable climatic conditions at low latitudes are thought to enhance biotic interactions, accelerating biological evolution and leading to stronger anti-herbivore defences in plants. However, some studies report contradictory findings, highlighting the need for further investigation into the underlying mechanisms. We used a combination of field observations and feeding trials in controlled environments to investigate the effect of climate on chemical defences and insect herbivory in pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe, while controlling for physical defences. The concentration of lignin, flavonoids, and total phenolics increased significantly with temperature, whereas both field herbivory and weight of spongy moth (Lymantria dispar L.) larvae were negatively influenced by temperature. Lignin concentration positively influenced the weight of spongy moth larvae whereas it had no effect on field herbivory. We found no evidence of strong positive relationships between insect herbivory and larvae growth with leaf defences. Our study underscores the complexity of plant-herbivore interactions along climatic gradients and highlights the need for further research to disentangle these intricate relationships.
Collapse
Affiliation(s)
- Elena Valdés-Correcher
- Integrative Ecology Group, Estación Biológica de Doñana, Seville, Spain.
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| | - Yasmine Kadiri
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- INRAE UE Ferlus, 86000, Lusignan, France
| | | | - Anna Mrazova
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
| | - Manuela Branco
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Mona Chor Bjørn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg, Denmark
| | - Thomas Damestoy
- UniLaSalle, AGHYLE, UP.2018.C101, FR-60026, Beauvais, France
| | - Jovan Dobrosavljević
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Maria Faticov
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Maarten de Groot
- Department of Forest Protection, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jonas Hagge
- Northwest German Forest Research Institute, Forest Nature Conservation, Prof.-Oelkers-Str. 6, 34346, Hann. Münden, Germany
- University of Göttingen, Forest Nature Conservation, Büsgenweg 3, 37077, Göttingen, Germany
| | | | - Gabor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg ResearchCentre, 4200, Slagelse, Denmark
- HUN-REN-DU Anthropocene Ecology Research Group, University of Debrecen, 4010, Debrecen, Hungary
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00, Brno, Czech Republic
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), 21 Boulevard Richard Lenoir, 75011, Paris, France
| | - Elina Mäntylä
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Andrea Piotti
- Institute of Biosciences and BioResources, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Cristina Saez-Asensio
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | | | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Mar Sobral
- Department of Geography, University of Santiago de Compostela, Praza da Universidade, 1, 15703, Santiago de Compostela, Spain
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | |
Collapse
|
2
|
Jameel MI, Duncan L, Mooney K, Anderson JT. Herbivory and water availability interact to shape the adaptive landscape in the perennial forb, Boechera stricta. Evolution 2025; 79:557-573. [PMID: 39713890 PMCID: PMC11965616 DOI: 10.1093/evolut/qpae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across 3 years, and evaluated clinal variation in functional traits and phenology, phenotypic plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores. We found significant plasticity and genetic clines in foliar and phenological traits. Water availability and herbivory interacted to exert selection, even on traits like flowering duration, which showed no clinal variation. Furthermore, the direction of selection on specific leaf area in response to water availability mirrored the genetic cline and plasticity, suggesting that variation in water levels across the landscape influences the evolution of this trait. Finally, both herbivory and water availability likely contribute to local adaptation. This work emphasizes the additive and synergistic roles of abiotic and biotic factors in shaping phenotypic variation across environmental gradients.
Collapse
Affiliation(s)
- M Inam Jameel
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lisa Duncan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| | - Kailen Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Wang S, Liao Z, Cao P, Schmid MW, Zhang L, Bi J, Endriss SB, Zhao Y, Parepa M, Hu W, Akamine H, Wu J, Ju R, Bossdorf O, Richards CL, Li B. General-purpose genotypes and evolution of higher plasticity in clonality underlie knotweed invasion. THE NEW PHYTOLOGIST 2025; 246:758-768. [PMID: 39967423 PMCID: PMC11923409 DOI: 10.1111/nph.20452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Many widespread invasive plant species express high phenotypic variation across novel environments, providing a unique opportunity to examine ecological and evolutionary dynamics under global change. However, studies often lack information about the origin of introduced populations, limiting our understanding of post-introduction evolution. We assessed the responses of Reynoutria japonica from 128 populations spanning latitudinal transects in the native (China and Japan), and introduced (North America and Europe) ranges when grown in two common gardens. Plants from introduced populations differed in almost all traits from those from Chinese populations, but were similar to plants from the putative origin in Japan. Compared to Chinese populations, North American, European and Japanese populations expressed lower trait values and plasticity in most traits. However, plants from both introduced and Japanese populations expressed higher clonality and plasticity in clonality than plants from Chinese populations. Further, introduced populations expressed higher plasticity in clonality but lower plasticity in basal diameter compared to Japanese populations. Our findings emphasize the potential role of clonality and plasticity in clonality for invasion success. In addition, our study highlights the importance of comparisons to source populations within the native range to identify evolutionary responses of introduced plants to novel environments.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Zhi‐Yong Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Peipei Cao
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | | | - Lei Zhang
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Jingwen Bi
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Stacy B. Endriss
- Department of Natural ResourcesCornell UniversityIthacaNY14853USA
- Department of Environmental SciencesUniversity of North Carolina WilmingtonWilmingtonNC28403USA
- Department of EntomologyVirginia TechBlacksburgVA24061USA
| | - Yujie Zhao
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Madalin Parepa
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
| | - Wenyi Hu
- Graduate School of AgricultureUniversity of the Ryukyus903‐0213OkinawaJapan
| | - Hikaru Akamine
- Subtropical Field Science Center, Faculty of AgricultureUniversity of the Ryukyus903‐0213OkinawaJapan
| | - Jihua Wu
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou University730000LanzhouChina
| | - Rui‐Ting Ju
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
| | - Christina L. Richards
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
- Plant Evolutionary Ecology, Institute of Evolution & EcologyUniversity of Tübingen72076TübingenGermany
- Department of Integrative BiologyUniversity of South FloridaTampaFL33620USA
| | - Bo Li
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghai200438China
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, and Southwest United Graduate SchoolYunnan University650500KunmingChina
| |
Collapse
|
4
|
Nan M, Wang JB, Siokis M, St. Leger RJ. Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae. Ecol Evol 2025; 15:e71047. [PMID: 40027417 PMCID: PMC11868735 DOI: 10.1002/ece3.71047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Collapse
Affiliation(s)
- Mintong Nan
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jonathan B. Wang
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Michail Siokis
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
5
|
Chen X, Wang J, Liu W, Zhang Y. The relative effects of climatic drivers and phenotypic integration on phenotypic plasticity of a globally invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1473456. [PMID: 39654961 PMCID: PMC11625578 DOI: 10.3389/fpls.2024.1473456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Understanding the constraints of phenotypic plasticity can provide insights into the factors that limit or influence the capacity of an organism to respond to changing environments. However, the relative effects of external and internal factors on phenotypic plasticity remain largely unexplored. Phenotypic integration, the pattern of correlations among traits, is recognized as an important internal constraint to plasticity. Phenotypic plasticity is critical in facilitating the acclimation of invasive species to the diverse environments within their introduced ranges. Consequently, these species serve as ideal models for investigating phenotypic plasticity and its underlying determinants. Methods Here, we collected seeds of a global salt marsh invader Spartina alterniflora from seven invasive populations covering the entire latitudinal range in China. These populations were cultivated in two common gardens located at the southern and northern range margins, respectively. We quantified plasticity and variation therein for plant height, shoot density, first flowering day and inflorescence biomass (on a per capita basis). These traits have direct or indirect effects on invasiveness. We examined the relationships between traits plasticity with climatic conditions at site of origin (external factor) and phenotypic integration (internal factor). Results We found that plasticity differed according to the trait being measured, and was higher for a trait affecting fitness. Phenotypic variance increased with latitude and temperature at the site of origin was the primary factor affecting phenotypic variation. These results indicated that external abiotic factors directly affected the selection on phenotypic plasticity of S. alterniflora. Discussion Our study provides a unique viewpoint on assessing the importance of identifying influential factors and mechanisms underlying phenotypic plasticity. Understanding these factors and mechanisms is a critical indicator for invasive and other cosmopolitan species' responses, establishment, persistence, and distribution under climate change.
Collapse
Affiliation(s)
| | | | | | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College
of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Zhou G, Liu JX, Liu J, Yang J, Qiao X, Cao M, Jiang M. Ants may buffer the Janzen-Connell effect in a tropical forest in Southwest China. Ecology 2024; 105:e4380. [PMID: 39031002 DOI: 10.1002/ecy.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/11/2024] [Accepted: 05/24/2024] [Indexed: 07/22/2024]
Abstract
Mutualistic symbioses between ants and plants are widespread in nature. Ants can deter unwanted pests and provide protection for plants in return for food or housing rewards. Using a long-term demographic dataset in a tropical seasonal rain forest in Southwest China, we found that associations with ants positively influenced seedling survival and adult growth, and also, species with extrafloral nectaries experienced weaker conspecific negative density dependence compared with species without extrafloral nectaries. Furthermore, we found strong evidence suggesting that species in our forest experienced conspecific density dependence, which we interpreted as heavy pest pressure that may drive the development of anti-pest symbioses such as the plant-ant relationship. Our findings suggest that ants and conspecific neighbors play important but inverse roles on plant survival and growth and that ants can buffer tree neighborhood interactions in this tropical forest.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jikun Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Rungwattana K, Kasemsap P, Phumichai T, Rattanawong R, Hietz P. Testing intra-species variation in allocation to growth and defense in rubber tree ( Hevea brasiliensis). PeerJ 2024; 12:e17877. [PMID: 39131614 PMCID: PMC11317040 DOI: 10.7717/peerj.17877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.
Collapse
Affiliation(s)
- Kanin Rungwattana
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Poonpipope Kasemsap
- Hevea Research Platform in Partnership, DORAS Center, Kasetsart University, Bangkok, Thailand
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | | | - Peter Hietz
- Institute of Botany, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
8
|
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: An old debate about natural selection and neutral processes. Genet Mol Biol 2024; 47Suppl 1:e20230348. [PMID: 39037374 PMCID: PMC11262002 DOI: 10.1590/1678-4685-gmb-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 07/23/2024] Open
Abstract
Distinguishing between environmental adaptations and neutral processes poses a challenge in population genetics and evolutionary studies, particularly when phenomena can be explained by both processes. Clines are genotypic or phenotypic characters correlated with environmental variables, because of that correlation, they are used as examples of spatially varying selection. At the same time, many genotypic clines can be explained by demographic history, like isolation by distance or secondary contact zones. Clines have been extensively studied in Drosophila melanogaster, especially in North America and Australia, where they are attributed to both differential selection and various demographic processes. This review explores existing literature supporting this conclusion and suggests new approaches to better understand the influence of these processes on clines. These innovative approaches aim to shed light on the longstanding debate regarding the importance of natural selection versus neutral processes in maintaining variation in natural populations.
Collapse
Affiliation(s)
- Vitória H. Miranda
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rafael Viana Amaral
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rodrigo Cogni
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Breitbart ST, Agrawal AA, Wagner HH, Johnson MTJ. Urbanization and a green corridor do not impact genetic divergence in common milkweed (Asclepias syriaca L.). Sci Rep 2023; 13:20437. [PMID: 37993590 PMCID: PMC10665382 DOI: 10.1038/s41598-023-47524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.
Collapse
Affiliation(s)
- Sophie T Breitbart
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853, USA
- Department of Entomology, Cornell University, 2126 Comstock Hall, Ithaca, NY, 14853, USA
| | - Helene H Wagner
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
10
|
Sun X, Sun Y, Cao X, Zhai X, Callaway RM, Wan J, Flory SL, Huang W, Ding J. Trade-offs in non-native plant herbivore defences enhance performance. Ecol Lett 2023; 26:1584-1596. [PMID: 37387416 DOI: 10.1111/ele.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yumei Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xueyao Cao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xincong Zhai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jinlong Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Wise MJ, Mudrak EL. Nutrient stress can have opposite effects on the ability of plants to tolerate foliar herbivory and floral herbivory. Oecologia 2023; 202:783-794. [PMID: 37596431 DOI: 10.1007/s00442-023-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Discovering how organisms respond to the combinations of stressors they face in their environment is an enduring challenge for ecologists. A particular focus has been how natural enemies and abiotic stressors faced by plants may interact in their effect on the ecology and evolution of plant defense strategies. Here, we report on the results of an experiment measuring how reproduction in the clonal herbaceous plant horsenettle (Solanum carolinense) is affected by damage by leaf-feeding and by flower-feeding herbivores-as well as how horsenettle's tolerance of these different types of herbivory may be altered by nutrient stress. Leaf herbivory by lace bugs reduced horsenettle's seed production and root growth, and the relative impacts were greater in fertilized than in nutrient-stressed plants. In contrast, simulated-floral herbivory reduced seed production to a similar degree in fertilized and nutrient-stressed plants. However, compensation for floral herbivory through increased root growth occurred to a much greater extent in the fertilized than in the nutrient-stressed plants. These results can be explained in terms of the limiting resource model of plant tolerance, with leaf damage interpreted as exacerbating carbon limitation in the fertilized plants and floral damage ameliorating carbon limitation in the fertilized plants. These results can be extended to predicting patterns in the field: Although plants in a nutrient-poor environment may have overall low fitness, they are likely to be more tolerant of leaf herbivores-though this benefit may be countered by lower tolerance of any floral herbivores that share the environment.
Collapse
Affiliation(s)
- Michael J Wise
- Blandy Experimental Farm, University of Virginia, Boyce, VA, USA.
- Biology Department, Duke University, Durham, NC, USA.
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA.
| | - Erika L Mudrak
- Blandy Experimental Farm, University of Virginia, Boyce, VA, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Blount JD, Rowland HM, Mitchell C, Speed MP, Ruxton GD, Endler JA, Brower LP. The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. Proc Biol Sci 2023; 290:20222068. [PMID: 36651049 PMCID: PMC9845971 DOI: 10.1098/rspb.2022.2068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In a variety of aposematic species, the conspicuousness of an individual's warning signal and the quantity of its chemical defence are positively correlated. This apparent honest signalling is predicted by resource competition models which assume that the production and maintenance of aposematic defences compete for access to antioxidant molecules that have dual functions as pigments and in protecting against oxidative damage. To test for such trade-offs, we raised monarch butterflies (Danaus plexippus) on different species of their milkweed host plants (Apocynaceae) that vary in quantities of cardenolides to test whether (i) the sequestration of cardenolides as a secondary defence is associated with costs in the form of oxidative lipid damage and reduced antioxidant defences; and (ii) lower oxidative state is associated with a reduced capacity to produce aposematic displays. In male monarchs conspicuousness was explained by an interaction between oxidative damage and sequestration: males with high levels of oxidative damage became less conspicuous with increased sequestration of cardenolides, whereas those with low oxidative damage became more conspicuous with increased levels of cardenolides. There was no significant effect of oxidative damage or concentration of sequestered cardenolides on female conspicuousness. Our results demonstrate a physiological linkage between the production of coloration and oxidative state, and differential costs of sequestration and signalling in monarch butterflies.
Collapse
Affiliation(s)
- Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Christopher Mitchell
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Michael P. Speed
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Graeme D. Ruxton
- School of Biology, Sir Harold Mitchell Building, Greenside Place, St Andrews, UK
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Lincoln P. Brower
- Department of Biology, Sweet Briar College, Sweet Briar, VA 24595, USA
| |
Collapse
|
13
|
Rasmussen NL, Yang LH. Timing of a plant-herbivore interaction alters plant growth and reproduction. Ecology 2023; 104:e3854. [PMID: 36054762 DOI: 10.1002/ecy.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Phenological shifts have the potential to change species interactions, but relatively few studies have used experimental manipulations to examine the effects of variation in timing of an interspecific interaction across a series of life stages of a species. Although previous experimental studies have examined the consequences of phenological timing in plant-herbivore interactions for both plants and their herbivores, less is known about their effects on subsequent plant reproduction. Here, we conducted an experiment to determine how shifts in the phenological timing of monarch (Danaus plexippus) larval herbivory affected milkweed (Asclepias fascicularis) host plant performance, including effects on growth and subsequent effects on flower and seed pod phenology and production. We found that variation in the timing of herbivory affected both plant growth and reproduction, with measurable effects several weeks to several months after herbivory ended. The timing of herbivory had qualitatively different effects on vegetative and reproductive biomass: early-season herbivory had the strongest effects on plant size, whereas late-season herbivory had the strongest effects on the production of viable seeds. These results show that phenological shifts in herbivory can have persistent and qualitatively different effects on different life stages across the season.
Collapse
Affiliation(s)
- Nick L Rasmussen
- Department of Entomology and Nematology, University of California, Davis, California, USA.,Division of Integrated Science and Engineering, California Department of Water Resources, West Sacramento, California, USA
| | - Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, California, USA
| |
Collapse
|
14
|
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2022; 28:molecules28010105. [PMID: 36615300 PMCID: PMC9822358 DOI: 10.3390/molecules28010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-β-allopyranosyl coroglaucigenin (1), 3-[4'-O-β-glucopyranosyl-β-allopyranosyl] coroglaucigenin (2), 3'-O-β-glucopyranosyl-15-β-hydroxycalotropin (3), and 3-O-β-glucopyranosyl-12-β-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-β-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| | - Shrikant Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| |
Collapse
|
15
|
Hartikainen SM, Robson TM. The roles of species' relatedness and climate of origin in determining optical leaf traits over a large set of taxa growing at high elevation and high latitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1058162. [PMID: 36589097 PMCID: PMC9800846 DOI: 10.3389/fpls.2022.1058162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Climate change is driving many mountain plant species to higher elevations and northern plant species to higher latitudes. However, various biotic or abiotic constraints may restrict any range shift, and one relevant factor for migration to higher elevations could be species' ability to tolerate high UV-doses. Flavonoids are engaged in photoprotection, but also serve multiple ecological roles. We compared plant optical leaf trait responses of a large set of taxa growing in two botanical gardens (French Alps and southern Finland), considering potential constraints imposed by the relatedness of taxa and the legacy of climatic conditions at plants' original collection sites. The segregation of optically measured leaf traits along the phylogeny was studied using a published mega-tree GBOTB.extended.tre for vascular plants as a backbone. For a subset of taxa, we investigated the relationship between climatic conditions (namely solar radiation, temperature and precipitation at a coarse scale) at the plants' original collection site and current trait values. Upon testing the phylogenetic signal (Pagel's λ), we found a significant difference but intermediate lambda values overall for flavonol or flavone index (Iflav) and anthocyanin index (Iant), indicating that phylogenetic relatedness alone failed to explain the changes in trait values under a Brownian motion model of trait evolution. The local analysis (local indicator of phylogenetic association) indicated mostly positive autocorrelations for Iflav i.e. similarities in optically measured leaf traits, often among species from the same genus. We found significant relationships between climatic variables and leaf chlorophyll index (Ichl), but not Iflav, particularly for annual solar radiation. Changes in plants' Iflav across microhabitats differing in UV irradiance and predominately high F v /F m indicated that most plants studied had sufficient flexibility in photoprotection, conferred by Iflav, to acclimate to contemporary UV irradiances in their environment. While not explaining the mechanisms behind observed trait values, our findings do suggest that some high-elevation taxa display similar leaf flavonoid accumulation responses. These may be phylogenetically constrained and hence moderate plants' capacity to adjust to new combinations of environmental conditions resulting from climate change.
Collapse
Affiliation(s)
- Saara M. Hartikainen
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - T. Matthew Robson
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, United Kingdom
| |
Collapse
|
16
|
Mithöfer A, Riemann M, Faehn CA, Mrazova A, Jaakola L. Plant defense under Arctic light conditions: Can plants withstand invading pests? FRONTIERS IN PLANT SCIENCE 2022; 13:1051107. [PMID: 36507393 PMCID: PMC9729949 DOI: 10.3389/fpls.2022.1051107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Global warming is predicted to change the growth conditions for plants and crops in regions at high latitudes (>60° N), including the Arctic. This will be accompanied by alterations in the composition of natural plant and pest communities, as herbivorous arthropods will invade these regions as well. Interactions between previously non-overlapping species may occur and cause new challenges to herbivore attack. However, plants growing at high latitudes experience less herbivory compared to plants grown at lower latitudes. We hypothesize that this finding is due to a gradient of constitutive chemical defense towards the Northern regions. We further hypothesize that higher level of defensive compounds is mediated by higher level of the defense-related phytohormone jasmonate. Because its biosynthesis is light dependent, Arctic summer day light conditions can promote jasmonate accumulation and, hence, downstream physiological responses. A pilot study with bilberry (Vaccinium myrtillus) plants grown under different light regimes supports the hypothesis.
Collapse
Affiliation(s)
- Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Corine A. Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Anna Mrazova
- Institute of Entomology, Biology Centre of Czech Academy of Science, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
17
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
18
|
Jones DG, Kobelt J, Ross JM, Powell THQ, Prior KM. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect. J Anim Ecol 2022; 91:2037-2049. [PMID: 35945806 DOI: 10.1111/1365-2656.13780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.
Collapse
Affiliation(s)
- Dylan G Jones
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Julia Kobelt
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Jenna M Ross
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| |
Collapse
|
19
|
Woods EC, Sultan SE. Post-introduction evolution of a rapid life-history strategy in a newly invasive plant. Ecology 2022; 103:e3803. [PMID: 35796712 DOI: 10.1002/ecy.3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
A central question in invasion biology is whether adaptive trait evolution following species introduction promotes invasiveness. A growing number of common-garden experiments document phenotypic differences between native- and introduced-range plants, suggesting that adaptive evolution in the new range may indeed contribute to the success of invasive plants. Yet these studies are often subject to methodological pitfalls, resulting in weak evidence for post-introduction adaptive trait evolution and leaving uncertain its role in the invasion process. In a common-garden glasshouse study, we compared the growth, life-history, and reproductive traits of 35 native- and introduced-range Polygonum cespitosum populations. We used complementary approaches including climate-matching, standardizing parental conditions, selection analysis, and testing for trait-environment relationships to determine whether traits that increase invasiveness adaptively evolved in the species' new range. We found that the majority of introduced-range populations exhibited a novel trait syndrome consisting of a fast-paced life history and concomitant sparse, reduced growth form. Selection analysis confirmed that this trait syndrome led to markedly higher fitness (propagule production) over a limited growing season characteristic of regions within the introduced range. Additionally, several growth and reproductive traits showed temperature-based clines consistent with adaptive evolution in the new range. Combined, these results indicate that, subsequent to its introduction to North America over 100 generations ago, P. cespitosum has evolved key traits that maximize propagule production. These changes may in part explain the species' recent transition to invasiveness, illustrating how post-introduction evolution may contribute to the invasion process.
Collapse
Affiliation(s)
- Ellen C Woods
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| | - Sonia E Sultan
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
20
|
Functional evidence supports adaptive plant chemical defense along a geographical cline. Proc Natl Acad Sci U S A 2022; 119:e2205073119. [PMID: 35696564 PMCID: PMC9231628 DOI: 10.1073/pnas.2205073119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.
Collapse
|
21
|
Transgenerational Genetic Effects Help Explain Latitudinal Variation in Seed Mass and Germination Timing in Plantago lanceolata. PLANTS 2022; 11:plants11040522. [PMID: 35214858 PMCID: PMC8880339 DOI: 10.3390/plants11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
We know little about the underlying genetic control of phenotypic patterns of seed traits across large-scale geographic and environmental gradients. Such knowledge is important for understanding the evolution of populations within species and for improving species conservation. Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between northern and southern genotypes that span the species’ range in Europe. The results provide evidence of transgenerational genetic effects on seed mass and germination timing. Northern mothers produced larger seeds with delayed germination, in contrast to southern mothers, which produced smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germination timing can be explained, in part, by the direct influence of maternal genotype, independent of zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers exploring the existence and evolution of large-scale geographic variation within species test for transgenerational genetic effects. In addition, data suggest that transgenerational control of seed traits should be considered when developing procedures designed to facilitate species conservation and restoration.
Collapse
|
22
|
Liu W, Chen X, Wang J, Zhang Y. Does the effect of flowering time on biomass allocation across latitudes differ between invasive and native salt marsh grass Spartina alterniflora? Ecol Evol 2022; 12:e8681. [PMID: 35309742 PMCID: PMC8901870 DOI: 10.1002/ece3.8681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Parallel latitudinal clines in flowering time have been documented in both the invasive and native ranges of plants. Furthermore, flowering time has been found to affect biomass at maturity. Therefore, understanding how these flowering times affect biomass accumulation across latitudes is essential to understanding plant adaptations and distributions.We investigated and compared trends in first flowering day (FFD), aboveground biomass (AGB), belowground biomass (BGB), and BGB:AGB ratio of the salt marsh grass Spartina alterniflora along latitudinal gradients from the invasive (China, 19-40°N) and native range (United States, 27-43°N) in a greenhouse common garden experiment, and tested whether FFD would drive these divergences between invasive and native ranges.The invasive populations produced more (~20%, ~19%) AGB and BGB than native populations, but there were no significant differences in the FFD and BGB:AGB ratio. We found significant parallel latitudinal clines in FFD in both invasive and native ranges. In addition, the BGB:AGB ratio was negatively correlated with the FFD in both the invasive and native ranges but nonsignificant in invasive populations. In contrast, AGB and BGB increased with latitude in the invasive range, but declined with latitude in the native range. Most interestingly, we found AGB and BGB positively correlated with the FFD in the native range, but no significant relationships in the invasive range.Our results indirectly support the evolution of increased competitive ability hypothesis (EICA) that S. alterniflora has evolved to produce greater AGB and BGB in China, but the flowering and allocation pattern of native populations is maintained in the invasive range. Our results also suggest that invasive S. alterniflora in China is not constrained by the trade-off of earlier flowering with smaller size, and that flowering time has played an important role in biomass allocation across latitudes.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Jiayu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| |
Collapse
|
23
|
Kalske A, Luntamo N, Salminen JP, Ramula S. Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIntraspecific variation in growth and defence among plant populations can be driven by differences in (a)biotic conditions, such as herbivory and resources. Introduction of species to novel environments affects simultaneously herbivory encountered by a plant and resource availability both directly and via altered competitive environment. Here, we address the question of how growth (leaf mass per area (LMA), plant size) and resistance traits (leaf alkaloids, leaf trichomes, resistance to a generalist snail) vary and covary between native and introduced populations of the garden lupine, Lupinus polyphyllus. We focused specifically on evolved differences among populations by measuring traits from plants grown from seed in a common environment. Plants from the introduced populations were more resistant against the generalist snail, Arianta arbustorum, and they had more leaf trichomes and higher LMA than plants from the native populations. The composition of alkaloids differed between native and introduced populations, with the native populations having more diversity in alkaloids among them. Resistance was positively associated with plant size and LMA across all populations. Other trait associations differed between native and introduced areas, implying that certain trade-offs may be fundamentally different between native and introduced populations. Our results suggest that, for the introduced populations, the loss of native herbivores and the alterations in resource availability have led to a lower diversity in leaf alkaloids among populations and may facilitate the evolution of novel trait optima without compensatory trade-offs. Such phytochemical similarity among introduced populations provides novel insights into mechanisms promoting successful plant invasions.
Collapse
|
24
|
Villellas J, Ehrlén J, Crone EE, Csergő AM, Garcia MB, Laine AL, Roach DA, Salguero-Gómez R, Wardle GM, Childs DZ, Elderd BD, Finn A, Munné-Bosch S, Bachelot B, Bódis J, Bucharova A, Caruso CM, Catford JA, Coghill M, Compagnoni A, Duncan RP, Dwyer JM, Ferguson A, Fraser LH, Griffoul E, Groenteman R, Hamre LN, Helm A, Kelly R, Laanisto L, Lonati M, Münzbergová Z, Nuche P, Olsen SL, Oprea A, Pärtel M, Petry WK, Ramula S, Rasmussen PU, Enri SR, Roeder A, Roscher C, Schultz C, Skarpaas O, Smith AL, Tack AJM, Töpper JP, Vesk PA, Vose GE, Wandrag E, Wingler A, Buckley YM. PHENOTYPIC PLASTICITY MASKS RANGE-WIDE GENETIC DIFFERENTIATION FOR VEGETATIVE BUT NOT REPRODUCTIVE TRAITS IN A SHORT-LIVED PLANT. Ecol Lett 2021; 24:2378-2393. [PMID: 34355467 DOI: 10.1111/ele.13858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
Collapse
Affiliation(s)
- Jesus Villellas
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Anna Mária Csergő
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland.,Department of Botany and Soroksár Botanical Garden, Szent István University, Budapest, Hungary
| | - Maria B Garcia
- Department of Biodiversity Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (CSIC), Zaragoza, Spain
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Organismal & Evolutionary Biology Research Program, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Deborah A Roach
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK.,Max Planck Institute for Demographic Research, Rostock, Germany.,School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenda M Wardle
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alain Finn
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Benedicte Bachelot
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Judit Bódis
- Department of Plant Sciences and Biotechnology, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Anna Bucharova
- Biodiversity and Ecosystem Research Group, Institut of Landscape Ecology, University of Münster, Germany.,Plant Evolutionary Ecology, Institut of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jane A Catford
- Department of Geography, King's College London, London, UK.,Biological Sciences, University of Southampton, Southampton, UK
| | - Matthew Coghill
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Aldo Compagnoni
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia.,CSIRO Land & Water, EcoSciences Precinct, Dutton Park, Queensland, Australia
| | | | - Lauchlan H Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | | | | | - Liv Norunn Hamre
- Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ruth Kelly
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland.,Agri-Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Michele Lonati
- Department of Agriculture, Forest and Food Science, University of Torino, Grugliasco, Italy
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Population Ecology, Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Paloma Nuche
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | | | - Adrian Oprea
- Botanic Garden "Anastasie Fatu", University "Alexandru Ioan Cuza" Iaşi, Romania
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - William K Petry
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Satu Ramula
- Department of Biology, University of Turku, Turku, Finland
| | - Pil U Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Simone Ravetto Enri
- Department of Agriculture, Forest and Food Science, University of Torino, Grugliasco, Italy
| | - Anna Roeder
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Cheryl Schultz
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Olav Skarpaas
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Annabel L Smith
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland.,School of Agriculture and Food Sciences, University of Queensland, Gatton, Queensland, Australia
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Peter A Vesk
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Elizabeth Wandrag
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia.,Department of Biology, University of York, York, UK
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland.,School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Liu M, Pan Y, Pan X, Sosa A, Blumenthal DM, Van Kleunen M, Li B. Plant invasion alters latitudinal pattern of plant-defense syndromes. Ecology 2021; 102:e03511. [PMID: 34355383 DOI: 10.1002/ecy.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
The relationship between herbivory and latitude may differ between native and introduced populations of invasive plants, which can generate latitudinal heterogeneity in the strength of enemy release. However, still little is known about how latitudinal heterogeneity in herbivore pressure influences latitudinal variation in defense phenotypes of invasive plants. We tested how latitudinal patterns in multi-variate defense syndromes differed between native (Argentinian) and introduced (Chinese) populations of the invasive herb Alternanthera philoxeroides. In addition, to better understand the drivers underlying latitudinal patterns, we also tested whether associations of defense syndromes with climate and herbivory differed between native and introduced ranges. We found that native plant populations clustered into three main defense syndromes associated with latitude. In contrast, we only found two defense syndromes in the introduced range. One matched the high-latitude syndrome from the native range, but was distributed at both the northern and southern range limits in the introduced range. The other was unique to the introduced range and occurred at mid-latitudes. Climatic conditions were associated with variation in syndromes in the native range, and climatic conditions and herbivory were associated with variation in syndromes in the introduced range. Together, our results demonstrate that plants may under the new environmental conditions in the introduced range show latitudinal patterns of defense syndromes that are different from those in their native range. This emphasizes that geographical dependence of population differentiation should be explicitly considered in studies on the evolution of defense in invasive plants.
Collapse
Affiliation(s)
- Mu Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaoyun Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China.,Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200438, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, 999071, Argentina
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, 80526, USA
| | - Mark Van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
26
|
López-Goldar X, Agrawal AA. Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. TRENDS IN PLANT SCIENCE 2021; 26:796-809. [PMID: 33865704 DOI: 10.1016/j.tplants.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Hahn PG, Keefover‐Ring K, Nguyen LMN, Maron JL. Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip G. Hahn
- Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Ken Keefover‐Ring
- Department of Botany University of Wisconsin‐Madison Madison WI USA
- Department of Geography University of Wisconsin‐Madison Madison WI USA
| | | | - John L. Maron
- Division of Biological Sciences University of Montana Missoula MT USA
| |
Collapse
|
28
|
Yang Y, Liu M, Pan Y, Huang H, Pan X, Sosa A, Hou Y, Zhu Z, Li B. Rapid evolution of latitudinal clines in growth and defence of an invasive weed. THE NEW PHYTOLOGIST 2021; 230:845-856. [PMID: 33454953 DOI: 10.1111/nph.17193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Re-establishment of heritable latitudinal clines in growth-related traits has been recognised as evidence for adaptive evolution in invasive plants. However, less information is known about latitudinal clines in defence and joint clinal evolution of growth and defence in invasive plants. We planted 14 native Argentinean populations and 14 introduced Chinese populations of Alternanthera philoxeroides in replicate common gardens in China. We investigated the latitudinal clines of traits related to growth and defence, and plasticity of these traits in relation to experiment site and soil nitrogen. We found that chemical defence decreased with latitude in introduced populations but increased with latitude in native populations. For growth rate, latitudinal clines were positive in introduced populations but nonexistent in native populations. There were also parallel positive latitudinal clines in total/shoot biomass and specific leaf area. Experiment site affected the occurrence or magnitude of latitudinal clines in growth rate, branch intensity and triterpenoid saponins concentration. Introduced populations were more plastic to experiment site and soil nitrogen than native populations. We provide evidence for rapid evolution of clines in growth and defence in an invasive plant. Altered herbivory gradients and trade-off between growth and defence may explain nonparallel clines between the native and introduced ranges.
Collapse
Affiliation(s)
- Yang Yang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Mu Liu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Yuanfei Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Heyan Huang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoyun Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200032, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, 999071, Argentina
| | - Yuping Hou
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Zhengcai Zhu
- Guangzhou Zengcheng Institute of Forestry and Landscape Architecture, Guangzhou, 511300, China
| | - Bo Li
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
29
|
Chen X, Liu W, Pennings SC, Zhang Y. Plasticity and selection drive hump-shaped latitudinal patterns of flowering phenology in an invasive intertidal plant. Ecology 2021; 102:e03311. [PMID: 33586146 DOI: 10.1002/ecy.3311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 11/11/2022]
Abstract
Patterns of flowering phenology can affect the success of plant invasions, especially when introduced species spread across a wide range of latitude into different climatic conditions. We combined a 4-yr field survey and a 3-yr common garden experiment with the invasive grass Spartina alterniflora that is now widespread along the coast of China to document the latitudinal pattern of flowering phenology, determine if phenology was related to climate or oceanographic variables, and determine whether phenology patterns were fixed versus plastic. In the field, first flowering day displayed a hump-shaped relationship with latitude, with low- and high-latitude plants flowering 100 d and 10 d earlier than plants at middle latitudes, respectively. Peak flowering day showed a similar hump-shaped relationship with latitude, with the interval between first and peak flowering day decreasing with increasing latitude. First flowering day had a hump-shaped relationship with annual growing degree days but a linear positive relationship with tidal range. In the common garden, first flowering day decreased linearly with increasing latitude of origin, as did peak flowering day, and the interval between first and peak flowering day increased with increasing latitude. First flowering day in the common garden had weak or no relationships with abiotic variables at the sites of origin. In both the field and common garden, first flowering day was later in site years for which plants were taller. These results indicate a high degree of plasticity in flowering phenology, with plants flowering later in the field at sites with intermediate temperatures and high tide ranges. Common garden results indicate some selection for earlier flowering at sites with low temperatures, consistent with a shorter growing season. Consistent with life-history theory, plants flowered later under conditions favoring vigorous growth. Earlier flowering and smaller size of plants at high and low latitudes suggests that S. alterniflora has already occupied much of the geographic range favorable for it on the East Coast of Asia.
Collapse
Affiliation(s)
- Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| |
Collapse
|
30
|
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N. Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not with Latitude. J Chem Ecol 2021; 47:280-293. [PMID: 33651224 DOI: 10.1007/s10886-021-01249-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
Climate change has a large influence on plant functional and phenotypic traits including plant primary and secondary metabolites. One well-established approach to investigating the variation in plant metabolites involves studying plant populations along elevation and latitude gradients. We considered how two space-for-time climate change gradients (elevation and latitude) influence carbohydrate reserves (soluble sugars, starches) and secondary metabolites (monoterpenes, diterpene resin acids) of lodgepole pine trees in western Canada. We were particularly interested in the relationship of terpenes and carbohydrates with a wide range of tree, site, and climatic factors. We found that only elevation had a strong influence on the expression of both terpenes and carbohydrates of trees. Specifically, as elevation increased, concentrations of monoterpenes and diterpenes generally increased and soluble sugars (glucose, sucrose, total sugars) decreased. In contrast, latitude had no impact on either of terpenes or carbohydrates. Furthermore, we found a positive relationship between concentrations of starch and total terpenes and diterpenes in the elevation study; whereas neither starches nor sugars were correlated to terpenes in the latitude study. Similarly, both terpenes and carbohydrates had a much greater number of significant correlations to site characteristics such as slope, basal area index, and sand basal area, in the elevational than in the latitude study. Overall, these results support the conclusion that both biotic and abiotic factors likely drive the patterns of primary and secondary metabolite profiles of lodgepole pine along geographical gradients. Also, presence of a positive relationship between terpenes and starches suggests an interaction between primary ad secondary metabolites of lodgepole pine trees.
Collapse
Affiliation(s)
- Melanie Mullin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - A Hussain
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - S Zhao
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - C Whitehouse
- Alberta Agriculture and Forestry, 9920 108 Street, Edmonton, Alberta, T5K 2M4, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
31
|
DeLaMater DS, Couture JJ, Puzey JR, Dalgleish HJ. Range-wide variations in common milkweed traits and their effect on monarch larvae. AMERICAN JOURNAL OF BOTANY 2021; 108:388-401. [PMID: 33792047 DOI: 10.1002/ajb2.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment-plant trait-herbivore interactions within a species at a range-wide scale. METHODS We measured traits in 53 populations spanning the range of common milkweed (Asclepias syriaca) and used a common garden to determine the role of environment in driving patterns of intraspecific variation. We used a feeding trial to determine the role of plant traits in monarch (Danaus plexippus) larval development. RESULTS Trait-trait relationships largely followed interspecific patterns in LES theory and persisted in a common garden when individual traits change. Common milkweed showed intraspecific variation and biogeographic clines in traits. Clines did not persist in a common garden. Larvae ate more and grew larger when fed plants with more nitrogen. A longitudinal environmental gradient in precipitation corresponded to a resource gradient in plant nitrogen, which produces a gradient in larval performance. CONCLUSIONS Biogeographic patterns in common milkweed traits can sometimes be predicted from LES, are largely driven by environmental conditions, and have consequences for monarch larval performance. Changes to nutrient dynamics of landscapes with common milkweed could potentially influence monarch population dynamics. We show how biogeographic trends in intraspecific variation can influence key ecological interactions, especially in common species with large distributions.
Collapse
Affiliation(s)
- David S DeLaMater
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| | - John J Couture
- Departments of Entomology and Forestry and Natural Resources, Purdue University, 170 S. University Street, West Lafayette, IN, 47907, USA
| | - Joshua R Puzey
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| | - Harmony J Dalgleish
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| |
Collapse
|
32
|
Anstett DN, Branch HA, Angert AL. Regional differences in rapid evolution during severe drought. Evol Lett 2021; 5:130-142. [PMID: 33868709 PMCID: PMC8045920 DOI: 10.1002/evl3.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022] Open
Abstract
Climate change is increasing drought intensity, threatening biodiversity. Rapid evolution of drought adaptations might be required for population persistence, particularly in rear-edge populations that may already be closer to physiological limits. Resurrection studies are a useful tool to assess adaptation to climate change, yet these studies rarely encompass the geographic range of a species. Here, we sampled 11 populations of scarlet monkeyflower (Mimulus cardinalis), collecting seeds across the plants' northern, central, and southern range to track trait evolution from the lowest to the greatest moisture anomaly over a 7-year period. We grew families generated from these populations across well-watered and terminal drought treatments in a greenhouse and quantified five traits associated with dehydration escape and avoidance. When considering pre-drought to peak-drought phenotypes, we find that later date of flowering evolved across the range of M. cardinalis, suggesting a shift away from dehydration escape. Instead, traits consistent with dehydration avoidance evolved, with smaller and/or thicker leaves evolving in central and southern regions. The southern region also saw a loss of plasticity in these leaf traits by the peak of the drought, whereas flowering time remained plastic across all regions. This observed shift in traits from escape to avoidance occurred only in certain regions, revealing the importance of geographic context when examining adaptations to climate change.
Collapse
Affiliation(s)
- Daniel N Anstett
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Haley A Branch
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada.,Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
33
|
Climate drives intraspecific differentiation in the expression of growth-defence trade-offs in a long-lived pine species. Sci Rep 2020; 10:10584. [PMID: 32601428 PMCID: PMC7324371 DOI: 10.1038/s41598-020-67158-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
Intraspecific variation in plant defences is expected to be the result of adaptive and plastic responses to environmental conditions, where trade-offs between growth and defences are thought to play a key role shaping phenotypic patterns in defensive investment. Axial resin ducts are costly defensive structures that remain imprinted in the tree rings of conifers, therefore being a valuable proxy of defensive investment along the trees' lifespan. We aimed to disentangle climate-driven adaptive clines and plastic responses to both spatial and temporal environmental variation in resin duct production, and to explore growth-defence trade-offs. To that aim, we applied dendrochronological procedures to quantify annual growth and resin duct production during a 31-year-period in a Mediterranean pine species, including trees from nine populations planted in two common gardens. Both genetic factors and plastic responses modulated annual resin duct production. However, we found no evidence of adaptive clines with climate gradients driving population differentiation. Our results revealed a marked physiological trade-off between growth and defences, where the slope of the trade-off was genetically variable and associated with climatic gradients. Our results help to enlighten the evolutionary patterns and genetic basis of defensive allocation within species, particularly revealing a key role of growth-defence trade-offs.
Collapse
|
34
|
López‐Goldar X, Zas R, Sampedro L. Resource availability drives microevolutionary patterns of plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xosé López‐Goldar
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Rafael Zas
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Luis Sampedro
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| |
Collapse
|
35
|
Croy JR, Meyerson LA, Allen WJ, Bhattarai GP, Cronin JT. Lineage and latitudinal variation inPhragmites australistolerance to herbivory: implications for invasion success. OIKOS 2020. [DOI: 10.1111/oik.07260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jordan R. Croy
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA 92697 USA
| | - Laura A. Meyerson
- Dept of Natural Resource Sciences, Univ. of Rhode Island Kingston RI USA
| | - Warwick J. Allen
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- The Bio‐Protection Research Centre, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Ganesh P. Bhattarai
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Entomology, Kansas State Univ. Manhattan KS USA
| | - James T. Cronin
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
| |
Collapse
|
36
|
Martinez-Swatson K, Kjøller R, Cozzi F, Simonsen HT, Rønsted N, Barnes C. Exploring evolutionary theories of plant defence investment using field populations of the deadly carrot. ANNALS OF BOTANY 2020; 125:737-750. [PMID: 31563960 PMCID: PMC7182587 DOI: 10.1093/aob/mcz151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS There are a number of disparate models predicting variation in plant chemical defences between species, and within a single species over space and time. These can give conflicting predictions. Here we review a number of these theories, before assessing their power to predict the spatial-temporal variation of thapsigargins between and within populations of the deadly carrot (Thapsia garganica). By utilizing multiple models simultaneously (optimum defence theory, growth rate hypothesis, growth-differentiation balance hypothesis, intra-specific framework and resource exchange model of plant defence), we will highlight gaps in their predictions and evaluate the performance of each. METHODS Thapsigargins are potent anti-herbivore compounds that occur in limited richness across the different plant tissues of T. garganica, and therefore represent an ideal system for exploring these models. Thapsia garganica plants were collected from six locations on the island of Ibiza, Spain, and the thapsigargins quantified within reproductive, vegetative and below-ground tissues. The effects of sampling time, location, mammalian herbivory, soil nutrition and changing root-associated fungal communities on the concentrations of thapsigargins within these in situ observations were analysed, and the results were compared with our model predictions. KEY RESULTS The models performed well in predicting the general defence strategy of T. garganica and the above-ground distribution of thapsigargins, but failed to predict the considerable proportion of defences found below ground. Models predicting variation over environmental gradients gave conflicting and less specific predictions, with intraspecific variation remaining less understood. CONCLUSION Here we found that multiple models predicting the general defence strategy of plant species could likely be integrated into a single model, while also finding a clear need to better incorporate below-ground defences into models of plant chemical defences. We found that constitutive and induced thapsigargins differed in their regulation, and suggest that models predicting intraspecific defences should consider them separately. Finally, we suggest that in situ studies be supplemented with experiments in controlled environments to identify specific environmental parameters that regulate variation in defences within species.
Collapse
Affiliation(s)
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- National Tropical Botanical Garden, Kalaheo, Hawaii, USA
| | - Christopher Barnes
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Baskett CA, Schroeder L, Weber MG, Schemske DW. Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carina A. Baskett
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
| | - Lucy Schroeder
- Department of Plant Biology Michigan State University East Lansing Michigan 48824 USA
| | - Marjorie G. Weber
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
| | - Douglas W. Schemske
- Department of Plant Biology Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing Michigan 48824 USA
- W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan 49060 USA
| |
Collapse
|
38
|
Agrawal AA. A scale‐dependent framework for trade‐offs, syndromes, and specialization in organismal biology. Ecology 2020; 101:e02924. [DOI: 10.1002/ecy.2924] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853 USA
- Department of Entomology Cornell University Ithaca New York 14853 USA
| |
Collapse
|
39
|
Liao ZY, Scheepens JF, Li QM, Wang WB, Feng YL, Zheng YL. Founder effects, post-introduction evolution and phenotypic plasticity contribute to invasion success of a genetically impoverished invader. Oecologia 2019; 192:105-118. [PMID: 31792607 DOI: 10.1007/s00442-019-04566-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.
Collapse
Affiliation(s)
- Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Wei-Bin Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
40
|
Agrawal AA, Hastings AP. Plant Defense by Latex: Ecological Genetics of Inducibility in the Milkweeds and a General Review of Mechanisms, Evolution, and Implications for Agriculture. J Chem Ecol 2019; 45:1004-1018. [PMID: 31755020 DOI: 10.1007/s10886-019-01119-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Latex occurs in 10% of plant families, has evolved independently many times, and is the most effective defense of milkweeds against its chewing herbivores. Here we report on new experiments on the heritability and inducibility of latex in several milkweed species. In addition, we review what is known about the genetic and environmental determinants of latex exudation, hormonal regulation, evolution within and among species, and the role and frequency of latex in agricultural crops. We first evaluated genotype-by-environment interactions using ~20 full-sibling genetic families in each of seven Asclepias species treated as controls or attacked by monarch butterfly caterpillars. All species showed substantial genetic variation for latex exudation and six of seven species responded to monarch herbivory (two species increased latex, two species decreased, and two showed variation among genetic families). Exogenous application of jasmonic acid (JA) to three species induced a consistent increase in latex (including species which showed a decline following caterpillar herbivory). We next evaluated three hypotheses for what determines genetic variation for induced latex in A. syriaca: 1) a trade-off with constitutive investment, 2) differential endogenous JA induction, or 3) variation in responsiveness to JA. We only found support for the second hypothesis: genetic families with a stronger JA-burst showed the greatest latex exudation following herbivory. We conclude that most species exhibit a genetic and inducible basis for latex, although genetic variation in inducibility is not pervasive. Finally, we summarized studies across 22 species of Asclepias and found that neither a species' latitude nor its phylogenetic position predicted latex inducibility. Nonetheless, a negative association between constitutive and induced latex across species indicates a macroevolutionary trade-off in allocation to this defense. Our review indicates that jasmonic acid is a key regulator of latex exudation, laticifer morphology, and defensive metabolites within latex. Biotic and abiotic factors strongly modulate latex expression. A survey of latex in food crops revealed that latex and analogous exudates (gums, resins, mucilage) are more common than expected based on their distribution across all plants. In conclusion, despite its widespread occurrence, the literature on latex is currently dominated by rubber trees and milkweeds, and we look forward to the broadening of ecological, agricultural, and mechanistic research into other systems.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA. .,Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Agrawal AA, Hastings AP. Trade-offs constrain the evolution of an inducible defense within but not between plant species. Ecology 2019; 100:e02857. [PMID: 31365759 DOI: 10.1002/ecy.2857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022]
Abstract
Inducible defense is a common form of phenotypic plasticity, and inducibility (change in defense after herbivore attack) has long been predicted to trade off with constitutive (or baseline) defense to manage resource allocation. Although such trade-offs likely constrain evolution within species, the extent to which they influence divergence among species is unresolved. We studied cardenolide toxins among genetic families in eight North American Asclepias species, spanning the full range of defense in the genus. Using common environment experiments and chemical assays, we report a consistent trade-off (negative genetic correlation) between concentrations of constitutive cardenolides and their inducibility within each species. However, no trade-off was found in a phylogenetic analysis across species. To investigate factors driving differences in defense allocation among species we used latitude as a proxy for growing season and herbivore pressure and found that divergence into lower latitudes resulted in evolution of higher cardenolides overall. Next we used an enzymatic assay of the cellular target of cardenolides (sodium-potassium ATPase) and confirm that higher cardenolides resulted in stronger toxicity to a sensitive species, but not to specialized monarch butterflies. Thus, plant speciation into biogeographic regions with alternative resources or pest pressure resulted in the macroevolution of cardenolide defense, especially against unspecialized herbivores. Nonetheless, trade-offs persist in the extent to which this defense is allocated constitutively or is inducible among genotypes within each species.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA.,Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
42
|
Feng X, Wang Y, Tang L, Li D. Polyphenols of Leaf, Litter and Soil of Pinus bungeana across China and Their Responses to Ecological Factors. Chem Biodivers 2019; 16:e1900205. [PMID: 31294527 DOI: 10.1002/cbdv.201900205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/09/2019] [Indexed: 11/10/2022]
Abstract
The importance of phenolic compounds for responding to various environmental conditions has been widely emphasized. However, the role of interactions between polyphenols and ecological factors, especially C, N, and P stoichiometry was little studied. Here, 15 sites across five provinces of Pinus bungeana in temperate regions of China were studied. The results showed that the higher values of total phenolic contents (TPC) of leaf and litter were distributed among the north distribution area of P. bungeana, lower values were in the south, whereas soil TPC were contrary to leaf and litter TPC. The stepwise regression, path analysis and decision index of path analysis for leaf TPC and ecological factors showed that altitude had the most direct impact on leaf TPC. Moreover, the principal determinants of leaf, litter and soil TPC were soil C/P ratios, longitude, and soil N/P ratios, respectively. In addition, the leaf, litter and soil TPC of P. bungeana were limited by soil C/N ratios, mean annual temperature, and soil P, respectively. Overall, our study provided evidence that ecological factors affected strongly the leaf, litter and soil TPC of P. bungeana.
Collapse
Affiliation(s)
- Xueping Feng
- College of Forestry, Northwest A & F University, Yangling, 712100, P. R. China
| | - Yongtao Wang
- College of Forestry, Northwest A & F University, Yangling, 712100, P. R. China
| | - Lili Tang
- College of Forestry, Northwest A & F University, Yangling, 712100, P. R. China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, 712100, P. R. China
| |
Collapse
|
43
|
Kergunteuil A, Humair L, Münzbergová Z, Rasmann S. Plant adaptation to different climates shapes the strengths of chemically mediated tritrophic interactions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Alan Kergunteuil
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Lauréline Humair
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science Charles University Prague Czech Republic
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Sergio Rasmann
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
44
|
van Boheemen LA, Bou‐Assi S, Uesugi A, Hodgins KA. Rapid growth and defence evolution following multiple introductions. Ecol Evol 2019; 9:7942-7956. [PMID: 31380062 PMCID: PMC6662289 DOI: 10.1002/ece3.5275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 01/02/2023] Open
Abstract
Rapid adaptation can aid invasive populations in their competitive success. Resource allocation trade-off hypotheses predict higher resource availability or the lack of natural enemies in introduced ranges allow for increased growth and reproduction, thus contributing to invasive success. Evidence for such hypotheses is however equivocal and tests among multiple ranges over productivity gradients are required to provide a better understanding of the general applicability of these theories.Using common gardens, we investigated the adaptive divergence of various constitutive and inducible defence-related traits between the native North American and introduced European and Australian ranges, while controlling for divergence due to latitudinal trait clines, individual resource budgets, and population differentiation, using >11,000 SNPs.Rapid, repeated clinal adaptation in defence-related traits was apparent despite distinct demographic histories. We also identified divergence among ranges in some defence-related traits, although differences in energy budgets among ranges may explain some, but not all, defence-related trait divergence. We do not identify a general reduction in defence in concert with an increase in growth among the multiple introduced ranges as predicted trade-off hypotheses. Synthesis: The rapid spread of invasive species is affected by a multitude of factors, likely including adaptation to climate and escape from natural enemies. Unravelling the mechanisms underlying invasives' success enhances understanding of eco-evolutionary theory and is essential to inform management strategies in the face of ongoing climate change. OPEN RESEARCH BADGES This article has been awarded Open Materials, Open Data, Preregistered Research Designs Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.6084/m9.figshare.8028875.v1, https://github.com/lotteanna/defence_adaptation,https://doi.org/10.1101/435271.
Collapse
Affiliation(s)
| | - Sarah Bou‐Assi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Akane Uesugi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | |
Collapse
|
45
|
Schmid M, Dallo R, Guillaume F. Species' Range Dynamics Affect the Evolution of Spatial Variation in Plasticity under Environmental Change. Am Nat 2019; 193:798-813. [PMID: 31094605 DOI: 10.1086/703171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While clines in environmental tolerance and phenotypic plasticity along a single species' range have been reported repeatedly and are of special interest in the context of adaptation to environmental changes, we know little about their evolution. Recent empirical findings in ectotherms suggest that processes underlying dynamic species' ranges can give rise to spatial differences in environmental tolerance and phenotypic plasticity within species. We used individual-based simulations to investigate how plasticity and tolerance evolve in the course of three scenarios of species' range shifts and range expansions on environmental gradients. We found that regions of a species' range that experienced a longer history or larger extent of environmental change generally exhibited increased plasticity or tolerance. Such regions may be at the trailing edge when a species is tracking its ecological niche in space (e.g., in a climate change scenario) or at the front edge when a species expands into a new habitat (e.g., in an expansion/invasion scenario). Elevated tolerance and plasticity in the distribution center was detected when asymmetric environmental change (e.g., polar amplification) led to a range expansion. However, tolerance and plasticity clines were transient and slowly flattened out after range dynamics because of genetic assimilation.
Collapse
|
46
|
Svancara LK, Abatzoglou JT, Waterbury B. Modeling Current and Future Potential Distributions of Milkweeds and the Monarch Butterfly in Idaho. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Bakhtiari M, Formenti L, Caggìa V, Glauser G, Rasmann S. Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecol Evol 2019; 9:3740-3755. [PMID: 31015963 PMCID: PMC6468067 DOI: 10.1002/ece3.4999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment-driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant-common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense-related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth-related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low-elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature-driven growth response maximization.
Collapse
Affiliation(s)
- Moe Bakhtiari
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Veronica Caggìa
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
- Institute of Plant ScienceUniversity of BernBernSwitzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
48
|
Helliwell EE, Faber‐Hammond J, Lopez ZC, Garoutte A, Wettberg E, Friesen ML, Porter SS. Rapid establishment of a flowering cline in
Medicago polymorpha
after invasion of North America. Mol Ecol 2018; 27:4758-4774. [DOI: 10.1111/mec.14898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emily E. Helliwell
- School of Biological Sciences Washington State University Vancouver Washington
| | | | - Zoie C. Lopez
- School of Biological Sciences Washington State University Vancouver Washington
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing Michigan
| | - Eric Wettberg
- Department of Plant and Soil Science The University of Vermont Burlington Vermont
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing Michigan
- Department of Plant Pathology Washington State University Pullman Washington
- Department of Crop and Soil Sciences Washington State University Pullman Washington
| | - Stephanie S. Porter
- School of Biological Sciences Washington State University Vancouver Washington
| |
Collapse
|
49
|
Kergunteuil A, Röder G, Rasmann S. Environmental gradients and the evolution of tri-trophic interactions. Ecol Lett 2018; 22:292-301. [DOI: 10.1111/ele.13190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Alan Kergunteuil
- Functional Ecology Laboratory; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| | - Gregory Röder
- Fundamental and Applied Research in Chemical Ecology; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| | - Sergio Rasmann
- Functional Ecology Laboratory; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| |
Collapse
|
50
|
Hahn PG, Agrawal AA, Sussman KI, Maron JL. Population Variation, Environmental Gradients, and the Evolutionary Ecology of Plant Defense against Herbivory. Am Nat 2018; 193:20-34. [PMID: 30624107 DOI: 10.1086/700838] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A central tenet of plant defense theory is that adaptation to the abiotic environment sets the template for defense strategies, imposing a trade-off between plant growth and defense. Yet this trade-off, commonly found among species occupying divergent resource environments, may not occur across populations of single species. We hypothesized that more favorable climates and higher levels of herbivory would lead to increases in growth and defense across plant populations. We evaluated whether plant growth and defense traits covaried across 18 populations of showy milkweed (Asclepias speciosa) inhabiting an east-west climate gradient spanning 25° of longitude. A suite of traits impacting defense (e.g., latex, cardenolides), growth (e.g., size), or both (e.g., specific leaf area [SLA], trichomes) were measured in natural populations and in a common garden, allowing us to evaluate plastic and genetically based variation in these traits. In natural populations, herbivore pressure increased toward warmer sites with longer growing seasons. Growth and defense traits showed strong clinal patterns and were positively correlated. In a common garden, clines with climatic origin were recapitulated only for defense traits. Correlations between growth and defense traits were also weaker and more negative in the common garden than in the natural populations. Thus, our data suggest that climatically favorable sites likely facilitate the evolution of greater defense at minimal costs to growth, likely because of increased resource acquisition.
Collapse
|