1
|
Sun Y, Ma S, Shi Y, Chen M, Lan Y, Hu L, Yang X. Overcoming biological inertness: multifaceted strategies to optimize PEEK bioactivity for interdisciplinary clinical applications. Biomater Sci 2025. [PMID: 40314180 DOI: 10.1039/d4bm01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Polyether ether ketone (PEEK), characterized by a comparable elastic modulus to human bone with high wear resistance, radiolucency, and biocompatibility, demonstrates considerable promise for clinical applications. However, due to the significant limitations in clinical applications caused by the biological inertness of PEEK, it should first be modified to meet clinical needs. Currently, the field of PEEK modifications is rapidly advancing, with a particular emphasis on enhancing its biological properties. Most of the previous reviews have separately discussed strategies like antibacterial, osteogenic, and angiogenic enhancements for PEEK. This review combines cross-domain insights to update and synthesize recent research on PEEK composites, focusing on advanced multi-component sustained release platforms that mimic postoperative biological processes. Such temporal alignment between material functionality and physiological healing phases demonstrates unprecedented potential for expanding PEEK's clinical versatility.
Collapse
Affiliation(s)
- Yingjia Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Xiaofeng Yang
- Hangzhou City University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
2
|
Al-Samaray ME, Fatalla AA. Biological, Biomechanical, and Histopathological Evaluation of Polyetherketoneketone Bioactive Composite as Implant Material. J Biomed Mater Res B Appl Biomater 2025; 113:e35535. [PMID: 39853931 DOI: 10.1002/jbm.b.35535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO3/TeO2 nanocomposite, comparing it to PEKK/15 wt.% CaSiO3 and PEKK groups. The in vitro study, involving 90 discs (n = 30), assessed the cytotoxicity of all groups after 24, 72, and 168 h. The in vivo animal study, using cylinder-type implants (n = 30), evaluated osseointegration through biomechanical push-out tests, descriptive histopathological examinations of decalcified sections stained with hematoxylin and eosin, and histomorphometric analysis of new bone formation area after 2- and 6-week healing intervals. The cytocompatibility of PEKK/15 wt.% CaSiO3/1 wt.% TeO2 composite confirmed its acceptance as a biomedical material. Additionally, in vivo study results showed that the PEKK/15 wt.% CaSiO3/1 wt.% TeO2 had the highest shear strength value and the highest new bone formation area compared to other experimental groups. The multimodal concept of adding CaSiO3 micro fillers and TeO2 nanofillers to PEKK produces a cytocompatible composite that enhances osseointegration and new bone formation in a rabbit's femur after 2- and 6-week healing intervals.
Collapse
Affiliation(s)
- Manar E Al-Samaray
- Department of Prosthodontics, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Abdalbseet A Fatalla
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Youness RA, Taha MA. Role of Ti 3AlC 2 MAX phase in regulating biodegradation and improving electrical properties of calcium silicate ceramic for bone repair applications. Sci Rep 2024; 14:25811. [PMID: 39468168 PMCID: PMC11519508 DOI: 10.1038/s41598-024-74859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Calcium silicate ceramic is a promising bioceramic for various biomedical applications, but its high biodegradation rate and low strength restrict its clinical utility. As a result, the study devised an innovative solution to address these issues by utilizing the titanium aluminum carbide phase, potentially for the first time in biological applications, in conjugation with hydroxyapatite. Then, using powder metallurgy technology, they added these phases to calcium silicate to create nanocomposites. After soaking in simulated body fluid for ten days, the produced nanocomposites were assessed for bioactivity and biodegradability using scanning electron microscopy, inductively coupled plasma-atomic emission spectroscopy, and weight loss assays. Their electrical and dielectric properties were also measured before and after soaking in the simulated body fluid solution. Furthermore, the tribo-mechanical properties of all sintered samples were measured. Interestingly, adding 40% hydroxyapatite nanoparticles to calcium silicate reduced the porosity from 12 to 6%. However, adding five vol% of the titanium aluminum carbide phase to the same sample increased the porosity to 8%. Importantly, these recorded percentages of porosity were comparable to those of compact bone porosity, which range from 5 to 13%. The addition of hydroxyapatite and titanium aluminum carbide phase significantly improved the rapid biodegradation of calcium silicate, albeit with a slight decrease in its bioactive properties, as evidenced by the incomplete surface coverage of the samples with the hydroxyapatite layer in the scanning electron microscopy images. The electrical properties of the nanocomposites were better with the addition of hydroxyapatite and titanium aluminum carbide phase, which helped the bone heal faster. The addition of a titanium aluminum carbide phase significantly improved the mechanical properties of the resulting nanocomposites. For example, the calculated values for compressive strength of all examined samples were 131, 115, 105, 147, and 135 MPa. Based on the results, the prepared samples can be used in orthopaedic and dental applications.
Collapse
Affiliation(s)
- Rasha A Youness
- Spectroscopy Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Mohammed A Taha
- Solid State Physics Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
- Pharos University in Alexandria, Canal Mahmoudiah Street, Smouha, Alexandria, Egypt.
| |
Collapse
|
4
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Abdulaziz D, Anastasiou AD, Panagiotopoulou V, Raif EM, Giannoudis PV, Jha A. Physiologically engineered porous titanium/brushite scaffolds for critical-size bone defects: A design and manufacturing study. J Mech Behav Biomed Mater 2023; 148:106223. [PMID: 37976684 DOI: 10.1016/j.jmbbm.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Repairing critical-size bone defects still represents a critical clinical challenge in the field of trauma surgery. This study focuses on a physiological design and manufacturing of porous composite scaffold (titanium Ti with 10 % mole iron doped brushite DCPD-Fe3+) which can mimic the biomechanical properties of natural cortical bone, specifically for the purpose of repairing critical-size defects. To achieve this, the principle of design of experiments (DOE) was applied for investigating the impact of sintering temperature, mineral ratio, and volume fraction of porosity on the mechanical properties of the fabricated scaffolds. The fabricated scaffolds had open porosity up to 60 %, with pore size approximately between 100 μm and 850 μm. The stiffness of the porous composite scaffolds varied between 3.30 GPa and 20.50 GPa, while the compressive strength ranged from approximately 130 MPa-165 MPa at sintering temperatures equal to or exceeding 1000 °C. Scaffolds with higher porosity and mineral content demonstrated lower stiffness values, resembling natural bone. Numerical simulation was employed by Ansys Workbench to investigate the stress and strain distribution of a critical size defect in mid-shaft femur which was designed to be replaced with the fabricated scaffold. The fabricated scaffolds showed flexible biomechanical behaviour at the bone/scaffold interface, generating lower stress levels and indicating a better match with the femoral shaft stiffness. The experimental and numerical findings demonstrated promising applications for manufacturing a patient-specific bone scaffold for critical and potentially large defects for reducing stress shielding and minimizing non-union risk.
Collapse
Affiliation(s)
- Dina Abdulaziz
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Antonios D Anastasiou
- Department of Chemical Engineering, University of Manchester, Manchester, M1 3AL, UK
| | | | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Ma R, Su Y, Cao R, Wang K, Yang P. Enhanced Osteogenic Activity and Bone Repair Ability of PLGA/MBG Scaffolds Doped with ZIF-8 Nanoparticles Loaded with BMP-2. Int J Nanomedicine 2023; 18:5055-5072. [PMID: 37701821 PMCID: PMC10493152 DOI: 10.2147/ijn.s423985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023] Open
Abstract
Background Tissue engineering scaffolds are porous and can be loaded with growth factors to promote osteogenesis and bone repair, which can solve the problem of clinical bone defects. The direct loading of growth factors on scaffolds is hindered by the disadvantages of low loading capacities, and uncontrollable burst release. Zeolitic imidazolate framework-8 (ZIF-8) has osteoinductive activity and drug-loading potential and can be loaded with growth factors to achieve sustained release. In this study, we aimed to establish a sustained release system of composite scaffolds loaded with growth factors to achieve the goal of slow controlled release and effective bone repair. Methods ZIF‑8 nanoparticles loaded with bone morphogenetic protein-2 (BMP-2) were incorporated into poly-(lactide-co-glycolide)/mesoporous bioactive glass (PLGA/MBG) porous scaffolds by a 3D-printing method. The surface morphology, chemical properties and BMP-2 release of the prepared scaffold were investigated. The osteoblast adhesion, proliferation, spreading, and osteogenic differentiation in vitro and the bone repair ability in vivo of the PLGA/MBG/ZIF-8/BMP-2 (PMZB) scaffold were evaluated, and compared with those of PLGA/MBG (PM) and PLGA/MBG/ZIF-8 (PMZ) scaffolds. Results The results showed that the PMZB scaffold exhibited a slow and continuous BMP-2 release pattern, enhanced osteoblast adhesion, proliferation, spreading and osteogenic differentiation in vitro, and promoted new bone formation and bone repair in vivo. Conclusion The PLGA/MBG/ZIF-8/BMP-2 porous scaffold could continuously and slowly release BMP-2, enhance osteogenic activity, and promote new bone formation and bone repair at bone defects. The PMZB scaffold can be used as a bone graft material to repair bone defect at non-weight-bearing sites.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| |
Collapse
|
7
|
Liu S, Liu W, Yang Q, Yang S, Yang Y, Fan L, Zhang Y, Qi B, Shi Z, Wei X, Zhu L, Li T. Non-Coding-RNA-Activated Core/Chitosan Shell Nanounits Coated with Polyetheretherketone for Promoting Bone Regeneration and Osseointegration via Osteoimmunology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12653-12668. [PMID: 36868875 DOI: 10.1021/acsami.2c19186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone implant outcome and bone regeneration properties can be improved by the immunomodulation of exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs), which contain cytokines, signaling lipids, and regulatory miRNAs. Analysis of miRNAs in BMSCs-derived exosomes showed that miR-21a-5p exhibited the highest expression and was associated with the NF-κB pathway. Hence, we developed an implant with miR-21a-5p functionality to promote bone incorporation by immunoregulation. Mediated by the potent interaction between tannic acid (TA) and biomacromolecules, the tannic acid modified mesoporous bioactive glass nanoparticles coated with miR-21a-5p (miR-21a-5p@T-MBGNs) were reversibly attached to TA-modified polyetheretherketone (T-PEEK). Cocultured cells could phagocytose miR-21a-5p@T-MBGNs slowly released from miR-21a-5p@T-MBGNs loaded T-PEEK (miMT-PEEK). Moreover, miMT-PEEK boosted macrophage M2 polarization via the NF-κB pathway to increase BMSCs osteogenic differentiation. In vivo testing of miMT-PEEK in the rat air-pouch model and rat femoral drilling model indicated effective macrophage M2 polarization, new bone formation, and excellent osseointegration. Overall, the osteoimmunomodulation of the miR-21a-5p@T-MBGNs-functionalized implant promoted osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yili Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Tao Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Wang J, Yu W, Shi R, Yang S, Zhang J, Han X, Zhou Z, Gao W, Li Y, Zhao J. Osseointegration behavior of carbon fiber reinforced polyetheretherketone composites modified with amino groups: An in vivo study. J Biomed Mater Res B Appl Biomater 2023; 111:505-512. [PMID: 36191250 DOI: 10.1002/jbm.b.35167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023]
Abstract
Polyetheretherketone (PEEK) has become increasingly popular in dentistry and orthopedics due to its excellent chemical stability, reliable biosafety, and low elastic modulus. However, PEEK's biomechanical strength and bioactivity are limited and need to be increased as an implant material. The previous study in vitro has shown that the amino-functionalized carbon fiber reinforced PEEK (A-30%-CPEEK) possessed enhanced mechanical property and bioactivity. This study aims to evaluate the effect of amino groups modification on the osseointegration behavior of carbon fiber reinforced PEEK (30%-CPEEK) in rabbits. Herein, 30%-CPEEK and A-30%-CPEEK implant discs were implanted in rabbit skulls for 5 weeks, with pure titanium implants serving as a control. The bone-forming ability and osseointegration in vivo were systematically investigated by micro-computed tomography analysis, scanning electron microscope observation, and histological evaluation. Our results showed that all detection parameters were significantly different between the A-30%-CPEEK and 30%-CPEEK groups, favoring those in the A-30%-CPEEK, whose appraisal parameters were equal to or better than pure titanium. Therefore, this study supported the importance of amino groups in facilitating the new bone formation and bone-implant integration, suggesting that A-30%-CPEEK with enhanced osseointegration will be a promising material for dental or orthopedic implants.
Collapse
Affiliation(s)
- Junyan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ruining Shi
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
9
|
Gao Y, Pang Y, Wei S, Han Q, Miao S, Li M, Tian J, Fu C, Wang Z, Zhang X, Yang P, Liu Y. Amyloid-Mediated Nanoarchitectonics with Biomimetic Mineralization of Polyetheretherketone for Enhanced Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10426-10440. [PMID: 36791143 DOI: 10.1021/acsami.2c20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyetheretherketone (PEEK), a widely used implant material, has attracted the attention of scientific researchers because of its bone-matched elastic modulus, radiolucency, and chemical resistance. However, the bioinert chemical properties of PEEK do not promote bone apposition once implanted. In this study, using a phase-transitioned lysozyme (PTL) nanofilm as a sandwiched layer, a robust hydroxyapatite (HAp) coating on PEEK (HAp@PTL@PEEK) is constructed. The PTL nanofilm shows strong adhesion to the PEEK surface and induces biomimetic mineralization to form a compact HAp coating on PEEK in simulated body fluids. This HAp coating not only shares a higher adhesion strength and better stability but can also be applied to implants with complex 3D structures. HAp@PTL@PEEK showed significantly enhanced osteogenic capacity when cultured with rat bone marrow mesenchymal stem cells by promoting initial cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo evaluations utilizing models of femoral condyle defects and skull defects confirm that the HAp coating substantially augments bone remodeling and osseointegration ability. Compared with the traditional method, our modified method is simpler, more environmentally friendly, and uses less hazardous components. Furthermore, the obtained HAp coating shares a higher adhesion strength to PEEK and a better osteogenic capacity. The study offers a novel method to improve the osseointegration of PEEK-based implants in biointerfaces and tissue engineering.
Collapse
Affiliation(s)
- Yingtao Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanyun Pang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an 710004, China
| | - Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
- Institute of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
10
|
Blinova AA, Karamirzoev AA, Guseynova AR, Maglakelidze DG, Ilyaeva TA, Gusov BA, Meliksetyants AP, Pirumian MM, Taravanov MA, Pirogov MA, Vakalov DS, Bernyukevich TV, Gvozdenko AA, Nagdalian AA, Blinov AV. Synthesis and Characterization of Calcium Silicate Nanoparticles Stabilized with Amino Acids. MICROMACHINES 2023; 14:245. [PMID: 36837945 PMCID: PMC9967975 DOI: 10.3390/mi14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This work presents the development of a method for the synthesis of calcium silicate nanoparticles stabilized with essential amino acids. CaSiO3 nanoparticles were obtained through chemical precipitation. In the first stage, the optimal calcium-containing precursor was determined. The samples were examined using scanning electron microscopy. It was found that Ca(CH3COO)2 was the optimal calcium-containing precursor. Then, the phase composition of calcium silicate was studied using X-ray phase analysis. The results showed the presence of high-intensity bands in the diffractogram, which characterized the phase of the nanosized CaSiO3-wollastonite. In the next stage, the influence of the type of amino acid on the microstructure of calcium silicate was studied. The amnio acids studied were valine, L-leucine, L-isoleucine, L-methionine, L-threonine, L-lysine, L-phenylalanine, and L-tryptophan. The analysis of the SEM micrographs showed that the addition of amino acids did not significantly affect the morphology of the CaSiO3 samples. The surface of the CaSiO3 samples, both without a stabilizer and with amino acids, was represented by irregularly shaped aggregates consisting of nanoparticles with a diameter of 50-400 nm. Further, in order to determine the optimal amino acid to use to stabilize nanoparticles, computerized quantum chemical modeling was carried out. Analysis of the data obtained showed that the most energetically favorable interaction was the CaSiO3-L-methionine configuration, where the interaction occurs through the amino group of the amino acid; the energy value of which was -2058.497 kcal/mol. To confirm the simulation results, the samples were examined using IR spectroscopy. An analysis of the results showed that the interaction of calcium silicate with L-methionine occurs via the formation of a bond through the NH3+ group of the amino acid.
Collapse
Affiliation(s)
- Anastasiya A. Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | | | - Asiyat R. Guseynova
- Faculty of Dentistry, Derzhavin Tambov State University, 392008 Tambov, Russia
| | - David G. Maglakelidze
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Tatiana A. Ilyaeva
- Faculty of Medicine, Stavropol State Medical University, 355017 Stavropol, Russia
| | - Batradz A. Gusov
- Faculty of Dentistry, North Ossetian State Medical University, 362025 Vladikavkaz, Russia
| | | | - Mari M. Pirumian
- Medical and Preventive Faculty, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Maxim A. Taravanov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Maxim A. Pirogov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Dmitriy S. Vakalov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | | | - Alexey A. Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Andrey A. Nagdalian
- Laboratory of Food and Industrial Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia
| | - Andrey V. Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia
| |
Collapse
|
11
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
13
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
14
|
Yuan K, Zhang K, Yang Y, Lin Y, Zhou F, Mei J, Li H, Wei J, Yu Z, Zhao J, Tang T. Evaluation of interbody fusion efficacy and biocompatibility of a polyetheretherketone/calcium silicate/porous tantalum cage in a goat model. J Orthop Translat 2022; 36:109-119. [PMID: 36090821 PMCID: PMC9437743 DOI: 10.1016/j.jot.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
Objective To evaluate the interbody fusion efficacy and biocompatibility of a graft-free cage made of polyetheretherketone/calcium silicate composite/porous tantalum (PEEK/CS/pTa cage) compared with a PEEK/CS cage with an autogenous bone graft in a goat model. Methods PEEK/CS/pTa and PEEK/CS cages were prepared through an injection-moulding method. The PEEK/CS composites and porous tantalum were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) mapping. Then, adult goats were chosen for C2/C3 and C3/C4 discectomy via the anterior cervical approach and randomly implanted with PEEK/CS/pTa and PEEK/CS/cages with autogenous bone grafts. The fusion performance and osseointegration of the cages were evaluated by X-ray imaging, magnetic resonance imaging (MRI) scanning, and bone histomorphometry analysis. Moreover, the concentrations of Ca and Si in urine, serum, tissue around the fusion segments and major organs of the goats were determined by inductively coupled plasma–optical emission spectrometry (ICP–OES). Histological observation of major organs of the goats was used to evaluate the biosafety of PEEK/CS/pTa and PEEK/CS cages. Results X-ray and MRI imaging suggested that both PEEK/CS/pTa cages and PEEK/CS cages maintained similar average intervertebral space heights. The tissue volumes in the fusion area were comparable between the two groups of cages at 26 weeks after surgery. Histological morphometric data showed that PEEK/CS/pTa cages and PEEK/CS cages with autogenous bone grafts had similar bone contact and osseointegration at 12 and 26 weeks. Element determination of serum, urine, spinal cord, dura matter, bone and organs showed that the CS/PEEK cages did not cause abnormal systemic metabolism or accumulation of calcium and silicon in local tissues and major organs of goats after implantation. No obvious pathological changes were found in the heart, liver, spleen, liver or kidney tissues. Conclusion Overall, these results suggested that the graft-free PEEK/CS/pTa cage showed similar bony fusion performance to the PEEK/CS cages with autogenous bone grafts. The cages releasing calcium and silicon had good biological safety in vivo. The translational potential of this article: This study provided a new graft-free interbody fusion solution to patients with degenerative disc diseases, which could avert potential donor-site complications. This study also provided a detailed assessment of element excretion and accumulation of Ca and Si in vivo, which validated the biosafety of this new type of bioactive interbody fusion cage.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author.
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011, China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011, China.
| |
Collapse
|
15
|
Al Maruf DSA, Parthasarathi K, Cheng K, Mukherjee P, McKenzie DR, Crook JM, Wallace GG, Clark JR. Current and future perspectives on biomaterials for segmental mandibular defect repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D S Abdullah Al Maruf
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Krishnan Parthasarathi
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
| | - Kai Cheng
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Payal Mukherjee
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - David R. McKenzie
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Jeremy M. Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
- Illawarrah Health and Medical Research Institute, The University of Wollongong, Wollongong, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Jonathan R. Clark
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| |
Collapse
|
16
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
17
|
Li N, Bai J, Wang W, Liang X, Zhang W, Li W, Lu L, Xiao L, Xu Y, Wang Z, Zhu C, Zhou J, Geng D. Facile and Versatile Surface Functional Polyetheretherketone with Enhanced Bacteriostasis and Osseointegrative Capability for Implant Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59731-59746. [PMID: 34886671 DOI: 10.1021/acsami.1c19834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Implant-associated infections and inadequate osseointegration are two challenges of implant materials in orthopedics. In this study, a lithium-ion-loaded (Li+)/mussel-inspired antimicrobial peptide (AMP) designed to improve the osseointegration and inhibit bacterial infections effectively is prepared on a polyetheretherketone (PEEK) biomaterial surface through the combination of hydrothermal treatment and mussel-inspired chemistry. The results illustrate that the multifunctional PEEK material demonstrated a great inhibitory effect on Escherichia coli and Staphylococcus aureus, which was attributed to irreversible bacterial membrane damage. In addition, the multifunctional PEEK can simultaneously upregulate the expression of osteogenesis-associated genes/proteins via the Wnt/β-catenin signaling pathway. Furthermore, an in vivo assay of an infection model revealed that the multifunctional PEEK implants killed bacteria with an efficiency of 95.03%. More importantly, the multifunctional PEEK implants accelerated the implant-bone interface osseointegration compared with pure PEEK implants in the noninfection model. Overall, this work provides a promising strategy for improving orthopedic implant materials with ideal osseointegration and infection prevention simultaneously, which may have broad application clinical prospects.
Collapse
Affiliation(s)
- Ning Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaolong Liang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Long Xiao
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215000, China
| | - Chen Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Heifei, Anhui 230001, China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
18
|
Zheng J, Zhao H, Dong E, Kang J, Liu C, Sun C, Li D, Wang L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112333. [PMID: 34474884 DOI: 10.1016/j.msec.2021.112333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Polyetheretherketone (PEEK) was widely applied into fabricating of orthopaedic implants, benefitting its excellent biocompatibility and similar mechanical properties to native bones. However, the inertness of PEEK hinders its integration with the surrounding bone tissue. Here PEEK scaffolds with a series of hydroxyapatite (HA) contents in gradient were manufactured via fused filament fabrication (FFF) 3D printing techniques. The influence of the pore size, HA content and printing direction on the mechanical properties of the PEEK/HA scaffolds was systematically evaluated. By adjusting the pore size and HA contents, the elastic modulus of the PEEK/HA scaffolds can be widely tuned in the range of 624.7-50.6 MPa, similar to the variation range of natural cancellous bone. Meanwhile, the scaffolds exhibited higher Young's modulus and lower compressive strength along Z printing direction. The mapping relationship among geometric parameters, HA content, printing direction and mechanical properties was established, which gave more accurate predictions and controllability of the modulus and strength of scaffolds. The PEEK/HA scaffolds with the micro-structured surface could promote cell attachment and mineralization in vitro. Therefore, the FFF-printed PEEK/HA composites scaffolds can be a good candidate for bone grafting and tissue engineering.
Collapse
Affiliation(s)
- Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Enchun Dong
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | | | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
19
|
Causey GC, Picha GJ, Price J, Pelletier MH, Wang T, Walsh WR. The effect of a novel pillar surface morphology and material composition demonstrates uniform osseointegration. J Mech Behav Biomed Mater 2021; 123:104775. [PMID: 34419888 DOI: 10.1016/j.jmbbm.2021.104775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Long-term survival of orthopedic implants requires a strong and compliant interface between the implant and surrounding bone. This paper further explores the in-vivo response to a novel, macro-scale osseointegration surface morphology. In this study, we examine the effects of material composition on osseointegration in relation to the controlled surface geometry. The pillared surface is constructed of discontinuous surface geometry which creates an open space for unencumbered bone migration. In creating an open, macro-scale morphology we have demonstrated a bone migration and integration that is less dependent on the underlying implant material and is substantially driven thru surface geometry. In this in-vivo study an established ovine model was used to examine the effects of implant material composition on bone ingrowth and mechanical performance. Cortical and cancellous sites in the tibia and distal femur were examined at 6 and 12 weeks with μCT, histology, histomorphometry, and mechanical performance. Implant materials tested included PEEK (Evonik, VISTAKEEP®), PEEK HA (Invibio, PEEK-OPTIMA HA Enhanced), Titanium coated PEEK, Titanium (Ti-6Al-4V, Grade 5), and Ultra-High Molecular Weight Polyethylene (UHMWPE). Extensive bone ingrowth was noted in all implant materials at 12 weeks with maturation of the bone within the pillar structure from 6 weeks to 12 weeks. Histology demonstrated little fibrous deposition at the implant interface with no adverse cellular reactions. Histomorphometric review of cortical sites revealed greater than 60% bone ingrowth at 6 weeks increasing to nearly 80% by the 12 week timepoint. Cancellous sites yielded a mean of 30% ingrowth at 6 weeks increasing to 35% by 12 weeks. Pushout testing of cortical site samples demonstrated increase in pushout force between the 6 and 12 week timepoints. Increases were significant in all but the UHMWPE samples. Stiffness likewise increased in all samples between the two times. These results demonstrated the effectiveness of the pillar morphology with full integrating from the surrounding bony tissue regardless of the material.
Collapse
Affiliation(s)
| | | | - Jamey Price
- Applied Medical Technology, Brecksville, OH, USA
| | | | - Tian Wang
- The University of New South Wales, Australia
| | | |
Collapse
|
20
|
Effects of Raster Angle and Material Components on Mechanical Properties of Polyether-Ether-Ketone/Calcium Silicate Scaffolds. Polymers (Basel) 2021; 13:polym13152547. [PMID: 34372150 PMCID: PMC8348505 DOI: 10.3390/polym13152547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Polyetheretherketone (PEEK) was widely used in the fabrication of bone substitutes for its excellent chemical resistance, thermal stability and mechanical properties that were similar to those of natural bone tissue. However, the biological inertness restricted the osseointegration with surrounding bone tissue. In this study, calcium silicate (CS) was introduced to improve the bioactivity of PEEK. The PEEK/CS composites scaffolds with CS contents in gradient were fabricated with different raster angles via fused filament fabrication (FFF). With the CS content ranging from 0 to 40% wt, the crystallinity degree (from 16% to 30%) and surface roughness (from 0.13 ± 0.04 to 0.48 ± 0.062 μm) of PEEK/CS scaffolds was enhanced. Mechanical testing showed that the compressive modulus of the PEEK/CS scaffolds could be tuned in the range of 23.3–541.5 MPa. Under the same printing raster angle, the compressive strength reached the maximum with CS content of 20% wt. The deformation process and failure modes could be adjusted by changing the raster angle. Furthermore, the mapping relationships among the modulus, strength, raster angle and CS content were derived, providing guidance for the selection of printing parameters and the control of mechanical properties.
Collapse
|
21
|
Zhang L, Xue Y, Gopalakrishnan S, Li K, Han Y, Rotello VM. Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28764-28773. [PMID: 34110763 PMCID: PMC8579494 DOI: 10.1021/acsami.1c04895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium is widely utilized for manufacturing medical implants due to its inherent mechanical strength and biocompatibility. Recent studies have focused on developing coatings to impart unique properties to Ti implants, such as antimicrobial behavior, enhanced cell adhesion, and osteointegration. Ca- and Si-based ceramic (CS) coatings can enhance bone integration through the release of Ca and Si ions. However, high degradation rates of CS ceramics create a basic environment that reduces cell viability. Polymeric or protein-based coatings may be employed to modulate CS degradation. However, it is challenging to ensure coating stability over extended periods of time without compromising biocompatibility. In this study, we employed a fluorous-cured collagen shell as a drug-loadable scaffold around CS nanorod coatings on Ti implants. Fluorous-cured collagen coatings have enhanced mechanical and enzymatic stability and are able to regulate the release of Ca and Si ions. Furthermore, the collagen scaffold was loaded with antimicrobial peptides to impart antimicrobial activity while promoting cell adhesion. These multifunctional collagen coatings simultaneously regulate the degradation of CS ceramics and enhance antimicrobial activity, while maintaining biocompatibility.
Collapse
Affiliation(s)
- Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, University of Massachusetts Amherst, MA, 01003, USA
| | - Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | | | - Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
22
|
Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020; 12:E2858. [PMID: 33260490 PMCID: PMC7760052 DOI: 10.3390/polym12122858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
In this article, recent advances in the development, preparation, biocompatibility and mechanical properties of polyetheretherketone (PEEK) and its composites for hard and soft tissue engineering are reviewed. PEEK has been widely employed for fabricating spinal fusions due to its radiolucency, chemical stability and superior sterilization resistance at high temperatures. PEEK can also be tailored into patient-specific implants for treating orbital and craniofacial defects in combination with additive manufacturing process. However, PEEK is bioinert, lacking osseointegration after implantation. Accordingly, several approaches including surface roughening, thin film coating technology, and addition of bioactive hydroxyapatite (HA) micro-/nanofillers have been adopted to improve osseointegration performance. The elastic modulus of PEEK is 3.7-4.0 GPa, being considerably lower than that of human cortical bone ranging from 7-30 GPa. Thus, PEEK is not stiff enough to sustain applied stress in load-bearing orthopedic implants. Therefore, HA micro-/nanofillers, continuous and discontinuous carbon fibers are incorporated into PEEK for enhancing its stiffness for load-bearing applications. Among these, carbon fibers are more effective than HA micro-/nanofillers in providing additional stiffness and load-bearing capabilities. In particular, the tensile properties of PEEK composite with 30wt% short carbon fibers resemble those of cortical bone. Hydrophobic PEEK shows no degradation behavior, thus hampering its use for making porous bone scaffolds. PEEK can be blended with hydrophilic polymers such as polyglycolic acid and polyvinyl alcohol to produce biodegradable scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Ma R, Li Y, Wang J, Yang P, Wang K, Wang W. Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:98. [PMID: 33130931 DOI: 10.1007/s10856-020-06435-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive. In this study, MC3T3-E1 cells incubated on CS/PK and PK samples were subjected to diabetic serum (DS) and normal serum (NS); cell attachment, morphology, spreading, proliferation, and osteogenic differentiation were compared to assess in vitro osteoblastic functions on the surfaces of different materials. An in vivo test was performed on diabetic rabbits implanted with CS/PK or PK implants into the cranial bone defect to assess the osteointegration ability of the implants. In vitro results showed that diabetes inhibited osteoblastic functions evidenced by impaired morphology and spreading, and decreased attachment, proliferation, and osteogenic differentiation compared with the findings under normal conditions. Notably, CS/PK ameliorated osteoblastic disfunction under diabetic conditions in vitro. In vivo results from micro-CT and histologic examinations revealed that rabbits with CS/PK implants exhibited improved osteointegration at the bone/implant interface under diabetic conditions compared with PK. Therefore, the CS/PK composite improved the impaired osteointegration induced by diabetes and is a promising orthopedic or craniofacial implant material that may obtain good clinical performance in diabetic patients.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yongwei Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Jialin Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
24
|
Hu X, Mei S, Wang F, Qian J, Xie D, Zhao J, Yang L, Wu Z, Wei J. Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration. Bioact Mater 2020; 6:928-940. [PMID: 33102936 PMCID: PMC7560583 DOI: 10.1016/j.bioactmat.2020.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Polyetherketoneketone (PEKK) exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum (Ta) possesses excellent osteogenesis and osseointegration but high elastic modulus and density, and processing is too difficult and expensive. In the present study, combining of the advantages of both PEKK and Ta, implantable composites of PEKK/Ta were fabricated by blending PEKK with Ta microparticles of 20 v% (PT20) and 40 v% (PT40) content. In comparison with PT20 and PEKK, the surface hydrophilicity, surface energy, roughness and proteins adsorption as well as mechanical performances of PT40 significantly increased because of the higher Ta particles content in PEKK. Furthermore, PT40 exhibited the mechanical performances (e.g., compressive strength and modulus of elasticity) close to the cortical bone of human. Compared with PT20 and PEKK, PT40 with higher Ta content remarkably enhanced the responses (including adhesion, proliferation and osteogenic differentiation) of MC3T3-E1 cells in vitro. Moreover, PT40 markedly improved bone formation as well as osseointegration in vivo. In short, incorporation of Ta microparticles into PEKK created implantable composites with improved surface performances, which played key roles in stimulating cell responses/bone formation as well as promoting osseointegration. PT40 might have great potential for bear-loading bone substitute.
Collapse
Affiliation(s)
- Xinglong Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jun Zhao
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Orthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
25
|
Boschetto F, Marin E, Ohgitani E, Adachi T, Zanocco M, Horiguchi S, Zhu W, McEntire BJ, Mazda O, Bal BS, Pezzotti G. Surface functionalization of PEEK with silicon nitride. Biomed Mater 2020; 16. [PMID: 32906100 DOI: 10.1088/1748-605x/abb6b1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Surface roughness, bioactivity, and antibacterial properties are desirable in skeletal implants. We hot-pressed a mix of particulate sodium chloride (NaCl) salt and silicon nitride (β-Si3N4) onto the surface of bulk PEEK. NaCl grains were removed by leaching in water, resulting in a porous PEEK surface embedded with ~15 vol.% β-Si3N4 particles. This functionalized surface showed the osteogenic and antibacterial properties previously reported in bulk silicon nitride implants. Surface enhancement of PEEK with β-Si3N4 could improve the performance of spinal fusion cages, by facilitating arthrodesis and resisting bacteria.
Collapse
Affiliation(s)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, JAPAN
| | | | | | - Matteo Zanocco
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, JAPAN
| | | | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Research Institute for Nanoscience, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Kyoto, JAPAN
| | | | - Osam Mazda
- Kyoto Prefectural University of Medicine, Kyoto, JAPAN
| | - B Sonny Bal
- SINTX Technologies, Salt Lake City, UNITED STATES
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Kyoto, JAPAN
| |
Collapse
|
26
|
Ma R, Wang J, Li C, Ma K, Wei J, Yang P, Guo D, Wang K, Wang W. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J Biomater Appl 2020; 35:342-352. [PMID: 32772686 DOI: 10.1177/0885328220935008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyetheretherketone (PEEK) has been becoming a popular implant material in orthopaedic applications. The lack of bioactivity affects PEEK's long-term lifetime, and appropriate surface modification is an effective way to enhance its bioactivity. Sulfonation of PEEK can endow PEEK with a 3 D porous network surface and improve its bioactivity. This study is aimed at exploring an optimal sulfonation time and a post-treatment method of PEEK sulfonation. PEEK was immersed into concentrated sulfuric acid for different sulfonation times and experienced different post-treatment methods to turn into sulfonated PEEK (SPEEK). The immersion times were 0.5 min (SPEEK0.5), 1 min (SPEEK1), 3 min (SPEEK3), 5 min (SPEEK5) and 7 min (SPEEK7), and the post-treatment methods were acetone rinsing (SPEEK-T1), hydrothermal treatment (SPEEK-T2) and NaOH immersion (SPEEK-T3). Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy, hydrophilic property, ion release and cell viability evaluations were performed to optimize the sulfonation time, and the SEM, EDS, ion release and cell viability were analysed to optimize the post-treatment method. The results showed a porous network structure was formed on all samples of SPEEK, and the porous structure became more obvious and the S concentration increased with increasing sulfonation time. However, too long of an immersion time (SPEEK7) tended to damage the superficial porous structure and left a higher content of sulfuric acid, which could inhibit the growth of MC3T3E1 cells on its surface. In addition, the surface morphology, residual sulfuric acid and cytocompatibility of SPEEK-T1, SPEEK-T2 and SPEEK-T3 were not distinctly different. In conclusion, a 5-min sulfonation time was considered to be the optimal selection, and acetone rinsing, hydrothermal treatment and NaOH immersion showed the same effect in removing the residual sulfuric acid. The understanding of optimal sulfonation time and post-treatment method can provide a theoretical basis in preparing SPEEK for orthopaedic applications.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jialin Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxin Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kai Ma
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Riau AK, Lwin NC, Gelfand L, Hu H, Liedberg B, Chodosh J, Venkatraman SS, Mehta JS. Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration. Acta Biomater 2020; 107:299-312. [PMID: 31978623 DOI: 10.1016/j.actbio.2020.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
The majority of clinical corneal prostheses (KPros) adopt a core-skirt configuration. This configuration is favored owing to the optic core (generally a cylindrical, acrylic-based material, such as PMMA), that not only provides a clear window for the patients' vision, but also confers resistance to biodegradability. The surrounding skirt (typically a biological material, such as corneal tissue) allows for host tissue integration. However, due to poor biointegration between the dissimilar core and skirt materials, it results in a weak adhesion at the interface, giving rise to clinical complications, such as bacterial infections in the tissue-PMMA interface and device extrusion. Here, we physically immobilized nano-hydroxyapatite (nHAp) on a PMMA cylinder via a dip-coating technique, to create a bioactive surface that improved biointegration in vivo. We established that the nHAp coating was safe and stable in the rabbit cornea over five weeks. More importantly, we found that apoptotic, wound healing and inflammatory responses to nHAp-coated PMMA were substantially milder than to non-coated PMMA. More mature collagen, similar to the non-operated cornea, was maintained in the corneal stroma adjacent to the nHAp-coated implant edge. However, around the non-coated cylinder, an abundant new and loose connective tissue formed, similar to bone tissue response to bioinert scaffolds. As a result of superior biointegration, tissue adhesion with nHAp-coated PMMA cylinders was also significantly enhanced compared to non-coated cylinders. This study set a precedent for the future application of the nHAp coating on clinical KPros. STATEMENT OF SIGNIFICANCE: Currently, all clinical corneal prostheses utilize as-manufactured, non-surface modified PMMA optic cylinder. The bioinert cylinder, however, has poor biointegration and adhesion with the surrounding biological tissue, which can give rise to postoperative complications, such as microbial invasion in the tissue-PMMA loose interface and PMMA optic cylinder extrusion. In the current study, we showed that surface modification of the PMMA cylinder with bioactive nano-hydroxyapatite (nHAp) significantly enhanced its biointegration with corneal stromal tissue in vivo. The superior biointegration of the nHAp-coated PMMA was signified by a more attenuated corneal wound healing, inflammatory and fibrotic response, and better tissue apposition, as well as a significantly improved corneal stromal tissue adhesion when compared to the non-coated PMMA.
Collapse
|
28
|
Knaus J, Schaffarczyk D, Cölfen H. On the Future Design of Bio-Inspired Polyetheretherketone Dental Implants. Macromol Biosci 2019; 20:e1900239. [PMID: 31802617 DOI: 10.1002/mabi.201900239] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/10/2019] [Indexed: 11/09/2022]
Abstract
Polyetheretherketone (PEEK) is a promising implant material because of its excellent mechanical characteristics. Although this polymer is a standard material in spinal applications, PEEK is not in use in the manufacturing of dental implants, where titanium is still the most-used material. This may be caused by its relative bio-inertness. By the use of various surface modification techniques, efforts have been made to enhance its osseointegrative characteristics to enable the polymer to be used in dentistry. In this feature paper, the state-of-the-art for dental implants is given and different surface modification techniques of PEEK are discussed. The focus will lie on a covalently attached surface layer mimicking natural bone. The usage of such covalently anchored biomimetic composite materials combines many advantageous properties: A biocompatible organic matrix and a mineral component provide the cells with a surrounding close to natural bone. Bone-related cells may not recognize the implant as a foreign body and therefore, may heal and integrate faster and more firmly. Because neither metal-based nor ceramics are ideal material candidates for a dental implant, the combination of PEEK and a covalently anchored mineralized biopolymer layer may be the start of the desired evolution in dental surgery.
Collapse
Affiliation(s)
- Jennifer Knaus
- Department of Chemistry, Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.,stimOS GmbH, Byk-Gulden-Straße 2, 78467, Konstanz, Germany
| | | | - Helmut Cölfen
- Department of Chemistry, Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
29
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Xu X, Li Y, Wang L, Li Y, Pan J, Fu X, Luo Z, Sui Y, Zhang S, Wang L, Ni Y, Zhang L, Wei S. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials 2019; 212:98-114. [PMID: 31112825 DOI: 10.1016/j.biomaterials.2019.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Polyetheretherketone (PEEK) is considered a potential orthopedic/dental material because of its excellent mechanical and chemical properties (e.g., similar elastic modulus to that of human bone). However, the poor bacteriostasis and anti-inflammatory and osseointegrative properties of bioinert PEEK impede its clinical application. We previously developed a facile and versatile surface modification method using dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes) bonded by a mussel-inspired polydopamine coating, which effectively modulated cell inflammatory response and discouraged bacterial colonization in vitro. Herein, we report the application of this multifunctional surface modification method to improve bioinert PEEK, aimed at further studying the in vitro osteogenesis and in vivo properties of Dex/Mino liposome-modified PEEK to prevent bacterial contamination, attenuate the inflammatory response, and enhance ossification for physiologic osseointegration. Our study established that the Dex/Mino liposome-modified PEEK surface presented favorable stability and cytocompatibility. Compared with bare PEEK, improved osteogenic differentiation of human mesenchymal stem cells under both osteoinductive and osteoconductive conditions was found on the functionalized surface due to the liposomal Dex releasing. In vivo bacteriostasis assay confirmed that Mino released from the functionalized surface provided an effective antibacterial effect. Moreover, the subcutaneous foreign body reaction and beagle femur implantation models corroborated the enhanced anti-inflammatory and osteointegrative properties of the functionalized PEEK. Our findings indicate that the developed Dex/Mino liposome-modified PEEK with enhanced antibacterial, anti-inflammatory, and osseointegrative capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yongliang Li
- Second Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Xiaoming Fu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Zuyuan Luo
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Yi Sui
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Liang Wang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yaofeng Ni
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China; Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China.
| |
Collapse
|
31
|
Cai L, Zhang J, Qian J, Li Q, Li H, Yan Y, Wei S, Wei J, Su J. The effects of surface bioactivity and sustained-release of genistein from a mesoporous magnesium-calcium-silicate/PK composite stimulating cell responses in vitro, and promoting osteogenesis and enhancing osseointegration in vivo. Biomater Sci 2018; 6:842-853. [PMID: 29485660 DOI: 10.1039/c7bm01017f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface of a mesoporous magnesium-calcium-silicate (m-MCS)/polyetheretherketone (PK) composite (MPC) was modified by sand blasting, and genistein (GS) was loaded inside the nanopores of the m-MCS on the modified MPC (MPCm) surface. The results showed that compared with MPC, the surface roughness and hydrophilcity of MPCm obviously improved with more m-MCS exposed on its surface. Moreover, no obvious differences in surface roughness and hydrophilcity were found between MPCm and GS loaded MPCm (MPCm-Ge), and both of them possessed an improved apatite mineralization ability in simulated body fluid solution (SBF) compared with MPC, indicating excellent surface bioactivity. Moreover, the MPCm obviously stimulated the adhesion, proliferation, differentiation and gene expressions of MC3T3-E1 cells compared with MPC, and the sustained-release of GS from the MPCm-Ge surface further significantly promoted the cell proliferation, differentiation and gene expression. According to the Micro-CT, histological and SEM analysis, the results demonstrated that the MPCm obviously improved osteogenesis and enhanced osseointegration in vivo compared with MPC, and the release of GS from the MPCm-Ge surface further significantly improved osteogenesis and enhanced osseointegration. In summary, the significant promotion of cell responses in vitro, and the improvements of osteogenesis and the enhancement of osseointegration in vivo were attributed to the effects of surface bioactivity and GS sustained-release from the MPCm-Ge surface. Therefore, MPCm-Ge would be a potential candidate for orthopedic and dental applications.
Collapse
Affiliation(s)
- Liang Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Johansson P, Barkarmo S, Hawthan M, Peruzzi N, Kjellin P, Wennerberg A. Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. J Biomed Mater Res A 2018; 106:1440-1447. [PMID: 29341426 DOI: 10.1002/jbm.a.36345] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022]
Abstract
A nanosized hydroxyapatite (HA) modification on polyetheretherketone (PEEK) using a novel spin coating technique was investigated in a rabbit model. Spin coating technique creates a 20-40 nm thick layer of nanosized HA particles with similar shape, size, and crystallinity as human bone. Some implants were designed with a perforating hole in the apical region to mimic a fusion chamber of a spinal implant. The coating nano-structures were assessed using a scanning electron microscope. The in vivo response to HA-PEEK was compared to untreated PEEK with respect to removal torque, histomorphometry, and computed microtomography. The HA-coated and pure PEEK implants were inserted in the tibia and femur bone according to simple randomization. The rabbits were sacrificed 20 weeks after implantation. Removal torque analysis showed significantly higher values for HA-PEEK. Qualitative histological evaluation revealed an intimate contact between PEEK and the bone at the threads and perforated hole. Histomorphometric assessment showed higher bone-implant and bone area values for HA-PEEK but without statistical significance. The effect of the HA coating showed most prominent effect in the removal torque which may be correlated to an alteration in the bone quality around the HA-PEEK implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1440-1447, 2018.
Collapse
Affiliation(s)
- Pär Johansson
- Department of Prosthodontics Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Sargon Barkarmo
- Department of Prosthodontics/Dental Materials Science, The Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Göteborg, Sweden
| | - Mohammed Hawthan
- Prosthodontic Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Niccolò Peruzzi
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Per Kjellin
- AstraZeneca Bioventure Hub, Promimic AB, Mölndal, Sweden
| | - Ann Wennerberg
- Department of Prosthodontics/Dental Materials Science, The Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
33
|
Chu L, Jiang G, Hu XL, James TD, He XP, Li Y, Tang T. Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. J Mater Chem B 2018; 6:4197-4204. [DOI: 10.1039/c8tb00766g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a segmental radial bone defect model used to evaluate the osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold with nano-crystal surface microstructures that can release bioactive ions.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Guoqiang Jiang
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yaping Li
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|