1
|
Park M, Wee J, Son J, Lee Y, Cho K, Hyun S. Soil pH and Rice Chlorophyll Content as Indicators of Grain Productivity and Microbial Community in Acid-Exposed Paddy Mesocosms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:46. [PMID: 40082270 DOI: 10.1007/s00128-025-04019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
The objective of this study was to evaluate the applicability of soil pH and chlorophyll content as predictive indicators of damage in paddy fields affected by HCl spills, based on causal relationships. Five doses of HCl (e.g., 1, 50, 100, 200, and 500-fold of PNEC) were added to the paddy mesocosm during the rice heading stage. In the 7th week after the acid addition, rice grain quality (e.g., 1000-grain weight and filled grain ratio), soil microbial diversity (e.g., Operational Taxonomic Units (OTUs) and Shannon index), and soluble nutrients (e.g., NH4+, NO3-, SiO2, P2O5, and basic cations) were measured. Causal relationships among variables were analyzed using the Partial Least Square Path Model (PLS-PM). At the dose of 500×PNEC, all rice plants lodged when pH < 4. At 100×PNEC and 200×PNEC, the number of immature grains increased, resulting in a reduction in grain quality of over 18%. At 200×PNEC, the microbial OTUs and the Shannon index decreased by 30%. Notably, the proportion of Planctomycetes, the dominant phylum in the control soil, decreased. The reduction of Planctomycetes led to excessive NH4+ accumulation in the soil, which leads to an undesirable increase of chlorophyll content thereby deteriorating grain quality. The causal relationship suggests that information of soil pH and leaf chlorophyll can aid us in predicting damage for grain quality and microbial diversity.
Collapse
Affiliation(s)
- Minseok Park
- OJEONG Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - June Wee
- Department of Applied Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jino Son
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Lozano VL, Paolucci EM, Sabatini SE, Noya Abad T, Muñoz C, Liquin F, Hollert H, Sylvester F. Assessing the impact of imidacloprid, glyphosate, and their mixtures on multiple biomarkers in Corbicula largillierti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173685. [PMID: 38825192 DOI: 10.1016/j.scitotenv.2024.173685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Pesticide mixtures are frequently utilized in agriculture, yet their cumulative effects on aquatic organisms remain poorly understood. Aquatic animals can be effective bioindicators and invasive bivalves, owing to their widespread distribution, provide an opportunity to assess these impacts. Glyphosate and imidacloprid, among the most prevalent pesticides globally, are frequently detected in freshwater systems in South America. This study aims to understand the cumulative effects of pesticide mixtures on aquatic organisms, using invasive Corbicula largillierti clams from a natural stream in northwestern Argentina. We conducted 48-hour exposure experiments using two concentrations of imidacloprid (20 and 200 μg L-1 a.i), two concentrations of glyphosate (0.3 and 3 mg L-1 a.i), and two combinations of these pesticides (both at low and high concentrations, respectively), simulating the direct contamination of both pesticides based on their agronomic recipe and observed values in Argentine aquatic environments. Clam metabolism was assessed through the examination of multiple oxidative stress parameters and measuring oxygen consumption rate as a proxy for standard metabolic rate (SMR). Our findings revealed that imidacloprid has a more pronounced effect compared to glyphosate. Imidacloprid significantly decreased clam SMR and cellular levels of reduced glutathione (GSH). However, when both pesticides were present, also cellular glycogen and thiobarbituric acid-reactive substances (TBARS) were affected. Proteins and glutathione S-Transferase (GST) activity were unaffected by either pesticide or their mixture at the assayed concentrations, highlighting the need to test several stress parameters to detect toxicological impacts. Our results indicated additive effects of imidacloprid and glyphosate across all measured parameters. The combination of multiple physiological and cytological biomarkers in invasive bivalves offers significant potential to enhance biomonitoring sensitivity and obtain insights into the origins and cellular mechanisms of chemical impacts. These studies can improve pollution regulatory policies and pesticide management.
Collapse
Affiliation(s)
- V L Lozano
- Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina; Cátedra de Biología y Diversidad de Protistas Autótrofos y Fungi, Universidad Nacional de Salta, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET Salta-Jujuy, Salta, Argentina
| | - E M Paolucci
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", CONICET, Buenos Aires, Argentina
| | - S E Sabatini
- Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo (LEEM), Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - T Noya Abad
- Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo (LEEM), Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Muñoz
- Cátedra de Biología y Diversidad de Protistas Autótrofos y Fungi, Universidad Nacional de Salta, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET Salta-Jujuy, Salta, Argentina
| | - F Liquin
- Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - H Hollert
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - F Sylvester
- Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET Salta-Jujuy, Salta, Argentina; Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Aranda-Merino N, Marín-Garrido A, Román-Hidalgo C, Ramos-Payán M, Abril N, Fernández-Torres R, Bello-López MÁ. Bioavailability of flumequine and diclofenac in mice exposed to a metal-drug chemical cocktail. Evaluation of the protective role of selenium. Br J Pharmacol 2024; 181:1935-1951. [PMID: 38149319 DOI: 10.1111/bph.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Organisms, including humans, are subjected to the simultaneous action of a wide variety of pollutants, the effects of which should not be considered in isolation, as many synergies and antagonisms have been found between many of them. Therefore, this work proposes an in vivo study to evaluate the effect of certain metal contaminants on the bioavailability and metabolism of pharmacologically active compounds. Because the most frequent entry vector is through ingestion, the influence of the gut microbiota and the possible protective effects of selenium has been additionally evaluated. EXPERIMENTAL APPROACH A controlled exposure experiment in mammals (Mus musculus) to a "chemical cocktail" consisting of metals and pharmaceuticals (diclofenac and flumequine). The presence of selenium has also been evaluated as an antagonist. Mouse plasma samples were measured by UPLC-QTOF. A targeted search of 48 metabolites was also performed. KEY RESULTS Metals significantly affected the FMQ plasma levels when the gut microbiota was depleted. Hydroxy FMQ decreased if metals were present. Selenium minimized this decrease. The 3-hydroxy DCF metabolite was not found in any case. Changes in some metabolic pathways are discussed. CONCLUSIONS AND IMPLICATIONS The presence of metals in the mouse diet as well as the prior treatment of mice with an antibiotic mixture (Abxs), which deplete the gut microbiota, has a decisive effect on the bioavailability and metabolism of the tested pharmaceuticals and dietary selenium minimize some of their effects.
Collapse
Affiliation(s)
- Noemí Aranda-Merino
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Marín-Garrido
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Román-Hidalgo
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Ramos-Payán
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
4
|
Wu F, Liu Z, Wang J, Wang X, Zhang C, Ai S, Li J, Wang X. Research on aquatic microcosm: Bibliometric analysis, toxicity comparison and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134078. [PMID: 38518699 DOI: 10.1016/j.jhazmat.2024.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/03/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Recently, aquatic microcosms have attracted considerable attention because they can be used to simulate natural aquatic ecosystems. First, to evaluate the development of trends, hotspots, and national cooperation networks in the field, bibliometric analysis was performed based on 1841 articles on aquatic microcosm (1962-2022). The results of the bibliometric analysis can be categorized as follows: (1) Aquatic microcosm research can be summarized in two sections, with the first part focusing on the ecological processes and services of aquatic ecosystems, and the second focusing on the toxicity and degradation of pollutants. (2) The United States (number of publications: 541, proportion: 29.5%) and China (248, 13.5%) are the two most active countries. Second, to determine whether there is a difference between single-species and microcosm tests, that is, to perform different-tier assessments, the recommended aquatic safety thresholds in risk assessment [i.e., the community-level no effect concentration (NOECcommunity), hazardous concentrations for 5% of species (HC5) and predicted no effect concentration (PNEC)] were compared based on these tests. There was a significant difference between the NOECcommunity and HC5 (P < 0.05). Moreover, regression models predicting microcosm toxicity values were constructed to provide a reference for ecological systemic risk assessments based on aquatic microcosms.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- Offshore Environmental Technology & Services Limited, Beijing 100027, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Gu C, Zhang F, Lu K, Sun X, Guo W, Shao Q. Response of microbial community in the soil of halophyte after contamination with tetrabromobisphenol A. Braz J Microbiol 2023; 54:975-981. [PMID: 36964325 PMCID: PMC10235298 DOI: 10.1007/s42770-023-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
Coastal wetlands are subjected to increasing tetrabromobisphenol A (TBBPA) pollution, whereas knowledge of TBBPA degradation in marine environments is lacking. The changes of bacterial communities in TBBPA-polluted soil covered with halophytes were investigated. TBBPA could be degraded in the halophyte-covered saline-alkali soil in a microcosm experiment. Higher TBBPA removal occurred in the soil of Kandelia obovata compared with soils covered with Suaeda australis and Phragmites australis within 56 days of cultivation. The rhizosphere soils of S. australis, P. australis, and K. obovata mainly involved the classes of Bacteroidia, Gammaproteobacteria, Alphaproteobacteria, and Anaerolineae. Additionally, manganese oxidation, aerobic anoxygenic phototrophy, and fermentation functions were higher in the rhizosphere soil of K. obovata after TBBPA addition. This study supports that using suitable local halophytic plants is a promising approach for degrading TBBPA-contaminated coastal soil.
Collapse
Affiliation(s)
- Chen Gu
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China.
| | - Fan Zhang
- Zhejiang Environmental Technology Corporation Limited, Hangzhou, 311100, China
| | - Kaiwen Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Xiaoqing Sun
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Wenrui Guo
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Qing Shao
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| |
Collapse
|
6
|
Sachin, Pramanik BK, Gupta H, Kumar S, Tawale JS, Shah K, Varathan E, Singh N. Development of a ZnOS+C Composite as a Potential Adsorbent for the Effective Removal of Fast Green Dye from Real Wastewater. ACS OMEGA 2023; 8:9230-9238. [PMID: 36936276 PMCID: PMC10018503 DOI: 10.1021/acsomega.2c06873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 08/15/2023]
Abstract
Wastewater treatment is becoming increasingly important due to the potential shortage of pure drinking water in many parts of the world. Adsorption offers a potential technique for the uptake of contaminants and wastewater purification. In the last two decades, several efforts have been made to remove fast green (FG) dye from wastewater via different adsorbent materials. However, adsorption capacity shown by these adsorbents is low and time-consuming. Herein, we have synthesized for the first time a new powdered adsorbent ZnOS+C, modified zinc peroxide with sulfur and activated carbon to effectively remove FG dye from wastewater. Results of batch adsorption experiments have suggested that ZnOS+C has the maximum adsorption potential of 238.28 mg/g for FG dye within 120 min of adsorption equilibrium for a wide range of pH ranging from 2 to 10 pH. The adsorption process conforms to the Freundlich isotherm model, suggesting a multilayered adsorption process on the outer surface of ZnOS+C. The adsorption kinetics study indicates that the kinetics of the reaction are the intraparticle diffusion model. Briefly, this study shows proof of the application of ZnOS+C powder as a new eco-friendly adsorbent with extremely high efficiency and high surface area for removing FG dye.
Collapse
Affiliation(s)
- Sachin
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School
of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Harshit Gupta
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shrawan Kumar
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jai Shankar Tawale
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Kalpit Shah
- School
of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Ezhilselvi Varathan
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nahar Singh
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Bai X, Jiang Z, Fang Y, Zhu L, Feng J. Effects of Environmental Concentrations of Total Phosphorus on the Plankton Community Structure and Function in a Microcosm Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8412. [PMID: 35886266 PMCID: PMC9324525 DOI: 10.3390/ijerph19148412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The excessive nutrients in freshwater have been proven to promote eutrophication and harmful algae blooms, which have become great threats to water quality and human health. To elucidate the responses of the plankton community structure and function to total phosphorus (TP) at environmental concentrations in the freshwater ecosystem, a microcosm study was implemented. The results showed that plankton communities were significantly affected by the TP concentration ≥ 0.1 mg/L treatments. In terms of community structure, TP promoted the growth of Cyanophyta. This effect was transmitted to the zooplankton community, resulting in the promotion of Cladocera growth from day 42. The community diversities of phytoplankton and zooplankton had been continuously inhibited by TP. The principal response curve (PRC) analysis results demonstrated that the species composition of phytoplankton and zooplankton community in TP enrichment treatments significantly (p ≤ 0.05) deviated from the control. For community function, TP resulted in the decline in phytoplankton photosynthesis. The chlorophyll fluorescence parameters were significantly inhibited when TP concentration reached 0.4 mg/L. In TP ≥ 0.1 mg/L treatments, the reductions in total phytoplankton abundances led to a continuous decrease in pH. This study can directly prove that the plankton community changes significantly when TP concentrations are greater than 0.1 mg/L and can help managers to establish specific nutrient management strategies for surface water.
Collapse
Affiliation(s)
| | | | | | | | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; (X.B.); (Z.J.); (Y.F.); (L.Z.)
| |
Collapse
|
8
|
Van de Perre D, Li D, Yao KS, Lei HJ, Van den Brink PJ, Ying GG. The effects of the chemotherapy drug cyclophosphamide on the structure and functioning of freshwater communities under sub-tropical conditions: A mesocosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150678. [PMID: 34592290 DOI: 10.1016/j.scitotenv.2021.150678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is a chemotherapy drug which is widely used in the treatment of neoplastic diseases and have often been detected in urban and hospital wastewater, and surface waters. However, at present the effects of CP on aquatic organisms and ecosystems are poorly understood. The main objective of the present study was to assess the effect of CP on the structure and functioning of a sub-tropical freshwater ecosystem (macroinvertebrates, zooplankton and phytoplankton) at environmental relevant concentrations. CP (0, 0.5, 5 and 50 μg/L) was applied weekly to 13,600 L mesocosms over a period of four weeks followed by a one month post exposure period. CP was found to dissipate much faster than previous reported in literature and the half-dissipation times were treatment dependent, being 2.2, 21.3 and 23.6 days in the lowest, middle and highest treatments respectively. Only treatment related effects were observed on the community structure at individual samplings with zooplankton (NOECcommunity = 0.5 μg/L) responding at lower concentrations than phytoplankton (NOECcommunity = 5 μg/L) and macroinvertebrates (NOECcommunity ≥ 50 μg/L). The dissolved organic carbon concentration was consistently higher in the 2 highest treatments, indicating a potential effect on food web interactions and/or the microbial loop. At the population level, consistent adverse effects were observed for the plankton taxa Pleuroxus laevis, Dissotrocha sp. and Oscillatoria sp. at all CP concentrations (NOEC <0.5 μg/L). Additionally, at the highest CP treatments 7% of all the taxa showed a clear short-term adverse effect. Based on comparison with literature data it can be concluded that these taxa have the highest CP sensitivity ever recorded and these findings indicate a potential CP risk to aquatic ecosystems at environmental relevant concentrations.
Collapse
Affiliation(s)
- Dimitri Van de Perre
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Kai-Sheng Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China; Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Paul J Van den Brink
- Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Haupt R, Heinemann C, Schmid SM, Steinhoff-Wagner J. Survey on storage, application and incorporation practices for organic fertilizers in Germany. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113380. [PMID: 34328866 DOI: 10.1016/j.jenvman.2021.113380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Organic fertilizers from animal production might contain undesirable components, such as veterinary medical product (VMP) residues, that are released into the environment during application. In addition to measures to reduce the use of VMPs through animal health measures, manure management could be an expedient strategy to prevent VMPs from entering the environment. The quantity applied is mainly determined by the nitrogen content. In addition, the depth of incorporation into the soil plays a major role in the environmental risk assessment of VMPs. The new regulations of the German fertilizer ordinance (DüV, 2020), which came into force at the beginning of 2020, as well as the changes that have not yet been fully implemented, will result in adjustments to the storage, application and incorporation practices for organic fertilizer. The aim of this study was to gain more information about the practice of storage, application and incorporation and the challenges for farmers in Germany. An online survey among farmers was conducted to determine the status quo. Almost all of the 125 participants kept livestock, predominantly cattle (68%) and pigs (33%). A third of participants (30%) needed a temporary storage site, for example at neighboring farms. Of the participants, 81% (n = 125) owned cropland and/or grassland. On cropland, manure was mostly incorporated at a depth of 3-15 cm, whereas on grassland, it was mostly applied superficially. On grassland lower-emission application techniques such as slot drill or injector procedures have so far rarely been used. The survey results provided important insights about storage, application and incorporation practices for organic fertilizers in Germany which could be used for the calculation of predicted environmental concentrations (PEC) as part of the environmental risk assessments of veterinary pharmaceuticals.
Collapse
Affiliation(s)
- Ruth Haupt
- Institute of Animal Science, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
10
|
Bordalo MD, Machado AL, Campos D, Coelho SD, Rodrigues ACM, Lopes I, Pestana JLT. Responses of benthic macroinvertebrate communities to a Bti-based insecticide in artificial microcosm streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117030. [PMID: 33831627 DOI: 10.1016/j.envpol.2021.117030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Bioinsecticides based on the bacterium Bacillus thuringiensis subsp. israelensis (Bti) are increasingly being applied directly into aquatic compartments to control nuisance mosquitoes and blackflies and are generally considered environmentally friendly alternatives to synthetic insecticides. Bti-based insecticides are considered highly selective, being Diptera-specific, and supposedly decompose rapidly in the environment. Nevertheless, their safety to non-target species and freshwater ecosystems has been questioned by recent studies, which in fact document possible indirect effects in aquatic food webs such as the decrease of prey availability to predators. This work aimed to evaluate the potential effects of a Bti-based insecticide (VectoBac® 12AS) on a freshwater macroinvertebrate community and on stream ecological functions by using artificial microcosm streams. Artificial microcosm streams were colonized with a macroinvertebrate community plus periphyton collected in a stream together with Alnus glutinosa leaf packs. They were exposed for 7 days to different Bti treatments (0, 12, 120, 1200 μg/L), which are within the recommended concentrations of application in aquatic compartments for blackfly and mosquito control. Besides invertebrate community structure and abundance, effects were evaluated regarding leaf decomposition and primary production as measures of ecosystem functioning. Community structure was significantly altered in all Bti treatments after 7 days of exposure, mostly due to a decline in chironomids, followed by oligochaetes, which both belong to the deposit-feeders' functional group. Direct effects on oligochaetes are surprising and require further research. Also, reductions of leaf decomposition due to Bti-induced sublethal effects on shredders (reduced feeding) or mortality of chironomids (that can also feed on coarse organic matter) observed in our study, represent potential indirect effects of Bti in aquatic ecosystems. Our short-exposure experiment evidenced some negative effects on stream benthic invertebrate communities and on ecosystem functioning that must be considered whenever Bti is used in water bodies for blackfly or mosquito control programs.
Collapse
Affiliation(s)
- Maria D Bordalo
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Ana L Machado
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Sónia D Coelho
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Andreia C M Rodrigues
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Isabel Lopes
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
11
|
Arnolds KL, Dahlin LR, Ding L, Wu C, Yu J, Xiong W, Zuniga C, Suzuki Y, Zengler K, Linger JG, Guarnieri MT. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr Opin Biotechnol 2021; 71:25-31. [PMID: 34091124 DOI: 10.1016/j.copbio.2021.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Genetically modified organisms (GMOs) have emerged as an integral component of a sustainable bioeconomy, with an array of applications in agriculture, bioenergy, and biomedicine. However, the rapid development of GMOs and associated synthetic biology approaches raises a number of biosecurity concerns related to environmental escape of GMOs, detection thereof, and impact upon native ecosystems. A myriad of genetic safeguards have been deployed in diverse microbial hosts, ranging from classical auxotrophies to global genome recoding. However, to realize the full potential of microbes as biocatalytic platforms in the bioeconomy, a deeper understanding of the fundamental principles governing microbial responsiveness to biocontainment constraints, and interactivity of GMOs with the environment, is required. Herein, we review recent analytical biotechnological advances and strategies to assess biocontainment and microbial bioproductivity, as well as opportunities for predictive systems biodesigns towards securing a viable bioeconomy.
Collapse
Affiliation(s)
| | - Lukas R Dahlin
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Lin Ding
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Chao Wu
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Jianping Yu
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Cristal Zuniga
- University of California, San Diego, La Jolla, CA, United States
| | - Yo Suzuki
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Karsten Zengler
- University of California, San Diego, La Jolla, CA, United States
| | | | | |
Collapse
|
12
|
Haanes H, Gjelsvik R. Reduced soil fauna decomposition in a high background radiation area. PLoS One 2021; 16:e0247793. [PMID: 33730078 PMCID: PMC7968631 DOI: 10.1371/journal.pone.0247793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Decomposition of litter and organic matter is a very important soil ecosystem function where soil fauna play an important role. Knowledge of the responses in decomposition and soil fauna to different stressors is therefore crucial. However, the extent to which radioactivity may affect soil fauna is not so well known. There are some results showing effects on soil fauna at uranium mines and near Chernobyl from relatively high levels of anthropogenic radionuclides. We hypothesize that naturally occurring radionuclides affect soil fauna and thus litter decomposition, which will covary with radionuclide levels when accounting for important soil parameters. We have therefore used standardised litterbags with two different mesh sizes filled with birch leaves (Betula pubescens) to assess litter decomposition in an area with enhanced levels of naturally occurring radionuclides in the thorium (232Th) and uranium (238U) decay chains while controlling for variation in important soil parameters like pH, organic matter content, moisture and large grain size. We show that decomposition rate is higher in litterbags with large mesh size compared to litterbags with a fine mesh size that excludes soil fauna. We also find that litter dried at room temperature is decomposed at a faster rate than litter dried in oven (60⁰C). This was surprising given the associated denaturation of proteins and anticipated increased nutritional level but may be explained by the increased stiffness of oven-dried litter. This result is important since different studies often use either oven-dried or room temperature-dried litter. Taking the above into account, we explore statistical models to show large and expected effects of soil parameters but also significant effects on litter decomposition of the naturally occurring radionuclide levels. We use the ERICA tool to estimate total dose rate per coarse litterbag for four different model organisms, and in subsequent different statistical models we identify that the model including the dose rates of a small tube-shape is the best statistical model. In another statistical model including soil parameters and radionuclide distributions, 226Ra (or uranium precursory radionuclides) explain variation in litter decomposition while 228Ra (and precursors) do not. This may hint to chemical toxicity effects of uranium. However, when combining this model with the best model, the resulting simplified model is equal to the tube-shape dose-rate model. There is thus a need for more research on how naturally occurring radionuclides affect soil fauna, but the study at hand show the importance of an ecosystem approach and the ecosystem parameter soil decomposition.
Collapse
Affiliation(s)
- Hallvard Haanes
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, Ås, Norway
- * E-mail:
| | - Runhild Gjelsvik
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, Ås, Norway
| |
Collapse
|
13
|
Effect of HNO 3 and H 2SO 4 on the Paddy Ecosystem: A Mesocosm Study with Exposure at PNEC and HC 50 Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145244. [PMID: 32708104 PMCID: PMC7400452 DOI: 10.3390/ijerph17145244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Paddy mesocosms comprising of rice (Oryza sativa), snail (Pomacea canaliculata), and worm (Tubifex tubifex) were used to assess the damage caused by two acids (HNO3 and H2SO4) at predicted no-effect concentration (PNEC) and hazardous concentration for 50% of species (HC50) levels. In the fourth week, the fresh weight and shoot height of O. sativa at H2SO4-HC50 were reduced by 83.2% and 30.3%, respectively. Wilted leaves (%) at HC50 were approximately twice that at PNEC. No P. canaliculata and T. tubifex were recovered at HC50. At H2SO4-PNEC, the length and weight of P. canaliculata were reduced by 7.4% and 25.9%, respectively, whereas fewer adult (46.5%) and juvenile (84%) T. tubifex were recovered. In the 20th week, rice growth and productivity were correlated with initial pH (pHi) and nitrogen levels. Poor correlation with chlorophyll at the active tillering stage suggests the disturbance of nutrient uptake by roots. Partial least squares path modeling (PLS-PM) results further supported that the pHi directly affects grain yield and quality, as well as plant growth. The indirect effect via intervening fourth-week-variables was also substantial. Therefore, it is important to measure initial pH upon acid spill to estimate the risk to the paddy ecosystem. Information on the change in soil properties associated with acidity will also aid in predicting the yield and quality of grain to be harvested.
Collapse
|
14
|
Haanes H, Hansen EL, Hevrøy TH, Jensen LK, Gjelsvik R, Jaworska A, Bradshaw C. Realism and usefulness of multispecies experiment designs with regard to application in radioecology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134485. [PMID: 31839283 DOI: 10.1016/j.scitotenv.2019.134485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Multispecies experiments like microcosms and mesocosms are widely used in many fields of research but not in radioecology. In radioecology, size limitations are important as large experimental volumes involve problems with waste (radionuclides), or shielding, absorption and available space in gamma fields (often within a climate chamber). We have therefore performed a literature review (ISI Web of Science, n = 406) of the design and properties of multispecies effect studies <100 L in size and with three or more mentioned taxa in other research fields to assess their suitability to radioecology. Studies with more mentioned taxa assess structural ecosystem parameters more often than studies with fewer mentioned taxa, while the opposite trend is seen for indirect effects/interactions. Studies of indirect effects benefit from more replicates and longer experiments. Almost all studies assess some ecosystem level parameter but only a quarter take a holistic approach assessing both structural and functional as well as indirect effects. We find that most cosms are custom-made systems, rather than standardised designs. Unmanipulated cosms consist of excised portions of the natural environment with a higher number of mentioned taxa, high ecological complexity and high realism, but have a relatively low replicability. In contrast, standardised cosms with fewer mentioned taxa have less ecological complexity but much higher replicability. This literature review shows that smaller cosm sizes have similar ecological complexity (e.g. number of taxa and trophic levels) and experimental duration as larger sized cosms, allowing for ecologically-relevant investigations, despite their small size. We encourage multispecies radioecology studies, preferably with environmental relevant doses and sufficient detail on dosimetry.
Collapse
Affiliation(s)
- Hallvard Haanes
- Norwegian Radiation and Nuclear Safety Authority, P.O. Box 329 Skøyen, NO-0213 Oslo, Norway; Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway.
| | - Elisabeth Lindbo Hansen
- Norwegian Radiation and Nuclear Safety Authority, P.O. Box 329 Skøyen, NO-0213 Oslo, Norway; Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway.
| | - Tanya Helena Hevrøy
- Norwegian Radiation and Nuclear Safety Authority, P.O. Box 329 Skøyen, NO-0213 Oslo, Norway; Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway.
| | - Louise Kiel Jensen
- Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway; Norwegian Radiation and Nuclear Safety Authority, The Fram Centre, P.O. Box 6606 Langnes, 9296 Tromsø, Norway.
| | - Runhild Gjelsvik
- Norwegian Radiation and Nuclear Safety Authority, P.O. Box 329 Skøyen, NO-0213 Oslo, Norway; Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway.
| | - Alicja Jaworska
- Norwegian Radiation and Nuclear Safety Authority, P.O. Box 329 Skøyen, NO-0213 Oslo, Norway; Centre for Environmental Radioactivity (CERAD CoE), P.O. Box 5003, NO-1432 Ås, Norway.
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Hevrøy TH, Golz AL, Hansen EL, Xie L, Bradshaw C. Radiation effects and ecological processes in a freshwater microcosm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:71-83. [PMID: 30870637 DOI: 10.1016/j.jenvrad.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Ecosystem response to gamma radiation exposure depends on the different species sensitivities and the multitude of direct and indirect pathways by which individual organisms can be affected, including the potential for complex interactions across multiple trophic levels. In this study, multi-species microcosms were used to investigate effects of ionizing radiation in a model freshwater ecosystem, including endpoints at both structural and functional levels and ecological interactions. Microcosms were exposed for 22 days to a gradient of gamma radiation with four dose rates from 0.72 to 19 mGy h-1, which are within the range of those seen at contaminated sites. Results showed significant dose related effects on photosynthetic parameters for all macrophyte species. No significant effects of radiation were observed for the consumers in the microcosms, however trends indicate the potential for longer-term effects. We also witnessed a different response of Daphnia magna and Lemna minor compared to previous single-species studies, illustrating the importance of multispecies studies, which aim to encompass systems more realistic to natural ecosystems. Microcosms allowed us to isolate specific relationships between interacting species in an ecosystem and test the effects, both direct and indirect, of radiation on them. In addition, the ecological pathways and processes, and the experimental design itself, was central to understanding the results we witnessed. This type of study is important for radioecology research that has been very much limited to high dose rates and single species studies. This approach to radioecology has been strongly promoted in recent decades and, to our knowledge, this is the first microcosm study performed at dose rates similar to those at contaminated field sites.
Collapse
Affiliation(s)
- Tanya H Hevrøy
- Norwegian Radiation and Nuclear Safety Authority, Grini næringspark 13, 1361, Østerås, Norway; CERAD Center of Excellence in Environmental Radioactivity, P.O. Box 5003, NO-1432, Ås, Norway.
| | - Anna-Lea Golz
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden.
| | - Elisabeth L Hansen
- Norwegian Radiation and Nuclear Safety Authority, Grini næringspark 13, 1361, Østerås, Norway; CERAD Center of Excellence in Environmental Radioactivity, P.O. Box 5003, NO-1432, Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349, Oslo, Norway.
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
16
|
Álvarez-Manzaneda I, Guerrero F, Del Arco AI, Funes A, Cruz-Pizarro L, de Vicente I. Do magnetic phosphorus adsorbents used for lake restoration impact on zooplankton community? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:598-607. [PMID: 30529964 DOI: 10.1016/j.scitotenv.2018.11.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Magnetic microparticles (MPs) have been recently proposed as innovative and promising dissolved inorganic phosphorus (DIP) adsorbents. However, before using them in a whole-lake restoration project, it is essential to assess their toxicological effects (direct and indirect) on aquatic biota. In the present study we hypothesized that zooplankton community is affected by MPs used for lake restoration. To test our hypothesis we designed a microcosms experiment (n = 15) containing lake water and surface sediment from a hypertrophic lake. Temporal changes (70 days) on physico-chemical conditions and on zooplankton structure (rotifers, copepods and branchiopods) were monitored under different scenarios. In particular, three different treatments were considered: no addition of MPs (control) and MPs addition (1.4 g MPs L-1) on the surface water layer (T-W) and on the sediment (T-S). After 24 h of contact time, MPs were removed with a magnetic rake. A total of 15 zooplankton species (12 rotifers, 1 branchiopod and 2 copepods) were recorded and a high abundance of zooplankton was registered during the experiment for all treatments. No significant differences (RM-ANOVA test; p > 0.05) in total abundance, species richness and species diversity among treatments were found. The absence of any effect of MPs on zooplankton can be explained because MPs did not significantly alter any of its physico-chemical (e.g. temperature, pH, O2) or biological (e.g. food quantity and quality) drivers. These results confirm the suitability of MPs as a promising tool for removing DIP in eutrophic aquatic ecosystems.
Collapse
Affiliation(s)
- I Álvarez-Manzaneda
- Departamento de Ecología, Universidad de Granada, 18071 Granada, (Spain); Instituto del Agua, Universidad de Granada, 18071 Granada, (Spain)
| | - F Guerrero
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, 23071 Jaén, (Spain); Centro de Estudios Avanzados en Ciencias de la Tierra, Universidad de Jaén, 23071 Jaén, (Spain)
| | - A I Del Arco
- Departamento de Ecología, Universidad de Granada, 18071 Granada, (Spain); Instituto del Agua, Universidad de Granada, 18071 Granada, (Spain)
| | - A Funes
- Departamento de Ecología, Universidad de Granada, 18071 Granada, (Spain); Instituto del Agua, Universidad de Granada, 18071 Granada, (Spain)
| | - L Cruz-Pizarro
- Departamento de Ecología, Universidad de Granada, 18071 Granada, (Spain); Instituto del Agua, Universidad de Granada, 18071 Granada, (Spain)
| | - I de Vicente
- Departamento de Ecología, Universidad de Granada, 18071 Granada, (Spain); Instituto del Agua, Universidad de Granada, 18071 Granada, (Spain).
| |
Collapse
|
17
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
18
|
Finnegan MC, Emburey S, Hommen U, Baxter LR, Hoekstra PF, Hanson ML, Thompson H, Hamer M. A freshwater mesocosm study into the effects of the neonicotinoid insecticide thiamethoxam at multiple trophic levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1444-1457. [PMID: 30142560 DOI: 10.1016/j.envpol.2018.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Thiamethoxam is a neonicotinoid insecticide used widely in agriculture to control a broad spectrum of insect pests. To assess potential risks from this compound to non-target aquatic organisms, an outdoor mesocosm study was performed. Mesocosms (1300 L) were treated once with a formulated product with the active substance (a.s.) thiamethoxam at nominal concentrations of 1 (n = 3), 3 (n = 3), 10 (n = 4), 30 (n = 4), and 100 (n = 2) μg a.s./L, plus untreated controls (n = 4). Primary producers (phytoplankton), zooplankton, and macroinvertebrates were monitored for up to 93 days following treatment. Thiamethoxam was observed to have a water column dissipation half-life (DT50) of ≤1.6-5.2 days in the mesocosms. Community-based principal response curve analysis detected no treatment effects for phytoplankton, zooplankton, emergent insects, and macroinvertebrates, indicating a lack of direct and indirect effects. A number of statistically significant differences from controls were detected for individual phytoplankton and zooplankton species abundances, but these were not considered to be treatment-related due to their transient nature and lack of concentration-response. After application of 30 μg a.s./L, slight temporary effects on Asellus aquaticus could not be excluded. At 100 μg a.s./L, there was an effect with no clear recovery of Asellus observed, likely due to their inability to recolonize these isolated test systems. A statistically significant but transient reduction in the emergence of chironomids by day 23 at the 100 μg a.s./L treatment was observed and possibly related to direct toxicity from thiamethoxam on larval stages. Therefore, a conservative study specific No Observed Ecological Adverse Effect Concentration (NOEAEC) is proposed to be 30 μg a.s./L. Overall, based on current concentrations of thiamethoxam detected in North American surface waters (typically <0.4 μg/L), there is low likelihood of direct or indirect effects from a pulsed exposure on primary producers, zooplankton, and macroinvertebrates, including insects, as monitored in this study.
Collapse
Affiliation(s)
| | - Simon Emburey
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| | - Udo Hommen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Division Applied Ecology, Auf dem Aberg 1, Schmallenberg, 57392, Germany
| | | | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Helen Thompson
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK.
| | - Mick Hamer
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| |
Collapse
|
19
|
Haegerbaeumer A, Höss S, Heininger P, Traunspurger W. Response of nematode communities to metals and PAHs in freshwater microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:244-253. [PMID: 29065374 DOI: 10.1016/j.ecoenv.2017.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 05/19/2023]
Abstract
Freshwater microcosms were used to investigate the effects of various metals and polycyclic aromatic hydrocarbons (PAHs), applied as single substances and in mixtures, on sediment-inhabiting nematode assemblages. Several community measures, including nematode abundance, biomass, species richness, species composition and the NemaSPEAR[%]-index, were assessed and their changes in response to the chemical treatments were compared with the results of single-species toxicity testing using the nematode Caenorhabditis elegans. The diagnostic power of endpoints revealing toxic effects was then evaluated to assess the general suitability of nematodes as bioindicators of sediment contamination by a set of relevant chemicals. Overall, community measures based on species-level (detected with principle response curves) responded most sensitively to chemical stress in the microcosms, especially in terms of biomass, with the C. elegans toxicity test was for the most part as sensitive to the chemicals as the nematode species composition. Generally, this study justified the suitability of nematodes in assessments of the risk of chemicals frequently associated with freshwater sediments and underlined the value of C. elegans in the prospective risk assessment of chemicals, as this species was able to indicate the negative effects of comparatively low sediment concentrations of the contaminants.
Collapse
Affiliation(s)
- Arne Haegerbaeumer
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Sebastian Höss
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany
| | - Peter Heininger
- German Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Walter Traunspurger
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Santos ACC, Choueri RB, de Figueiredo Eufrasio Pauly G, Abessa D, Gallucci F. Is the microcosm approach using meiofauna community descriptors a suitable tool for ecotoxicological studies? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:945-953. [PMID: 29029380 DOI: 10.1016/j.ecoenv.2017.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The usual approaches used in ecological risk assessment have been based on individual and population level standard procedures. Although these have been important tools to assess adverse effects on ecosystems, they are generally simplified and therefore lack ecological realism. Microcosm studies using meiobenthic communities offer a good compromise between the complexity of the ecosystem and the often highly artificial settings of laboratory experiments. An experiment was designed to investigate the potential of the microcosm approach using meiofauna as a tool for ecotoxicological studies. The experiment tested the ecological effects of exposure to sewage-impacted pore water simultaneously at the community level using meiofauna microcosms and at the individual level using laboratory fecundity tests with the copepod Nitokra sp. Specifically, the experiment tested the toxicity of pore water from three sites according to a contamination gradient. Both approaches were efficient in detecting differences in toxicity between the less and more contaminated sites. However, only multivariate data from community analysis detected differences in the gradient of contamination. In addition to information about toxicity, the community level microcosm experiment gave indications about sensitive and tolerant species, indirect ecological effects, as well as raised hypothesis about contamination routes and bioavailability to be tested. Considering the importance of meiofauna for benthic ecosystems, the microcosm approach using natural meiobenthic communities might be a valuable addition as a higher tier approach in ecological risk assessment, providing highly relevant ecological information on the toxicity of contaminated sediments.
Collapse
Affiliation(s)
- Anna Carolina Chaaban Santos
- Centro de Estudos do Mar da Universidade Federal do Paraná, Av. Beira-mar, s/n 83255-976, Pontal do Sul, PR, Brazil; Centro de Biologia Marinha da Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, km 131.5, São Sebastião, SP 11600-000, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar da Universidade Federal de São Paulo, Rua Carvalho de Mendonça, 144, Santos, SP CEP: 11070-100, Brazil
| | | | - Denis Abessa
- Universidade Estadual Paulista, Campus do Litoral Paulista, Praça Infante Dom Henrique, s/n, São Vicente-Vicente, SP 11330-900, Brazil
| | - Fabiane Gallucci
- Instituto do Mar da Universidade Federal de São Paulo, Rua Carvalho de Mendonça, 144, Santos, SP CEP: 11070-100, Brazil.
| |
Collapse
|
21
|
Haegerbaeumer A, Höss S, Ristau K, Claus E, Möhlenkamp C, Heininger P, Traunspurger W. A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2987-2997. [PMID: 27155316 DOI: 10.1002/etc.3482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/15/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
Soft sediments are often hotspots of chemical contamination, and a thorough ecotoxicological assessment of this habitat can help to identify the causes of stress and to improve the health of the respective ecosystems. As an important component of the ecologically relevant meiobenthic fauna, nematodes can be used for sediment assessments, with various assay tools ranging from single-species toxicity tests to field studies. In the present study, microcosms containing sediment were used to investigate direct and indirect effects of zinc on natural nematode assemblages, and acute community toxicity tests considering only direct toxicity were conducted. The responses of the various freshwater nematode species in both approaches were compared with those of Caenorhabditis elegans, determined in standardized tests (ISO 10872). At a median lethal concentration (LC50) of 20 mg Zn/L, C. elegans represented the median susceptibility of 15 examined nematode species examined in the acute community toxicity tests. In the microcosms, Zn affected the nematodes dose-dependently, with changes in species composition first detected at 13 mg Zn/kg to 19 mg Zn/kg sediment dry weight. The observed species sensitivities in the microcosms corresponded better to field observations than to the results of the acute community toxicity tests. Environ Toxicol Chem 2016;35:2987-2997. © 2016 SETAC.
Collapse
Affiliation(s)
- Arne Haegerbaeumer
- Department of Animal Ecology, University of Bielefeld, Bielefeld, Germany
| | - Sebastian Höss
- Ecological Sediment and Soil Assessment, Starnberg, Germany
| | - Kai Ristau
- Department of Animal Ecology, University of Bielefeld, Bielefeld, Germany
| | - Evelyn Claus
- German Federal Institute of Hydrology, Koblenz, Germany
| | | | | | | |
Collapse
|
22
|
Höss S, Frank-Fahle B, Lueders T, Traunspurger W. Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2660-2669. [PMID: 26031573 DOI: 10.1002/etc.3091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
The use of colloidal iron oxide (FeOx) in the bioremediation of groundwater contamination implies its increasing release into the environment and requires an assessment of its ecotoxicological risk. Therefore, microcosm experiments were carried out to investigate the impact of ferrihydrite colloids on the bacterial and meiofaunal communities of pristine freshwater sediments. The effects of ferrihydrite colloids were compared with those of ferrihydrite macroaggregates to discriminate between colloid-specific and general FeOx impacts. The influence of ferrihydrite colloids on the toxicity of sediment-bound fluoranthene was also considered. At high concentrations (496 mg Fe kg(-1) sediment dry wt), ferrihydrite colloids had a significant, but transient impact on bacterial and meiofaunal communities. Although bacterial community composition specifically responded to ferrihydrite colloids, a more general FeOx effect was observed for meiofauna. Bacterial activity responded most sensitively (already at 55 mg Fe kg(-1) dry wt) without the potential of recovery. Ferrihydrite colloids did not influence the toxicity of sediment-bound fluoranthene. Significant correlations between bacterial activity and meiofaunal abundances were indicative of trophic interactions between bacteria and meiofauna and therefore of the contribution of indirect food web effects to the observed impacts. The results suggest that the application of ferrihydrite colloids for remediation purposes in the field poses no risk for benthic communities, given that, with the exception of generic bacterial activity, any negative effects on communities were reversible.
Collapse
Affiliation(s)
- Sebastian Höss
- Ecossa, Starnberg, Germany
- Institute for Biodiversity-Network (IBN), Regensburg, Germany
| | - Béatrice Frank-Fahle
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
23
|
Galdiero E, Maselli V, Falanga A, Gesuele R, Galdiero S, Fulgione D, Guida M. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:145-152. [PMID: 25884346 DOI: 10.1016/j.envpol.2015.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy.
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| |
Collapse
|
24
|
Magda K, Hugh A L H, Romain M, Edward T. Multi-year and short-term responses of soil ammonia-oxidizing prokaryotes to zinc bacitracin, monensin, and ivermectin, singly or in combination. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:618-625. [PMID: 25502914 DOI: 10.1002/etc.2848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
A field experiment was initiated whereby a series of replicated plots received annual applications of ivermectin, monensin, and zinc bacitracin, either singly or in a mixture. Pharmaceuticals were added at concentrations of 0.1 mg/kg soil or 10 mg/kg soil. The authors collected soil samples in 2013, before and after the fourth annual application of pharmaceuticals. In addition, a 30-d laboratory experiment was undertaken with the same soil and same pharmaceuticals, but at concentrations of 100 mg/kg soil. The impact of the pharmaceuticals on nitrification rates, on the abundance of ammonia-oxidizing bacteria (AOB), and on the abundance of ammonia-oxidizing archaea (AOA) was assessed. None of the pharmaceuticals at 0.1 mg/kg had any effect on nitrification. Referenced to control soil, nitrification was accelerated in soil exposed to 100 mg/kg zinc bacitracin or 10 mg/kg of the pharmaceutical mixture, but none of the treatments inhibited nitrification. Neither AOB abundance nor AOA abundance was affected by the pharmaceuticals at 0.1 mg/kg. At 10 mg/kg, monensin, zinc bacitracin, and a mixture of all 3 pharmaceuticals suppressed the abundance of AOB, and zinc bacitracin and the mixture increased AOA abundance. The decrease in AOB abundance and increase in AOA abundance when exposed to 10 mg/kg soil suggests that AOB are more sensitive to these chemicals and that AOA populations can expand to occupy the partially vacated niche.
Collapse
Affiliation(s)
- Konopka Magda
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
Grifoni M, Schiavon M, Pezzarossa B, Petruzzelli G, Malagoli M. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2423-2433. [PMID: 24677062 DOI: 10.1007/s11356-014-2811-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Martina Grifoni
- Department of Agronomy, Food, Natural resources, Animal and Environment, University of Padova, Agripolis-Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | | | | | | | | |
Collapse
|
26
|
Huguier P, Manier N, Owojori OJ, Bauda P, Pandard P, Römbke J. The use of soil mites in ecotoxicology: a review. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1-18. [PMID: 25366466 DOI: 10.1007/s10646-014-1363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Mites, and especially soil-inhabiting ones, have been less studied than the other invertebrates used in bio-assays for the assessment of soil quality and the hazards of chemicals, although these organisms are included in the regulatory assessment scheme of pesticides. The recent advances in the development of test methods for soil mites groups have provided more information on their sensitivities towards chemicals, which needs to be presented for a more robust assessment of the current trends in soil mite ecotoxicology. Moreover, interestingly mite is the only taxa for which test methods were developed and standardized on predatory organisms. This review summarizes the different protocols for the assessment of chemicals using soil-inhabiting mites, including laboratory, semi-field and field studies. Among the data found in the literature, most of the chemicals assessed with mites were pesticides, while a few environmental samples were assessed with these organisms. Their sensitivities towards chemicals were then compared and discussed regarding other soil invertebrates. Finally, we conclude on the usefulness of soil mites in ecotoxicology, and provide future research trail in this area.
Collapse
Affiliation(s)
- Pierre Huguier
- Institut National de l'Environnement Industriel et des Risques, Parc Technologique ALATA, 60550, Verneuil en-Halatte, France,
| | | | | | | | | | | |
Collapse
|
27
|
Jolly S, Jaffal A, Delahaut L, Palluel O, Porcher JM, Geffard A, Sanchez W, Betoulle S. Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13103-17. [PMID: 24996940 DOI: 10.1007/s11356-014-3227-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/17/2014] [Indexed: 05/15/2023]
Abstract
Aluminium is used in diverse anthropogenic processes at the origin of pollution events in aquatic ecosystems. In the Champagne region (France), high concentrations of aluminium (Al) are detected due to vine-growing practices. In fish, little is known about the possible immune-related effects at relevant environmental concentrations. The present study analyzes the simultaneous effects of aluminium and bacterial lipopolysaccharide (LPS), alone and in combination, on toxicological biomarkers in the freshwater fish species Rutilus rutilus. For this purpose, roach treated or not with LPS were exposed to environmental concentrations of aluminium (100 μg/L) under laboratory-controlled conditions for 2, 7, 14 and 21 days. After each exposure time, we assessed hepatic lipoperoxidation, catalase activity, glutathione reductase activity and total glutathione content. We also analyzed cellular components related to the LPS-induced inflammatory response in possible target tissues, i.e. head kidney and spleen. Our results revealed a significant prooxidant effect in the liver cells and head kidney leukocytes of roach exposed to 100 μg of Al/L for 2 days. In liver, we observed more lipoperoxidation products and lower endogenous antioxidant activity levels such as glutathione reductase activity and total glutathione content. These prooxidant effects were associated with a higher oxidative burst in head kidney leukocytes, and they were all the more important in fish stimulated by LPS injection. These findings demonstrate that environmental concentrations of Al induce oxidative and immunotoxic effects in fish and are associated to an immunomodulatory process related to the inflammatory response.
Collapse
Affiliation(s)
- S Jolly
- Université de Reims Champagne-Ardenne, UMR-I02 SEBIO, BP 1039, 51687, Reims Cedex 2, France,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Höss S, Reiff N, Nguyen HT, Jehle JA, Hermes H, Traunspurger W. Small-scale microcosms to detect chemical induced changes in soil nematode communities--effects of crystal proteins and Bt-maize plant material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:662-671. [PMID: 24317172 DOI: 10.1016/j.scitotenv.2013.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 06/02/2023]
Abstract
Small-scale laboratory microcosms (30 g soil in 50 ml tubes) were evaluated for their suitability to assess the impact of chemicals on in situ soil nematode communities. For this purpose, appropriate conditions in the microcosms were explored to ensure stable conditions and a homogenous distribution of the nematodes. Then, the microcosms were used to assess the toxicity of insecticidal crystal proteins (Cry1A.105, Cry2Ab2, Cry3Bb1) present in genetically modified maize (MON89034×MON88017) on in situ nematode communities. Highly abundant and genus rich nematode communities could be maintained over a period of 12 weeks. Due to a low variance between the replicates of the treatments, low detection limits could be achieved. Using meaningful stress indices, such as the maturity indices, the microcosm study revealed dose-dependent effects of the insecticidal Cry proteins that could be verified as toxic effects by comparing with effects of two positive controls (Cu, nematicidal Cry5B). Moreover, toxic effects could be differentiated from organic enrichment effects that were induced by the addition of plant material. With a NOECCommunity of 0.1 mg kg(-1) dry wt, the nematode communities reacted considerably more sensitive to the Cry proteins than a single-species nematode toxicity test (NOEC: 29 mg l(-1)). The small-scale microcosm set-up turned out to be a suitable, low-budget tool for assessing the toxicity of chemicals on soil nematodes on community level, representing a link between single-species toxicity tests and large scale outdoor mesocosms.
Collapse
Affiliation(s)
- Sebastian Höss
- Ecossa, Giselastr. 6, 82319 Starnberg, Germany; Institut für Biodiversität - Netzwerk (ibn), Drei-Kronen-Gasse 2, 93047 Regensburg, Germany.
| | | | - Hang T Nguyen
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr., Germany
| | - Johannes A Jehle
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr., Germany.
| | - Hanna Hermes
- University of Bielefeld, Dep. of Animal Ecology, Morgenbreede 45, 33615 Bielefeld, Germany.
| | - Walter Traunspurger
- University of Bielefeld, Dep. of Animal Ecology, Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Rico A, Dimitrov MR, Van Wijngaarden RPA, Satapornvanit K, Smidt H, Van den Brink PJ. Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:92-104. [PMID: 24380725 DOI: 10.1016/j.aquatox.2013.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/12/2013] [Accepted: 12/08/2013] [Indexed: 06/03/2023]
Abstract
The main objective of the present study was to assess the ecological impacts of the fluoroquinolone antibiotic enrofloxacin on the structure and functioning of tropical freshwater ecosystems. Enrofloxacin was applied at a concentration of 1, 10, 100 and 1,000 μg/L for 7 consecutive days in 600-L outdoor microcosms in Thailand. The ecosystem-level effects of enrofloxacin were monitored on five structural (macroinvertebrates, zooplankton, phytoplankton, periphyton and bacteria) and two functional (organic matter decomposition and nitrogen cycling) endpoint groups for 4 weeks after the last antibiotic application. Enrofloxacin was found to dissipate relatively fast from the water column (half-dissipation time: 11.7h), and about 11% of the applied dose was transformed into its main by-product ciprofloxacin after 24h. Consistent treatment-related effects on the invertebrate and primary producer communities and on organic matter decomposition could not be demonstrated. Enrofloxacin significantly affected the structure of leaf-associated bacterial communities at the highest treatment level, and reduced the abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in the sediments, with calculated NOECs of 10 and <1 μg/L, respectively. The ammonia concentration in the microcosm water significantly increased in the highest treatment level, and nitrate production was decreased, indicating a potential impairment of the nitrification function at concentrations above 100 μg/L. The results of this study suggest that environmentally relevant concentrations of enrofloxacin are not likely to result in direct or indirect toxic effects on the invertebrate and primary producer communities, nor on important microbially mediated functions such as nitrification.
Collapse
Affiliation(s)
- Andreu Rico
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Mauricio R Dimitrov
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen University and Research Centre, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - René P A Van Wijngaarden
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Kriengkrai Satapornvanit
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, 10900 Bangkok, Thailand
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen University and Research Centre, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
30
|
Lumaret JP, Errouissi F, Floate K, Römbke J, Wardhaugh K. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 2012; 13:1004-60. [PMID: 22039795 PMCID: PMC3409360 DOI: 10.2174/138920112800399257] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 12/21/2010] [Indexed: 11/27/2022]
Abstract
The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin doramectin and moxidectin. By comparison, information on compounds such as eprinomectin, emamectin and selamectin is still relatively scarce.
Collapse
Affiliation(s)
- Jean-Pierre Lumaret
- UMR 5175 CEFE, Laboratoire de Zoogéographie, Université Montpellier III, 34199 Montpellier cedex 5, France.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Sheep ectoparasiticides, which include the synthetic pyrethroids, the organophosphates, the 'insect'-growth regulators, the formamidines and the spinocyns, enter into the environment primarily through disposal of dip or fleece scours, as well as with contaminated faeces and urine. Due to the large quantities of spent dip, risks associated with environmental contamination are high. Synthetic pyrethroids and organophosphates pose risks to dung, soil and aquatic fauna; concerns over potential ecotoxicity to vertebrates and invertebrates have resulted in the cessation of their use in many countries. There is very little information regarding the ecotoxicity of 'insect'-growth regulators, formamidines or spinocyns, with no studies focussing on sheep. Here, the impact of sheep ectoparasiticides is discussed in terms of their potential to enter into the environment, their toxicity and their impact on ecosystem functioning. Where there are no data for excretion or toxicity of the ectoparasiticides used in sheep production, examples to demonstrate potential impacts are taken from laboratory ecotoxicity tests and the cattle literature, as well on work with foliar insecticides. Future research priorities are suggested to allow assessment of the environmental consequences of sheep ectoparasiticide treatments, which are essential for future sustainable sheep production.
Collapse
Affiliation(s)
- S A Beynon
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, England, United Kingdom.
| |
Collapse
|
32
|
Wall R, Beynon S. Area-wide impact of macrocyclic lactone parasiticides in cattle dung. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:1-8. [PMID: 22007907 DOI: 10.1111/j.1365-2915.2011.00984.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Following the treatment of cattle with veterinary parasiticides and insecticides, residues are excreted into the dung in concentrations that may be toxic to functionally important dung-colonizing insects. In the dung, these residues cause a range of well-studied lethal and sub-lethal effects, the magnitudes of which vary with the compound used, mode of administration and concentration, and the insect species in question. Particular concern has been associated with the use of macrocyclic lactones in this context. Loss of insect colonizers may delay pat decomposition, but field studies report contrasting results that reflect confounding factors such as weather conditions, pat moisture content, pat location, time of year and dung insect species phenologies. The question of fundamental concern is whether the impacts seen in experimental or laboratory studies are likely to have a functional impact on insect populations, community interactions and the economically important process of dung decomposition. Recent studies which have attempted to address these wider, landscape-level impacts in temperate ecosystems are reviewed here. These show that the extent to which chemical residues may have any sustained ecological impact will depend on both a range of farm management factors, such as the temporal and spatial patterns of chemical use, the number of animals treated and the choice of active ingredient, and a range of insect-related factors, such as abundance, population dynamics and dispersal rates. However, they also demonstrate that considerable uncertainty remains about the likely extent of such effects and that current data are insufficient to support firm conclusions regarding sustained pasture-level effects. More large-scale, longterm field experiments are required, particularly in relation to insect dispersal and functional interactions within the dung insect community.
Collapse
Affiliation(s)
- R Wall
- Veterinary Parasitology and Ecology Group, School of Biological Sciences, University of Bristol, Bristol, U.K.
| | | |
Collapse
|
33
|
Xiong W, Bai L, Muhammad RUH, Zou M, Sun Y. Molecular cloning, characterization of copper/zinc superoxide dismutase and expression analysis of stress-responsive genes from Eisenia fetida against dietary zinc oxide. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:416-22. [PMID: 22137962 DOI: 10.1016/j.cbpc.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 01/24/2023]
Abstract
The full length cDNA of copper/zinc superoxide dismutase (Cu/Zn-SOD) from Eisenia fetida (E. fetida) was cloned (GenBank accession no. JN579648). Sequence characterization revealed that the cDNA contained characteristic Cu/Zn-SOD family signatures ((45)GFHVHEFGDNT(55) and (138)GNAGGRLACGVI(149)), cysteines (Cys-58 and-146) predicted to form one disulphide bond, Cu-binding (His-47, -49, -64 and -120) and Zn-binding (His-64, -72, -81 and Asp-84). They were essential for the structure and function of Cu/Zn-SOD. Differential expression of stress-responsive genes like Cu/Zn-SOD, catalase (CAT), heat shock protein 70 (Hsp70) and metallothionein (MT) was applied as potential biomarkers to assess their efficacy for the ecotoxicological effects of dietary zinc oxide (ZnO) on E. fetida. The results showed that the expression of Cu/Zn-SOD and MT increased to reach the highest levels of 6.22 and 7.68 fold in a dose-dependent manner at day 10 respectively. The highest expression of 3.03 fold of CAT was registered at day 10. The transient expression of Hsp70 without consistent time- or/and dose-dependent was observed. It implied that the transcriptional patterns of Cu/Zn-SOD, CAT and MT could serve as early warning signals in ecotoxicological assessment of dietary ZnO on earthworms while the expression of Hsp70 was not well done, which is helpful to monitoring and regulation of ZnO in veterinary application.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, PR China.
| | | | | | | | | |
Collapse
|
34
|
Delgado M, Rodríguez C, Martín JV, Miralles de Imperial R, Alonso F. Environmental assay on the effect of poultry manure application on soil organisms in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 416:532-535. [PMID: 22154182 DOI: 10.1016/j.scitotenv.2011.11.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/31/2011] [Accepted: 11/13/2011] [Indexed: 05/31/2023]
Abstract
This paper reports the effects produced on the organisms of the soil (plants, invertebrates and microorganisms), after the application of two types of poultry manure (sawdust and straw bed) on an agricultural land. The test was made using a terrestrial microcosm, Multi-Species Soil System (MS3) developed in INIA. There was no difference in the germination for any of the three species of plants considered in the study. The biomass was increased in the wheat (Triticum aestivum) coming from ground treated with both kinds of poultry manure. Oilseed rape (Brasica rapa) was not affected and regarding vetch (Vicia sativa) only straw poultry manure showed significant difference. For length only Vicia sativa was affected showing a reduction when straw was exposed to poultry manure. When the effect on invertebrates was studied, we observed a reduction in the number of worms during the test, especially from the ground control (13.7%), higher than in the ground with sawdust poultry manure (6.7%), whereas in the ground with straw poultry manure, there was no reduction. The biomass was affected and at the end of the test it was observed that while the reduction of worms in the ground control was about 48%, the number of those that were in the ground with sawdust poultry manure or straw poultry manure decreased by 41% and 22% respectively. Finally, the effects on microorganisms showed that the enzymatic activities: dehydrogenase (DH) and phosphatase and basal respiration rate increased at the beginning of the test, and the differences were statistically significant compared with the values of the control group. During the test, all these parameters decreased (except DH activities) but they were always higher than in the ground control. This is why it is possible to deduce that the contribution of poultry manure caused an improvement in the conditions of fertilization and also for the soil.
Collapse
Affiliation(s)
- M Delgado
- Environmental Department, INIA, Ctra, La Coruña Km 7, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
35
|
Förster B, Boxall A, Coors A, Jensen J, Liebig M, Pope L, Moser T, Römbke J. Fate and effects of ivermectin on soil invertebrates in terrestrial model ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:234-245. [PMID: 21086159 DOI: 10.1007/s10646-010-0575-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The effect of ivermectin on soil organisms was assessed in Terrestrial Model Ecosystems (TMEs). Intact soil cores were extracted from a pasture in England and kept for up to 14 weeks in the laboratory. Ivermectin was applied to the soil surface via spiked cow dung slurry at seven concentration rates ranging from 0.25 to 180 mg/TME, referring to concentrations of 0.19-227 mg ivermectin/kg soil dry weight in the uppermost (0-1 cm) soil layer. After 7, 28 and 96 days following the application soil cores were destructively sampled to determine ivermectin residues in soil and to assess possible effects on microbial biomass, nematodes, enchytraeids, earthworms, micro-arthropods, and bait-lamina feeding activity. No significant effect of ivermectin was found for microbial respiration and numbers of nematodes and mites. Due to a lack of dose-response patterns no effect concentrations could be determined for the endpoints enchytraeid and collembolan numbers as well as total earthworm biomass. In contrast, EC50 values for the endpoint feeding rate could be calculated as 0.46, 4.31 and 15.1 mg ivermectin/kg soil dry weight in three soil layers (0-1, 0-5 and 0-8 cm, respectively). The multivariate Principal Response Curve (PRC) was used to calculate the NOEC(community), based on earthworm, enchytraeid and collembolan abundance data, as 0.33 and 0.78 mg ivermectin/kg soil dw for day 7 and day 96, respectively. The results shown here are in line with laboratory data, indicating in general low to moderate effects of ivermectin on soil organisms. As shown by the results of the bait-lamina tests, semi-field methods such as TMEs are useful extensions of the battery of potential test methods since complex and ecologically relevant endpoints can be included.
Collapse
Affiliation(s)
- Bernhard Förster
- ECT Oekotoxikologie GmbH, Boettgerstrasse 2-14, 65439, Floersheim/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Boonstra H, Reichman EP, van den Brink PJ. Effects of the veterinary pharmaceutical ivermectin in indoor aquatic microcosms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 60:77-89. [PMID: 20422169 PMCID: PMC3019351 DOI: 10.1007/s00244-010-9526-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/05/2010] [Indexed: 05/06/2023]
Abstract
The effects of the parasiticide ivermectin were assessed in plankton-dominated indoor microcosms. Ivermectin was applied once at concentrations of 30, 100, 300, 1000, 3000, and 10,000 ng/l. The half-life (dissipation time 50%; DT₅₀) of ivermectin in the water phase ranged from 1.1 to 8.3 days. The lowest NOEC(community) that could be derived on an isolated sampling from the microcosm study by means of multivariate techniques was 100 ng/l. The most sensitive species in the microcosm study were the cladocerans Ceriodaphnia sp. (no observed effect concentration, NOEC = 30 ng/l) and Chydorus sphaericus (NOEC = 100 ng/l). The amphipod Gammarus pulex was less sensitive to ivermectin, showing consistent statistically significant reductions at the 1000-ng/l treatment level. Copepoda taxa decreased directly after application of ivermectin in the highest treatment but had already recovered at day 20 posttreatment. Indirect effects (e.g., increase of rotifers, increased primary production) were observed at the highest treatment level starting only on day 13 of the exposure phase. Cladocera showed the highest sensitivity to ivermectin in both standard laboratory toxicity tests as well as in the microcosm study. This study demonstrates that simple plankton-dominated test systems for assessing the effects of ivermectin can produce results similar to those obtained with large complex outdoor systems.
Collapse
Affiliation(s)
- Harry Boonstra
- Alterra, Department for Water and Climate, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Erik P. Reichman
- Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Paul J. van den Brink
- Alterra, Department for Water and Climate, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
37
|
Nałecz-Jawecki G, Wadhia K, Adomas B, Piotrowicz-Cieślak AI, Sawicki J. Application of microbial assay for risk assessment biotest in evaluation of toxicity of human and veterinary antibiotics. ENVIRONMENTAL TOXICOLOGY 2010; 25:487-494. [PMID: 20549623 DOI: 10.1002/tox.20593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The microbial assay for risk assessment (MARA) is a multispecies, growth inhibition microplate toxicity test with 11 microorganisms individually lyophilized in microplate wells. The microbial species representing wide diversity, generated 11 microbial toxic concentration (MTC) values were obtained giving a unique "toxic fingerprint" profile of the test sample. The toxicity of 14 antibiotics was evaluated with the MARA test. The fingerprints for each group of antibiotics differ, indicating a particular toxic profile. Tetracyclines were the most toxic antibacterials with the minimum MTC value of 3.6 μg L(-1). In the group of tetracyclines the order of the three most sensitive microbial strains was the same 2 > 6 > 7. Quinolones affected the most sensitive strain(s) at concentrations of 12-75 μg L(-1). The MARA bioassay exhibited different spectra of toxic responses to microbial strains for the first and second generation quinolones. However, for first generation quinolones strain 6 was substantially more sensitive than the other microorganisms, while second generation quinolones were most toxic to strain 3, followed by 6 then 4. In this instance, the three strains belong to two different phylogenetic groups-strain 3 is γ-proteotype and strains 4 and 6 are β-proteotype.
Collapse
Affiliation(s)
- G Nałecz-Jawecki
- Department of Environmental Health Sciences, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
38
|
Brinke M, Höss S, Fink G, Ternes TA, Heininger P, Traunspurger W. Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:126-137. [PMID: 20451263 DOI: 10.1016/j.aquatox.2010.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 04/05/2010] [Accepted: 04/10/2010] [Indexed: 05/29/2023]
Abstract
Ivermectin is a widely applied veterinary pharmaceutical that is highly toxic to several non-target organisms. So far, little is known about its impact on benthic freshwater species, although its rapid sorption to sediment particles and high persistence in aquatic sediments have raised concerns about the risk for benthic organisms. In the present study, indoor microcosms were used to assess the impact of ivermectin on freshwater meiobenthic communities over a period of 224 days. Microcosm sediments were directly spiked with ivermectin to achieve nominal concentrations of 0.9, 9, and 45 microg kg(-1) dw. Initially measured ivermectin concentrations (day 0) were 0.6, 6.2, and 31 microg kg(-1) dw. In addition to abundance of major meiobenthic organism groups, the nematode community was assessed on the species level, assuming a high risk for free-living nematodes due to their close phylogenetic relationship to the main target organisms of ivermectin, parasitic nematodes. Benthic microcrustaceans (cladocerans, ostracods) and nematodes showed the most sensitive response to ivermectin, while tardigrades profited from the presence of the pharmaceutical. The most pronounced effects on the meiofauna community composition occurred at the highest treatment level (31 microg kg(-1) dw), leading to a no observed effect concentration (NOEC(Community)) of 6.2 microg kg(-1) dw. However, the nematode community was already seriously affected at a concentration of 6.2 microg kg(-1) dw with two bacterivorous genera, Monhystera and Eumonhystera, being the most sensitive, whereas species of omnivorous genera (Tripyla, Tobrilus) increased in abundance after the application of ivermectin. Thus, a NOEC(Community) of 0.6 microg kg(-1) dw was derived for nematodes. Direct and indirect effects of ivermectin on meiobenthic communities could be demonstrated. The pharmaceutical is likely to pose a high risk, because its NOECs are close to predicted environmental concentrations (PECs) in sediments (0.45-2.17 microg kg(-1) dw), resulting in worst case risk quotients (RQs) of 1.05-36.2. This observation lends support to efforts aimed at preventing the repeated entry of ivermectin in aquatic environments and thus its accumulation in sediments. Moreover, this study points out that model ecosystem studies should be part of environmental risk assessments (ERAs) of veterinary medicinal products (VMPs).
Collapse
Affiliation(s)
- Marvin Brinke
- University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ. Interactions between effects of environmental chemicals and natural stressors: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:3746-62. [PMID: 19922980 DOI: 10.1016/j.scitotenv.2009.10.067] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/19/2009] [Accepted: 10/26/2009] [Indexed: 05/06/2023]
Abstract
Ecotoxicological effect studies often expose test organisms under optimal environmental conditions. However, organisms in their natural settings rarely experience optimal conditions. On the contrary, during most of their lifetime they are forced to cope with sub-optimal conditions and occasionally with severe environmental stress. Interactions between the effects of a natural stressor and a toxicant can sometimes result in greater effects than expected from either of the stress types alone. The aim of the present review is to provide a synthesis of existing knowledge on the interactions between effects of "natural" and chemical (anthropogenic) stressors. More than 150 studies were evaluated covering stressors including heat, cold, desiccation, oxygen depletion, pathogens and immunomodulatory factors combined with a variety of environmental pollutants. This evaluation revealed that synergistic interactions between the effects of various natural stressors and toxicants are not uncommon phenomena. Thus, synergistic interactions were reported in more than 50% of the available studies on these interactions. Antagonistic interactions were also detected, but in fewer cases. Interestingly, about 70% of the tested chemicals were found to compromise the immune system of humans as judged from studies on human cell lines. The challenge for future studies will therefore be to include aspects of combined stressors in effect and risk assessment of chemicals in the environment.
Collapse
Affiliation(s)
- Martin Holmstrup
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schweitzer N, Fink G, Ternes TA, Duis K. Effects of ivermectin-spiked cattle dung on a water-sediment system with the aquatic invertebrates Daphnia magna and Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:304-13. [PMID: 20060604 DOI: 10.1016/j.aquatox.2009.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/10/2009] [Accepted: 12/15/2009] [Indexed: 05/07/2023]
Abstract
A two-species test using a water-sediment test system was performed to investigate chronic effects of the parasiticide ivermectin on Daphnia magna and Chironomus riparius. To simulate exposure by direct excretion of cattle into surface waters, ivermectin was applied via spiked cattle dung. The parasiticide was applied once, at concentrations ranging from 11 to 1314 microg kg(-1) dung dry weight. The highest concentration corresponds to the maximum concentration in dung 3 days after topical application to cattle. Test vessels were stocked with chironomid larvae and daphnids of defined, mixed age. Replicates were sampled 10, 24, 38 and 51 days post application. Survival, growth and emergence of chironomids, and abundance and biomass of daphnids were evaluated. In case of extinction of the D. magna population in all replicates of a concentration level, daphnids were re-introduced into the remaining vessels of this concentration to simulate immigration. In addition, a second batch of chironomid larvae was introduced into the vessels on day 27 post application. At 1314 microg ivermectin kg(-1) dung dry weight, survival, larval growth and emergence of the initially stocked chironomids were strongly affected. A significant effect on emergence was also observed for the second batch of chironomids. The two highest test concentrations led to 100% mortality of the initially stocked daphnids. At 1314 microg kg(-1) dung dry weight, no daphnids survived following re-introduction on days 11, 28 and 42. At 263 microg kg(-1) dung dry weight, the daphnids that were re-introduced on day 11 survived and reproduced, but abundance and biomass were reduced. The results of the present study indicate that following single application, toxic ivermectin concentrations persisted for an extended period. Possible effects on aquatic invertebrates, which may be caused by direct excretion of ivermectin-containing dung into surface water, deserve further attention.
Collapse
|
41
|
Duchet C, Caquet T, Franquet E, Lagneau C, Lagadic L. Influence of environmental factors on the response of a natural population of Daphnia magna (Crustacea: Cladocera) to spinosad and Bacillus thuringiensis israelensis in Mediterranean coastal wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1825-1833. [PMID: 19939529 DOI: 10.1016/j.envpol.2009.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/23/2009] [Accepted: 11/04/2009] [Indexed: 05/28/2023]
Abstract
The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 microg L(-1)) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 microL L(-1)) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors.
Collapse
Affiliation(s)
- C Duchet
- Entente Interdépartementale de Démoustication du Littoral Méditerranéen, 165 avenue Paul-Rimbaud, Montpellier F-34184, France
| | | | | | | | | |
Collapse
|
42
|
Pestana JLT, Alexander AC, Culp JM, Baird DJ, Cessna AJ, Soares AMVM. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2328-34. [PMID: 19398147 DOI: 10.1016/j.envpol.2009.03.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 05/08/2023]
Abstract
Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems.
Collapse
Affiliation(s)
- J L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
43
|
Nélieu S, Perreau F, Bonnemoy F, Ollitrault M, Azam D, Lagadic L, Bohatier J, Einhorn J. Sunlight nitrate-induced photodegradation of chlorotoluron: evidence of the process in aquatic mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3148-3154. [PMID: 19534127 DOI: 10.1021/es8033439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The nitrate-induced photodegradation of chlorotoluron was demonstrated to occur efficiently in natural water through two series of experiments in outdoor aquatic mesocosms. During the first campaign, it was shown that the pesticide degradation kinetics was clearly dependent on nitrate concentration. This parameter also influenced the accumulation of the first- and second-generation byproducts, including predominantly N-terminus oxidation products and nitro-derivatives of the phenyl ring. The latter compounds, specific to the NO3- -induced photoprocess, appeared particularly abundant as compared to laboratory-simulated sunlight irradiation conditions. During the second campaign, a dual day-night sampling was achieved, which demonstrated the almost exclusive role of photodegradation versus biodegradation.
Collapse
Affiliation(s)
- Sylvie Nélieu
- INRA, UR 258 Phytopharmacie et Médiateurs Chimiques, 78000 Versailles, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Alonso E, González-Núñez M, Carbonell G, Fernández C, Tarazona JV. Bioaccumulation assessment via an adapted multi-species soil system (MS.3) and its application using cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1038-1044. [PMID: 19237196 DOI: 10.1016/j.ecoenv.2008.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/20/2008] [Accepted: 08/30/2008] [Indexed: 05/27/2023]
Abstract
This paper presents an experimental design for quantifying the transfer of chemicals at low trophic levels of terrestrial ecosystems. The soil microcosms, MS.3(foodchain) (food chain multi-specie soil system) covered the transfer from soil to earthworms (Eisenia fetida) and from soil to plant (Triticum aestivum), then to phytophagus (Rhopalosiphum padi) and finally predator (Chrysoperla carnea) species. Cadmium was used as model pollutant. Cadmium accumulation in foliar invertebrates was related to the species biology. A significant transfer of this metal through the minimized food chain was found for all species, but not a biomagnification in the predator species. Results pointed out the relevance of foliar invertebrates and their trophic relationships as additional exposure routes for assessing secondary poisoning in predators. Hence, MS.3(foodchain), could be applied for terrestrial environmental risk assessment when potential bioaccumulation could be expected.
Collapse
Affiliation(s)
- Elena Alonso
- Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta. de la Coruña, km 7.5, Madrid 28040, Spain.
| | | | | | | | | |
Collapse
|
45
|
Duchet C, Larroque M, Caquet T, Franquet E, Lagneau C, Lagadic L. Effects of spinosad and Bacillus thuringiensis israelensis on a natural population of Daphnia pulex in field microcosms. CHEMOSPHERE 2008; 74:70-77. [PMID: 18977509 DOI: 10.1016/j.chemosphere.2008.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/12/2008] [Accepted: 09/04/2008] [Indexed: 05/27/2023]
Abstract
Spinosad, a candidate biological larvicide for mosquito control, was evaluated for its effects on a field population of Daphnia pulex, using Bacillus thuringiensis serovar israelensis (Bti) as a reference larvicide. Microcosms (125L enclosures) were placed in a shallow temporary oligohaline marsh where D. pulex was present. Three concentrations of spinosad (8, 17 and 33 microg L(-1)) and two concentrations of Bti (0.16 and 0.50 microL L(-1)) were applied (5 replicates per concentration, including the controls). Effects of larvicides on D. pulex were evaluated after 2, 4, 7, 14 and 21d of exposure, through measurements of abundance and individual size. Dissipation of spinosad from the water phase was rapid. Four days after treatment, residue concentration represented 11.8%, 3.9% and 12.7% of the initial exposure level for the nominal concentrations of 8, 17 and 33 microg L(-1), respectively. Spinosyns A and D dissipated at similar rates. Analysis of abundance and size structure of the D. pulex population showed an impact of spinosad. Both survival and size structure were affected. However, at the lowest concentration (8 microg L(-1)), population recovered after the first week. In microcosms treated with Bti, the abundance of D. pulex was not affected but the size structure of the population changed after 21d. As compared to laboratory tests, the use of in situ microcosms improved the environmental risk assessment of larvicides, taking into account the influence of environmental factors (e.g., temperature, light, salinity) and intrinsic capacity of recovery of D. pulex under field conditions.
Collapse
Affiliation(s)
- C Duchet
- Entente Interdépartementale de Démoustication du Littoral Méditerranéen, Montpellier, France
| | | | | | | | | | | |
Collapse
|
46
|
Sanderson H, Laird B, Pope L, Brain R, Wilson C, Johnson D, Bryning G, Peregrine AS, Boxall A, Solomon K. Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 85:229-40. [PMID: 17963854 DOI: 10.1016/j.aquatox.2007.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 08/29/2007] [Accepted: 08/31/2007] [Indexed: 05/07/2023]
Abstract
Pharmaceuticals in the environment have been subject to increasing public concern and scientific investigation over the past years. More than 100 active pharmaceutical ingredients have been detected in surface waters worldwide at the ng to microg L(-1) range. At these low levels it is commonly assumed that only chronic and/or mixture toxic effects will be discernible in aquatic ecosystems and that there are orders of magnitude between exposure and effect concentrations. Assessment of potential ecosystem risk of pharmaceuticals are recommended but rarely performed in mesocosms, so for most risk assessments the final tier to reduce extrapolation uncertainty is missing. This paper describes the fate and effects of the anthelmintic drug ivermectin for a 265-day period following treatment (nominal concentration levels of 0, 30, 100, 1000 ng L(-1) (or parts per trillion (ppt)) in fifteen 12,000 L outdoor aquatic mesocosms. Although it is established that ivermectin is highly toxic towards invertebrates, it has been believed that ivermectin does not present notable risks to aquatic systems due to the rapid dissipation of the compound and binding to the sediment. Hence, fate and exchange of ivermectin between water and sediment were evaluated in this study. The ivermectin DT(50aqueous) in water was found to be 3-5 days, but concentrations increased and appeared to be stabile in the sediment at 20-30 ng kg(-1) with no assessable DT(50sed). Acute effects (first week) following ivermectin exposure were identified and cladocerans were particularly sensitive (nom. 100 ppt). Chronic responses (<day 97) were observed for the ecosystem structure and function (nom. 30 ppt). Long-term effects (>229 days) were identified for more sediment-active organisms (e.g. Chydoriae and Ephemeroptera) (nom. 1000 ppt). This is the first study to demonstrate the potential environmental risk of ivermectin at or below the predicted environmental concentration using a standardized test methodology (mesocosm) with minimal extrapolation uncertainty.
Collapse
Affiliation(s)
- Hans Sanderson
- National Environmental Research Institute, Department of Policy Analysis, Aarhus University, Frederiksborgvej 399, Post Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Laird BD, Brain RA, Johnson DJ, Wilson CJ, Sanderson H, Solomon KR. Toxicity and hazard of a mixture of SSRIs to zooplankton communities evaluated in aquatic microcosms. CHEMOSPHERE 2007; 69:949-54. [PMID: 17590411 DOI: 10.1016/j.chemosphere.2007.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 04/28/2007] [Accepted: 05/08/2007] [Indexed: 05/16/2023]
Abstract
The toxicity and hazard of a mixture of selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, fluvoxamine, and sertraline, to zooplankton communities were evaluated using 120,00l outdoor microcosms. Acute (day 4) and chronic (day 35) zooplankton abundance and species richness were assessed for Rotifera, Cladocera, and Copepoda. For acute SSRI exposures, rotifers were the most sensitive zooplankton taxa to changes in abundance (predicted no effect concentration (PNEC)=19 nM); however, no effects in zooplankton species richness were observed for this treatment period. A decrease in Copepoda abundance and species richness was observed following chronic exposures of SSRIs (PNEC=9.1 nM). A 99th-centile predicted environmental concentration (PEC=0.51 nM) yielded HQs at least two orders of magnitude below 1. Therefore, mixtures of SSRIs do not appear to present a hazard to zooplankton communities at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Brian D Laird
- Centre for Toxicology, Canadian Network of Toxicology Centres (CNTC), University of Guelph, Guelph, ON, Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
48
|
Hillis DG, Lissemore L, Sibley PK, Solomon KR. Effects of monensin on zooplankton communities in aquatic microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6620-6626. [PMID: 17948817 DOI: 10.1021/es070799f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effects of monensin, an antibiotic widely used in the poultry and beef industry, were evaluated on zooplankton community structure and population dynamics. Monensin was added to 12 000 L aquatic microcosms as a single treatment at concentrations ranging from 0.5 to 500 microg/L, and they were evaluated over a 50 day period. Changes in the zooplankton assemblage were evaluated by principal response curves (PRC), while changes in abundance and species richness were evaluated by analysis of variance (ANOVA). Monensin did not significantly affect community structure. However, significant changes within specific taxonomic groups were observed with decreases in the abundance of Rotifera and Copepoda nauplii and in the richness of Rotifera and Cladocera. Concentration-dependent increases in Ostracoda abundance were also observed. Changes in chlorophyll-a concentrations within the microcosms over the course of the study indicated that the changes in zooplankton populations were the indirect result of the effects of monensin on the algal community. Monensin concentrations measured in surface waters were 40 times lower than the determined no-observable effect concentration (NOEC) of 50 microg/L and do not likely present a risk to zooplankton.
Collapse
Affiliation(s)
- Derek G Hillis
- Department of Environmental Biology, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|