1
|
Kopa-Stojak PN, Kleniewska P, Hoffmann A, Pawliczak R. The potential effect of gut microbiota on the secretion of selected cytokines by human cells in vitro. Sci Rep 2025; 15:17367. [PMID: 40389545 PMCID: PMC12089611 DOI: 10.1038/s41598-025-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Colonization of the gut early in life plays a significant role in guiding the development of the immune system. The effect of individual intestinal bacterial strains on the asthma development is the subject of numerous scientific studies. The aim of the study was to determine the role and the potential mechanism of action of intestinal microflora on secretion of cytokines and potential predisposition to asthma development. The effect of Parabacteroides distasonis (PD), Bacteroides vulgatus (BV) Clostridium perfringens (CP) and Ruminococcus albus (RA) lysates on the secretion of IL-4, IL-5, IL-8 (CXCL8) and IL-13 in human peripheral blood mononuclear cells, monocytes and HT-29 cells has been analyzed by enzyme-linked immunosorbent assays. RA and PD 400 µg lysates significantly increased secretion of IL-5 by PBMC compared to control (p < 0.05). In addition, BV, CP, PD and RA 100 µg lysates significantly increased IL-8 secretion by PBMC, as well as BV, PD and RA 100 µg lysates by monocytes compared to control (p < 0.05). Moreover, PD 100 µg and 400 µg lysates significantly increased secretion of IL-8 by HT-29 cells compared to BV 100 µg and 400 µg lysates (p < 0.05). CP, BV, PD and RA 100 µg lysates significantly lowered IL-13 secretion by PBMC vs. control (p < 0.001). For a better understanding of the mechanisms of action of gut microflora and their impact on parameters important in asthma, complex studies which compare the asthma and control samples should be carried out in the future.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, (bldg 2 Rm 177), 90-752, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, (bldg 2 Rm 177), 90-752, Lodz, Poland
| | - Arkadiusz Hoffmann
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, (bldg 2 Rm 177), 90-752, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, (bldg 2 Rm 177), 90-752, Lodz, Poland.
| |
Collapse
|
2
|
Carannante A, Giustini M, Rota F, Bailo P, Piccinini A, Izzo G, Bollati V, Gaudi S. Intimate partner violence and stress-related disorders: from epigenomics to resilience. Front Glob Womens Health 2025; 6:1536169. [PMID: 40421256 PMCID: PMC12104246 DOI: 10.3389/fgwh.2025.1536169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025] Open
Abstract
Intimate Partner Violence (IPV) is a major public health problem to be addressed with innovative and interconnecting strategies for ensuring the psychophysical health of the surviving woman. According to the World Health Organization, 27% of women worldwide have experienced physical and sexual IPV in their lifetime. Most of the studies on gender-based violence focus on short-term effects, while long-term effects are often marginally included even though they represent the most serious and complex consequences. The molecular mechanisms underlying stress-related disorders in IPV victims are multiple and include dysregulation of the hypothalamic-pituitary-adrenal axis, inflammatory response, epigenetic modifications, neurotransmitter imbalances, structural changes in the brain, and oxidative stress. This review aims to explore the long-term health consequences of intimate partner violence (IPV), emphasizing the biological and psychological mechanisms underlying stress-related disorders and resilience. By integrating findings from epigenetics, microbiome research, and artificial intelligence (AI)-based data analysis, we highlight novel strategies for mitigating IPV-related trauma and improving recovery pathways. Genome-wide environment interaction studies, enhanced by AI-assisted data analysis, offer a promising public health approach for identifying factors that contribute to stress-related disorders and those that promote resilience, thus guiding more effective prevention and intervention strategies.
Collapse
Affiliation(s)
- Anna Carannante
- Department of Environment and Health, Italian Institute of Health, Rome, Italy
| | - Marco Giustini
- Department of Environment and Health, Italian Institute of Health, Rome, Italy
| | - Federica Rota
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, Camerino, Italy
| | - Andrea Piccinini
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
- Service for Sexual and Domestic Violence (SVSeD), Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Valentina Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Occupational Health Unit, Fondazione Irccs Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Gaudi
- Department of Environment and Health, Italian Institute of Health, Rome, Italy
| |
Collapse
|
3
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
4
|
Adamko DJ, Hildebrand KJ. The changing epidemiology of paediatric childhood asthma and allergy in different regions of the world. FRONTIERS IN ALLERGY 2025; 6:1584928. [PMID: 40370529 PMCID: PMC12075412 DOI: 10.3389/falgy.2025.1584928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Allergic disorders encompass a variety of conditions including asthma, atopic dermatitis, food allergy, allergic rhinitis, and eosinophilic esophagitis. These atopic disorders are connected via an abnormal host immune response to the environment. A series of longitudinal cross-sectional studies conducted over the past 3 decades have reported on the epidemiological trends that contribute towards the development of pediatric asthma and allergic disease. Infant birth cohort studies assessing the microbiome have offered clues as to the underlying biological mechanisms and basis for allergic disease. Why this abnormal immune response is occurring is the basis of decades of research and the reasons for this chapter. Our understanding of the biology of the immune system has increased exponentially with the advances in genomic testing, providing further opportunity for targeted treatments and more importantly, primary prevention of atopic disease.
Collapse
Affiliation(s)
- D. J. Adamko
- Division of Respiratory Medicine, Department of Pediatrics, University of Saskatchewan, Saskatchewan, SK, Canada
| | - Kyla J. Hildebrand
- Division of Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Moradi K, Moghaddami R, Ghaffari-Nasab A, Khordadmehr M, Pagheh AS, Mosajakhah H, Rezaei S, Gharepapagh E, Ahmadi M, Montazeri M, Pazoki H, Ahmadpour E. Toxoplasma gondii modulates immune responses and mitigates type 1 diabetes progression in a streptozotocin-induced rat model. Cell Commun Signal 2025; 23:172. [PMID: 40200271 PMCID: PMC11980074 DOI: 10.1186/s12964-025-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. Emerging evidence suggests that infections, including Toxoplasma gondii (T. gondii), may modulate immune responses and influence disease outcomes. This study aimed to investigate the effects of T. gondii infection on the development of T1DM in a Streptozotocin (STZ)-induced rat model, with an emphasis on immune modulation, cytokine profiles, and organ inflammation. In rats experimentally infected with pathogenic and non-pathogenic Toxoplasma strains, diabetes was induced via STZ injection and compared to a control group. Blood glucose levels and the expression of IL-10, IL-1β, and TNF-α at both gene and protein levels were assessed. Histopathological examinations of the pancreas and kidneys were conducted, alongside small-animal PET scans to evaluate metabolic activity in these organs. The T. gondii-infected diabetic groups showed reduced blood glucose levels, increased IL-10, and decreased TNF-α and IL-1β levels compared to the STZ group. Histopathological and PET imaging analyses revealed improved pancreatic and renal tissues and reduced metabolic activity, indicating improvement effects associated with decreased inflammation and immune modulation. T. gondii infection seems to influence immune responses and slow the progression of T1DM in a rat model. These results suggest a potential therapeutic role for parasitic infections in autoimmune diseases, offering valuable insights into the complex relationship between infections, immune regulation, and metabolic health.
Collapse
Affiliation(s)
- Kimia Moradi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Moghaddami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arshad Ghaffari-Nasab
- School of Nursing and Allied Medical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Monir Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Mosajakhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Rezaei
- Department of Nuclear Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharepapagh
- Department of Nuclear Medicine, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- School of Medical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Pazoki
- Faculty of Medicine, Department of Medical Microbiology, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Ehsan Ahmadpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Varga MK, Moshammer H, Atanyazova O. Childhood asthma and mould in homes-A meta-analysis. Wien Klin Wochenschr 2025; 137:79-88. [PMID: 38992293 PMCID: PMC11794369 DOI: 10.1007/s00508-024-02396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Asthma is a multifaceted and multicausal disease. Childhood asthma is strongly influenced by genetic traits and is characterized by hyperreactivity of the airways so that also unspecific triggers including moulds can trigger an asthma attack. Therefore, it is undisputed that moulds in the home can cause asthma attacks in asthmatic children. It is, however, unclear if mould in homes also induce the development of asthma. Because more and more severe attacks in asthmatic children living in mouldy homes might speed up the diagnosis of asthma, cross-sectional studies are not well-suited to differentiate between mould as a causative or only as a precipitating factor. Cross-sectional studies show an increased asthma risk and poorer lung function in children living in mouldy homes. To better understand the causal role of mould in homes, a systematic review was performed with random effects meta-analysis focusing on cohort and case-control studies only.We found 21 case-control and 11 cohort studies examining the association between mould at home and later advent of childhood asthma. According to the case-control studies, mouldy homes increase the risk of asthma by 53% (95 confidence interval [CI]: 42-65%) with no evidence of heterogeneity or publication bias. Risk estimates based on cohort studies were smaller with 15% (1-31%). The cohort studies also showed no publication bias but substantial heterogeneity (I2 = 60.5, p = 0.005). Heterogeneity could be partly explained by percentage of male children, age of participants, and publication year, but was not affected by study quality.In conclusion, living in mouldy homes during childhood seems to increase the risk of later developing bronchial asthma.
Collapse
Affiliation(s)
- Marton Kristof Varga
- ZPH, Department of Environmental Health, Medical University of Vienna, ZPH, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Hanns Moshammer
- ZPH, Department of Environmental Health, Medical University of Vienna, ZPH, Kinderspitalgasse 15, 1090, Vienna, Austria.
- Karakalpakstan Medical Institute, 230100, Nukus, Uzbekistan.
| | | |
Collapse
|
7
|
Wu T, Cheng H, Zhuang J, Liu X, Ouyang Z, Qian R. Risk factors for inflammatory bowel disease: an umbrella review. Front Cell Infect Microbiol 2025; 14:1410506. [PMID: 39926114 PMCID: PMC11802543 DOI: 10.3389/fcimb.2024.1410506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) represents a cluster of chronic idiopathic inflammatory disorders situated at the nexus of intricate interplays. The primary aim of the present investigation is to perform an umbrella review of metaanalyses, systematically offering a comprehensive overview of the evidence concerning risk factors for IBD. Methods To achieve this, we searched reputable databases, including PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews, from inception through April 2023. Two authors independently assessed the methodological quality of each metaanalysis using the AMSTAR tool and adhered to evidence classification criteria. Results In total, we extracted 191 unique risk factors in meta-analyses, including 92 significantly associated risk factors. The top ten risk factors were human cytomegalovirus (HCMV) infection, IBD family history, periodontal disease, poliomyelitis, campylobacter species infection, hidradenitis suppurativa, psoriasis, use of proton pump inhibitors, chronic obstructive pulmonary disease, and western dietary pattern. Discussion In conclusion, this umbrella review extracted 62 risk factors and 30 protective factors, most of which were related to underlying diseases, personal lifestyle and environmental factors. The findings in this paper help to develop better prevention and treatment measures to reduce the incidence of IBD, delay its progression, and reduce the burden of IBD-related disease worldwide. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023417175.
Collapse
Affiliation(s)
- Tingping Wu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Honghui Cheng
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiamei Zhuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xianhua Liu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zichen Ouyang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Qian
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Grönroos M, Jumpponen A, Roslund MI, Nurminen N, Oikarinen S, Parajuli A, Laitinen OH, Cinek O, Kramna L, Rajaniemi J, Hyöty H, Puhakka R, Sinkkonen A. Using patterns of shared taxa to infer bacterial dispersal in human living environment in urban and rural areas. Appl Environ Microbiol 2024; 90:e0090324. [PMID: 39230286 PMCID: PMC11498140 DOI: 10.1128/aem.00903-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Contact with environmental microbial communities primes the human immune system. Factors determining the distribution of microorganisms, such as dispersal, are thus important for human health. Here, we used the relative number of bacteria shared between environmental and human samples as a measure of bacterial dispersal and studied these associations with living environment and lifestyles. We analyzed amplicon sequence variants (ASVs) of the V4 region of 16S rDNA gene from 347 samples of doormat dust as well as samples of saliva, skin swabs, and feces from 53 elderly people in urban and rural areas in Finland at three timepoints. We first enumerated the ASVs shared between doormat and one of the human sample types (i.e., saliva, skin swab, or feces) of each individual subject and calculated the shared ASVs as a proportion of all ASVs in the given sample type of that individual. We observed that the patterns for the proportions of shared ASVs differed among seasons and human sample type. In skin samples, there was a negative association between the proportion of shared ASVs and the coverage of built environment (a proxy for degree of urbanization), whereas in saliva data, this association was positive. We discuss these findings in the context of differing species pools in urban and rural environments. IMPORTANCE Understanding how environmental microorganisms reach and interact with humans is a key question when aiming to increase human contacts with natural microbiota. Few methods are suitable for studying microbial dispersal at relatively large spatial scales. Thus, we tested an indirect method and studied patterns of bacterial taxa that are shared between humans and their living environment.
Collapse
Affiliation(s)
- M. Grönroos
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - A. Jumpponen
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, Kansas, USA
| | - M. I. Roslund
- Natural Resources Institute Finland, Helsinki, Finland
| | - N. Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - S. Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A. Parajuli
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - O. H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - O. Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L. Kramna
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J. Rajaniemi
- Faculty of Built Environment, Tampere University, Tampere, Finland
| | - H. Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - R. Puhakka
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - A. Sinkkonen
- Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
10
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Falara E, Metallinou D, Nanou C, Vlachou M, Diamanti A. Perinatal Exposure to Tobacco Smoke and Its Association with the Maternal and Offspring Microbiome: A Systematic Review. Healthcare (Basel) 2024; 12:1874. [PMID: 39337215 PMCID: PMC11431162 DOI: 10.3390/healthcare12181874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The human microbiome, comprising trillions of microorganisms, significantly influences human health and disease. During critical periods like the perinatal phase, the microbiome undergoes significant changes, impacting lifelong health. Tobacco smoke, a known environmental pollutant, has adverse effects on health, particularly during pregnancy. Despite this, its association with the perinatal microbiome remains understudied. METHODS We conducted a systematic review to integrate findings on perinatal tobacco smoke exposure and its association with the maternal and neonatal microbiomes. We conducted a comprehensive literature search in the PubMed, Scopus, and Web of Science databases from January 2000 to February 2024. We selected studies that met predefined inclusion criteria and performed data extraction. RESULTS The review included eight studies that revealed diverse associations of perinatal tobacco exposure with the maternal and neonatal microbiome. Active smoking during pregnancy was linked to alterations in microbiome composition and diversity in children. Maternal smoking correlated with increased Firmicutes abundance and decreased Akkermansia muciniphila abundance in offspring. Additionally, exposure to thirdhand smoke in neonatal intensive care units was related to infant microbiome diversity. Infants exposed to tobacco smoke showed various microbial changes, suggesting potential implications for childhood health outcomes, including obesity risk. CONCLUSIONS Perinatal exposure to tobacco smoke exerts significant influence on the maternal and neonatal microbiomes, with potential implications for long-term health outcomes. Addressing socioeconomic and psychological barriers to smoking cessation, implementing stricter smoking regulations, and promoting public health campaigns are essential steps towards reducing tobacco-related harm during the perinatal period. Further longitudinal studies and standardized assessment methods are needed to validate these findings and guide the development of effective preventive measures.
Collapse
Affiliation(s)
| | | | | | - Maria Vlachou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, 12243 Egaleo, Greece; (E.F.); (D.M.); (C.N.); (A.D.)
| | | |
Collapse
|
12
|
Alsakarneh S, Hassan K, Jaber F, Mintz M, Zulqarnian M, Obeid A, Ghoz H, Hashash JG, Farraye FA. The national burden of inflammatory bowel disease in the United States from 1990-2019: results from the Global Burden of Disease study database. Ann Gastroenterol 2024; 37:427-435. [PMID: 38974084 PMCID: PMC11226748 DOI: 10.20524/aog.2024.0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/04/2024] [Indexed: 07/09/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) epidemiology has changed rapidly in recent years. We aimed to provide a systematic report of the burden of IBD at a state level in the United States (US), and to study the age- and sex-specific trends of incidence, prevalence and mortality rates for the past 3 decades. Methods Using the Global Burden of Disease (GBD) 2019 Study Database, we examined the incidence, prevalence and mortality rate, and the disability-adjusted life-years from GBD 2019 at national and state level from 1990-2019. Results There was an overall decrease in incidence and prevalence rates of IBD in the US from 1990-2019, while a simultaneous increase in the overall mortality rates was identified. However, a distinct trend of increasing incidence and prevalence rates emerged starting in 2000, with incidence rates rising from 21 cases per 100,000 persons in 2000 to 23 cases per 100,000 persons in 2019. From 1990-2019, incidence and prevalence decreased in males at a higher rate than in females. However, mortality rates increased more in females than males. Incidence rates were highest in Midwestern and Eastern states, and were lowest across the northern Great Plains and Western states, with the highest incidence noted in Michigan (31 cases per 100,000 persons). California had the greatest decrease in incidence rates from 1990-2019 (-63.3%). Conclusion Our results concerning recent trends and geographic variations in IBD offer policymakers crucial insights for informed decision-making in policy, research, and investment, facilitating more effective strategies and allocation of resources.
Collapse
Affiliation(s)
- Saqr Alsakarneh
- Department of Medicine, University of Missouri–Kansas City, Kansas City, MO (Saqr Alsakarneh, Fouad Jaber)
| | - Kamal Hassan
- Department of Gastroenterology and Hepatology, Weill Cornell University, NY (Kamal Hassan, Micheal Mintz)
| | - Fouad Jaber
- Department of Medicine, University of Missouri–Kansas City, Kansas City, MO (Saqr Alsakarneh, Fouad Jaber)
| | - Micheal Mintz
- Department of Gastroenterology and Hepatology, Weill Cornell University, NY (Kamal Hassan, Micheal Mintz)
| | - Mir Zulqarnian
- Department of Gastroenterology and Hepatology, University of Missouri-Kansas City, MO (Mir Zulqarnian, Hassan Ghoz)
| | - Ayah Obeid
- Department of Medicine, St. Luke’s University Health Network, Bethlehem, Pennsylvania (Ayah Obied)
| | - Hassan Ghoz
- Department of Gastroenterology and Hepatology, University of Missouri-Kansas City, MO (Mir Zulqarnian, Hassan Ghoz)
| | - Jana G. Hashash
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL (Jana G. Hashash, Francis A. Farraye), USA
| | - Francis A. Farraye
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL (Jana G. Hashash, Francis A. Farraye), USA
| |
Collapse
|
13
|
Koo B, Yang C, Nyachoti CM. Effects of sanitary conditions with lipopolysaccharide injection and dietary valine supplementation on growth performance, immune response, bacterial profile, and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:225-241. [PMID: 39087698 DOI: 10.1080/1745039x.2024.2382278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
This study investigated the effects of dietary L-valine (Val) supplementation and sanitary conditions with lipopolysaccharide injection on growth performance, immune response, and intestinal bacterial profiles and metabolites in weaned pigs. Thirty-two weaned pigs (6.98 ± 0.47 kg) were randomly assigned to treatments in a 2 × 2 factorial arrangement based on dietary Val levels and sanitary conditions (low or high). The pigs were fed either a basal diet containing the standard levels of Val suggested by (NRC), (2012) or a basal diet supplemented with 0.1% L-Val. A room designated as a high sanitary room was washed weekly, whereas the designated low sanitary room was not washed throughout the experiment and 5 kg of manure from the nursery pig barn was spread on the pen floors on day 1. All data were analysed using a mixed procedure of SAS, with the individual pen as the experimental unit. The pigs raised in low sanitary conditions exhibited a lower (p < 0.05) average daily gain, average daily feed intake, and gain-to-feed ratio and a higher (p < 0.05) incidence of diarrhoea than those raised in high sanitary conditions during the 14-d experimental period. The pigs in the low sanitary group also had a lower (p < 0.05) concentration of butyrate in the jejunum and a higher (p < 0.05) concentration of NH3-N in the colon than those in the high sanitary group. Dietary Val supplementation was reduced (p < 0.05) plasma interleukin (IL)-1β and IL-1 receptor antagonist concentrations as well as isovalerate and NH3-N concentrations in the colon, regardless of sanitary conditions. Interactions between dietary Val supplementation and sanitary conditions were observed in the abundances of mRNA-encoding β-defensins 113, 125 and 129 (p < 0.05). In conclusion, dietary Val supplementation beneficially modulates inflammatory responses and microbial metabolites regardless of sanitary conditions while transcriptional levels of β-defensins are regulated by dietary Val supplementation in a manner dependent on housing hygiene conditions.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
14
|
Saarenpää M, Roslund MI, Nurminen N, Puhakka R, Kummola L, Laitinen OH, Hyöty H, Sinkkonen A. Urban indoor gardening enhances immune regulation and diversifies skin microbiota - A placebo-controlled double-blinded intervention study. ENVIRONMENT INTERNATIONAL 2024; 187:108705. [PMID: 38688234 DOI: 10.1016/j.envint.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
According to the hygiene and biodiversity hypotheses, frequent exposure to environmental microbiota, especially through soil contact, diversifies commensal microbiota, enhances immune modulation, and ultimately lowers the risk of immune-mediated diseases. Here we test the underlying assumption of the hygiene and biodiversity hypotheses by instructing volunteers to grow edible plants indoors during the winter season when natural exposure to environmental microbiota is low. The one-month randomized, placebo-controlled double-blind trial consisted of two treatments: participants received either microbially diverse growing medium or visually similar but microbially poor growing medium. Skin microbiota and a panel of seven immune markers were analyzed in the beginning of the trial and after one month. The diversity of five bacterial phyla (Bacteroidetes, Planctomycetes, Proteobacteria, Cyanobacteria, and Verrucomicrobia) and one class (Bacteroidia) increased on the skin of participants in the intervention group while no changes were observed in the placebo group. The number of nodes and edges in the co-occurrence networks of the skin bacteria increased on average three times more in the intervention group than in the placebo group. The plasma levels of the immunomodulatory cytokine interleukin 10 (IL-10) increased in the intervention group when compared with the placebo group. A similar trend was observed in the interleukin 17A (IL-17A) levels and in the IL-10:IL-17A ratios. Participants in both groups reported high satisfaction and adherence to the trial. The current study provides evidence in support of the core assumption of the hygiene and biodiversity hypotheses of immune-mediated diseases. Indoor urban gardening offers a meaningful and convenient approach for increasing year-round exposure to environmental microbiota, paving the way for other prophylactic practices that might help prevent immune-mediated diseases.
Collapse
Affiliation(s)
- Mika Saarenpää
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Marja I Roslund
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland.
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland.
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku and Helsinki, Finland.
| |
Collapse
|
15
|
Manthey C, Super M, Cepon-Robins TJ. Childhood developmental environment affects adult intestinal inflammation levels: preliminary evidence from older adults in the United States. Ann Hum Biol 2024; 51:2427593. [PMID: 39638766 DOI: 10.1080/03014460.2024.2427593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The Old Friends Hypothesis suggests limited exposure to symbionts during development leads to immune system dysregulation (e.g. allergies, autoimmunity) and inflammatory conditions (e.g. inflammatory bowel disease), with likely sex-specific variation based on exposure risk and sex hormones. Limited research documents how variation in childhood exposures affect older adult health. AIM We tested relationships between current intestinal inflammation and childhood environment in 84 older adults (51-88 years) living in Colorado, USA. SUBJECTS AND METHODS Faecal calprotectin (FC), a biomarker of intestinal inflammation, was measured from stool samples. Structured interviews assessed farm animal exposure during childhood and childhood environments (urban, suburban, rural) at different age periods (0 to 5, 5 to 10, 10 to 20 years). RESULTS AND CONCLUSIONS Farm animal exposure was not significantly associated with FC. Females who grew up in suburban environments, especially between the ages of 5 and 10, had higher FC than females from urban or rural environments (p < 0.05). Males living in urban environments between the ages of 10 and 20 had the lowest FC compared to both other environments (p < 0.05). We found mixed, age- and sex-specific support for the idea that childhood exposures alter risk of inflammatory disease later in life.
Collapse
Affiliation(s)
- Courtney Manthey
- Anthropology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
- Anthropology Department, University of Montana, Missoula, MT, USA
| | - Meg Super
- Biology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Tara J Cepon-Robins
- Anthropology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
16
|
Yu Q, Koda S, Xu N, Li J, Wang JL, Liu M, Liu JX, Zhang Y, Yang HM, Zhang BB, Li XY, Li XC, Tang RX, Zheng KY, Yan C. CsHscB Derived from a Liver Fluke Clonorchis sinensis Ameliorates Cholestatic Hepatic Fibrosis in a Mouse Model of Sclerosing Cholangitis. Curr Mol Med 2024; 24:505-515. [PMID: 37076961 DOI: 10.2174/1566524023666230418111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammatory fibrosis usually involving the whole biliary tree. However, there are very limited treatment options to treat this disease. Our previous study found a lipid-protein rCsHscB from a liver fluke - Clonorchis sinensis, which had full capacities of immune regulation. Therefore, we investigated the role of rCsHscB in a mouse model of sclerosing cholangitis induced by xenobiotic 3,5- diethoxycarbonyl-1,4-dihydrocollidine (DDC) to explore whether this protein had potential therapeutic value for PSC. METHODS Mice were fed 0.1% DDC for 4 weeks and treated with CsHscB (30 μg/mouse, intraperitoneal injection, once every 3 days); the control group was given an equal amount of PBS or CsHscB under normal diet conditions. All the mice were sacrificed at 4 weeks for the evaluation of biliary proliferation, fibrosis, and inflammation. RESULTS rCsHscB treatment attenuated DDC-induced liver congestion and enlargement and significantly decreased the upregulation of serum AST and ALT levels. The administration of rCsHscB to DDC-fed mice significantly decreased cholangiocyte proliferation and pro-inflammatory cytokine production compared to mice fed with DDC alone. Also, rCsHscB treatment showed a decreased expression of α-SMA in the liver and other markers of liver fibrosis (Masson staining, Hydroxyproline content, and collagen deposit). More interestingly, DDC-fed mice treated with rCsHscB showed a significant up-regulation of PPAR-γ expression, which was similar to control mice, indicating the involvement of PPAR-γ signaling in the protective action of rCsHscB. CONCLUSION Overall, our data show that rCsHscB attenuates the progression of cholestatic fibrosis induced by DDC and supports the potential for manipulating the parasite-derived molecule to treat certain immune-mediated disorders.
Collapse
Affiliation(s)
- Qian Yu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Stephane Koda
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Na Xu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Jing Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Jian-Ling Wang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Man Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Ji-Xin Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yu Zhang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Hui-Min Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Bei-Bei Zhang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Xiang-Yang Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Xiao-Cui Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Ren-Xian Tang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Chao Yan
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| |
Collapse
|
17
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Reynoso-García J, Santiago-Rodriguez TM, Narganes-Storde Y, Cano RJ, Toranzos GA. Edible flora in pre-Columbian Caribbean coprolites: Expected and unexpected data. PLoS One 2023; 18:e0292077. [PMID: 37819893 PMCID: PMC10566737 DOI: 10.1371/journal.pone.0292077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Coprolites, or mummified feces, are valuable sources of information on ancient cultures as they contain ancient DNA (aDNA). In this study, we analyzed ancient plant DNA isolated from coprolites belonging to two pre-Columbian cultures (Huecoid and Saladoid) from Vieques, Puerto Rico, using shotgun metagenomic sequencing to reconstruct diet and lifestyles. We also analyzed DNA sequences of putative phytopathogenic fungi, likely ingested during food consumption, to further support dietary habits. Our findings show that pre-Columbian Caribbean cultures had a diverse diet consisting of maize (Zea mays), sweet potato (Ipomoea batatas), chili peppers (Capsicum annuum), peanuts (Arachis spp.), papaya (Carica papaya), tomato (Solanum lycopersicum) and, very surprisingly cotton (Gossypium barbadense) and tobacco (Nicotiana sylvestris). Modelling of putative phytopathogenic fungi and plant interactions confirmed the potential consumption of these plants as well as edible fungi, particularly Ustilago spp., which suggest the consumption of maize and huitlacoche. These findings suggest that a variety of dietary, medicinal, and hallucinogenic plants likely played an important role in ancient human subsistence and societal customs. We compared our results with coprolites found in Mexico and the United States, as well as present-day faeces from Mexico, Peru, and the United States. The results suggest that the diet of pre-Columbian cultures resembled that of present-day hunter-gatherers, while agriculturalists exhibited a transitional state in dietary lifestyles between the pre-Columbian cultures and larger scale farmers and United States individuals. Our study highlights differences in dietary patterns related to human lifestyles and provides insight into the flora present in the pre-Columbian Caribbean area. Importantly, data from ancient fecal specimens demonstrate the importance of ancient DNA studies to better understand pre-Columbian populations.
Collapse
Affiliation(s)
- Jelissa Reynoso-García
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | - Raul J. Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
19
|
Cavalli CAM, Gabbiadini R, Dal Buono A, Quadarella A, De Marco A, Repici A, Bezzio C, Simonetta E, Aliberti S, Armuzzi A. Lung Involvement in Inflammatory Bowel Diseases: Shared Pathways and Unwanted Connections. J Clin Med 2023; 12:6419. [PMID: 37835065 PMCID: PMC10573999 DOI: 10.3390/jcm12196419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, relapsing inflammatory disorders of the gastrointestinal tract, frequently associated with extraintestinal manifestations (EIMs) that can severely affect IBD patients' quality of life, sometimes even becoming life-threatening. Respiratory diseases have always been considered a rare and subsequently neglected extraintestinal manifestations of IBD. However, increasing evidence has demonstrated that respiratory involvement is frequent in IBD patients, even in the absence of respiratory symptoms. Airway inflammation is the most common milieu of IBD-related involvement, with bronchiectasis being the most common manifestation. Furthermore, significant differences in prevalence and types of involvement are present between Crohn's disease and ulcerative colitis. The same embryological origin of respiratory and gastrointestinal tissue, in addition to exposure to common antigens and cytokine networks, may all play a potential role in the respiratory involvement. Furthermore, other causes such as drug-related toxicity and infections must always be considered. This article aims at reviewing the current evidence on the association between IBD and respiratory diseases. The purpose is to raise awareness of respiratory manifestation among IBD specialists and emphasize the need for identifying respiratory diseases in early stages to promptly treat these conditions, avoid worsening morbidity, and prevent lung damage.
Collapse
Affiliation(s)
- Carolina Aliai Micol Cavalli
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
| | - Alessandro Quadarella
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Alessandro De Marco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| | - Edoardo Simonetta
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy;
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (C.A.M.C.); (R.G.); (A.D.B.); (A.Q.); (A.D.M.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (A.R.); (S.A.)
| |
Collapse
|
20
|
Theilmann M, Geldsetzer P, Bärnighausen T, Sudharsanan N. Does Early Childhood BCG Vaccination Improve Survival to Midlife in a Population With a Low Tuberculosis Prevalence? Quasi-experimental Evidence on Nonspecific Effects From 32 Swedish Birth Cohorts. Demography 2023; 60:1607-1630. [PMID: 37732832 DOI: 10.1215/00703370-10970757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine for tuberculosis (TB) is widely used globally. Many high-income countries discontinued nationwide vaccination policies starting in the 1980s as the TB prevalence decreased. However, there is continued scientific interest in whether the general childhood immunity boost conferred by the BCG vaccination impacts adult health and mortality in low-TB contexts (known as nonspecific effects). While recent studies have found evidence of an association between BCG vaccination and survival to ages 34-45, it is unclear whether these associations are causal or driven by the unobserved characteristics of those who chose to voluntarily vaccinate. We use the abrupt discontinuation of mandatory BCG vaccination in Sweden in 1975 as a natural experiment to estimate the causal nonspecific effect of the BCG vaccine on cohort survival to midlife. Applying two complementary study designs, we find no evidence that survival to age 40 was affected by the discontinuation of childhood BCG vaccination. The results are consistent among both males and females and are robust to several sensitivity tests. Overall, despite prior correlational studies suggesting large nonspecific effects, we do not find any population-level evidence for a nonspecific effect of the BCG vaccine discontinuation on survival to age 40 in Sweden.
Collapse
Affiliation(s)
- Michaela Theilmann
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Pascal Geldsetzer
- Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Harvard Center for Population and Development Studies, Cambridge, MA, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Nikkil Sudharsanan
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Kummola L, González-Rodríguez MI, Marnila P, Nurminen N, Salomaa T, Hiihtola L, Mäkelä I, Laitinen OH, Hyöty H, Sinkkonen A, Junttila IS. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system : Effect of soil exposure on immune system. BMC Immunol 2023; 24:29. [PMID: 37689649 PMCID: PMC10492337 DOI: 10.1186/s12865-023-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.
Collapse
Affiliation(s)
- Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | | | - Pertti Marnila
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Lotta Hiihtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Iida Mäkelä
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland.
- Northern Finland Laboratory Centre (NordLab), Oulu, 90220, Finland.
- Research Unit of Biomedicine, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
22
|
Mattoo R, Mallikarjuna S. Soil microbiome influences human health in the context of climate change. Future Microbiol 2023; 18:845-859. [PMID: 37668469 DOI: 10.2217/fmb-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Soil microbiomes continue to evolve and shape the human microbiota according to external anthropogenic and climate change effects. Ancient microbes are being exposed as a result of glacier melting, soil erosion and poor agricultural practices. Soil microbes subtly regulate greenhouse gas emissions and undergo profound alterations due to poor soil maintenance. This review highlights how the soil microbiome influences human digestion processes, mineral and vitamin production, mental health and mood stimulation. Although much about microbial functions remains unknown, increasing evidence suggests that beneficial soil microbes are vital for enhancing human tolerance to diseases and pathogens. Further research is essential to delineate the specific role of the soil microbiome in promoting human health, especially in light of the increasing anthropogenic pressures and changing climatic conditions.
Collapse
Affiliation(s)
- Rohini Mattoo
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, 560038, India
| | - Suman Mallikarjuna
- Divecha Center for Climate Change, Indian Institute of Science, Bangalore, 560038, India
| |
Collapse
|
23
|
Motavallihaghi S, Ghaemipanaeian M, Soleimani Asl S, Foroughi-Parvar F, Maghsood AH. Toxoplasma gondii attenuates the ethidium bromide induced demyelination lesions in multiple sclerosis model rats. Int Immunopharmacol 2023; 120:110379. [PMID: 37245301 DOI: 10.1016/j.intimp.2023.110379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease. Since the modulation of the immune system by parasites has been proven, and there have been reports of a reduction in the clinical symptoms of MS in people with toxoplasmosis, this study aimed to investigate the effect of toxoplasmosis on MS in an animal model. MS model was induced by the ethidium bromide injection in the areas specified in the Rat's brain in the stereotaxic device and Toxoplasma gondii RH strain injection of the rat's peritoneal for creation of toxoplasmosis. The effect of acute and chronic toxoplasmosis on the MS model was evaluated by examining the development of clinical symptoms of MS, body weight, changes in the levels of inflammatory cytokines, inflammatory cell infiltration, cell density, and spongy tissue in the brain. The body weight in the acute toxoplasmosis with MS was the same as the MS group, and a significant decrease was observed, but no weight loss was observed in the chronic toxoplasmosis with MS. In the chronic toxoplasmosis, the progress of clinical signs such as Immobility of limbs, including tail, hands, and feet, was observed less compared to other groups. The histology results in the group of chronic toxoplasmosis showed high cell density and inhibition of spongy tissue formation, and the infiltration of inflammatory cells in this group was less. TNF-α and INF-γ decreased in MS with chronic toxoplasmosis compared to the MS group. Our findings showed that chronic toxoplasmosis with inhibition of spongy tissue formation and prevention of cell infiltration and. As a result, the reduction of inflammatory cytokines could reduce clinical symptoms in MS in the animal model.
Collapse
Affiliation(s)
- Seyedmousa Motavallihaghi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojgan Ghaemipanaeian
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Lee J, Htoo JK, Kluenemann M, González-Vega JC, Nyachoti CM. Effects of dietary protein content and crystalline amino acid supplementation patterns in low protein diets on intestinal bacteria and their metabolites in weaned pigs raised under Different sanitary conditions. J Anim Sci 2023; 101:skad252. [PMID: 37527457 PMCID: PMC10439707 DOI: 10.1093/jas/skad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
The objective of this experiment was to investigate the effects of dietary crude protein (CP) content and crystalline amino acids (CAA) supplementation patterns in low CP (LCP) diets on intestinal bacteria and their metabolites in weaned pigs raised under clean (CSC) or unclean sanitary conditions (USC). One hundred forty-four piglets (6.35 ± 0.63 kg) were assigned to one of six treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions in a randomized complete block design to give eight replicates with three pigs per pen over a 21-d period. Diets consisted of a high CP (HCP; 21%) and two LCP (18%) diets supplemented with 9 CAA (Lys, Met, Thr, Trp, Val, Ile, Leu, His, and Phe) or only six CAA (Lys, Met, Thr, Trp, Val, and Ile) to meet the requirements. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens from the beginning of the study and was not washed throughout the experiment. Jejunum and colon digesta were sampled on day 21. Both jejunum and colon digesta were analyzed for ammonia nitrogen, short-chain fatty acids, and biogenic amines but only colon digesta was analyzed for microbiome composition (16s rRNA sequencing on MiSeq). Data were analyzed using R software for 16S rRNA and the MIXED procedure of SAS for microbial metabolites. Sanitation, CP content, and CAA supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. Pigs raised under USC had greater (P < 0.05) jejunal ammonia nitrogen concentration than those raised under CSC. Pigs fed LCP diets had reduced (P < 0.05) jejunal ammonia nitrogen concentration compared to those fed the HCP diet. Interactions between sanitation and dietary CP content were observed (P < 0.05) for: (1) jejunal acetate and (2) colonic spermidine and spermine, whereby (1) acetate concentrations decreased from NCP to LCP in pigs raised under the CSC but those concentrations increased under the USC, and (2) spermidine and spermine concentrations increased in LCP diets compared to HCP diet under USC, unlike CSC which did not show any difference between HCP and LCP. In conclusion, reducing dietary CP lowered ammonia nitrogen content regardless of sanitation and increased microbial metabolites in weaned pigs raised under USC. However, LCP diets with different CAA supplementation patterns did not affect bacterial diversity in weaned pigs, regardless of the hygienic conditions where the animals were housed.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N2
| | - John K Htoo
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | - Martina Kluenemann
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | - J Caroline González-Vega
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | | |
Collapse
|
26
|
Urrutia-Pereira M, Mocelin LP, Ellwood P, Garcia-Marcos L, Simon L, Rinelli P, Chong-Neto HJ, Solé D. Prevalence of rhinitis and associated factors in adolescents and adults: a Global Asthma Network study. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2023; 41:e2021400. [PMID: 36888752 PMCID: PMC9984151 DOI: 10.1590/1984-0462/2023/41/2021400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/26/2022] [Indexed: 03/08/2023]
Abstract
OBJECTIVE To determine the prevalence of allergic rhinitis and associated factors in adolescents and in their parents/guardians. METHODS A cross-sectional study, applying a standardized and validated written questionnaire. Adolescents (13-14 years old; n=1,058) and their parents/guardians (mean age=42.1 years old; n=896) living in the city of Uruguaiana, southern Brazil, responded to the Global Asthma Network standard questionnaires. RESULTS The prevalence of allergic rhinitis in adolescents was 28.0%, allergic rhinoconjunctivitis, 21.3%, and severe forms of allergic rhinitis, 7.8%. In the adults, the prevalence of allergic rhinitis was 31.7%. Some associated factors with allergic rhinitis in adolescents include low physical exercise (OR 2.16; 95%CI 1.15-4.05), having only one older sibling (OR 1.94; 95CI 1.01-3.72) and daily meat consumption (OR 7.43; 95% CI 1.53-36.11). In contrast, consuming sugar (OR 0.34; 95%CI 0.12-0.93) or olive oil (OR 0.33; 95%CI 0.13-0 .81) once or twice a week, and eating vegetables daily (OR 0.39; 95%CI 0.15-0.99) were considered factors negatively associated. In adults, exposure to fungi at home (OR 5.25; 95%CI 1.01-27.22) and consumption of meat once or twice a week (OR 46.45; 95CI 2.12-1020.71) were factors associated with the medical diagnosis of allergic rhinitis, while low education (OR 0.25; 95%CI 0.07-0.92) was found to be a factor negatively associated. CONCLUSIONS The prevalence of allergic rhinitis in adolescents is high, as well as its medical diagnosis in adults living in Uruguaiana. Environmental factors, especially food habits, were associated with findings in both groups.
Collapse
Affiliation(s)
| | | | | | | | - Laura Simon
- Universidade Federal do Pampa, Bagé, RS, Brazil
| | | | | | - Dirceu Solé
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Lee J, Kang J, Kim Y, Lee S, Oh CM, Kim T. Integrated analysis of the microbiota-gut-brain axis in response to sleep deprivation and diet-induced obesity. Front Endocrinol (Lausanne) 2023; 14:1117259. [PMID: 36896179 PMCID: PMC9990496 DOI: 10.3389/fendo.2023.1117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Sleep deprivation (SD) and obesity are common in modern societies. SD and obesity frequently coexist, but research on the combined consequences of SD and obesity has been limited. In this study, we investigated the gut microbiota and host responses to SD and high-fat diet (HFD)-induced obesity. In addition, we attempted to identify key mediators of the microbiota-gut-brain axis. METHODS C57BL/6J mice were divided into four groups based on whether they were sleep deprived and whether they were fed a standard chow diet (SCD) or HFD. We then performed fecal microbiome shotgun sequencing, gut transcriptome analysis using RNA sequencing, and brain mRNA expression analysis using the nanoString nCounter Mouse Neuroinflammation Panel. RESULTS The gut microbiota was significantly altered by the HFD, whereas the gut transcriptome was primarily influenced by SD. Sleep and diet are both important in the inflammatory system of the brain. When SD and the HFD were combined, the inflammatory system of the brain was severely disrupted. In addition, inosine-5' phosphate may be the gut microbial metabolite that mediates microbiota-gut-brain interactions. To identify the major drivers of this interaction, we analyzed the multi-omics data. Integrative analysis revealed two driver factors that were mostly composed of the gut microbiota. We discovered that the gut microbiota may be the primary driver of microbiota-gut-brain interactions. DISCUSSION These findings imply that healing gut dysbiosis may be a viable therapeutic target for enhancing sleep quality and curing obesity-related dysfunction.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| |
Collapse
|
28
|
Schoch JJ, Satcher KG, Garvan CW, Monir RL, Neu J, Lemas DJ. Association between early life antibiotic exposure and development of early childhood atopic dermatitis. JAAD Int 2022; 10:68-74. [PMID: 36688099 PMCID: PMC9850168 DOI: 10.1016/j.jdin.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Atopic dermatitis (AD) is a chronic, inflammatory skin disease commonly onset during infancy. Objective We examine the association between pre-and postnatal antibiotic exposure and the development of AD. Methods A retrospective, observational study analyzed 4106 infants at the University of Florida from June 2011 to April 2017. Results Antibiotic exposure during the first year of life was associated with a lower risk of AD. The association was strongest for exposure during the first month of life. There were no significant differences in the rates of AD in infants with or without exposure to antibiotics in months 2 through 12, when examined by month. Antibiotic exposure during week 2 of life was associated with lower risk of AD, with weeks 1, 3, and 4 demonstrating a similar trend. Limitations Retrospective data collection from a single center, use of electronic medical record, patient compliance with prescribed medication, and variable follow-up. Conclusions Early life exposures, such as antibiotics, may lead to long-term changes in immunity. Murine models of atopic dermatitis demonstrate a "critical window" for the development of immune tolerance to cutaneous microbes. Our findings suggest that there may also be a "critical window" for immune tolerance in human infants, influenced by antibiotic exposure.
Collapse
Affiliation(s)
- Jennifer J. Schoch
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida,Correspondence to: Jennifer J. Schoch, MD, Department of Dermatology, University of Florida College of Medicine, 4037 NW 86th Terrace, Gainesville, FL 32606.
| | | | - Cynthia W. Garvan
- Professor of Statistics, Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Reesa L. Monir
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida College of Medicine, Gainesville, Florida
| | - Dominick J. Lemas
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
29
|
Johnston JD, Cowger AE, Weber KS. Bioaerosol and microbial exposures from residential evaporative coolers and their potential health outcomes: A review. INDOOR AIR 2022; 32:e13082. [PMID: 36168234 PMCID: PMC9826010 DOI: 10.1111/ina.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Evaporative cooling is an energy efficient form of air conditioning in dry climates that functions by pulling hot, dry outdoor air across a wet evaporative pad. While evaporative coolers can help save energy, they also have the potential to influence human health. Studies have shown residential evaporative coolers may pull outdoor air pollutants into the home or contribute to elevated levels of indoor bioaerosols that may be harmful to health. There is also evidence that evaporative coolers can enable a diverse microbial environment that may confer early-life immunological protection against the development of allergies and asthma or exacerbate these same hypersensitivities. This review summarizes the current knowledge of bioaerosol and microbiological studies associated with evaporative coolers, focusing on harmful and potentially helpful outcomes from their use. We evaluate the effects of evaporative coolers on indoor bacterial endotoxins, fungal β-(1 → 3)-D-glucans, dust mite antigens, residential microbial communities, and Legionella pneumophila. To our knowledge, this is the first review to summarize and evaluate studies on the influence that evaporative coolers have on the bioaerosol and microbiological profile of homes. This brings to light a gap in the literature on evaporative coolers, which is the lack of data on health effects associated with their use.
Collapse
Affiliation(s)
| | | | - K. Scott Weber
- Department of Microbiology & Molecular BiologyBrigham Young UniversityProvoUtahUSA
| |
Collapse
|
30
|
Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R, Santacroce L. Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
Affiliation(s)
- Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| |
Collapse
|
31
|
An Overview of the Latest Metabolomics Studies on Atopic Eczema with New Directions for Study. Int J Mol Sci 2022; 23:ijms23158791. [PMID: 35955924 PMCID: PMC9368995 DOI: 10.3390/ijms23158791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022] Open
Abstract
Atopic eczema (AE) is an inflammatory skin disorder affecting approximately 20% of children worldwide and early onset can lead to asthma and allergies. Currently, the mechanisms of the disease are not fully understood. Metabolomics, the analysis of small molecules in the skin produced by the host and microbes, opens a window to observe the mechanisms of the disease which then may lead to new drug targets for AE treatment. Here, we review the latest advances in AE metabolomics, highlighting both the lipid and non-lipid molecules, along with reviewing the metabolites currently known to reside in the skin.
Collapse
|
32
|
Pavanello A, Martins IP, Tófolo LP, Previate C, Matiusso CCI, Francisco FA, Prates KV, Alves VS, de Almeida DL, Ribeiro TA, Malta A, Mathias PCDF. Fecal Microbiota Transplantation During Lactation Programs the Metabolism of Adult Wistar Rats in a Sex-specific Way. Arch Med Res 2022; 53:492-500. [PMID: 35840468 DOI: 10.1016/j.arcmed.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The intestinal microbiota is involved in many physiological processes. However, the effects of microbiota in metabolic programming still unknow. We evaluated whether the transplantation of fecal microbiota during early life can program health or disease during adulthood in a model of lean and obese male and female Wistar rats. METHODS Parental obesity were induced using a small litter (SL, 3 pups/dam) model. At 90 d old, normal litter (NL, 9 pups/dam) and SL males and females (parents) from different litters were mated: NL male vs. NL female; SL male vs. SL female. After birth, male and female offspring rats were also standardized in normal litters or small litters . From the 10th until 25th d of life, the NL and SL male and female offspring received via gavage of a solution containing the diluted feces of the opposite dam (fecal microbiota, M) or saline solution (S). At 90 d of age, biometric and biochemical parameters were assessed. RESULTS NLM male rats transplanted with obese microbiota showed increased body weight, and fat pad deposition, hyperinsulinemia, glucose intolerance and dyslipidemia. SLM male rats transplanted with lean microbiota had decreased retroperitoneal and mesenteric fat, triglycerides and VLDL levels and improvement of glucose tolerance. Despite SLM female rats showed higher visceral fat, microbiota transplantation in female rats caused no changes in these parameters compared with control groups. CONCLUSION Fecal microbiota transplantation during lactation induces long-term effects on the metabolism of male Wistar rats. However, female rats were resistant to metabolic alterations caused by the treatment.
Collapse
Affiliation(s)
- Audrei Pavanello
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Isabela Peixoto Martins
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil; Departament of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Carina Previate
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | | | - Flávio Andrade Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Vander Silva Alves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Douglas Lopes de Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil; Department of Biochemistry and Biomedical Science, McMaster University-Hamilton ON Canada
| | - Ananda Malta
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil.
| | | |
Collapse
|
33
|
Luo C, Peng S, Li M, Ao X, Liu Z. The Efficacy and Safety of Probiotics for Allergic Rhinitis: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:848279. [PMID: 35663980 PMCID: PMC9161695 DOI: 10.3389/fimmu.2022.848279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Probiotics have proven beneficial in a number of immune-mediated and allergic diseases. Several human studies have evaluated the efficacy and safety of probiotics in allergic rhinitis; however, evidence for their use has yet to be firmly established. Objective We undertook a systematic review and meta-analysis aiming to address the effect and safety of probiotics on allergic rhinitis. Methods We systematically searched databases [MEDLINE (PubMed), Embase, and the Cochrane Central Register of Controlled Trials] from inception until June 1, 2021. Qualified literature was selected according to inclusion and exclusion criteria, the data were extracted, and a systematic review and meta-analysis was conducted. Results Twenty-eight studies were included. The results showed that probiotics significantly relieved allergic rhinitis symptoms (standardized mean difference [SMD], -0.29, 95% confidence interval (CI) [-0.44, -0.13]; p = 0.0003, I 2 = 89%), decreased Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) scores compared with the control group (SMD, -0.64, 95% CI [-0.79, -0.49], p < 0.00001, I 2 = 97%), and increased T helper cell 1(Th1)/Th2 ratio (mean difference [MD], -2.47, 95% CI [-3.27, -1.68], p < 0.00001, I 2 = 72%). There was no significant change in overall or specific IgE levels between probiotic-treated and placebo-treated subjects (SMD, 0.09, 95% CI [-0.16, 0.34], I 2 = 0%, and SMD, -0.03, 95% CI [-0.18, 0.13], p = 0.72, I 2 = 0%, respectively). Conclusions To sum up, probiotic supplement seems to be effective in ameliorating allergic rhinitis symptoms and improving the quality of life, but there is high heterogeneity in some results after subgroup analysis and clinicians should be cautious when recommending probiotics in treating allergic rhinitis. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, PROSPERO (CRD42021242645).
Collapse
Affiliation(s)
- Chao Luo
- Ear-Nose-Throat (E.N.T.) Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Ear-Nose-Throat (E.N.T.) Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Ear-Nose-Throat (E.N.T.) Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xudong Ao
- Ear-Nose-Throat (E.N.T.) Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiqing Liu
- Ear-Nose-Throat (E.N.T.) Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
35
|
Matsyura O, Besh L, Kens O, Kosorinová D, Volkovová K, Vari SG. Polymorphic Variants of Interleukin-13 R130Q and Interleukin-4 T589C in Children with and without Cow's Milk Allergy. Life (Basel) 2022; 12:life12050612. [PMID: 35629280 PMCID: PMC9147099 DOI: 10.3390/life12050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cow’s milk allergy (CMA) is one of the most frequent types of food allergy. The aim of the study was to investigate whether IL-13 R130Q and IL-4 T589C polymorphisms are associated with the risk of CMA in young Ukrainian children. A total of 120 children (age range: 1−3 years) participated in the study and were divided into two groups: CMA (n = 60) and healthy controls (CNT, n = 60). The CMA group had two subgroups: specific oral tolerance induction (SOTI, n = 30) and milk elimination diet (MED, n = 30). The CNT group had two subgroups: positive family history of allergy (+FHA, n = 24) and negative family history of allergy (−FHA, n = 36). In the CMA group, molecular genetic testing of CC, CT, and TT genotypes of single nucleotide IL-4 T589C gene polymorphisms showed significantly higher rates of the CC genotype compared to healthy controls (92.2% vs. 58.8%; p < 0.01). In the CMA group, molecular genetic testing of GG, GA, and AA genotypes of single nucleotide IL-13 R130Q gene polymorphisms showed significantly higher rates of GA and AA polymorphic locus genotypes compared to healthy controls (43.5% vs. 22.4%, p < 0.05 and 8.7% vs. 0%, p < 0.05, respectively). In future studies, the genotypic and allelic distribution of these polymorphic variants will be determined in children with CMA and healthy children.
Collapse
Affiliation(s)
- Oksana Matsyura
- Department of Pediatrics №2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Correspondence: ; Tel.: +380-973-059-273
| | - Lesya Besh
- Department of Pediatrics №2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Olena Kens
- Institute of Hereditary Pathology of National Academy of Medical Sciences of Ukraine, 79000 Lviv, Ukraine;
| | - Dana Kosorinová
- Medical Faculty, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (D.K.); (K.V.)
| | - Katarína Volkovová
- Medical Faculty, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia; (D.K.); (K.V.)
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048-4903, USA;
| |
Collapse
|
36
|
Zheng P, Zhang K, Lv X, Liu C, Wang Q, Bai X. Gut Microbiome and Metabolomics Profiles of Allergic and Non-Allergic Childhood Asthma. J Asthma Allergy 2022; 15:419-435. [PMID: 35418758 PMCID: PMC8995180 DOI: 10.2147/jaa.s354870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose This study aimed to investigate the characteristics of gut bacteria and the derived metabolites among allergic asthmatic children, non-allergic asthmatic children and healthy children without asthma. Methods Fecal samples were collected from 57 participants, including 20 healthy children, 27 allergic asthmatic children, and 10 non-allergic asthmatic children. 16S rRNA gene sequencing was conducted for analyzing gut bacterial compositions and untargeted metabolomics was used to analyze the alterations of gut microbe-derived metabolites. The associations between gut bacterial compositions and metabolites were analyzed by the method of Spearman correlation. Results The results showed that the compositions and metabolites of gut microbiome were altered both in allergic and non-allergic asthmatics compared with healthy controls. Chao1 (p = 0.025) index reflected a higher bacterial richness and Simpson (p = 0.024) index showed a lower diversity in asthma group. PERMANOVA analysis showed significant differences among the three groups based on unweighted UniFrac distance (p = 0.001). Both allergic and non-allergic asthmatics showed a higher relative abundance of Proteobacteria and a lower relative abundance of genera from Clostridia. More bacteria were altered in non-allergic asthmatics compared with allergic asthmatics. Metabolomics analysis identified that 42 metabolites were significantly associated with allergic asthma, and 58 metabolites were significantly associated with non-allergic asthma (multiple linear regression, p < 0.05). Histamine was 4 folds up-regulated only in the non-allergic asthma group. The relative abundance of Candidatus Accumulib was significantly correlated with the upregulation of histamine. The relative abundance of genera from Clostridia was significantly correlated with the downregulation of lipid and tryptophan metabolism. Conclusion The altered gut microbes was associated with the mechanism of asthma attack through metabolites in allergic and non-allergic asthma group, respectively. The result suggested that gut microbiome had an impact on the development of both allergic and non-allergic asthma. The distinct gut microbiome and microbiome-derived metabolites in non-allergic asthma children suggested that gut microbiome might play a critical role in modulation of asthma phenotype.
Collapse
Affiliation(s)
- Ping Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Kexing Zhang
- Department of Immunization Program, Xinwu District Center for Disease Control and Prevention, Wuxi, People’s Republic of China
| | - Xifang Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chuanhe Liu
- Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Qiang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Correspondence: Qiang Wang; Xuetao Bai, China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xicheng District, Beijing, 100050, People’s Republic of China, Tel +86 10 50930251, Email ;
| | - Xuetao Bai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
37
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
38
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
39
|
Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells 2022; 11:cells11050916. [PMID: 35269538 PMCID: PMC8909000 DOI: 10.3390/cells11050916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system of the respiratory tract possesses an effective “defense barrier” against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.
Collapse
|
40
|
Sahoyama Y, Hamazato F, Shiozawa M, Nakagawa T, Suda W, Ogata Y, Hachiya T, Kawakami E, Hattori M. Multiple nutritional and gut microbial factors associated with allergic rhinitis: the Hitachi Health Study. Sci Rep 2022; 12:3359. [PMID: 35233003 PMCID: PMC8888718 DOI: 10.1038/s41598-022-07398-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022] Open
Abstract
Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 participants with symptoms of AR and 106 control subjects without symptoms of AR at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.
Collapse
Affiliation(s)
- Yukari Sahoyama
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan.
| | - Fumiaki Hamazato
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Manabu Shiozawa
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Tohru Nakagawa
- Hitachi Health Care Center, Hitachi Ltd., Ibaraki, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Ogata
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
41
|
Kato K, Inoue E, Tanaka S, Kawamoto H. Increase in the incidence of acute inflammatory reactions to injectable fillers during COVID-19 era. J Cosmet Dermatol 2022; 21:1816-1821. [PMID: 35218285 PMCID: PMC9115292 DOI: 10.1111/jocd.14886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Background Acute inflammatory reactions (AIRs) are a rare complication following esthetic treatment with hyaluronic acid (HA) and/or human collagen fillers. However, a substantial increase in the frequency of AIRs was observed in the first author's clinic since May 2020. Aims To report AIR cases, we experienced and discuss potential underlying mechanisms. Methods This was a retrospective review of patients representing AIR symptoms following filler injection with HA or human collagen in our clinic. Results Although only one case of an AIR with an incidence rate of 0.01% was recorded following filler treatment between September 2008 and April 2020 in our clinic, we observed 14 AIR cases without anaphylaxis, with an incidence rate of 1.18% between May 2020 and June 2021, in line with the spreading of the new coronavirus pandemic. All cases were females aged 40–57 years, and the time of onset was within hours after filler injection. Three patients had been treated with HA fillers only, 2 with HA plus human collagen, and 9 with human collagen only. Most patients had been treated with these products in the past. Nine patients were treated with oral prednisolone. In all cases, symptoms resolved entirely within a week without sequelae. Conclusions The marked increase in AIRs coincided with the COVID‐19 pandemic. Possible explanations include immune system alterations caused by extensive changes in domestic and personal hygiene, prolonged and elevated stress levels, and subclinical COVID‐19 infection. Further studies may be warranted.
Collapse
Affiliation(s)
| | - Eiko Inoue
- Jyosui Dermatology Clinic, Fukuoka, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Mkhize‐Kwitshana ZL, Naidoo P, Nkwanyana NM, Mabaso MLH. Concurrent allergy and helminthiasis in underprivileged urban South African adults previously residing in rural areas. Parasite Immunol 2022; 44:e12913. [PMID: 35188279 PMCID: PMC9539504 DOI: 10.1111/pim.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
This study investigated whether prior exposure to helminths (Ascaris IgE, Ascaris eggs and Trichuris eggs) either in childhood or in adulthood, and residence in rural and resource‐limited urban areas influence allergy outcomes (asthma, rhinitis, IgE atopy and food allergy) in a South African population. Participants historical and present allergies data were collected through questionnaires and clinical record files. Coproscopy and immunoassays (ImmunoCAPTM Phadiatop, total IgE and allergen‐specific fx3 IgE immunoassays and Ascaris IgE radioallergosorbent [RAST] tests) were used for active helminthiasis and allergy screens respectively. Data were analysed using logistic regression analysis, and models were adjusted for age, gender and locality. High Ascaris IgE was significantly associated with asthma (adjusted odds ratio [aOR] = 2.20, p = .047), IgE atopy (aOR = 18.18, p < .0001) and food allergy (aOR = 14.47, p < .0001). Asthma was significantly less likely among participants with Ascaris eggs (aOR = 0.43, p = .048) and Trichuris eggs (aOR = 0.36, p = .024). The findings of co‐occurrent helminthiasis and allergic disorders in a population that has resided both in rural and peri‐urban informal settlements both oppose and agree with two main notions of the hygiene hypothesis that (i) individuals residing in rural settings with poor sanitation and geohelminth infection are less prone to allergy, and (ii) helminth infections protect against allergy respectively. Further research is warranted.
Collapse
Affiliation(s)
- Zilungile L. Mkhize‐Kwitshana
- Department of Medical Microbiology School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R. Mandela Medical School Campus University of KwaZulu‐Natal Durban South Africa 4001
- Research Capacity Development Division South African Medical Research Council Tygerberg, Cape Town South Africa 7505
| | - Pragalathan Naidoo
- Department of Medical Microbiology School of Laboratory Medicine and Medical Sciences College of Health Sciences Nelson R. Mandela Medical School Campus University of KwaZulu‐Natal Durban South Africa 4001
- Research Capacity Development Division South African Medical Research Council Tygerberg, Cape Town South Africa 7505
| | - Ntombifikile M. Nkwanyana
- Discipline of Public Health Medicine School of Nursing and Public Health College of Health Sciences Howard College University of KwaZulu Natal Durban South Africa 4041
| | - Musawenkosi L. H. Mabaso
- Human Sciences Research Council (HAST) The Atrium, 5th Floor, 430 Peter Mokaba Street Berea, Durban South Africa 4001
| |
Collapse
|
43
|
Shahrbaf MA, Hassan M, Vosough M. COVID-19 and hygiene hypothesis: increment of the inflammatory bowel diseases in next generation? Expert Rev Gastroenterol Hepatol 2022; 16:1-3. [PMID: 34919489 DOI: 10.1080/17474124.2022.2020647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Research and Development Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
44
|
McDonald CR, Weckman AM, Wright JK, Conroy AL, Kain KC. Developmental origins of disease highlight the immediate need for expanded access to comprehensive prenatal care. Front Public Health 2022; 10:1021901. [PMID: 36504964 PMCID: PMC9730730 DOI: 10.3389/fpubh.2022.1021901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The prenatal environment plays a critical role in shaping fetal development and ultimately the long-term health of the child. Here, we present data linking prenatal health, via maternal nutrition, comorbidities in pregnancy (e.g., diabetes, hypertension), and infectious and inflammatory exposures, to lifelong health through the developmental origins of disease framework. It is well-established that poor maternal health puts a child at risk for adverse outcomes in the first 1,000 days of life, yet the full health impact of the in utero environment is not confined to this narrow window. The developmental origins of disease framework identifies cognitive, neuropsychiatric, metabolic and cardiovascular disorders, and chronic diseases in childhood and adulthood that have their genesis in prenatal life. This perspective highlights the enormous public health implications for millions of pregnancies where maternal care, and therefore maternal health and fetal health, is lacking. Despite near universal agreement that access to antenatal care is a priority to protect the health of women and children in the first 1,000 days of life, insufficient progress has been achieved. Instead, in some regions there has been a political shift toward deprioritizing maternal health, which will further negatively impact the health and safety of pregnant people and their children across the lifespan. In this article we argue that the lifelong health impact attributed to the perinatal environment justifies policies aimed at improving access to comprehensive antenatal care globally.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea M Weckman
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie K Wright
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea L Conroy
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kevin C Kain
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Ferguson PL, Commodore S, Neelon B, Cobbs J, Sciscione AC, Grobman WA, Newman RB, Tita AT, Nageotte MP, Palomares K, Skupski DW, Vena JE, Hunt KJ. Early Exposure to Animals and Childhood Body Mass Index Percentile and Percentage Fat Mass. CHILD AND ADOLESCENT OBESITY (ABINGDON, ENGLAND) 2022; 5:3-15. [PMID: 35128342 PMCID: PMC8813042 DOI: 10.1080/2574254x.2021.2021788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION A few studies have identified childhood animal exposure as associated with adiposity, but results are inconsistent and differ in timing. METHODS We conducted an observational cohort study of children ages 4-8 in the Environmental Influences on Child Health Outcomes [ECHO] study. The main exposure was having a dog in the home and/or regular contact with farm animals during the first year of life. Outcomes of interest were child BMI percentile (adjusted for gender and age) categorized as normal/underweight (<85th percentile), overweight (85th to <95th), and obese (≥95th), and percent fat mass (continuous). Associations were analyzed using multinomial logistic regression and multivariable linear regression, respectively, with and without multiple imputation. RESULTS First year animal exposure occurred in 245 of 770 (31.8%) children. Children with early animal exposure had 0.53 (95% CI: 0.28, 0.997) times the odds of being in the obese BMI category compared to those exposed to animals after controlling for covariates: maternal pre-pregnancy BMI, race/ethnicity, reported child activity level, receiving food assistance, age child began daycare (<1 year vs 1+), exclusively breastfed x6 months, and NICU admission (n=721). Children with early animal exposure had, on average, 1.5% (95% CI: -3.0, -0.1) less fat mass than exposed children after adjustment for maternal BMI, race/ethnicity, activity, food assistance, breastfeeding, and maternal education (n=548). Multiple imputation did not alter either result. CONCLUSION These results provide evidence that exposure to dogs or farm animals in the first year of life is associated with lower odds of obesity and lower percent fat mass in childhood.
Collapse
Affiliation(s)
- Pamela L. Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Sarah Commodore
- School of Public Health, Indiana University, Bloomington, IN
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - JacKetta Cobbs
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Anthony C. Sciscione
- Department of Obstetrics & Gynecology, Christiana Care Health System, Newark, DE
| | - William A. Grobman
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roger B. Newman
- Department of Obstetrics & Gynecology, Medical University of South Carolina, Charleston, SC
| | - Alan T. Tita
- Department of Obstetrics & Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael P. Nageotte
- Department of Obstetrics & Gynecology, Long Beach Memorial Medical Center, Long Beach, CA
| | - Kristy Palomares
- Department of Obstetrics & Gynecology, Saint Peter’s University Hospital, New Brunswick, NJ
| | - Daniel W. Skupski
- Department of Obstetrics & Gynecology, New York Presbyterian Queens Hospital, Queens, NY
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
46
|
Hu T, Dong Y, Yang C, Zhao M, He Q. Pathogenesis of Children's Allergic Diseases: Refocusing the Role of the Gut Microbiota. Front Physiol 2021; 12:749544. [PMID: 34721073 PMCID: PMC8551706 DOI: 10.3389/fphys.2021.749544] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Allergic diseases comprise a genetically heterogeneous cluster of immunologically mediated diseases, including asthma, food allergy (FA), allergic rhinitis (AR) and eczema, that have become major worldwide health problems. Over the past few decades, the spread of allergic diseases has displayed an increasing trend, and it has been reported that 22% of 1.39 billion people in 30 countries have a type of allergic disease. Undoubtedly, allergic diseases, which can be chronic, with significant morbidity, mortality and dynamic progression, impose major economic burdens on society and families; thus, exploring the cause of allergic diseases and reducing their prevalence is a top priority. Recently, it has been reported that the gastrointestinal (GI) microbiota can provide vital signals for the development, function, and regulation of the immune system, and the above-mentioned contributions make the GI microbiota a key player in allergic diseases. Notably, the GI microbiota is highly influenced by the mode of delivery, infant diet, environment, antibiotic use and so on. Specifically, changes in the environment can result in the dysbiosis of the GI microbiota. The proper function of the GI microbiota depends on a stable cellular composition which in the case of the human microbiota consists mainly of bacteria. Large shifts in the ratio between these phyla or the expansion of new bacterial groups lead to a disease-promoting imbalance, which is often referred to as dysbiosis. And the dysbiosis can lead to alterations of the composition of the microbiota and subsequent changes in metabolism. Further, the GI microbiota can affect the physiological characteristics of the human host and modulate the immune response of the host. The objectives of this review are to evaluate the development of the GI microbiota, the main drivers of the colonization of the GI tract, and the potential role of the GI microbiota in allergic diseases and provide a theoretical basis as well as molecular strategies for clinical practice.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yinmiao Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chenghao Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Abstract
A standard of evidence is a rule or norm pertaining to the type or amount of evidence that is required to prove or support a conclusion. Standards of evidence play an important role in institutional review board (IRB) decision-making, but they are not mentioned in the federal research regulations. In this article, I examine IRB standards of evidence from a normative, epistemological perspective and argue that IRBs should rely on empirical evidence for making decisions, but that other sources of evidence, such as intuition, emotion, and rational reflection, can also play an important role in decision-making, because IRB decisions involve an ethical component which is not reducible to science. I also argue that an IRB should approve a study only if it has clear and convincing evidence that the study meets all the approval criteria and other relevant, ethical considerations; and that for studies which expose healthy volunteers to significant risks, an IRB should require that evidence be more than clear and convincing as a condition for approval. Additional empirical research is needed on how IRBs use evidence to make decisions and how standards of evidence influence IRB decision-making at the individual and group level.
Collapse
Affiliation(s)
- David B Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Dockx Y, Täubel M, Bijnens EM, Witters K, Valkonen M, Jayaprakash B, Hogervorst J, Nawrot TS, Casas L. Residential green space can shape the indoor microbial environment. ENVIRONMENTAL RESEARCH 2021; 201:111543. [PMID: 34157273 DOI: 10.1016/j.envres.2021.111543] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The influence of outdoor green space on microbial communities indoors has scarcely been investigated. Here, we study the associations between nearby residential green space and residential indoor microbiota. METHODS We collected settled dust from 176 living rooms of participants of the ENVIRONAGE birth cohort. We performed 16S and ITS amplicon sequencing, and quantitative PCR measurements of total bacterial and fungal loads to calculate bacterial and fungal diversity measures (Chao1 richness, Shannon and Simpson diversity indices) and relative abundance of individual taxa. Green spaces were estimated within 50m and 100m buffers around the residential address. We defined total residential green space using high-resolution land-cover data, further stratified in low-growing (height<3m) and high-growing green (height>3m). We used land-use data to calculate the residential nature. We ran linear regression models, adjusting for confounders and other potential determinants. Results are expressed as units change for an interquartile range (IQR) increase in residential green space and their 95% confidence intervals (CI). RESULTS After adjustment, we observed statistically significant associations between the indoor microbial diversity indices and nearby residential green space. For bacteria, the Shannon index was directly associated with residential nature (e.g. 0.08 units increase (CI:0.02,0.13) per IQR increase in nature within a 50m buffer). Fungal diversity was directly associated with high-growing residential green and inversely with low-growing green. For example, an IQR increase in high-growing green within a 50m buffer was associated with increases in 0.14 (CI:0.01,0.27) and 0.02 (CI:0.008,0.04) units in the Shannon and Simpson indices, respectively. CONCLUSIONS Nearby green space determines the diversity of indoor environment microbiota, and the type of green differently impacts bacterial and fungal diversity. Further research is needed to investigate in more detail possible microbial taxa compositions underlying the observed changes in indoor microbiota diversity and to explore their contribution to beneficial health effects associated with green space exposure.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Martin Täubel
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Maria Valkonen
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | | | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven) , Belgium.
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven) , Belgium; Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp; Belgium; Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium
| |
Collapse
|
49
|
Lin JD, Loke P. Helminth infections and cardiovascular diseases: A role for the microbiota and Mϕs? J Leukoc Biol 2021; 110:1269-1276. [PMID: 34467547 DOI: 10.1002/jlb.5mr0721-786r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are rising in developing countries with increasing urbanization and lifestyle changes and remains a major cause of death in the developed world. In this mini review, we discuss the possibility that the effect of helminth infections on the immune system and the microbiota may affect risk factors in cardiovascular diseases such as atherosclerosis, as part of the hygiene hypothesis. The effects of Type 2 immune responses induced by helminths and helminth derived molecules on regulating metabolism and Mϕ function could be a mechanistic link for further investigation. We emphasize the complexity and difficulties in determining indirect or direct and causal relationships between helminth infection status and cardiovascular diseases. New experimental models, such as rewilding laboratory mice, whereby different aspects of the environment and host genetics can be carefully dissected may provide further mechanistic insights and therapeutic strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Saracino MP, Vila CC, Baldi PC, González Maglio DH. Searching for the one(s): Using Probiotics as Anthelmintic Treatments. Front Pharmacol 2021; 12:714198. [PMID: 34434110 PMCID: PMC8381770 DOI: 10.3389/fphar.2021.714198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Helminths are a major health concern as over one billion people are infected worldwide and, despite the multiple efforts made, there is still no effective human vaccine against them. The most important drugs used nowadays to control helminth infections belong to the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins and milbemycins) families. However, in the last 20 years, many publications have revealed increasing anthelmintic resistance in livestock which is both an economical and a potential health problem, even though very few have reported similar findings in human populations. To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on plant extracts or probiotics have been developed. Probiotics are defined by the Food and Agriculture Organization as live microorganisms, which, when consumed in adequate amounts, confer a health benefit to the host. It has been proven that probiotic microbes have the ability to exert an immunomodulatory effect both at the mucosa and the systemic level. The immune response against gastrointestinal helminths is characterized as a type 2 response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated macrophages. The oral administration of probiotics may contribute to controlling gastrointestinal helminth infections since it has been demonstrated that these microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune response, among other effects on the host immune system. Here we review the current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a complement to traditional anthelmintic treatments. Considering all research papers reviewed, we may conclude that the effect generated by probiotics on helminth infection depends not only on the parasite species, their stage and localization but also on the administration scheme.
Collapse
Affiliation(s)
- Maria Priscila Saracino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Celeste Vila
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo César Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|