1
|
Acquavia MA, Gubitosa J, Rizzi V, Cosma P, Gaeta C, Iannece P, Della Sala P, Guerrieri A, Tesoro C, Ciriello R, Lelario F, Gregori E, Montoro P, Di Capua A, Bianco G. Green synthesis of gold nanoparticles from pomegranate juice ascertained by a combined approach based on MALDI FT-ICR MS and LC-ESI-MS/MS. Food Chem 2025; 476:143427. [PMID: 39977989 DOI: 10.1016/j.foodchem.2025.143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
This research employs advanced analytical techniques to explore the specific roles of Pomegranate Juice (PJ) phytochemicals in both the reduction and stabilization of gold nanoparticles (AuNPs) obtained by means of juice from wasted fruits. A level 3 for classes annotation, used for MALDI FT ICR-MS data, was useful to provide an immediate visualization of the main involved metabolites in AuNPs synthesis, through van Krevelen diagrams. More than 25 elemental formulae containing at least one Au atom were assigned to AuNPs sample, confirming the formation of organogold complexes. LC-MS/MS analysis allowed a level 2 annotation of polyphenols and carbohydrates involved in metal reduction and AuNPs surface coating. This work highlights the potential of PJ in green nanoparticles synthesis, providing insights into the bioactive compounds responsible for the tunable characteristics of AuNPs.
Collapse
Affiliation(s)
- Maria Assunta Acquavia
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy.
| | - Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, Bari, Italy; Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR-NANOTEC), Sede Secondaria di Bari, c/o Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70126 Bari, Italy
| | - Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, Bari, Italy
| | - Carmine Gaeta
- Università degli Studi di Salerno, Dipartimento di Chimica e Biologia, Via Giovanni Paolo II 132, Fisciano, Italy
| | - Patrizia Iannece
- Università degli Studi di Salerno, Dipartimento di Chimica e Biologia, Via Giovanni Paolo II 132, Fisciano, Italy
| | - Paolo Della Sala
- Università degli Studi di Salerno, Dipartimento di Chimica e Biologia, Via Giovanni Paolo II 132, Fisciano, Italy
| | - Antonio Guerrieri
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| | - Carmen Tesoro
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| | - Rosanna Ciriello
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| | - Filomena Lelario
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| | - Emanuela Gregori
- Istituto Superiore di Sanità, Dept. Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Paola Montoro
- Università degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II 132, Fisciano, Italy
| | - Angela Di Capua
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| | - Giuliana Bianco
- Università degli Studi della Basilicata, Dipartimento di Scienze di Base e Applicate, Via dell'Ateneo Lucano 10, Potenza, Italy
| |
Collapse
|
2
|
Singh A, Ahmed E, Rather MD, Sundararajan A, Sharma A, Choudhary FS, Sundramoorthy AK, Dixit S, Vatin NI, Arya S. Marketing Strategies in Nanomaterials for Sensor Applications: Bridging Lab to Market. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400294. [PMID: 40352637 PMCID: PMC12065100 DOI: 10.1002/gch2.202400294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Indexed: 05/14/2025]
Abstract
Nanomaterials have revolutionized sensor technology by offering enhanced sensitivity, selectivity, and miniaturization capabilities. However, the commercialization of nanomaterial-based sensors remains challenging due to the complexities involved in bridging laboratory innovations to market-ready products. This review article explores the various marketing strategies that can facilitate the successful commercialization of nanomaterials for sensor applications. It emphasizes the importance of understanding market needs, regulatory landscapes, and the value proposition of nanomaterials over traditional materials. The study also highlights the role of strategic partnerships, intellectual property management, and customer education in overcoming market entry barriers. Through a comprehensive analysis of case studies and industry practices, this review provides a framework for companies and researchers to effectively transition from lab-scale innovations to commercially viable sensor products. The findings suggest that a well-rounded marketing strategy, combined with robust product development and stakeholder engagement, is crucial for capitalizing on the unique benefits of nanomaterials in sensor applications.
Collapse
Affiliation(s)
- Anoop Singh
- Department of PhysicsGovt. Women Degree College GandhinagarHigher Education DepartmentJammuJammu & Kashmir180004India
| | - Eliyash Ahmed
- Department of Physics (H&S)Guru Nanak Institutions Technical CampusHyderabad501506India
| | - Mehrajud Din Rather
- Department of PhysicsUniversity Institute of Engineering and TechnologyGuru Nanak UniversityIbrahimpatnamTelangana501506India
| | - Atchaya Sundararajan
- Department of PhysicsSchool of Electrical and Electronics Engineering (SEEE) SASTRA Deemed UniversityThanjavur613401India
| | - Alka Sharma
- The Business SchoolUniversity of JammuJammuJammu and Kashmir180006India
| | | | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Institute of Medical and Technical SciencesSaveetha Dental College and HospitalsPoonamallee High Road, VelappanchavadiChennaiTamil Nadu600077India
| | - Saurav Dixit
- Centre of Research Impact and OutcomeChitkara UniversityRajpuraPunjab140417India
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research & InnovationUttaranchal UniversityDehradunUttarakhand248007India
| | - Nikolai Ivanovich Vatin
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research and DevelopmentLovely Professional UniversityPhagwaraPunjab144001India
- Chitkara Centre for Research and DevelopmentChitkara UniversityHimachal Pradesh174103India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
3
|
Kannaiah S, Raju P, Sekar N, Sanasam B, Singh TN, Singh NK, Muthukrishnan S. Biological synthesis of gold nanoparticles using endophytic fungus Cladosporium sphaerospermum (RUV07) extract: characterization and in vitro antiproliferative effect of A549 cells. Braz J Microbiol 2025:10.1007/s42770-025-01675-0. [PMID: 40287598 DOI: 10.1007/s42770-025-01675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
In this groundbreaking research, we utilized the fungal extract of Cladosporium sphaerospermum -RVU07 as a powerful reducing agent to create bioactive gold nanoparticles (Au-NPs). The comprehensive material characterization of the Au-NPs was conducted using methods including XRD, SEM, TEM, UV-vis, and DLS analysis. Notably, the successful formation of Au-NPs was confirmed by a striking color change of the precursor from pale yellow to vibrant violet. This transformation underscores the pivotal role of fungal bioactive molecules, which impart distinctive physicochemical and biological properties to the Au-NPs. The extraction of these compounds significantly influenced both the particle size and surface morphology, enhancing their effectiveness. We investigated the antiproliferative effect of the bioactive Au-NPs against lung cancer cells specifically A549. Our findings revealed that these nanoparticles and bioactive molecules effectively induce ROS production and drive nuclear damage-mediated cell death. With their nanoscale dimensions, the Au-NPs rapidly penetrate the atomic region of A549 cancer cells, facilitating substantial cellular dysfunction. Our nuclear damage assays confirmed that the Au-NPs lead to pronounced nuclear fragmentation and shrinkage in A549 cells following treatment. Additionally, we evaluated the biocompatibility of the Au-NPs against PBMC cells. The biosafety assay results convincingly showed that the bioactive molecules on the Au-NPs' surface significantly mitigate their toxic effects on normal cells. This research highlights the immense potential of mycosynthesized bioactive Au-NPs as innovative pharmaceuticals for a wide array of cancer therapies and biomedical applications, heralding a new era in targeted treatment solutions.
Collapse
Affiliation(s)
- Surendirakumar Kannaiah
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Pudukkottai, Tamilnadu, 622 422, India.
- Department of Life Sciences (Botany), Manipur University, Canchipur, Imphal, Manipur, 795 003, India.
| | - Prabhu Raju
- BIO-LIVES, Centre for Biological Research and Development, Kumaran Nagar, Pudukkottai, Tamilnadu, 622 003, India
| | - Narmatha Sekar
- Department of Plant Biology and Plant Biotechnology, Ethiraj College for Women (Autonomous), (Affiliated to the University of Madras, Chennai), Chennai, Tamilnadu, 600 008, India
| | - Bandana Sanasam
- Department of Chemistry, Kumbi College, (Affiliated to Manipur University, Canchipur), Bishnupur, Manipur, 795 133, India
| | - Thokchom Nepolian Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Cental Agricultural University, Imphal, Manipur, 795 004, India
| | - Nongthombam Kistu Singh
- Department of Life Sciences (Botany), Manipur University, Canchipur, Imphal, Manipur, 795 003, India
| | - Sathish Muthukrishnan
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Pudukkottai, Tamilnadu, 622 422, India
| |
Collapse
|
4
|
Mao J, Yan Y, Wu Q, Wang M, Dai J, Niu K, Zheng L, Jiang C, Jiang F, Zhang W, Tao K, Dai J. Gold Nanoparticles Carrying Mannose-Binding Lectin and Inflammatory Cytokine Antibodies Improve Sepsis Survival by Modulating Immunity and Reducing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20658-20670. [PMID: 40152885 DOI: 10.1021/acsami.4c21055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, and early management of both the infection and the excessive inflammatory response is key to its treatment. In this study, we designed a nanoformulation, termed AuNPs-Mixed, to control bacterial infection and modulate the excessive inflammatory response. AuNPs-Mixed was prepared by equimolarly combining four nanoparticle formulations, each consisting of gold nanoparticles (AuNPs) conjugated separately with mannose-binding lectin (MBL) and three different antibodies targeting pro-inflammatory cytokines: interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α). MBL facilitates the targeted recognition of pathogenic bacteria, while the cytokine-specific antibodies aim to reduce the levels of inflammatory cytokines. The formulation was administered to septic mice for 72 h. The results showed that, compared to the groups treated with AuNPs alone, AuNPs carrying MBL (AuNPs-MBL), and the blank control group, mice receiving the AuNPs-Mixed treatment exhibited significantly lower bacterial loads in the blood, liver, spleen, and kidneys (p < 0.05), reduced levels of inflammatory cytokines, less organ damage, and markedly higher survival rates (p < 0.05). Fluorescence confocal microscopy confirmed that the AuNPs-MBL preparation could bind to Escherichia coli, the primary infectious agent in the sepsis model, facilitating subsequent phagocytosis by macrophages. In the acute toxicity study, no significant differences were observed in body weight, complete blood cell counts, or histopathological analysis of major organs in mice over 7 days (p > 0.05). In conclusion, this study demonstrates that the AuNPs-Mixed formulation effectively reduces bacterial loads in blood and organs, lowers inflammatory cytokine levels, mitigates organ damage, and significantly improves survival rates while showing no evident acute toxicity in mice.
Collapse
Affiliation(s)
- Jian Mao
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Yujie Yan
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of Northwest University, Xi'an 710127, China
| | - Qimei Wu
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Miao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jimin Dai
- Department of Hepatobiliary Surgery, The First Medical Center, PLA General Hospital, Beijing 100853, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Zheng
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Cheng Jiang
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
- Graduate School of China Medical University, Shenyang 110000, China
| | - Fan Jiang
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
| | - Wenjuan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyao Dai
- Air Force Medical Center, Fourth Military Medical University, Beijing 100142, China
| |
Collapse
|
5
|
Wang W, Xu D, Ding J, Pan Y, Wang F, Su S, Peng X, Zhang S, Zhang W. Nanotechnology Innovations in Myocardial Infarction: Diagnosis, Treatment and the Way Forward. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10614-1. [PMID: 40205317 DOI: 10.1007/s12265-025-10614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Myocardial infarction (MI) is a global health concern that necessitates continued advancements in diagnostic and therapeutic modalities. Nanotechnology facilitates prompt diagnosis and personalized treatment. This manuscript explicitly reviews the application of innovative methodologies for identifying cardiac biomarkers to facilitate the early diagnosis of MI and its clinical management. Nanoscale agents such as nanoparticles and nanosensors have been employed for this purpose. Technological advancements in medical imaging are revolutionizing therapeutic approaches while reducing morbidity and mortality typically associated with cardiac tissue injury. Besides all, applications of nanotechnology in therapeutics have proven extremely effective. The development of nanoparticle-based customized drug delivery systems will contribute to more effective treatments, fewer side effects, and improved therapeutic outcomes. Biomaterials and nanoscale surgical technologies may benefit patients with MI by promoting tissue regeneration and repair. This manuscript also investigates the ethical and legal limitations that could prevent seamless incorporation of nanotechnology into clinical practice.
Collapse
Affiliation(s)
- Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yinping Pan
- Department of Pediatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shu Su
- Department of Medical Laboratory, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Shitong Zhang
- Department of Neurology I, Qian Wei Hospital of Jilin Province, Changchun, 130012, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China.
| |
Collapse
|
6
|
Kartouzian A, Heiz A, Shameli K, Moeini H. Polyethylenimine-Conjugated Au-NPs as an Efficient Vehicle for in vitro and in vivo DNA Vaccine Delivery. Int J Nanomedicine 2025; 20:4021-4034. [PMID: 40191043 PMCID: PMC11971965 DOI: 10.2147/ijn.s493211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose This study aimed to develop green-synthesized gold nanoparticles (Au-NPs) conjugated with polyethyleneimine (PEI) to overcome challenges in intracellular DNA vaccine delivery, focusing on enhancing cellular uptake and immune responses against the human norovirus (HuNoV) GII.4 variants. Methods Au-NPs were synthesized using a citrate-ion-mediated green approach, with size and morphology analyzed via UV-vis spectroscopy and transmission electron microscopy (TEM). Stability was evaluated through zeta potential measurements. PEI conjugation was employed to modify surface charge. After in vitro evaluation of pDNA delivery efficiency and cytotoxicity in HEK293 cells, PEI-coated Au-NPs loaded with a HuNoV GII.4 pDNA vaccine (AuPEI-NPs-pDNA) were assessed for the immune responses in mice. Results UV-vis spectroscopy and TEM confirmed successful Au-NP synthesis. Zeta potential shifted from -31.38 mV to -20.60 mV, reflecting stable but slightly reduced colloidal stability with larger sizes. PEI conjugation reversed surface charge to positive, enabling 100% transfection efficacy in HEK293 cells by day two without cytotoxicity. The AuPEI-NPs-pDNA induced significantly higher NoV-specific IgG antibodies and T-cell responses compared to unmodified Au-NPs, highlighting the role of positive charge in enhancing cellular uptake and immune activation. These results underscore PEI-coated Au-NPs as a biocompatible, efficient platform for DNA vaccine delivery. Conclusion PEI-coated Au-NPs demonstrate exceptional potential as non-toxic, high-efficiency carriers for DNA vaccines, enabling robust humoral and cellular immune responses. This strategy holds promises for advancing gene therapy and combating rapidly evolving pathogens like HuNoV, with broader applications in targeted drug delivery.
Collapse
Affiliation(s)
- Aras Kartouzian
- Catalysis Research Center, School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Alexandra Heiz
- Catalysis Research Center, School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
7
|
Tang L, Li N, Yang Z, Lin Y, Gao G, Lin Q, Wang Y. Targeted Nanoclusters for Intratracheal Delivery in Intraoperative Imaging of Lung Adenocarcinoma. Int J Nanomedicine 2025; 20:3575-3594. [PMID: 40125441 PMCID: PMC11930283 DOI: 10.2147/ijn.s509009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Background Computed tomography (CT) is widely used all over the world, and the detection rate of early lung adenocarcinoma is increasing. Minimally invasive thoracic surgery (MITS) has emerged as the preferred surgical approach for lung adenocarcinoma, but identifying small lung adenocarcinomas is difficult. Therefore, there is a need for a non-invasive, convenient and efficient way to localize lung adenocarcinomas. Materials and Methods A targeted gold nanocluster for intraoperative fluorescence imaging by intratracheal delivery has been designed. Au-GSH-anti Napsin A nanoclusters (NapA-AuNCs) were synthesized, and their physicochemical properties and optical properties were characterized. Target effect, cytotoxicity and fluorescence time curve of NapA-AuNCs, were tested in vivo and in vitro, and intratracheal delivery was also carried. Results NapA-AuNCs targeting lung adenocarcinoma with red fluorescence and good mucus penetration were synthesized, which had the targeting property of A549 and lung adenocarcinoma tissue, and also had very low toxicity to normal lung epithelial cells and organs. Intracheal delivery involves faster imaging of lung adenocarcinoma and less accumulation of other organs than intravenous administration. Conclusion NapA-AuNCs targeting lung adenocarcinoma were successfully conjugated, and intratracheal delivery is a safe, effective for lung adenocarcinoma intraoperative localization.
Collapse
Affiliation(s)
- Lu Tang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ning Li
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhe Yang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yanatai, Shandong, People’s Republic of China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
8
|
Fan R, Luo S, He Y, Xiao Y, Liang Y, Zhang L, Li W, Zhang Y, Li L. Simple and sensitive SERS platform for Staphylococcus aureus one-pot determination by photoactivated CRISPR/Cas12a cascade system and core-shell DNA tetrahedron@AuNP@Fe 3O 4 reporter. Mikrochim Acta 2025; 192:240. [PMID: 40102313 DOI: 10.1007/s00604-025-07098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Staphylococcus aureus (S. aureus) is a widely prevalent Gram-positive bacteria that can cause serious infections and diseases in humans and other organisms. Timely detection and treatment in clinical settings is crucial for patient safety and public health. However, current methods for S. aureus detection still face some limitations, such as time-consuming operation, false positives, and labor-intensive available methodology with low sensitivity. Therefore, it is particularly important to develop a rapid, simple, sensitive, and cost-effective method for detecting S. aureus. We developed a SERS platform based on allosteric aptamer-triggered catalytic hairpin assembly (CHA) and photoactivated CRISPR/Cas12a reactions, combined with a multifunctional core-shell structure as the SERS reporter, enabling highly sensitive one-pot determination of S. aureus. Compared with traditional two-step and one-pot analysis methods, this strategy offers superior sensitivity and can successfully identify real samples contaminated with S. aureus. The platform utilizes light-controlled CHA and CRISPR/Cas12a reactions, effectively preventing interference between different reaction systems. Therefore, the photoactivated one-pot CHA/Cas12a strategy provides a simple, rapid, highly sensitive, specific, and cost-effective method for one-pot determination of S. aureus in clinical samples.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yangfen He
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510515, China
| | - Yunju Xiao
- Laboratory Medicine, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yuxin Liang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Amatya R, Joseph A, Roh GS, Moon C, Benmokadem Y, Kim D, Min KA, Shin MC. Combined Esculentin-2CHa Fusion Protein-Coated Au Nanoparticles for Effective Against Non-Alcoholic Fatty Liver Disease in Mice Model. Int J Nanomedicine 2025; 20:3407-3421. [PMID: 40125429 PMCID: PMC11928441 DOI: 10.2147/ijn.s497645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Extensive research has focused on identifying effective treatments for NAFLD, with numerous bioactive peptide candidates showing significant promise. In this research, a long-acting esculentin-2CHa(1-30)-coated AuNPs (ESC-ABD-AuNPs) was developed and the applicability was evaluated for their use in the treatment of non-alcoholic fatty liver disease (NAFLD). Methods ESC-ABD-AuNPs were synthesized by adopting a 1-step reduction process and the successful preparation of the nanoparticles (NPs) was assessed by various physical characterizations including transmission electron microscopy (TEM), ultraviolet-visible (UV-VIS) absorption spectra, dynamic light scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). After the ESC-ABD-AuNPs were prepared, cytotoxicity, pharmacokinetics (PK), and biodistribution profiles were identified. Then, with a high-fat diet (HFD)-fed obese mice model, efficacy studies were carried out focused on their effects for anti-hyperglycemia and anti-NAFLD. Furthermore, the feasibility of loading a small molecule onto the NPs was evaluated for potential combination therapy. Results ESC-ABD-AuNPs were synthesized with an average hydrodynamic size of 120 (±10) nm and demonstrated good stability and an extended plasma half-life of 28.3 h. The NPs exhibited high liver accumulation and were well tolerated in cell viability tests. In PK and biodistribution studies, ESC-ABD-AuNPs showed prolonged retention in major organs, such as the pancreas and the liver. Therapeutic efficacy was demonstrated in the HFD-fed obese mice, where the ESC-ABD-AuNPs significantly reduced blood glucose levels, improved glucose tolerance, and mitigated liver fat accumulation. The ESC-ABD-AuNPs platform also showed potential for combination therapies, demonstrated by its ability to load obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, found effective for the treatment of NAFLD in clinical studies. Conclusion Overall, this study has demonstrated the promising potential of ESC-ABD-AuNPs as a novel treatment for NAFLD. This research suggests that ESC-ABD-AuNPs could be a significant advancement in drug delivery and liver disease treatment, particularly for combination therapies.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Amala Joseph
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Cheol Moon
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Yassmine Benmokadem
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| |
Collapse
|
10
|
Qian D, Zha D, Sang Y, Tao J, Cheng Y. Moringa oleifera mediated green synthesis of gold nanoparticles and their anti-cancer activity against A549 cell line of lung cancer through ROS/ mitochondrial damage. Front Chem 2025; 13:1521089. [PMID: 40109902 PMCID: PMC11920177 DOI: 10.3389/fchem.2025.1521089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Gold nanoparticles (Au-NPs) hold significant promise in lung cancer treatment due to their unique physicochemical properties, enabling targeted drug delivery, enhanced therapeutic efficacy, and reduced systemic toxicity. This study is aimed to produce the Au-NPs utilising Moringa oleifera and evaluate their effectiveness in the treatment of lung cancer, with a specific focus on A549 cell lines. Methods The synthesis of Au-NPs was carried out by combining 10 mL of an aqueous extract of M. oleifera with 190 mL of a 1 mM HAuCl4 solution. The synthesized Au-NPs were characterised using several microscopic and spectroscopic techniques. The evaluation of the median inhibitory concentration (IC50) of Au-NPs and its impact on apoptosis was conducted through the measurement of caspase activation and the formation of reactive oxygen species (ROS). Anti-cancer characteristics was conducted by employing DAPI staining. Furthermore, the influence on ROS production and mitochondrial membrane potential was evaluated at the IC50 concentration using fluorescence microscopy, employing DCFH-DA and Rhodamine 123 dyes. Results The synthesis of Au-NPs was confirmed through UV-Vis spectroscopy, with an absorbance peak at 540 nm. FTIR, TEM results showed that the M. oleifera mediated Au-NPs had a spherical morphology, and their mean size was approximately 30 nm, as determined by DLS. The Au-NPs exhibited an IC50 value of 50 μg/mL against the A549 lung cancer cells. The DAPI staining results revealed that both concentrations of AuNP, 25 μg/mL and 50 μg/mL, exhibited noteworthy anti-cancer and apoptotic properties. Discussion The study demonstrates that M. oleifera-mediated Au-NPs exhibit significant cytotoxic and apoptotic effects on A549 lung cancer cells, with an IC50 value of 50 μg/mL. Both tested concentrations showed substantial anti-cancer properties, as confirmed by DAPI staining. The unique focus on lung cancer, specifically the A549 cell line, sets this study apart from others that address a broader spectrum of cancer types. These findings suggest that M. oleifera-mediated Au-NPs hold promise for clinical applications in lung cancer treatment, providing a potential new therapeutic application.
Collapse
Affiliation(s)
- Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Dongsheng Zha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Yuanyao Sang
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Jiangquan Tao
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, Anhui, China
| | - Youshuang Cheng
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Shakoor A, Ferdous UT, Khan SA, Gulzar MM. Green Synthesis of Gold Nanoparticles Using Clerodendrum trichotomum Thunberg for Antibacterial and Anticancer Applications. Int J Nanomedicine 2025; 20:2645-2658. [PMID: 40061880 PMCID: PMC11887508 DOI: 10.2147/ijn.s503254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
Purpose The potential use of gold nanoparticles (AuNPs) in healthcare research has increased dramatically in recent years, owing to advancements in their synthesis techniques, including green synthesis. Although Clerodendrum trichotomum is a popular medicinal plant that harbors many bioactive phytochemicals in various parts of the world, the green synthesis of AuNPs using this precious plant is still under investigation. Therefore, this study aimed to explore the green synthesis of AuNPs from C. trichotomum Thunberg leaves (CTT-AuNPs) and their antibacterial and cytotoxic properties. Methods AuNPs were synthesized from Clerodendrum trichotomum Thunberg and characterized using various microscopic and spectroscopic techniques. A serial dilution technique was used to determine the antibacterial activity of the synthesized CTT-AuNPs against two bacterial species, Klebsiella pneumoniae and Staphylococcus aureus. The cytotoxicity assay was carried out in the breast cancer cell line (MCF-7), whereas the biocompatibility test was performed in the kidney cell line (293T). Results Multiple spectroscopic characterization techniques confirmed the successful synthesis of CTT-AuNPs. The average size of CTT-AuNPs was 19.1±2.2 nm. The results of this study revealed that CTT-AuNPs showed strong antibacterial activity against S. aureus and K. pneumoniae, which was further confirmed using a live/dead dual staining assay. CTT-AuNPs also significantly reduced the proliferation of MCF-7 breast cancer cells to 32.67% at 120 µg/mL after 24 hours of incubation. These green-synthesized CTT-AuNPs exhibited excellent cytobiocompatibility with 293T kidney cells. The dual staining method further confirmed the cytotoxicity and biocompatibility of CTT-AuNPs compared with chemically synthesized AuNPs. Conclusion This work will pave the way for the production of biocompatible AuNPs from C. trichotomum Thunberg that can be used in different disease treatments.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Control & Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Center for Bio Systems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Umme Tamanna Ferdous
- Center for Bio Systems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Muhammad Majid Gulzar
- Department of Control & Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
12
|
Mohammadi S, Farjam H, Hosseini S, Larijani K. Inhibitory effects of saffron compounds on multiple sclerosis: Molecular docking and dynamic, enhancing properties with gold nanoparticles and evaluating antioxidant, antibacterial, cytotoxicity. Heliyon 2025; 11:e42693. [PMID: 40051843 PMCID: PMC11883381 DOI: 10.1016/j.heliyon.2025.e42693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
The unique properties of nanoparticles, such as their small size and the ability to cross the blood-brain barrier, make them well-suited for targeted drug delivery to the central nervous system. Ongoing research is dedicated to developing innovative nanoparticle-based therapies for a neurological disorder; multiple sclerosis (MS). The study confirmed green synthesis as the optimal method for producing environmentally friendly compounds. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). To evaluate the antioxidant properties, we employed the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, while conducting a comprehensive examination of antibacterial activity against both Gram-negative (E. coli) and Gram-positive bacteria (S. aureus). Moreover, we performed a thorough assessment of cellular toxicity using saffron extracts and nanoparticles on C6 and SH-SY5Y cells. We employed molecular docking computational methods to investigate the potential inhibitory effects of natural compounds derived from saffron on Multiple Sclerosis. The results of biological activities and computational modeling show that gold nanoparticles improve the performance of plant compounds and also these compounds can be involved in inhibiting proteins responsible for multiple sclerosis.
Collapse
Affiliation(s)
- Shaghayegh Mohammadi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Farjam
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharieh Hosseini
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Verma K, Kathuria D, Ram A, Verma K, Sharma S, Tohra SK, Sharma A. Evaluation of Cytotoxic and Antioxidant Potential of Green-Synthesized Silver and Gold Nanoparticles From Nepeta leucophylla Benth. Chem Biodivers 2025:e202402679. [PMID: 39984311 DOI: 10.1002/cbdv.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
In the present study, silver (AgNPs) and gold (AuNPs) nanoparticles (NPs) have been prepared using the ethanolic extract of Nepeta leucophylla (NLe). This plant was considered owing to its richness in natural polyphenols and antioxidants that are well known for their reducing potential. Different techniques, such as UV (ultraviolet-visible spectrophotometer), FTIR (Fourier transform infrared radiation), and XRD (X-ray diffraction), were utilized for the characterization of NPs. The UV absorption peak was observed at 434 and 535 nm for NLe-AgNPs and NLe-AuNPs, respectively. FTIR suggested about the possible classes of biomolecules involved in the formation of metal NPs. XRD pattern confirmed the crystalline structure of gold and silver NPs and validated that the crystal structure under consideration is a face-centered cubic (FCC) pattern. High-resolution transmission electron microscopy (HR-TEM) images revealed that the NLe-AgNPs and NLe-AuNPs NPs were spherical in shape, with average diameter of 11.4 and 7.8 nm, respectively. The antioxidant potential was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which revealed that NLe exhibited the highest antioxidant potential (79.37%) compared to synthesized metal NPs. Further, cytotoxic potential was evaluated using MTT assay against Hep G2 cell lines. The IC50 values were determined to be 5.97 µg/mL for NLe, 12.31 µg/mL for NLe-AgNPs, and 34.58 µg/mL for NLe-AuNPs, demonstrating their effectiveness in inhibiting cancer cell proliferation. The present results revealed that NLe may play a promising role in the cure of different deteriorative diseases. In future, more detailed studies based on animal model may be useful to support the present results and to evaluate further health benefits of NLe.
Collapse
Affiliation(s)
- Kashish Verma
- Department of Biosciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Arjun Ram
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, Punjab, India
| | - Kurangi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, Punjab, India
| | - Suneel Kumar Tohra
- Department of Biosciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ajay Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
14
|
Afshin N, Mushtaq N, Ahmed M, Sher N, Alhag SK, Khalil FMA, Al-Shuraym LA, Hameed H, Badshah F, Hussain R. Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom. Microsc Res Tech 2025; 88:356-368. [PMID: 39367638 DOI: 10.1002/jemt.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.
Collapse
Affiliation(s)
- Noshaba Afshin
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Nadia Mushtaq
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | | | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Riaz Hussain
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| |
Collapse
|
15
|
Tarantino S, Bianco A, Cascione M, Carlà A, Fiamà L, Di Corato R, Giotta L, Pellegrino P, Caricato AP, Rinaldi R, De Matteis V. Revolutionizing radiotherapy: gold nanoparticles with polyphenol coating as novel enhancers in breast cancer cells-an in vitro study. DISCOVER NANO 2025; 20:10. [PMID: 39812897 PMCID: PMC11735827 DOI: 10.1186/s11671-025-04186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype. Combining these treatments can improve outcomes, though radiotherapy faces limitations such as radiation resistance and low selectivity for malignant cells. Nanotechnologies, especially metallic nanoparticles (NPs), hold promise for enhancing radiotherapy. Gold nanoparticles (AuNPs) are particularly notable due to their high atomic number, which enhances radiation damage through the photoelectric effect. Studies shown that AuNPs can act as effective radiosensitizers, improving tumor damage during radiotherapy increasing the local radiation dose delivered. Traditional AuNPs synthesis methods involve harmful chemicals and extreme conditions, posing health risks. Green synthesis methods using plant extracts offer a safer and more environmentally friendly alternative. This study investigates the synthesis of AuNPs using Laurus nobilis leaf extract and their potential as radiosensitizers in breast carcinoma cell lines (MCF-7). These cells were exposed to varying doses of X-ray irradiation, and the study assessed cell viability, morphological changes and DNA damage. The results showed that green-synthesized AuNPs significantly enhanced the therapeutic effects of radiotherapy at lower radiation doses, indicating their potential as a valuable addition to breast cancer treatment.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Annalisa Bianco
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Alessandra Carlà
- Oncological Center, "Vito Fazzi" Hospital of Lecce, Piazza Filippo Muratore 1, 73100, Lecce, Italy
| | - Lia Fiamà
- Oncological Center, "Vito Fazzi" Hospital of Lecce, Piazza Filippo Muratore 1, 73100, Lecce, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano Di Tecnologia (IIT), 73010, Arnesano, Italy
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Paolo Pellegrino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy.
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
16
|
Baran A. A study to assess the pharmacological agent potential of gold nanoparticles and their effects on human cancer cells and hospital pathogens using in vitro methods. Front Pharmacol 2025; 15:1498734. [PMID: 39834814 PMCID: PMC11743435 DOI: 10.3389/fphar.2024.1498734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Interest in metal nanoparticles synthesised using green methods is growing steadily. Metal nanoparticles can be synthesised inexpensively and effortlessly using extracts derived from different plants and their diverse components. Gold nanoparticles (Au NPs) were rapidly synthesised from Broccoli (Brassica oleracea L.) agricultural waste using a novel, cost-effective, and eco-friendly method in this work. Analysed data from various techniques including UV-vi, TEM, FESEM, XRD, AFM, FTIR, TGA-DT, EDX, and DLS to assess the properties of the synthesised Au NPs. The characterisation data revealed that the Au NPs had a peak absorbance at 553.10 nm, a surface charge of -19.7 mV, an average hydrodynamic size of 78.75 nm, a monodisperse spherical shape, and were found to be stable. The inhibitory effects of Au NPs with these properties on hospital pathogens and human cancer cells were evaluated by microdilution, disk diffusion and MTT techniquesAs a result of the findings, it was determined that Au NPs have antibacterial, antifungal and anticancer potential as pharmacological agents under in vitro conditions.
Collapse
|
17
|
Wang HB, Zhang L, Hu TY, Yuan XQ, Huang SW, Li JQ, Zhong ZT, Zhao YD. Excellent properties of NaF and NaBr induced DNA/gold nanoparticle conjugation system: Better stability, shorter modified time, and higher loading capacity. Biosens Bioelectron 2025; 267:116876. [PMID: 39467474 DOI: 10.1016/j.bios.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
The functionalization of gold nanoparticle (AuNP) is the key procedure for the biochemical and biomedical application. The conventional salt-aging method requires the stepwise additions of NaCl and excessive thiolated DNA, mainly due to the poor tolerance of the DNA/AuNP mixture toward NaCl. Herein, we found that NaF is capable of improving the stability for the modification of AuNP with different bases of DNA sequences (poly A/T/C/G), and allows for adding up with a high concentration of 200 mM at one time, which greatly reduces the total modification time to 0.5-1 h. Intriguingly, the introduction of NaBr effectively increases the DNA loading capacity. Besides the advantages of NaF and NaBr, the modification performance is improved via the introduction of the oligo A/T spacer for the G-rich DNA sequences. Furthermore, this method shows the superiority to another two methods (pH 3-based and salt-aging) in terms of the loading capacity or sequence components.
Collapse
Affiliation(s)
- Hai-Bo Wang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China.
| | - Liang Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Tian-Yu Hu
- School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Xue-Qing Yuan
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Sheng-Wei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Jin-Quan Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Zi-Tao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
18
|
Ajala O, Onwudiwe D, Ogunniyi S, Kurniawan SB, Esan O, Aremu OS. A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2024; 11:1329-1368. [DOI: 10.18596/jotcsa.1389331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanomaterials are currently one of the most popular emerging materials used in different applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and production of pesticide. This is due to their interesting features including size-dependent properties, lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification and are used in multiple functions with enormous possibilities. Some of them are medically suitable which has opened new opportunities for medical improvement especially for human health. These characteristics also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the evaluation of synthesis approach that biological approach is the savest method but with a low yield, while the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis revealed that the field of nanotechnology is a trending and hot ground for research.
Collapse
|
19
|
Eker F, Akdaşçi E, Duman H, Bechelany M, Karav S. Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1854. [PMID: 39591094 PMCID: PMC11597456 DOI: 10.3390/nano14221854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| |
Collapse
|
20
|
Wu T, Zhang Y, Li H, Pan Z, Ding J, Zhang W, Cai S, Yang R. Facile synthesis of EGCG modified Au nanoparticles and their inhibitory effects on amyloid protein aggregation. Int J Biol Macromol 2024; 281:136501. [PMID: 39393717 DOI: 10.1016/j.ijbiomac.2024.136501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Preventing β-amyloid (Aβ) peptide aggregation by Au nanoparticles (NPs) is a promising strategy for the treatment of Alzheimer's disease. However, construction of Au nanostructures with easy preparation and high therapeutic efficiency is still a challenge. Herein, one-step pulsed laser ablation in water is used to fabricate epigallocatechin-3-gallate (EGCG) modified Au (Au-EGCG) NPs with uniform size. The as-obtained Au-EGCG NPs can effectively inhibit β-amyloid (1-42) peptide (Aβ42) aggregation by the interaction with peptides, which is confirmed by transmission electron microscopy (TEM), fluorescence spectroscopy (thioflavin T (ThT), tyrosine and 8-anilinonaphthalene-1-sulfonic acid (ANS) assays), and Fourier transform infrared (FT-IR) spectroscopy. Besides, they can also effectively attenuate Aβ42-induced cytotoxicity based on the cell viability experiments. This work provides a facile approach to synthesize the surface-functionalized Au NPs for enhanced inhibition of Aβ aggregation and amelioration of Aβ-induced cytotoxicity.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yufei Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Pan
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Wang D, Shen Y, Qian H, Jiang J, Xu W. Emerging advanced approaches for liquid biopsy: in situ nucleic acid assays of extracellular vesicles. Theranostics 2024; 14:7309-7332. [PMID: 39659566 PMCID: PMC11626945 DOI: 10.7150/thno.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/20/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as valuable biomarkers in liquid biopsies owing to their stability, accessibility, and ability to encapsulate nucleic acids. The majority of existing methodologies for detecting EV nucleic acid biomarkers require the lysis of EVs to extract DNA or RNA. This process is labor-intensive and may lead to the loss and degradation of nucleic acids. However, the emerging field of in situ EV assays offers innovative tools for liquid biopsy, facilitating direct profiling of nucleic acids within intact EVs and reducing sample handling procedures. This review focuses on the promising and innovative field of in situ EV nucleic acid analysis. It examines the translational potential of in situ EV nucleic acid analysis in liquid biopsies from detection strategies, diagnostic applications, and diagnostic aids for single EV analysis and machine learning techniques. We highlight the innovative approach of in situ EV nucleic acid assays and provide novel insights into advancing liquid biopsy technology. This approach shows a promising avenue for improving EV-based cancer diagnosis and guiding personalized treatment with minimal invasiveness.
Collapse
Affiliation(s)
- Dongli Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Ye Shen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| |
Collapse
|
22
|
Georgeous J, AlSawaftah N, Abuwatfa WH, Husseini GA. Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy. Pharmaceutics 2024; 16:1332. [PMID: 39458661 PMCID: PMC11510955 DOI: 10.3390/pharmaceutics16101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The remarkable versatility of gold nanoparticles (AuNPs) makes them innovative agents across various fields, including drug delivery, biosensing, catalysis, bioimaging, and vaccine development. This paper provides a detailed review of the important role of AuNPs in drug delivery and therapeutics. We begin by exploring traditional drug delivery systems (DDS), highlighting the role of nanoparticles in revolutionizing drug delivery techniques. We then describe the unique and intriguing properties of AuNPs that make them exceptional for drug delivery. Their shapes, functionalization, drug-loading bonds, targeting mechanisms, release mechanisms, therapeutic effects, and cellular uptake methods are discussed, along with relevant examples from the literature. Lastly, we present the drug delivery applications of AuNPs across various medical domains, including cancer, cardiovascular diseases, ocular diseases, and diabetes, with a focus on in vitro and in vivo cancer research.
Collapse
Affiliation(s)
- Joel Georgeous
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
23
|
Yeşildağ A, Kızıloğlu HT, Dirican E, Erbaş E, Gelen V, Kara A. Anticarcinogenic Effects of Gold Nanoparticles and Metformin Against MCF-7 and A549 Cells. Biol Trace Elem Res 2024; 202:4494-4507. [PMID: 38358644 PMCID: PMC11339093 DOI: 10.1007/s12011-024-04090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Metformin is commonly prescribed to people with diabetes. Metformin has been shown in previous studies to be able to prevent the growth of cancer cells. This study aims to investigate the effects of metformin and gold nanoparticles in MCF7 breast cancer and A549 lung cell lines. The effects of metformin and gold nanoparticles on MCF7 breast cancer and A549 lung cells were determined on cells grown in 24 h cell culture. MCF-7 and A549 cells were incubated for 24 h with the treatment of escalating molar concentrations of ifosfamide. The MTT assay was used to determine the cytotoxicity of metformin toward MCF7 and A549 cell lines. The expression of Bax, BCL2, PI3K, Akt3, mTOR, Hsp60, Hsp70, and TNF-α was measured by RT-PCR. Metformin and gold nanoparticles inhibited the proliferation of MCF-7 and A549 cells in a dose and time-dependent manner with an IC50 value of 5 µM and 10 µg/mL. RT-PCR assays showed ifosfamide + metformin + gold nanoparticles significantly reduced the expression of BCL2, PI3K, Akt3, mTOR, Hsp60 and Hsp70 and increased the expression of TNF-α and Bax. The findings obtained in this study suggest that further studies should be conducted, and metformin and gold nanoparticles can be used in breast cancer and lung cancer treatments.
Collapse
Affiliation(s)
- Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey.
| | - Halime Topal Kızıloğlu
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey
| | - Elif Erbaş
- Department of Histology and Embryology Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Adem Kara
- Department of Molecular Biology and Genetic, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
24
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
26
|
Baran MF, Keskin C, Baran A, Kurt K, İpek P, Eftekhari A, Khalilov R, Fridunbayov I, Cho WC. Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:23623-23633. [DOI: 10.1007/s13399-023-04366-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 09/06/2023]
|
27
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
28
|
Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, Srivastava A, Garg SK, Singh VP. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact 2024; 23:254. [PMID: 39304847 DOI: 10.1186/s12934-024-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Bionanofertilizers are promising eco-friendly alternative to chemical fertilizers, leveraging nanotechnology and biotechnology to enhance nutrient uptake by plants and improve soil health. They consist of nanoscale materials and beneficial microorganisms, offering benefits such as enhanced seed germination, improved soil quality, increased nutrient use efficiency, and pesticide residue degradation, ultimately leading to improved crop productivity. Bionanofertilizers are designed for targeted delivery of nutrients, controlled release, and minimizing environmental pollutants, making them a sustainable option for agriculture. These fertilizers also have the potential to enhance plant growth, provide disease resistance, and contribute to sustainable farming practices. The development of bionanofertilizers addresses the adverse environmental impact of chemical fertilizers, offering a safer and productive means of fertilization for agricultural practices. This review provides substantial evidence supporting the potential of bionanofertilizers in revolutionizing agricultural practices, offering eco-friendly and sustainable solutions for crop management and soil health.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Shivam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rishabh Anand Omar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Prerna Chauhan
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Kumar Sinhal
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Amit Singh
- Department of Law, MJP Rohilkhand University, Bareilly, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
29
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
30
|
Manogaran P, Krishnamoorthy P, Murugesan S, Vijayavarma D, Al-Ansari MM, Mari K, Vatin NI, Vijayakumar S. Biogenic synthesis and characterization of silver nanoparticles (AgNPs) from aqueous extract of Lepidagathis cristata along with their antibacterial and antineoplastic activity to combat breast cancer cells (MCF-7). LUMINESCENCE 2024; 39:e4891. [PMID: 39229976 DOI: 10.1002/bio.4891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Lepidagathis cristata (L. cristata) plant produces reducing and capping agents; this study utilized microwave-assisted biogenic synthesis to manufacture silver nanoparticles (AgNPs) using this plant. The structure, morphology, and crystallinity phases of prepared nanoparticles (NPs) were characterized by ultraviolet-visible spectroscopy (UV-viz), powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Biologically synthesized AgNPs were treated against pathogenic bacteria species including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and its highest zone of inhibition 10 ± 1.45 mm, 10 ± 0.74 mm, and 6 ± 0.43 mm, respectively, at the concentration of 100 μg/mL. The cytotoxic activity of AgNPs against MCF-7 breast cancer cells revealed significant growth inhibition by inhibiting cell viability, inhibitory concentration of 50% (IC50) of NPs observed at 55.76 μg/mL concentration. Finally, our findings concluded that the L. cristata-mediated biosynthesized AgNPs proved its potential antibacterial and neoplastic properties against MCF cells by endorsing the inhibition of cell proliferation especially with low concentration.
Collapse
Affiliation(s)
- Punithavathi Manogaran
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| | - Prabu Krishnamoorthy
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| | - Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem, Tamilnadu, India
| | - Devi Vijayavarma
- Department of Biochemistry, Bhaktavatsalam Memorial College for Women, Chennai, Tamilnadu, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kavitharani Mari
- Department of Biochemistry, Adhiparasakthi College of Arts and Science College, Nagar, India
| | - Nikolai Ivanovich Vatin
- Centre of Research Impact and Outcome, Citkara University, Rajpura, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Sabari Vijayakumar
- Department of Biochemistry, Marudhar Kesari Jain College for Women, Vaniyambadi, Tamilnadu, India
| |
Collapse
|
31
|
Zhang F, Li Y, Jafari SM, Liu Y, Sang Y, Wang S, Wang X. Microfluidic-oriented green synthesis of pepsin-doped gold nanoparticles for colorimetric and photothermal dual-readout detection of food hazards. Food Chem 2024; 450:139311. [PMID: 38636377 DOI: 10.1016/j.foodchem.2024.139311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Gold nanoparticles (AuNPs)-based immunochromatographic assay has gained popularity as a rapid detection method for food hazards. Synthesizing highly stable AuNPs in a rapid, simple and environmentally friendly manner is a key focus in this field. Here, we present a green microfluidic strategy for the rapid, automated, and size-controllable synthesis of pepsin-doped AuNPs (AuNPs@Pep) by employing glucose-pepsin as a versatile reducing agent and stabilizer. Through combining the colorimetric and photothermal (PoT) properties of AuNPs@Pep, both "signal-off" and "signal-on" formats of microfluidic paper analytical devices (PADs) were developed for detection of a small molecule antibiotic, florfenicol, and an egg allergen, ovalbumin. Compared to the colorimetric mode, a 4-fold and 3-fold improvement in limit of detection was observed in the "signal-off" detection of florfenicol and the "signal-on" detection of ovalbumin, respectively. The results demonstrated the practicality of AuNPs@Pep as a colorimetric/PoT dual-readout probe for immunochromatographic detection of food hazards at different molecular scales.
Collapse
Affiliation(s)
- Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yamei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Yang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Medical College, Nankai University, Tianjin 300500, China.
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
32
|
David M, Enache TA, Barbu-Tudoran L, Bala C, Florescu M. Biologically Synthesized Gold Nanoparticles with Enhanced Antioxidant and Catalytic Properties. Pharmaceuticals (Basel) 2024; 17:1105. [PMID: 39338271 PMCID: PMC11434865 DOI: 10.3390/ph17091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Increasing levels of reactive oxygen species generate oxidative stress in the human body that can lead to various medical conditions. The use of nanomaterials exhibiting antioxidant properties may prevent these effects. The biological synthesis of metallic nanoparticles using plant extracts with antioxidant properties can offer benefits due to their active compounds. The used extracts contained reducing and stabilizing agents, which were shown to be transferred onto the gold nanoparticles, functionalizing them. Herin, we report a gold nanoparticle synthesis by eco-friendly biological methods (b-AuNPs) using extracts of sea buckthorn, lavender, walnuts, and grapes, obtained through ultrasound-assisted extraction and pressure-enhanced extraction. The obtained b-AuNPs were characterized by UV-Vis and FTIR spectroscopies and visualized using transmission electron microscopy. The catalytic and scavenging effect of the b-AuNPs towards H2O2 (as reactive oxygen species) was evaluated electrochemically, highlighting the protective behavior of b-AuNPs towards lipid peroxidation. All experiments demonstrated the stability and reproducibility of prepared b-AuNPs with enhanced antioxidant and catalytic properties, opening a new perspective for their use in biomedical applications.
Collapse
Affiliation(s)
- Melinda David
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| | - Teodor A. Enache
- National Institute of Material Physics, Atomistilor 405A, 077125 Magurele, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “C. Craciun”, Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, 4-6 Clinicilor Str., 400006 Cluj-Napoca, Romania;
- National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM) Cluj-Napoca, 67-103 Donath Str., 400293 Cluj-Napoca, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania;
- Department of Analytical Chemistry and Physical Chemistry, University of Bucharest, 4-12 Elisabeta Blvd., 030018 Bucharest, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii no. 1, 500068 Brasov, Romania
| |
Collapse
|
33
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H, Shi J. Diversity of fungus-mediated synthesis of gold nanoparticles: properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol 2024; 44:924-940. [PMID: 37455417 DOI: 10.1080/07388551.2023.2225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/21/2023] [Indexed: 07/18/2023]
Abstract
Fungi-mediated synthesis of Gold nanoparticles (AuNPs) has advantages in: high efficiency, low energy consumption, no need for extra capping and stabilizing agents, simple operation, and easy isolation and purification. Many fungi have been found to synthesize AuNPs inside cells or outside cells, providing different composition and properties of particles when different fungi species or reaction conditions are used. This is good to produce AuNPs with different properties, but may cause challenges to precisely control the particle shape, size, and activities. Besides, low concentrations of substrate and fungal biomass are needed to synthesize small-size particles, limiting the yield of AuNPs in a large scale. To find clues for the development methods to solve these challenges, the reported mechanisms of the fungi-mediated synthesis of AuNPs were summarized. The mechanisms of intracellular AuNPs synthesis are dependent on gold ions absorption by the fungal cell wall via proteins, polysaccharides, or electric absorption, and the reduction of gold ions via enzymes, proteins, and other cytoplasmic redox mediators in the cytoplasm or cell wall. The extracellular synthesis of AuNPs is mainly due to the metabolites outside fungal cells, including proteins, peptides, enzymes, and phenolic metabolites. These mechanisms cause the great diversity of the produced AuNPs in functional groups, element composition, shapes, sizes, and properties. Many methods have been developed to improve the synthesis efficiency by changing: chloroauric acid concentrations, reaction temperature, pH, fungal mass, and reaction time. However, future studies are still required to precisely control the: shape, size, composition, and properties of fungal AuNPs.
Collapse
Affiliation(s)
- Fengqin Xu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Yinghui Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Xixi Zhao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Guanwen Liu
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Bing Pang
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Ning Liao
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Huixin Li
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| | - Junling Shi
- The Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
34
|
Chen SH, Liu H, Huang B, Zheng J, Zhang ZL, Pang DW, Huang P, Cui R. Biosynthesis of NIR-II Ag 2Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviating-Hypoxia Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310795. [PMID: 38501992 DOI: 10.1002/smll.202310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.
Collapse
Affiliation(s)
- Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| |
Collapse
|
35
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
36
|
Liu Z, Bao Y, Lan H, Pu Y. Synthesis of Pseudostellaria heterophylla polysaccharide-gold nanocomposites and their antitumor effect through immunomodulation. Microsc Res Tech 2024; 87:1663-1673. [PMID: 38491931 DOI: 10.1002/jemt.24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Polysaccharides from natural sources have an excellent immune function and low toxicity; however, their limitations such as short half-life and instability limit their sustained pharmacological activity. In this context, the combination of polysaccharides and nanotechnology have been developed to promote the stability and prolong the immune activities of polysaccharides. To synthesize and explore the antitumor effect and immunomodulatory activity of PHP-AuNPs. Polysaccharides extracted from Pseudostellaria heterophylla were used to synthesize gold nanocomposites (PHP-AuNPs), and their physicochemical properties and immunoregulatory effect in vitro and in vivo were analyzed. The PHP-AuNPs were green synthesized with high biosafety. PHP-AuNPs can activate macrophages in vitro and decrease the tumor weight and volume, whereas they increase the immune organ index in vivo. Besides, PHP-AuNPs showed a beneficial effect for maintaining the immune balance of CD4+/CD8+ T cells and modulating the release of cytokines such as TNF-α increase and IL-10 decrease in mice. All these results suggested that PHP-AuNPs exhibit a remarkable antitumor effect and stronger immunomodulatory activity than that of free PHP-1. RESEARCH HIGHLIGHTS: The P. heterophylla polysaccharide-gold nanocomposites (PHP-AuNPs) were synthesized and physicochemical properties were characterized. The cytotoxicity in vitro and immunomodulatory effects of PHP-AuNPs on macrophages were analyzed. The immune-antitumor effects in vivo of PHP-AuNPs have also been confirmed.
Collapse
Affiliation(s)
- Zijing Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyan Lan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Browne LBF, Sudmeier T, Landis MA, Allen CS, Vincent KA. Controlled Biocatalytic Synthesis of a Metal Nanoparticle-Enzyme Hybrid: Demonstration for Catalytic H 2-driven NADH Recycling. Angew Chem Int Ed Engl 2024; 63:e202404024. [PMID: 38641561 PMCID: PMC11497223 DOI: 10.1002/anie.202404024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Here we demonstrate the preparation of enzyme-metal biohybrids of NAD+ reductase with biocatalytically-synthesised small gold nanoparticles (NPs, <10 nm) and core-shell gold-platinum NPs for tandem catalysis. Despite the variety of methods available for NP synthesis, there remains a need for more sustainable strategies which also give precise control over the shape and size of the metal NPs for applications in catalysis, biomedical devices, and electronics. We demonstrate facile biosynthesis of spherical, highly uniform, gold NPs under mild conditions using an isolated enzyme moiety, an NAD+ reductase, to reduce metal salts while oxidising a nicotinamide-containing cofactor. By subsequently introducing platinum salts, we show that core-shell Au@Pt NPs can then be formed. Catalytic function of these enzyme-Au@Pt NP hybrids was demonstrated for H2-driven NADH recycling to support enantioselective ketone reduction by an NADH-dependent alcohol dehydrogenase.
Collapse
Affiliation(s)
- Lucy B. F. Browne
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Tim Sudmeier
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Maya A. Landis
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Christopher S. Allen
- Electron Physical Science Imaging CentreDiamond Light SourceOxfordOX11 0DEUnited Kingdom
- Department of MaterialsUniversity of OxfordParks RdOxfordOX1 3PHUnited Kingdom
| | - Kylie A. Vincent
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| |
Collapse
|
38
|
Li J, Lv P, Xiao Z, Xiao J. Protective Effects of Bioactive Compound-Derived Nanoparticle Against Diabetic Retinopathy Through the Modulation of the NF-κB Signaling Pathway. ACS OMEGA 2024; 9:26267-26274. [PMID: 38911745 PMCID: PMC11191572 DOI: 10.1021/acsomega.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
Diabetic retinopathy is a prevalent and severe microvascular complication of diabetes, often causing visual impairment and blindness in adults. This condition significantly impacts the quality of life for many diabetes patients worldwide. Berberine (BBR), a bioactive compound known for its effects on blood glucose levels, has shown promise in managing diabetic complications. However, the exact mechanism of how BBR influences the development of diabetic retinopathy remains unclear. In this study, we focused on synthesizing a formulation derived from BBR and assessing its protective effects against diabetic retinopathy. The formulation was created using a green synthesis method and thoroughly characterized. In vitro studies demonstrated the antioxidant activity of the formulation against 2,2-diphenyl-1-picryl-hydrazyl-hydrate. We also examined the NF-κB signaling pathway at a molecular level using real-time polymerase chain reaction. To mimic diabetic retinopathy in a controlled setting, a diabetic rat model was established through streptozotocin injection. The rats were divided into normal, diabetic, and treatment groups. The treatment group received the formulated treatment via intragastric administration for several weeks, while the other groups received normal saline. Evaluation of histopathological characteristics and microstructural changes in the retina using hematoxylin and eosin staining revealed that the bioactive compound-derived nanoparticle exhibited favorable biological, chemical, and physical properties. Treatment with the formulation effectively reduced oxidative stress induced by diabetes and inhibited the NF-κB signaling pathway in the diabetic rat model. Under high glucose conditions, oxidative stress was heightened, leading to mitochondria-dependent cell apoptosis in Müller cells via the activation of the NF-κB signaling pathway. The bioactive compound-derived formulation counteracted these effects by decreasing IκB phosphorylation, preventing NF-κB nuclear translocation, and deactivating the NF-κB signaling pathway. Furthermore, treatment with the bioactive compound-derived formulation mitigated retinal micro- and ultrastructural changes associated with diabetic retinopathy. These results indicate that the formulation protects against diabetic retinopathy by suppressing oxidative stress, reducing cell apoptosis, and deactivating the NF-κB signaling pathway. This suggests that the bioactive compound-derived formulation could be a promising therapeutic option for diabetic retinopathy.
Collapse
Affiliation(s)
- Jianting Li
- Department
of Endocrinology, Central Hospital Affiliated
to Shandong First Medical University, No. 105 Jiefang Road, Jinan 250012, China
| | - Ping Lv
- Department
of Endocrinology, The Fourth People’s
Hospital of Jinan, No.
50, Normal Road, Tianqiao District, Jinan 250031, China
| | - Zhanzhan Xiao
- Department
of Medical Device Management, The Fourth
People’s Hospital of Jinan, No. 50, Normal Road, Tianqiao
District, Jinan 250031, China
| | - Juan Xiao
- Department
of Endocrinology, Qingdao Municipal Hospital, No. 1, Jiaozhou Road, Qingdao 266011, China
| |
Collapse
|
39
|
Kumar S, Shukla A, Singh SP, Singh RK, Patel AK, Verma PK, Kumar S, Kumar N, Singh V, Wasnik K, Acharya A. Synthesized Gold Nanoparticles with Moringa Oleifera leaf Extract Induce Mitotic Arrest (G2/M phase) and Apoptosis in Dalton's Lymphoma Cells. Cell Biochem Biophys 2024; 82:1043-1059. [PMID: 38696103 DOI: 10.1007/s12013-024-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 08/25/2024]
Abstract
The therapeutic potential of chemically synthesized AuNPs has been demonstrated in various types of cancer. However, gold nanoparticles (AuNPs) synthesized using typical chemical methods have concerns regarding their environmental safety and adverse impact on human well-being. To overcome this issue, we used an environmentally friendly approach in which gold nanoparticles were synthesized using Moringa oleifera leaf extract (MLE). The present research was mainly focused on the biosynthesis and characterization of gold nanoparticles (AuNPs) using Moringa oleifera leaf extract (MLE-AuNPs) and explore its anticancer potential against Dalton's Lymphoma (DL) cells. Characterization of the MLE-AuNPs was conducted using UV-Vis Spectroscopy to confirm the reduction process, FTIR analysis to ascertain the presence of functional groups, and XRD analysis to confirm the crystallinity. SEM and TEM images were used to examine size and morphology. After characterization, MLE-AuNPs were evaluated for their cytotoxic effects on Dalton's lymphoma cells, and the results showed an IC50 value of 75 ± 2.31 µg/mL; however, there was no discernible cytotoxicity towards normal murine thymocytes. Furthermore, flow cytometric analysis revealed G2/M phase cell cycle arrest mediated by the downregulation of cyclin B1 and Cdc2 and upregulation of p21. Additionally, apoptosis induction was evidenced by Annexin V Staining, accompanied by modulation of apoptosis-related genes including decreased Bcl-2 expression and increased expression of Bax, Cyt-c, and Caspase-3 at both the mRNA and protein levels. Collectively, our findings underscore the promising anti-cancer properties of MLE-AuNPs, advocating their potential as a novel therapeutic avenue for Dalton's lymphoma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Surya Pratap Singh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Praveen Kumar Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Varsha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
40
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
41
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
42
|
Ma X, Deng L, Zou Z, Pan Z, Feng L, Huang Z, Liang Z, Liu X, Li M, Su Z, Zheng H. Novel portable photoelectrochemical sensor based on CdS/Au/TiO 2 nanotube arrays for sensitive, non-invasive, and instantaneous uric acid detection in saliva. Talanta 2024; 271:125646. [PMID: 38218058 DOI: 10.1016/j.talanta.2024.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Uric acid (UA) monitoring is the most effective method for diagnosis and treatment of gout, hyperuricemia, hypertension, and other diseases. However, challenges remain regarding detection efficiency and rapid on-site detection. Here, we first synthesized a CdS/Au/TiO2-NTAs Z-scheme heterojunction material using a titanium dioxide nanotube array (TiO2-NTAs) as the substrate and modified with gold nanoparticles (Au) and cadmium sulfide particles (CdS). This material achieves bandgap alignment to generate a large number of electron-hole pairs under illumination. Then, using CdS/Au/TiO2-NTAs as the working electrode and molecularly imprinted polymers (MIP) as the recognition unit, we constructed a portable photoelectrochemical (PEC) sensor for non-invasive instant detection of UA concentration in human saliva, which has unique advantages in the field of high-sensitivity PEC instant detection. The portable MIP-PEC sensor achieves a linear range of 0.01-50 μM and a detection limit as low as 5.07 nM (S/N = 3). At the same time, the portable MIP-PEC sensor exhibits excellent sensitivity, specificity as well as stability, and shows no statistically significant difference compared to traditional high-performance liquid chromatography (HPLC) in practical sample detection. Compared to traditional PEC modes, this work demonstrates a novel and universal method for high-sensitivity instant detection in the field of PEC.
Collapse
Affiliation(s)
- Xiaolong Ma
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Ziwei Zou
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Xinli Liu
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Mei Li
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| | - Hua Zheng
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| |
Collapse
|
43
|
Fu Z, Ju H, Xu GS, Wu YC, Chen X, Li HJ. Recent development of carrier materials in anthocyanins encapsulation applications: A comprehensive literature review. Food Chem 2024; 439:138104. [PMID: 38043284 DOI: 10.1016/j.foodchem.2023.138104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins are natural polyphenols belonging to the flavonoid family that possess a variety of putative health benefits when consumed in a balanced diet. However, applications of anthocyanins in, for example, functional foods are limited due to poor stability, degradation, and low transmembrane efficiency. To maintain bioactivities of anthocyanins and optimize their use, various carrier materials have been developed. Here, we reviewed the uses of the different carrier materials (organic/inorganic, micro/nano) for anthocyanin encapsulation and delivery over the past five years. The performance of different materials and interactions between anthocyanins and these materials are described. Lastly, we give our perspective on the future development trend of anthocyanin encapsulation strategies.
Collapse
Affiliation(s)
- Ze Fu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Guang-Sen Xu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| |
Collapse
|
44
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
45
|
Meher K, Radha G, Lopus M. Induction of autophagy-dependent and caspase- and microtubule-acetylation-independent cell death by phytochemical-stabilized gold nanopolygons in colorectal adenocarcinoma cells. NANOSCALE 2024; 16:7976-7987. [PMID: 38567463 DOI: 10.1039/d4nr00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 μg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.
Collapse
Affiliation(s)
- Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Gudapureddy Radha
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| |
Collapse
|
46
|
Xu D, Su W, Luo Y, Wang Z, Yin C, Chen B, Zhang Y. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657211 DOI: 10.1021/acsami.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cellulose nanofiber (CNF) holds great promise in applications such as surface-enhanced Raman scattering (SERS), catalysis, esthesia, and detection. This study aimed to build novel CNF-based SERS substrates through a facile synthetic method. Citrate-reduced gold nanoparticles (AuNPs) were adsorbed on the cationized CNF surface due to electrostatic interactions, and uniform AuNPs@(2,3-epoxypropyl trimethylammonium chloride)EPTMAC@CNF flexible SERS substrates were prepared by a simple vacuum-assisted filtration method. The probe molecule methylene blue was chosen to assess the performance of the CNF-based SERS substrate with a sensitivity up to 10-9 M, superior signal reproducibility (relative standard deviation (RSD) = 4.67%), and storage stability (more than 30 days). Tensile strength tests indicated that the CNF-based films had good mechanical properties. In addition, CNF-based substrates can easily capture and visually identify microplastics in water. These results demonstrate the potential application of the flexible, self-assembled AuNPs@EPTMAC@CNF flexible SERS substrate for prompt and sensitive detection of trace substances.
Collapse
Affiliation(s)
- Dewen Xu
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Su
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yinlong Luo
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Cheng Yin
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Bingyan Chen
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
47
|
Hashemzadeh V, Hashemzadeh A, Mohebbati R, Arefi RG, Yazdi MET. Fabrication and characterization of gold nanoparticles using alginate: In vitro and in vivo assessment of its administration effects with swimming exercise on diabetic rats. Open Life Sci 2024; 19:20220869. [PMID: 38645750 PMCID: PMC11032099 DOI: 10.1515/biol-2022-0869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Gold nanoparticles (AuNPs) have unique features that might lead to the development of a new class of diabetic medicines. AuNPs were biosynthesized utilizing sodium-alginate. UV-Vis-spectroscopy, Fourier transforms infrared, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray were used to examine the particles. The potential of AuNPs for improving the diabetes condition was examined along with swimming in rats. FESEM image revealed the spherical morphology with an average particle size of 106.6 ± 20.8 nm. In the diabetic group, serum glucose, blood urea nitrogen (BUN), creatinine, cholesterol, and triglyceride (TG) levels were significantly higher than the control group. Low-density lipoprotein (LDL) was significantly higher and high-density lipoprotein (HDL) was significantly lower in the diabetic group compared to the control group. Malondialdehyde (MDA) levels were also significantly higher in the D group. However, in the groups treated with swimming and gold, these parameters were significantly improved. Specifically, serum-glucose, BUN, creatinine, cholesterol, and TG levels were significantly reduced, while LDL was significantly decreased in the diabetic + swimming + AuNPs group and HDL was significantly increased in the diabetic + AuNPs group. MDA levels were significantly decreased in the treated groups, and other antioxidants were significantly improved in the diabetic + swimming + AuNPs group. Catalase levels were also significantly improved in the D + gold group. It can be concluded that both AuNPs and swimming can decrease diabetic complications.
Collapse
Affiliation(s)
- Vahideh Hashemzadeh
- Department of Sport Science, Binaloud Institute of Higher Education, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Pharmacology, Medicinal Plants, Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Gharari Arefi
- Department of Sport Science, Binaloud Institute of Higher Education, Mashhad, Iran
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants, Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
49
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
50
|
Rehman KU, Zaman U, Alem A, Khan D, Khattak NS, Alissa M, Aloraini GS, Abdelrahman EA, Alsuwat MA, Alzahrani KJ, Almehmadi M, Allahyani M. Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications. Int J Biol Macromol 2024; 265:131067. [PMID: 38521328 DOI: 10.1016/j.ijbiomac.2024.131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.
Collapse
Affiliation(s)
- Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ahmad Alem
- Adult Critical Care & Emergency Consultant Emergency Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noor Saeed Khattak
- National Center of Excellence in Physical Chemistry University of Peshawar, 25120, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ghfren S Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Khalid J Alzahrani
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Mazen Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Mamdouh Allahyani
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|