1
|
Singh S, Yotsu R, Nuremberger E, Srivastava S. Repurposing drugs to advance the treatment of Buruli ulcer. Antimicrob Agents Chemother 2025:e0002925. [PMID: 40135926 DOI: 10.1128/aac.00029-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Aligned with the World Health Organization's Road Map, there is an unmet need for research to improve the treatment of Buruli ulcer caused by Mycobacterium ulcerans. The repurposing of drugs could speed up new regimen development to treat Buruli ulcer. Using a virulent reporter strain of M. ulcerans with intrinsic bioluminescence (MuAL), we compared the minimum inhibitory concentration (MIC) of moxifloxacin, bedaquiline, telacebec, tebipenem, omadacycline, and epetraborole with standard-of-care drugs-rifampin and clarithromycin. We also compared the efficacy (maximal kill or Emax) and potency (EC50 or concentration associated with 50% of Emax) as single and two-drug combinations. The doubling time of MuAL was calculated as 3.66 (95% CI: 3.41-3.93) days. Telacebec had the lowest MIC (0.0000075 mg/L) among the eight drugs tested, followed by rifampicin (0.5 mg/L) and clarithromycin (0.5 mg/L). Epetraborole, telacebec, and moxifloxacin monotherapy at tested concentrations showed higher Emax compared to clarithromycin and rifampicin. In preclinical studies, telacebec combined with rifampicin or epetraborole and epetraborole combinations with moxifloxacin and omadacycline were superior to the rifampin-clarithromycin combination. The MuAL strain is useful in the rapid screening of drugs' efficacy and potency against M. ulcerans. We should leverage the progress made in the tuberculosis drug development pipeline to repurpose the drugs for the rapid development of new therapeutic modalities for Buruli ulcer.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Health Science Centre at Tyler, Tyler, Texas, USA
| | - Rie Yotsu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Eric Nuremberger
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shashikant Srivastava
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Health Science Centre at Tyler, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, Center for Biomedical Research, University of Texas Health Science Centre at Tyler, Tyler, Texas, USA
| |
Collapse
|
2
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:179-202. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Diaa Abdullah H, Kamal I, Sabry SA, Abd Elghany M, El Hakim Ramadan A. Clarithromycin-tailored cubosome: A sustained release oral nano platform for evaluating antibacterial, anti-biofilm, anti-inflammatory, anti-liver cancer, biocompatibility, ex-vivo and in-vivo studies. Int J Pharm 2024; 667:124865. [PMID: 39490789 DOI: 10.1016/j.ijpharm.2024.124865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The clinical implication of clarithromycin (CLT) is compromised owing to its poor solubility and, subsequently, bioavailability, unpalatable taste, rapid metabolism, short half-life, frequent dosing, and adverse effects. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles these challenges. Accordingly, CLT was loaded into a cubosome, a vesicular system with a bicontinuous cubic structure that promotes solubility and bioavailability, provides a sustained release system combating short half-life and adverse effects, masks unpleasant taste, and protects the drug from destruction in gastrointestinal tract (GIT). Nine various formulas were fabricated using the emulsification method. The resulting vesicles increased the encapsulation efficiency (EE %) from 57.64 ± 0.04 % to 96.80 ± 1.50 %, the particle size (PS) from 147.30 ± 21.77 nm to 216.61 ± 5.37 nm, and the polydispersity index (PDI) values ranged from 0.117 ± 0.024 to 0.278 ± 0.073. The zeta potential (ZP) changed from -20.65 ± 2.01 mV to -33.98 ± 2.60 mV. Further, the release profile exhibited a dual release pattern within 24 h., with the percentage of cumulative release (CR %) expanding from 30.06 ± 0.42 % to 98.49 ± 2.88 %, optimized formula was found to be CC9 with EE % = 96.80 ± 1.50 %, PS = 216.61 ± 5.37 nm, ZP = -33.98 ± 2.60 mV, PDI = 0.117 ± 0.024, CR % = 98.49 ± 2.88 % and IC50 of 0.74 ± 0.19 µg/mL against HepG-2 cells with scattered unilamellar cubic non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (2.8 fold), and anti-inflammatory and antimicrobial capacity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus compared to free CLT. Our data demonstrate that cubosome is a powerful nanocarrier for oral delivery of CLT, boosting its biological impacts and pharmacokinetic profile.
Collapse
Affiliation(s)
- Hend Diaa Abdullah
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Abd Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Abd El Hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| |
Collapse
|
4
|
Sahara S, Sugimoto M, Murata M, Iwata E, Kawai T, Murakami K, Yamaoka Y, Shimoyama T. Eradication Therapy for Helicobacter pylori Infection in Patients Receiving Hemodialysis: Review. Helicobacter 2024; 29:e13106. [PMID: 38984746 DOI: 10.1111/hel.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Patients receiving hemodialysis (HD) often develop gastrointestinal diseases. Recently, although in general population, clinical guidelines for Helicobacter pylori have strongly recommended its eradication in patients to prevent gastric cancer, optimal eradication regimen and optimal dosage of drugs for patients receiving HD have not been established, due to possible incidence of adverse events. Some antimicrobial agents used in eradication therapy, particularly amoxicillin, can exacerbate renal dysfunction. Given the delayed pharmacokinetics of drugs in patients receiving HD compared with those in healthy individuals, drug regimen and dosage should be considered to minimize adverse effects. Although previous studies have investigated the benefits of eradication therapy for patients receiving HD, because most studies were small in terms of the number of enrolled patients, it is hard to show evidence. The numbers of eradication in HD patients have recently increased, and it is important to provide an optimal regimen. The consideration of eradication in patients undergoing HD with a reduction in the drug dose by 1/2-1/3 may prevent adverse events. Additionally, another important consideration is whether adverse events can be prevented while maintaining a similar eradication rate with reduced drug dosages. Recent meta-analysis findings indicate comparable eradication rates in patients receiving HD and healthy individuals, both with the same dosage regimen and at a reduced dosage regimen, with no significant differences (relative risk [RR] for successful eradication: 0.85 [95% confidence interval (CI): 0.48-1.50]). Unlike with the same dosage regimen (RR for adverse events: 3.15 [95% CI: 1.93-5.13]), the adverse events in the dosage reduction regimen were similar to those in healthy individuals (RR: 1.26 [95% CI: 0.23-6.99]). From a pharmacological perspective, the eradication regimen in patients receiving HD should consider the dosage (1/2-1/3 dosage), dosing number (bid), dosing timing of drugs (after HD), and susceptibility to antimicrobial agents.
Collapse
Affiliation(s)
- Shu Sahara
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Mitsushige Sugimoto
- Division of Genome-Wide Infectious Diseases, Research Center for GLOBAL and LOCAL Infectious Disease, Oita University, Yufu, Japan
| | - Masaki Murata
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Eri Iwata
- Department of Gastroenterological Endoscopy, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University Hospital, Shinjuku, Japan
| | | | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University, Yufu, Japan
| | | |
Collapse
|
5
|
Hasanuzzaman M, Bang CS, Gong EJ. Antibiotic Resistance of Helicobacter pylori: Mechanisms and Clinical Implications. J Korean Med Sci 2024; 39:e44. [PMID: 38288543 PMCID: PMC10825452 DOI: 10.3346/jkms.2024.39.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium associated with various gastrointestinal diseases, including chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. The increasing rates of H. pylori antibiotic resistance and the emergence of multidrug-resistant strains pose significant challenges to its treatment. This comprehensive review explores the mechanisms underlying the resistance of H. pylori to commonly used antibiotics and the clinical implications of antibiotic resistance. Additionally, potential strategies for overcoming antibiotic resistance are discussed. These approaches aim to improve the treatment outcomes of H. pylori infections while minimizing the development of antibiotic resistance. The continuous evolution of treatment perspectives and ongoing research in this field are crucial for effectively combating this challenging infection.
Collapse
Affiliation(s)
- Md Hasanuzzaman
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
6
|
Kassegne L, Veziris N, Fraisse P. [A pharmacologic approach to treatment of Mycobacterium abscessus pulmonary disease]. Rev Mal Respir 2024; 41:29-42. [PMID: 38016833 DOI: 10.1016/j.rmr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023]
Abstract
Mycobacterium abscessus is a fast-growing non-tuberculous mycobacteria complex causing pulmonary infections, comprising the subspecies abscessus, massiliense and bolletii. Differences are based predominantly on natural inducible macrolide resistance, active in most Mycobacterium abscessus spp abscessus species and in Mycobacterium abscessus spp bolletii but inactive in Mycobacterium abscessus spp massiliense. Therapy consists in long-term treatment, combining multiple antibiotics. Prognosis is poor, as only 40% of patients experience cure. Pharmacodynamic and pharmacokinetic data on M. abscessus have recently been published, showing that therapy ineffectiveness might be explained by intrinsic bacterial resistance (macrolides…) and by the unfavorable pharmacokinetics of the recommended antibiotics. Other molecules and inhaled antibiotics are promising.
Collapse
Affiliation(s)
- L Kassegne
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France.
| | - N Veziris
- Département de bactériologie, Inserm U1135, Centre d'immunologie et des maladies infectieuses (CIMI-Paris), Centre national de référence des mycobactéries et de la résistance des mycobactéries aux antituberculeux, Groupe hospitalier AP-HP, Sorbonne université, site Saint-Antoine, Paris, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| | - P Fraisse
- Service de pneumologie, pôle de pathologie thoracique, nouvel hôpital civil, Strasbourg, France; Groupe pour l'enseignement et la recherche en pneumo-infectiologie de la SPLF, 66, boulevard Saint-Michel, 75006 Paris, France
| |
Collapse
|
7
|
Liang N, Zhou S, Li T, Zhang Z, Zhao T, Li R, Li M, Shao F, Wang G, Sun J. Physiologically based pharmacokinetic modeling to assess the drug-drug interactions of anaprazole with clarithromycin and amoxicillin in patients undergoing eradication therapy of H. pylori infection. Eur J Pharm Sci 2023; 189:106534. [PMID: 37480962 DOI: 10.1016/j.ejps.2023.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This study aimed to assess the pharmacokinetic (PK) interactions of anaprazole, clarithromycin, and amoxicillin using physiologically based pharmacokinetic (PBPK) models. METHODS The PBPK models for anaprazole, clarithromycin, and amoxicillin were constructed using the GastroPlus™ software (Version 9.7) based on the physicochemical data and PK parameters obtained from literature, then were optimized and validated in healthy subjects to predict the plasma concentration-time profiles of these three drugs and assess the predictive performance of each model. According to the analysis of the properties of each drug, the developed and validated models were applied to evaluate potential drug-drug interactions (DDIs) of anaprazole, clarithromycin, and amoxicillin. RESULTS The developed PBPK models properly described the pharmacokinetics of anaprazole, clarithromycin, and amoxicillin well, and all predicted PK parameters (Cmax,ss, AUC0-τ,ss) ratios were within 2.0-fold of the observed values. Furthermore, the application of these models to predict the anaprazole-clarithromycin and anaprazole-amoxicillin DDIs demonstrates their good performance, with the predicted DDI Cmax,ss ratios and DDI AUC0-τ,ss ratios within 1.25-fold of the observed values, and all predicted DDI Cmax,ss, and AUC0-τ,ss ratios within 2.0-fold. The simulated results show no need to adjust the dosage when co-administered with anaprazole in patients undergoing eradication therapy of H. pylori infection since the dose remained in the therapeutic range. CONCLUSION The whole-body PBPK models of anaprazole, clarithromycin, and amoxicillin were built and qualified, which can predict DDIs that are mediated by gastric pH change and inhibition of metabolic enzymes, providing a mechanistic understanding of the DDIs observed in the clinic of clarithromycin, amoxicillin with anaprazole.
Collapse
Affiliation(s)
- Ningxia Liang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Li
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zeru Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tangping Zhao
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Run Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingfeng Li
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Shao
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China; Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianguo Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Gnatzy L, Ismailos G, Vertzoni M, Reppas C. Managing the clinical effects of drug-induced intestinal dysbiosis with a focus to antibiotics: Challenges and opportunities. Eur J Pharm Sci 2023; 188:106510. [PMID: 37380062 DOI: 10.1016/j.ejps.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The term "intestinal dysbiosis" is used for indicating change(s) of the intestinal microbiota which have been associated with the development of diseases and the deterioration of disease treatments in humans. In this review, documented clinical effects of drug-induced intestinal dysbiosis are briefly presented, and methodologies which could be considered for the management of drug-induced intestinal dysbiosis based on clinical data are critically reviewed. Until relevant methodologies are optimized and/or their effectiveness to the general population is confirmed, and, since drug-induced intestinal dysbiosis refers predominantly to antibiotic-specific intestinal dysbiosis, a pharmacokinetically-based approach for mitigating the impact of antimicrobial therapy on intestinal dysbiosis is proposed.
Collapse
Affiliation(s)
- Lea Gnatzy
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - George Ismailos
- Experimental, Research and Training Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece; National Antimicrobial Testing Committee, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
9
|
Mushtaq M, Fatima K, Ahmad A, Mohamed Ibrahim O, Faheem M, Shah Y. Pharmacokinetic interaction of voriconazole and clarithromycin in Pakistani healthy male volunteers: a single dose, randomized, crossover, open-label study. Front Pharmacol 2023; 14:1134803. [PMID: 37361220 PMCID: PMC10288581 DOI: 10.3389/fphar.2023.1134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Voriconazole an antifungal drug, has a potential for drug-drug interactions (DDIs) with administered drugs. Clarithromycin is a Cytochromes P450 CYP (3A4 and 2C19) enzyme inhibitor, and voriconazole is a substrate and inhibitor of these two enzymes. Being a substrate of the same enzyme for metabolism and transport, the chemical nature and pKa of both interacting drugs make these drugs better candidates for potential pharmacokinetic drug-drug interactions (PK-DDIs). This study aimed to evaluate the effect of clarithromycin on the pharmacokinetic profile of voriconazole in healthy volunteers. Methods: A single oral dose, open-label, randomized, crossover study was designed for assessing PK-DDI in healthy volunteers, consisting of 2 weeks washout period. Voriconazole, either alone (2 mg × 200 mg, tablet, P/O) or along with clarithromycin (voriconazole 2 mg × 200 mg, tablet + clarithromycin 500 mg, tablet, P/O), was administered to enrolled volunteers in two sequences. The blood samples (approximately 3 cc) were collected from volunteers for up to 24 h. Plasma concentrations of voriconazole were analyzed by an isocratic, reversed-phase high-performance-liquid chromatography ultraviolet-visible detector (RP HPLC UV-Vis) and a non-compartmental method. Results: In the present study, when voriconazole was administered with clarithromycin versus administered alone, a significant increase in peak plasma concentration (Cmax) of voriconazole by 52% (geometric mean ratio GMR: 1.52; 90% CI 1.04, 1.55; p = 0.000) was observed. Similarly, the area under the curve from time zero to infinity (AUC0-∞) and the area under the concentration-time curve from time zero to time-t (AUC0-t) of voriconazole also significantly increased by 21% (GMR: 1.14; 90% CI 9.09, 10.02; p = 0.013), and 16% (GMR: 1.15; 90% CI 8.08, 10.02; p = 0.007), respectively. In addition, the results also showed a reduction in the apparent volume of distribution (Vd) by 23% (GMR: 0.76; 90% CI 5.00, 6.20; p = 0.051), and apparent clearance (CL) by 13% (GMR: 0.87; 90% CI 41.95, 45.73; p = 0.019) of voriconazole. Conclusion: The alterations in PK parameters of voriconazole after concomitant administration of clarithromycin are of clinical significance. Therefore, adjustments in dosage regimens are warranted. In addition, extreme caution and therapeutic drug monitoring are necessary while co-prescribing both drugs. Clinical Trial Registration: clinicalTrials.gov, Identifier NCT05380245.
Collapse
Affiliation(s)
- Mehwish Mushtaq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Kshaf Fatima
- University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Aneeqa Ahmad
- Punjab Medical College, Faisalabad Medical University, Faisalabad, Pakistan
| | - Osama Mohamed Ibrahim
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammad Faheem
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Yasar Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
10
|
Calgaro L, Giubilato E, Lamon L, Calore F, Semenzin E, Marcomini A. Emissions of pharmaceuticals and plant protection products to the lagoon of Venice: development of a new emission inventory. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117153. [PMID: 36603246 DOI: 10.1016/j.jenvman.2022.117153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Estimating the emissions of chemical pollutants to water is a fundamental step for the development and application of effective and sustainable management strategies of water resources, but methods applied so far to build chemicals inventories at the European or national scale show several limitations when applied at the local scale. The issue is particularly relevant when considering contaminants of emerging concern (CECs), whose environmental releases and occurrence are still poorly studied and understood. In this work, an approach to estimate water emissions of nine active pharmaceutical ingredients (APIs) and ten most applied plant protection products (PPPs) is presented, considering proxy indicators (e.g., sales data and census information). The application area is the lagoon of Venice (Italy), a complex transitional environment highly influenced by anthropic pressures (e.g., agricultural and industrial activities, animal breeding, and wastewater discharge). The presented approach can be tailored to the information available for any local scale case study. Data on annual regional sales of PPPs and APIs were integrated with georeferenced demographic and economic statistics (such as census and land-use information) to estimate chemicals emissions to surface water and groundwater. A sensitivity and uncertainty analysis identified the main factors affecting emissions estimates, and those contributing more significantly to results uncertainty. Results showed the highest estimated emissions of APIs for antibiotics (i.e., amoxicillin, clarithromycin, azithromycin, and ciprofloxacin) used for humans and animals, while most of hormones' emission (i.e., 17- α-ethinylestradiol and 17-β-estradiol) derived from animal breeding. Regarding PPPs, glyphosate and imidacloprid emissions were one to two orders of magnitude higher compared to the other chemicals. Uncertainty and sensitivity analysis showed that the variability of each parameter used to estimate emissions depends greatly both on the target chemical and the specific emission source considered. Excretion rates and removal during wastewater treatment were major key parameters for all the target pharmaceutical compounds, while for PPPs the key parameter was their loss into the natural waters after application.
Collapse
Affiliation(s)
- Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Lara Lamon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Francesco Calore
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| |
Collapse
|
11
|
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery. J Funct Biomater 2023; 14:jfb14020057. [PMID: 36826856 PMCID: PMC9964574 DOI: 10.3390/jfb14020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were successfully fabricated and characterized for their morphology, size, in vitro release, and antimicrobial efficacy. Subsequently, the CLR niosomes were loaded into transdermal patches using the solvent casting method. The polydispersity index of the niosomes ranged from 0.005 to 0.360, indicating the uniformity of the niosomes. The encapsulating efficiency (EE)% varied from 12 to 86%. The optimal Chol: surfactant ratio for drug release was found to be 0.5:1. In addition, the encapsulation of CLR into niosomal nanovesicles did not reduce the antibacterial activity of the CLR. The niosomal patch had a significantly higher permeability coefficient of CLR than the conventional patch. In addition to that, a shear-thinning behavior was observed in the niosomal gels before loading them into a niosomal patch. The flux (Jss) of the niosomal patch was significantly higher than the conventional patch by more than 200 times. In conclusion, niosome-based transdermal patches could be a promising method for the transdermal drug delivery of class II drugs and drugs experiencing GIT side effects.
Collapse
|
12
|
Ullah G, Nawaz A, Latif MS, Shah KU, Ahmad S, Javed F, Alfatama M, Abd Ghafar SA, Lim V. Clarithromycin and Pantoprazole Gastro-Retentive Floating Bilayer Tablet for the Treatment of Helicobacter Pylori: Formulation and Characterization. Gels 2023; 9:gels9010043. [PMID: 36661809 PMCID: PMC9858428 DOI: 10.3390/gels9010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs to eliminate Helicobacter pylori (H. pylori) in the gastrointestinal tract. The bilayer tablets were prepared by means of the direct compression technique. The controlled-release bilayer tablets were prepared using various hydrophilic swellable polymers (sodium alginate, chitosan, and HPMC-K15M) alone and in combination to investigate the percent of swelling behavior and average drug release. The weight of the controlled-release floating layer was 500 mg, whereas the weight of the floating tablets of pantoprazole was 100 mg. To develop the most-effective formulation, the effects of the experimental components on the floating lag time, the total floating time, T 50%, and the amount of drug release were investigated. The drugs' and excipients' compatibilities were evaluated using ATR-FTIR and DSC. Pre-compression and post-compression testing were carried out for the prepared tablets, and they were subjected to in vitro characterization studies. The pantoprazole layer of the prepared tablet demonstrated drug release (95%) in 2 h, whereas clarithromycin demonstrated sustained drug release (83%) for up to 24 h (F7). The present study concluded that the combination of sodium alginate, chitosan, and HPMC polymers (1:1:1) resulted in a gastro-retentive and controlled-release drug delivery system of the drug combination. Thus, the formulation of the floating bilayer tablets successfully resulted in a biphasic drug release. Moreover, the formulation (F7) offered the combination of two drugs in a single-tablet formulation containing various polymers (sodium alginate, chitosan, and HPMC polymers) as the best treatment option for local infections such as gastric ulcers.
Collapse
Affiliation(s)
- Ghufran Ullah
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asif Nawaz
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kifayat Ullah Shah
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Saeed Ahmad
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24420, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Charsadda Road Larama, Peshawer 25000, Pakistan
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu 22200, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Ampang, Kuala Lumpur 55100, Malaysia
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| |
Collapse
|
13
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
14
|
Zhang Q, Melchert PW, Markowitz JS. In vitro evaluation of the impact of Covid-19 therapeutic agents on the hydrolysis of the antiviral prodrug remdesivir. Chem Biol Interact 2022; 365:110097. [PMID: 35964681 PMCID: PMC9367181 DOI: 10.1016/j.cbi.2022.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Remdesivir (RDV, Veklury®) is an FDA-approved prodrug for the treatment of hospitalized patients with COVID-19. Recent in vitro studies have indicated that human carboxylesterase 1 (CES1) is the major metabolic enzyme catalyzing RDV activation. COVID-19 treatment for hospitalized patients typically also involves a number of antibiotics and anti-inflammatory drugs. Further, individuals who are carriers of a CES1 variant (polymorphism in exon 4 codon 143 [G143E]) may experience impairment in their ability to metabolize therapeutic agents which are CES1 substrates. The present study assessed the potential influence of nine therapeutic agents (hydroxychloroquine, ivermectin, erythromycin, clarithromycin, roxithromycin, trimethoprim, ciprofloxacin, vancomycin, and dexamethasone) commonly used in treating COVID-19 and 5 known CES1 inhibitors on the metabolism of RDV. Additionally, we further analyzed the mechanism of inhibition of cannabidiol (CBD), as well as the impact of the G143E polymorphism on RDV metabolism. An in vitro S9 fraction incubation method and in vitro to in vivo pharmacokinetic scaling were utilized. None of the nine therapeutic agents evaluated produced significant inhibition of RDV hydrolysis; CBD was found to inhibit RDV hydrolysis by a mixed type of competitive and noncompetitive partial inhibition mechanism. In vitro to in vivo modeling suggested a possible reduction of RDV clearance and increase of AUC when coadministration with CBD. The same scaling method also suggested a potentially lower clearance and higher AUC in the presence of the G143E variant. In conclusion, a potential CES1-mediated DDI between RDV and the nine assessed medications appears unlikely. However, a potential CES1-mediated DDI between RDV and CBD may be possible with sufficient exposure to the cannabinoid. Patients carrying the CES1 G143E variant may exhibit a slower biotransformation and clearance of RDV. Further clinical studies would be required to evaluate and characterize the clinical significance of a CBD-RDV interaction.
Collapse
Affiliation(s)
- Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - Philip W Melchert
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA; Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Schnegelberger RD, Steiert B, Sandoval PJ, Hagenbuch B. Using a competitive counterflow assay to identify novel cationic substrates of OATP1B1 and OATP1B3. Front Physiol 2022; 13:969363. [PMID: 36160869 PMCID: PMC9493024 DOI: 10.3389/fphys.2022.969363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
OATP1B1 and OATP1B3 are two drug transporters that mediate the uptake of multiple endo- and xenobiotics, including many drugs, into human hepatocytes. Numerous inhibitors have been identified, and for some of them, it is not clear whether they are also substrates. Historically radiolabeled substrates or LC-MS/MS methods were needed to test for transported substrates, both of which can be limiting in time and money. However, the competitive counterflow (CCF) assay originally described for OCT2 and, more recently, for OCT1, OATP2B1, and OATP1A2 does not require radiolabeled substrates or LC-MS/MS methods and, as a result, is a more cost-effective approach to identifying substrates of multidrug transporters. We used a CCF assay based on the stimulated efflux of the common model substrate estradiol-17β-glucuronide (E17βG) and tested 30 compounds for OATP1B1- and OATP1B3-mediated transport. Chinese Hamster Ovary (CHO) cells stably expressing OATP1B1 or OATP1B3 were preloaded with 10 nM [3H]-estradiol-17β-glucuronide. After the addition of known substrates like unlabeled estradiol-17β-glucuronide, estrone-3-sulfate, bromosulfophthalein, protoporphyrin X, rifampicin, and taurocholate to the outside of the preloaded CHO cells, we observed efflux of [3H]-estradiol-17β-glucuronide due to exchange with the added compounds. Of the tested 30 compounds, some organic cation transporter substrates like diphenhydramine, metformin, and salbutamol did not induce [3H]-estradiol-17β-glucuronide efflux, indicating that the two OATPs do not transport them. However, 22 (for OATP1B1) and 16 (for OATP1B3) of the tested compounds resulted in [3H]-estradiol-17β-glucuronide efflux, suggesting that they are OATP substrates. Among these compounds, we further tested clarithromycin, indomethacin, reserpine, and verapamil and confirmed that they are substrates of the two OATPs. These results demonstrate that the substrate spectrum of the well-characterized organic anion transporting polypeptides includes several organic cations. Furthermore, as for other drug uptake transporters, the CCF assay is an easy-to-use screening tool to identify novel OATP substrates.
Collapse
|
16
|
Lanni A, Borroni E, Iacobino A, Russo C, Gentile L, Fattorini L, Giannoni F. Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms 2022; 10:microorganisms10071421. [PMID: 35889140 PMCID: PMC9316547 DOI: 10.3390/microorganisms10071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations.
Collapse
Affiliation(s)
- Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Cristina Russo
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Leonarda Gentile
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
- Correspondence: ; Tel.: +39-06-49902318; Fax: +39-06-49387112
| |
Collapse
|
17
|
Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, Zimmerman MD, Eckartt KA, Bosch B, Engelhart CA, Sullivan DF, Gengenbacher M, Dartois VA, Schnappinger D, Rock JM. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol 2022; 7:766-779. [PMID: 35637331 PMCID: PMC9159947 DOI: 10.1038/s41564-022-01130-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.
Collapse
Affiliation(s)
- Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Jesseon S Chang
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel F Sullivan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Véronique A Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Tomabechi R, Kishimoto H, Sato T, Saito N, Kiyomiya K, Takada T, Higuchi K, Shirasaka Y, Inoue K. SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1. PNAS NEXUS 2022; 1:pgac063. [PMID: 36741448 PMCID: PMC9896951 DOI: 10.1093/pnasnexus/pgac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics that enable targeted delivery of cytotoxic drugs to cancer cells. Although clinical efficacy has been demonstrated for ADC therapies, resistance to these conjugates may occur. Recently, SLC46A3, a lysosomal membrane protein, was revealed to regulate the efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC that has been widely used for treating breast cancer. However, the role of SLC46A3 in mediating T-DM1 cytotoxicity remains unclear. In this study, we discovered the function of SLC46A3 as a novel proton-coupled steroid conjugate and bile acid transporter. SLC46A3 preferentially recognized lipophilic steroid conjugates and bile acids as endogenous substrates. In addition, we found that SLC46A3 directly transports Lys-SMCC-DM1, a major catabolite of T-DM1, and potent SLC46A3 inhibitors attenuate the cytotoxic effects of T-DM1, suggesting a role in the escape of Lys-SMCC-DM1 from the lysosome into the cytoplasm. Our findings reveal the molecular mechanism by which T-DM1 kills cancer cells and may contribute to the rational development of ADCs that target SLC46A3.
Collapse
Affiliation(s)
- Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Taeka Sato
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
19
|
Azuma T, Nakano T, Koizumi R, Matsunaga N, Ohmagari N, Hayashi T. Evaluation of the Correspondence between the Concentration of Antimicrobials Entering Sewage Treatment Plant Influent and the Predicted Concentration of Antimicrobials Using Annual Sales, Shipping, and Prescriptions Data. Antibiotics (Basel) 2022; 11:472. [PMID: 35453223 PMCID: PMC9027251 DOI: 10.3390/antibiotics11040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
The accuracy and correspondence between the measured concentrations from the survey and predicted concentrations on the basis of the three types of statistical antimicrobial use in Japan was evaluated. A monitoring survey of ten representative antimicrobials: ampicillin (APL), cefdinir (CDN), cefpodoxime proxetil (CPXP), ciprofloxacin (CFX), clarithromycin (CTM), doxycycline (DCL), levofloxacin (LFX), minocycline (MCL), tetracycline (TCL), and vancomycin (VMC), in the influent of sewage treatment plant (STP) located in urban areas of Japan, was conducted. Then, the measured values were verified in comparison with the predicted values estimated from the shipping volumes, sales volumes, and prescription volumes based on the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). The results indicate that the correspondence ratios between the predicted concentrations calculated on the basis of shipping and NDB volumes and the measured concentrations (predicted concentration/measured concentration) generally agreed for the detected concentration of antimicrobials in the STP influent. The correspondence ratio on the basis of shipping volume was, for CFX, 0.1; CTM, 2.9; LFX, 0.5; MCL, 1.9; and VMC, 1.7, and on the basis of NDB volume the measured concentration was CFX, 0.1; CTM, 3.7; DCL, 0.4; LFX, 0.7; MCL, 1.9; TCL, 0.6; and VMC, 1.6. To our knowledge, this is the first report to evaluate the accuracy of predicted concentrations based on sales, shipping, NDB statistics and measured concentrations for antimicrobials in the STP influent.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Ryuji Koizumi
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tetsuya Hayashi
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, Osaka 559-0033, Japan
| |
Collapse
|
20
|
Takada K, Nakamura M, Samura M, Inoue J, Hirose N, Kurata T, Nagumo H, Ishii J, Koshioka S, Tanikawa K, Kunishima H. [Suppurative Thrombophlebitis of the Posterior Neck Caused by Streptococcus constellatus: A Case Report and Literature Review]. YAKUGAKU ZASSHI 2022; 142:189-193. [PMID: 35110455 DOI: 10.1248/yakushi.21-00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a rare case of suppurative thrombophlebitis of the posterior neck caused by Streptococcus constellatus. A 69-year-old female patient was admitted to the hospital with neck pain and fever, which had persisted for 16 days prior to hospitalization. On day 1 (day of admission), blood cultures (later identifying S. constellatus) were performed, and ceftriaxone (CTRX) IV (2 g SID) was started. On day 3, suppurative thrombophlebitis of the posterior neck was diagnosed by CT scan. The antimicrobials were changed from CTRX to ampicillin/sulbactam IV (12 g QID) to guard against the possibility of complicated infection with Fusobacterium spp. or Prevotella spp. On day 17, a CT scan revealed that the thrombus remained. Therefore, oral edoxaban (30 mg SID) was started. On day 27, the patient was discharged after her medication was changed to oral amoxicillin/clavulanate (1500 mg/375 mg TID). On day 33, the amoxicillin/clavulanate was changed to oral cefaclor (1500 mg TID) and edoxaban was discontinued due to itching. On day 45, the course of cefaclor was completed. The patient went on to follow an uneventful course with no relapses or complications for two years since the conclusion of treatment. These results suggest that when a patient presents with persistent neck pain accompanied by fever, suppurative thrombophlebitis of the posterior neck should be considered. In antimicrobial therapy, the treatment could be switched from intravenous to oral. In addition, direct-acting oral anticoagulants may be an alternative to other forms of anticoagulants.
Collapse
Affiliation(s)
| | | | | | - Junki Inoue
- Department of Pharmacy, Yokohama General Hospital
| | - Naoki Hirose
- Department of Pharmacy, Yokohama General Hospital
| | | | - Humio Nagumo
- Department of Pharmacy, Yokohama General Hospital
| | | | | | | | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine Hospital
| |
Collapse
|
21
|
A rabbit model to study antibiotic penetration at the site of infection for non-tuberculous mycobacterial lung disease: macrolide case study. Antimicrob Agents Chemother 2022; 66:e0221221. [PMID: 35099272 DOI: 10.1128/aac.02212-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics, and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic rather than pharmacokinetic factors. Our results pave the way towards the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multi-drug combinations, to enable the prioritization of promising regimens for clinical trials.
Collapse
|
22
|
Kul A, Ozdemir M, Sagirli O. Pharmacokinetic study of clarithromycin in human breast milk by UPLC-MS/MS. J Pharm Biomed Anal 2021; 208:114438. [PMID: 34735993 DOI: 10.1016/j.jpba.2021.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
This study aimed to develop a validated UPLC-MS/MS method for pharmacokinetic analysis of clarithromycin in human breast milk. For sample preparation, proteins precipitated with methanol and azithromycin were used as internal standards. Clarithromycin and azithromycin detection was achieved using electrospray ionization in positive mode. The chromatographic separation time was 5 min. The lower limit of quantification was 50 ng/mL. The calibration curve of clarithromycin was 50-4000 ng/mL, with a correlation coefficient> 0.99. The method was successfully applied to determine clarithromycin levels in breast milk obtained from a lactating mother after oral administration of a single tablet containing 500 mg of clarithromycin. The maximum human breast milk concentration (Cmax) was 3660 ng/mL, the time to reach the maximum concentration (tmax) was 2.5 h, and the area under curve (AUC0-24) was 18450 ng h/mL. The present study provides a novel UPLC-MS/MS method for pharmacokinetic analysis of clarithromycin in breast milk.
Collapse
Affiliation(s)
- Aykut Kul
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Turkey.
| | - Murat Ozdemir
- Health Application and Research Center Medical Biochemistry Laboratory, Üsküdar University, Uskudar, 34662 Istanbul, Turkey
| | - Olcay Sagirli
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Turkey
| |
Collapse
|
23
|
Prediction of Drug-Drug Interaction Potential of Tegoprazan Using Physiologically Based Pharmacokinetic Modeling and Simulation. Pharmaceutics 2021; 13:pharmaceutics13091489. [PMID: 34575565 PMCID: PMC8464955 DOI: 10.3390/pharmaceutics13091489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of tegoprazan and to predict the drug-drug interaction (DDI) potential between tegoprazan and cytochrome P450 (CYP) 3A4 perpetrators. The PBPK model of tegoprazan was developed using SimCYP Simulator® and verified by comparing the model-predicted pharmacokinetics (PKs) of tegoprazan with the observed data from phase 1 clinical studies, including DDI studies. DDIs between tegoprazan and three CYP3A4 perpetrators were predicted by simulating the difference in tegoprazan exposure with and without perpetrators, after multiple dosing for a clinically used dose range. The final PBPK model adequately predicted the biphasic distribution profiles of tegoprazan and DDI between tegoprazan and clarithromycin. All ratios of the predicted-to-observed PK parameters were between 0.5 and 2.0. In DDI simulation, systemic exposure to tegoprazan was expected to increase about threefold when co-administered with the maximum recommended dose of clarithromycin or ketoconazole. Meanwhile, tegoprazan exposure was expected to decrease to ~30% when rifampicin was co-administered. Based on the simulation by the PBPK model, it is suggested that the DDI potential be considered when tegoprazan is used with CYP3A4 perpetrator, as the acid suppression effect of tegoprazan is known to be associated with systemic exposure.
Collapse
|
24
|
Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications. Nat Rev Gastroenterol Hepatol 2021; 18:613-629. [PMID: 34002081 DOI: 10.1038/s41575-021-00449-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a major human pathogen for which increasing antibiotic resistance constitutes a serious threat to human health. Molecular mechanisms underlying this resistance have been intensively studied and are discussed in this Review. Three profiles of resistance - single drug resistance, multidrug resistance and heteroresistance - seem to occur, probably with overlapping fundamental mechanisms and clinical implications. The mechanisms that have been most studied are related to mutational changes encoded chromosomally and disrupt the cellular activity of antibiotics through target-mediated mechanisms. Other biological attributes driving drug resistance in H. pylori have been less explored and this could imply more complex physiological changes (such as impaired regulation of drug uptake and/or efflux, or biofilm and coccoid formation) that remain largely elusive. Resistance-related attributes deployed by the pathogen cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes. Subsequent to the increasing antibiotic resistance, a substantial drop in H. pylori treatment efficacy has been noted globally. In the absence of an efficient vaccine, enhanced efforts are needed for setting new treatment strategies and for a better understanding of the emergence and spread of drug-resistant bacteria, as well as for improving diagnostic tools that can help optimize current antimicrobial regimens.
Collapse
Affiliation(s)
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan. .,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Stader F, Kinvig H, Penny MA, Battegay M, Siccardi M, Marzolini C. Physiologically Based Pharmacokinetic Modelling to Identify Pharmacokinetic Parameters Driving Drug Exposure Changes in the Elderly. Clin Pharmacokinet 2021; 59:383-401. [PMID: 31583609 DOI: 10.1007/s40262-019-00822-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Medication use is highly prevalent with advanced age, but clinical studies are rarely conducted in the elderly, leading to limited knowledge regarding age-related pharmacokinetic changes. OBJECTIVE The objective of this study was to investigate which pharmacokinetic parameters determine drug exposure changes in the elderly by conducting virtual clinical trials for ten drugs (midazolam, metoprolol, lisinopril, amlodipine, rivaroxaban, repaglinide, atorvastatin, rosuvastatin, clarithromycin and rifampicin) using our physiologically based pharmacokinetic (PBPK) framework. METHODS PBPK models for all ten drugs were developed in young adults (20-50 years) following the best practice approach, before predicting pharmacokinetics in the elderly (≥ 65 years) without any modification of drug parameters. A descriptive relationship between age and each investigated pharmacokinetic parameter (peak concentration [Cmax], time to Cmax [tmax], area under the curve [AUC], clearance, volume of distribution, elimination-half-life) was derived using the final PBPK models, and verified with independent clinically observed data from 52 drugs. RESULTS The age-related changes in drug exposure were successfully simulated for all ten drugs. Pharmacokinetic parameters were predicted within 1.25-fold (70%), 1.5-fold (86%) and 2-fold (100%) of clinical data. AUC increased progressively by 0.9% per year throughout adulthood from the age of 20 years, which was explained by decreased clearance, while Cmax, tmax and volume of distribution were not affected by human aging. Additional clinical data of 52 drugs were contained within the estimated variability of the established age-dependent correlations for each pharmacokinetic parameter. CONCLUSION The progressive decrease in hepatic and renal blood flow, as well as glomerular filtration, rate led to a reduced clearance driving exposure changes in the healthy elderly, independent of the drug.
Collapse
Affiliation(s)
- Felix Stader
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland. .,Infectious Disease Modelling Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Hannah Kinvig
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Melissa A Penny
- Infectious Disease Modelling Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Burke A, Smith D, Coulter C, Bell SC, Thomson R, Roberts JA. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clin Pharmacokinet 2021; 60:1081-1102. [PMID: 33982266 DOI: 10.1007/s40262-021-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are an emerging group of pulmonary infectious pathogens of increasing importance to the management of patients with cystic fibrosis (CF). NTM include slow-growing mycobacteria such as Mycobacterium avium complex (MAC) and rapidly growing mycobacteria such as Mycobacterium abscessus. The incidence of NTM in the CF population is increasing and infection contributes to significant morbidity to the patient and costs to the health system. Treating M. abscessus requires the combination of multiple costly antibiotics for months, with potentially significant toxicity associated with treatment. Although international guidelines for the treatment of NTM infection in CF are available, there are a lack of robust pharmacokinetic studies in CF patients to inform dosing and drug choice. This paper aims to outline the pharmacokinetic and pharmacodynamic factors informing the optimal treatment of NTM infections in CF.
Collapse
Affiliation(s)
- Andrew Burke
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Daniel Smith
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Chris Coulter
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Scott C Bell
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rachel Thomson
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,Immunology Department, Gallipoli Medical Research Institute, Brisbane, QLD, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia. .,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| |
Collapse
|
27
|
Nair AB, Shah J, Al-Dhubiab BE, Jacob S, Patel SS, Venugopala KN, Morsy MA, Gupta S, Attimarad M, Sreeharsha N, Shinu P. Clarithromycin Solid Lipid Nanoparticles for Topical Ocular Therapy: Optimization, Evaluation and In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13040523. [PMID: 33918870 PMCID: PMC8068826 DOI: 10.3390/pharmaceutics13040523] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) are being extensively exploited as topical ocular carrier systems to enhance the bioavailability of drugs. This study investigated the prospects of drug-loaded SLNs to increase the ocular permeation and improve the therapeutic potential of clarithromycin in topical ocular therapy. SLNs were formulated by high-speed stirring and the ultra-sonication method. Solubility studies were carried out to select stearic acid as lipid former, Tween 80 as surfactant, and Transcutol P as cosurfactant. Clarithromycin-loaded SLN were optimized by fractional factorial screening and 32 full factorial designs. Optimized SLNs (CL10) were evaluated for stability, morphology, permeation, irritation, and ocular pharmacokinetics in rabbits. Fractional factorial screening design signifies that the sonication time and amount of lipid affect the SLN formulation. A 32 full factorial design established that both factors had significant influences on particle size, percent entrapment efficiency, and percent drug loading of SLNs. The release profile of SLNs (CL9) showed ~80% drug release in 8 h and followed Weibull model kinetics. Optimized SLNs (CL10) showed significantly higher permeation (30.45 μg/cm2/h; p < 0.0001) as compared to control (solution). CL10 showed spherical shape and good stability and was found non-irritant for ocular administration. Pharmacokinetics data demonstrated significant improvement of clarithromycin bioavailability (p < 0.0001) from CL10, as evidenced by a 150% increase in Cmax (~1066 ng/mL) and a 2.8-fold improvement in AUC (5736 ng h/mL) (p < 0.0001) as compared to control solution (Cmax; 655 ng/mL and AUC; 2067 ng h/mL). In summary, the data observed here demonstrate the potential of developed SLNs to improve the ocular permeation and enhance the therapeutic potential of clarithromycin, and hence could be a viable drug delivery approach to treat endophthalmitis.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, Natal, South Africa
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.E.A.-D.); (K.N.V.); (M.A.M.); (M.A.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
28
|
Alffenaar JW, Märtson AG, Heysell SK, Cho JG, Patanwala A, Burch G, Kim HY, Sturkenboom MGG, Byrne A, Marriott D, Sandaradura I, Tiberi S, Sintchencko V, Srivastava S, Peloquin CA. Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clin Pharmacokinet 2021; 60:711-725. [PMID: 33751415 PMCID: PMC8195771 DOI: 10.1007/s40262-021-01000-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria can cause minimally symptomatic self-limiting infections to progressive and life-threatening disease of multiple organs. Several factors such as increased testing and prevalence have made this an emerging infectious disease. Multiple guidelines have been published to guide therapy, which remains difficult owing to the complexity of therapy, the potential for acquired resistance, the toxicity of treatment, and a high treatment failure rate. Given the long duration of therapy, complex multi-drug treatment regimens, and the risk of drug toxicity, therapeutic drug monitoring is an excellent method to optimize treatment. However, currently, there is little available guidance on therapeutic drug monitoring for this condition. The aim of this review is to provide information on the pharmacokinetic/pharmacodynamic targets for individual drugs used in the treatment of nontuberculous mycobacteria disease. Lacking data from randomized controlled trials, in vitro, in vivo, and clinical data were aggregated to facilitate recommendations for therapeutic drug monitoring to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jin-Gun Cho
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Respiratory and Sleep Medicine, Westmead Hospital, Westmead, NSW, Australia.,Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - Asad Patanwala
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gina Burch
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hannah Y Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony Byrne
- St. Vincent's Hospital Sydney, Heart Lung Clinic, Sydney, NSW, Australia
| | - Debbie Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Indy Sandaradura
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, Royal London Hospital, London, UK.,Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Vitali Sintchencko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Wentworthville, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Shashikant Srivastava
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pulmonary Immunology, UT Health Science Center at Tyler, Tyler, TX, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Makoni PA, Khamanga SM, Walker RB. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Differential In Vitro Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations against Actively Multiplying and Nutrient-Starved Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:AAC.02179-20. [PMID: 33168614 DOI: 10.1128/aac.02179-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Current treatment options for lung disease caused by Mycobacterium abscessus complex infections have limited effectiveness. To maximize the use of existing antibacterials and to help inform regimen design for treatment, we assessed the in vitro bactericidal activity of single drugs against actively multiplying and net nonreplicating M. abscessus populations in nutrient-rich and nutrient-starvation conditions, respectively. As single drugs, bedaquiline and rifabutin exerted bactericidal activity only against nutrient-starved and actively growing M. abscessus, respectively. However, when combined, both bedaquiline and rifabutin were able to specifically contribute bactericidal activity at relatively low, clinically relevant concentrations against both replicating and nonreplicating bacterial populations. The addition of a third drug, amikacin, further enhanced the bactericidal activity of the bedaquiline-rifabutin combination against nutrient-starved M. abscessus Overall, these in vitro data suggest that bedaquiline-rifabutin may be a potent backbone combination to support novel treatment regimens for M. abscessus infections. This rich data set of differential time- and concentration-dependent activity of drugs, alone and together, against M. abscessus also highlights several issues affecting interpretation and translation of in vitro findings.
Collapse
|
31
|
Wojtyniak J, Selzer D, Schwab M, Lehr T. Physiologically Based Precision Dosing Approach for Drug‐Drug‐Gene Interactions: A Simvastatin Network Analysis. Clin Pharmacol Ther 2020; 109:201-211. [DOI: 10.1002/cpt.2111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jan‐Georg Wojtyniak
- Clinical Pharmacy Saarland University Saarbrücken Germany
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical Pharmacology Stuttgart Germany
| | - Dominik Selzer
- Clinical Pharmacy Saarland University Saarbrücken Germany
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical Pharmacology Stuttgart Germany
- Departments of Clinical Pharmacology and Pharmacy and Biochemistry University of Tübingen Tübingen Germany
- Cluster of Excellence iFIT (EXC2180) "Image‐guided and Functionally Instructed Tumor Therapies" University of Tübingen Tübingen Germany
| | - Thorsten Lehr
- Clinical Pharmacy Saarland University Saarbrücken Germany
| |
Collapse
|
32
|
Chen Z, Cai Z, Zhu C, Song X, Qin Y, Zhu M, Zhang T, Cui W, Tang H, Zheng H. Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment. Adv Healthc Mater 2020; 9:e2001032. [PMID: 32902190 DOI: 10.1002/adhm.202001032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Systemic antibiotic therapy is the main treatment for acute bacterial rhinosinusitis (ABRS). However, this treatment often causes side effects of dizziness, diarrhea, and drug resistance. In this study, a new polyethylene glycol hydrogel (PEG-H) treatment model is developed to achieve sustained release of drugs at the locality while avoiding those adverse effects. The PEG-H is composed of 4-arm-PEG-SH and silver ions through a high affinity and dynamic reversible coordination bond between the thiol and silver ion. In the initial test, PEG-H is loaded with Clarithromycin (CAM-Lips@Hydrogel) or Clarithromycin and Budesonide liposomes (CAM+BUD-Lips@Hydrogel). The results show that PEG-H maintains the characteristics of self-healing, biodegradability, moderate swelling rate, injectibility and sustained drug release. In in vivo studies, the hydrogel is injected into the maxillary sinus of ABRS rabbit models. In both a single or combined load, the hydrogel not only plays an effective role as an anti-bacterial, but also inhibits inflammatory response of local sinus mucosa. In addition, no other side effects are observed in the ABRS rabbit model through behavioral observation and drug sensitivity tests. Therefore, the injectable self-healing hydrogel with anti-bacterial and anti-inflammatory properties provides a new micro invasive therapeutic method for the clinical treatment of ABRS.
Collapse
Affiliation(s)
- Zhengming Chen
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengjing Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Xianmin Song
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Yanghua Qin
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Minhui Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Tao Zhang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Haihong Tang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Hongliang Zheng
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| |
Collapse
|
33
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
34
|
Kacerovsky M, Romero R, Stepan M, Stranik J, Maly J, Pliskova L, Bolehovska R, Palicka V, Zemlickova H, Hornychova H, Spacek J, Jacobsson B, Pacora P, Musilova I. Antibiotic administration reduces the rate of intraamniotic inflammation in preterm prelabor rupture of the membranes. Am J Obstet Gynecol 2020; 223:114.e1-114.e20. [PMID: 32591087 PMCID: PMC9125527 DOI: 10.1016/j.ajog.2020.01.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Preterm prelabor rupture of the membranes (PPROM) is frequently complicated by intraamniotic inflammatory processes such as intraamniotic infection and sterile intraamniotic inflammation. Antibiotic therapy is recommended to patients with PPROM to prolong the interval between this complication and delivery (latency period), reduce the risk of clinical chorioamnionitis, and improve neonatal outcome. However, there is a lack of information regarding whether the administration of antibiotics can reduce the intensity of the intraamniotic inflammatory response or eradicate microorganisms in patients with PPROM. OBJECTIVE The first aim of the study was to determine whether antimicrobial agents can reduce the magnitude of the intraamniotic inflammatory response in patients with PPROM by assessing the concentrations of interleukin-6 in amniotic fluid before and after antibiotic treatment. The second aim was to determine whether treatment with intravenous clarithromycin changes the microbial load of Ureaplasma spp DNA in amniotic fluid. STUDY DESIGN A retrospective cohort study included patients who had (1) a singleton gestation, (2) PPROM between 24+0 and 33+6 weeks, (3) a transabdominal amniocentesis at the time of admission, and (4) intravenous antibiotic treatment (clarithromycin for patients with intraamniotic inflammation and benzylpenicillin/clindamycin in the cases of allergy in patients without intraamniotic inflammation) for 7 days. Follow-up amniocenteses (7th day after admission) were performed in the subset of patients with a latency period lasting longer than 7 days. Concentrations of interleukin-6 were measured in the samples of amniotic fluid with a bedside test, and the presence of microbial invasion of the amniotic cavity was assessed with culture and molecular microbiological methods. Intraamniotic inflammation was defined as a bedside interleukin-6 concentration ≥745 pg/mL in the samples of amniotic fluid. Intraamniotic infection was defined as the presence of both microbial invasion of the amniotic cavity and intraamniotic inflammation; sterile intraamniotic inflammation was defined as the presence of intraamniotic inflammation without microbial invasion of the amniotic cavity. RESULTS A total of 270 patients with PPROM were included in this study: 207 patients delivered within 7 days and 63 patients delivered after 7 days of admission. Of the 63 patients who delivered after 7 days following the initial amniocentesis, 40 underwent a follow-up amniocentesis. Patients with intraamniotic infection (n = 7) and sterile intraamniotic inflammation (n = 7) were treated with intravenous clarithromycin. Patients without either microbial invasion of the amniotic cavity or intraamniotic inflammation (n = 26) were treated with benzylpenicillin or clindamycin. Treatment with clarithromycin decreased the interleukin-6 concentration in amniotic fluid at the follow-up amniocentesis compared to the initial amniocentesis in patients with intraamniotic infection (follow-up: median, 295 pg/mL, interquartile range [IQR], 72-673 vs initial: median, 2973 pg/mL, IQR, 1750-6296; P = .02) and in those with sterile intraamniotic inflammation (follow-up: median, 221 pg/mL, IQR 118-366 pg/mL vs initial: median, 1446 pg/mL, IQR, 1300-2941; P = .02). Samples of amniotic fluid with Ureaplasma spp DNA had a lower microbial load at the time of follow-up amniocentesis compared to the initial amniocentesis (follow-up: median, 1.8 × 104 copies DNA/mL, 2.9 × 104 to 6.7 × 108 vs initial: median, 4.7 × 107 copies DNA/mL, interquartile range, 2.9 × 103 to 3.6 × 107; P = .03). CONCLUSION Intravenous therapy with clarithromycin was associated with a reduction in the intensity of the intraamniotic inflammatory response in patients with PPROM with either intraamniotic infection or sterile intraamniotic inflammation. Moreover, treatment with clarithromycin was related to a reduction in the load of Ureaplasma spp DNA in the amniotic fluid of patients with PPROM <34 weeks of gestation.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic.
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Detroit Medical Center, Detroit, MI; Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Martin Stepan
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Maly
- Department of Pediatrics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnosis, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnosis, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnosis, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Institute of Clinical Microbiology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- Fingerland's Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Spacek
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg Sweden; Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Ivana Musilova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
35
|
Li X, Höhl R, Sörgel F, Fuhr U. The parent drugs chloroquine and hydroxychloroquine do not inhibit human CYP3A activity in vitro. Eur J Clin Pharmacol 2020; 76:1481-1482. [PMID: 32556540 PMCID: PMC7301348 DOI: 10.1007/s00228-020-02928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Xia Li
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Rainer Höhl
- Institute for Clinical Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical Private University, Nuremberg Hospital, Nuremberg, Germany
| | - Fritz Sörgel
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nürnberg, Heroldsberg, Germany
- Institute of Pharmacology, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Uwe Fuhr
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| |
Collapse
|
36
|
Koshman YE, Wilsey AS, Bird BM, Endemann AL, Sadilek S, Treadway J, Martin RL, Polakowski JS, Gintant GA, Mittelstadt SW. Drug-induced QT prolongation: Concordance of preclinical anesthetized canine model in relation to published clinical observations for ten CiPA drugs. J Pharmacol Toxicol Methods 2020; 103:106871. [PMID: 32360993 DOI: 10.1016/j.vascn.2020.106871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Aimee L Endemann
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Sabine Sadilek
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jessica Treadway
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ruth L Martin
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - James S Polakowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Gary A Gintant
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Scott W Mittelstadt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
37
|
Van Der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol 2020; 13:391-401. [PMID: 32310683 DOI: 10.1080/17512433.2020.1752663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly effective, as shown in two randomized trials in Africa. AREAS COVERED We review BU drug treatment - in vitro, in vivo and clinical trials (PubMed: '(Buruli OR (Mycobacterium AND ulcerans)) AND (treatment OR therapy).' We also highlight the pathogenesis of M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably, rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoroquinolones (notably, moxifloxacin, and ciprofloxacin) have been tested. EXPERT OPINION A combination of rifampicin and clarithromycin is highly effective but lesions still take a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in general; essays to measure mycolactone over time hold promise to use as a readout for studies to compare drug treatment schedules for larger lesions of Buruli ulcer.
Collapse
Affiliation(s)
- Tjip S Van Der Werf
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands.,Pulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| | - Yves T Barogui
- Ministère De La Sante ́, Programme National Lutte Contre La Lèpre Et l'Ulcère De Buruli , Cotonou, Benin
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research , Baltimore, Maryland, USA
| | - Richard O Phillips
- Kumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital , Kumasi, Ghana
| | - Ymkje Stienstra
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| |
Collapse
|
38
|
Gouzos M, Ramezanpour M, Bassiouni A, Psaltis AJ, Wormald PJ, Vreugde S. Antibiotics Affect ROS Production and Fibroblast Migration in an In-vitro Model of Sinonasal Wound Healing. Front Cell Infect Microbiol 2020; 10:110. [PMID: 32266162 PMCID: PMC7096545 DOI: 10.3389/fcimb.2020.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction: Antibiotics are often administered to patients perioperatively and have been shown to affect ROS production of nasal cells in vitro, but their effect in the setting of active wound healing remains unclear. Reactive oxygen species (ROS) are known to play a significant role in wound healing. This study analyzed a broad array of antibiotics used after sinus surgery to assess their effect on wound healing and ROS production in vitro. It was hypothesized that ROS production would be affected by these antibiotics and there would be a negative relationship between ROS activity and cell migration speed. Methods: Monolayers of primary human nasal epithelial cells (HNEC) and primary fibroblasts were disrupted with a linear wound, treated with 10 different antibiotics or a ROS inhibitor and observed over 36 h in a controlled environment using confocal microscopy. ROS activity and migration speed of the wound edge were measured at regular intervals. The relationship between the two parameters was analyzed using mixed linear modeling. Results: Performing a linear scratch over the cell monolayers produced an immediate increase in ROS production of ~35% compared to unscratched controls in both cell types. Incubation with mitoquinone and the oxazolidinone antibiotic linezolid inhibited ROS activity in both fibroblasts and HNEC in association with slowed fibroblast cell migration (p < 0.05). Fibroblast cell migration was also reduced in the presence of clarithromycin and mupirocin (p < 0.05). A significant correlation was seen between ROS suppression and cell migration rate in fibroblasts for mitoquinone and all antibiotics except for azithromycin and doxycycline, where no clear relationship was seen. Treatments that slowed fibroblast cell migration compared to untreated controls showed a significant correlation with ROS suppression (p < 0.05). Conclusion: Increased ROS production in freshly wounded HNEC and fibroblast cell monolayers was suppressed in the presence of antibiotics, in correlation with reduced fibroblast cell migration. In contrast, HNEC cell migration was not significantly affected by any of the antibiotics tested. This differential effect of antibiotics on fibroblast and HNEC migration might have clinical relevance by reducing adhesion formation without affecting epithelial healing in the postoperative setting.
Collapse
Affiliation(s)
- Michael Gouzos
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Bassiouni
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Alkis J Psaltis
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - P J Wormald
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Sarah Vreugde
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
39
|
Tse KC, Li FK, Tang S, Lam MF, Chan TM, Lai KN. Delusion of Worm Infestation Associated with Clarithromycin in a Patient on Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686080102100416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- K.-C. Tse
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| | - F.-K. Li
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| | - S. Tang
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| | - M.-F. Lam
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| | - T.-M. Chan
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| | - K.-N. Lai
- University Department of Medicine Queen Mary Hospital Pokfulam, Hong Kong
| |
Collapse
|
40
|
Ali I, Saifullah S, Imran M, Nisar J, Javed I, Shah MR. Synthesis and biocompatibility of self-assembling multi-tailed resorcinarene-based supramolecular amphiphile. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04610-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 2020; 11:362. [PMID: 31953381 PMCID: PMC6969170 DOI: 10.1038/s41467-019-14177-z] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota has now been associated with drug responses and efficacy, while chemical compounds present in these drugs can also impact the gut bacteria. However, drug–microbe interactions are still understudied in the clinical context, where polypharmacy and comorbidities co-occur. Here, we report relations between commonly used drugs and the gut microbiome. We performed metagenomics sequencing of faecal samples from a population cohort and two gastrointestinal disease cohorts. Differences between users and non-users were analysed per cohort, followed by a meta-analysis. While 19 of 41 drugs are found to be associated with microbial features, when controlling for the use of multiple medications, proton-pump inhibitors, metformin, antibiotics and laxatives show the strongest associations with the microbiome. We here provide evidence for extensive changes in taxonomy, metabolic potential and resistome in relation to commonly used drugs. This paves the way for future studies and has implications for current microbiome studies by demonstrating the need to correct for multiple drug use. Here, via a metagenomics analysis of population-based and disease cohorts, Vich Vila et al. study the impact of 41 commonly used medications on the taxonomic structures, metabolic potential and resistome of the gut microbiome, underscoring the importance of correcting for multiple drug use in microbiome studies.
Collapse
|
42
|
Lee CM, Jung EH, Byeon JY, Kim SH, Jang CG, Lee YJ, Lee SY. Effects of steady-state clarithromycin on the pharmacokinetics of zolpidem in healthy subjects. Arch Pharm Res 2019; 42:1101-1106. [PMID: 31820397 DOI: 10.1007/s12272-019-01201-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/04/2023]
Abstract
Zolpidem is extensively metabolized by CYP3A4, CYP2C9 and CYP1A2. Previous studies demonstrated that pharmacokinetics of zolpidem was affected by CYP inhibitors, but not by short-term treatment of clarithromycin. The objective of this study was to investigate the effects of steady-state clarithromycin on the pharmacokinetics of zolpidem in healthy subjects. In the control phase, 33 subjects received a single dose of zolpidem (5 mg). One week later, in the clarithromycin phase, the subjects received clarithromycin (500 mg) twice daily for 5 days to reach steady state concentrations, followed by zolpidem (5 mg) and clarithromycin (500 mg). In each phase, plasma concentrations of zolpidem were evaluated up to 12 h after drug administration by using liquid chromatography-tandem mass spectrometry method. In the clarithromycin phase, mean total area under the curve of zolpidem (AUCinf) was 1.62-fold higher and the time to reach peak plasma concentration of zolpidem (tmax) was prolonged by 1.95-fold compared to the control phase. In addition, elimination half-life (t1/2) of zolpidem was 1.40-fold longer during co-administration with clarithromycin and its apparent oral clearance (CL/F) was 36.2% lower with clarithromycin administration. The experimental data demonstrate the significant pharmacokinetic interaction between zolpidem and clarithromycin at steady-state.
Collapse
Affiliation(s)
- Choong-Min Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Yeong Byeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se-Hyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
43
|
Leishman DJ. Improving prediction of torsadogenic risk in the CiPA in silico model by appropriately accounting for clinical exposure. J Pharmacol Toxicol Methods 2019; 101:106654. [PMID: 31730936 DOI: 10.1016/j.vascn.2019.106654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/19/2023]
Abstract
Any adverse event is reliant on three properties: the appropriate pharmacology to trigger the event, the appropriate exposure of compound, and intrinsic patient factors. Each alone is necessary but insufficient to predict the event. The Comprehensive in vitro Proarrhythmia Assessment (CiPA) initiative attempts to predict the risk of torsade de pointes (TdP) by focusing on an in-silico model with thresholds determined at modest multiples of the therapeutic exposure for the parent molecule. This emphasizes the pharmacologic properties necessary for TdP but does not account for situations where clinical exposure may be higher, or where hERG potassium channel active metabolites are involved. Could accounting for clinical worst-case scenarios and metabolites, as is already standard practice in thorough QTc studies, improve the prediction algorithm? Terfenadine, a drug classed as "Intermediate" risk by CiPA, was assessed differently in the in-silico model validation. The clinical concentration of terfenadine used for the model was the exposure in the presence of metabolic inhibition representing a 14 to 40-fold increase in exposure compared to the therapeutic plasma concentration. However, several other "Intermediate" risk compounds are also known to be sensitive to metabolic inhibition and/or to have therapeutically active major metabolites, some of which are known to block hERG. Risperidone and astemizole are relevant examples. If only parent exposure is used to calculate a therapeutic window, risperidone has a relatively large multiple between clinical exposure and the hERG potency. Using this exposure of risperidone, the drug borders the "Intermediate" and "Low/No" risk categories for the CiPA in-silico model's TdP metric. The desmethyl metabolite of astemizole likely contributes significantly to the effects on cardiac repolarization, being equipotent on hERG but circulating at much higher levels than parent. Recalculating the TdP metric and margin values for terfenadine, risperidone and astemizole using the unbound concentration normally associated with treatment and a clinical worst case changes the qNet metric to higher risk values and illustrates the potential benefit to the algorithm of consistently using a clinical high exposure scenario accounting for all "hERG-active species". This exercise suggests repeating the model qualification accounting for clinical exposures and metabolites under 'stressed' scenarios would improve prediction of the TdP risk.
Collapse
Affiliation(s)
- Derek J Leishman
- Drug Disposition, Toxicology and PKPD, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
44
|
Fernandes P, Pereira D, Watkins PB, Bertrand D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J Med Chem 2019; 63:6462-6473. [PMID: 31644280 DOI: 10.1021/acs.jmedchem.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This is a review of the macrolide and ketolide field focusing on differentiating the pharmacodynamics and especially the toxicology of the macrolides and ketolides. We emphasize the diversity in pharmacodynamics and toxicity of the macrolides and ketolides, resulting from even small structural changes, which makes it important to consider the various different compounds separately, not necessarily as a class. The ketolide, telithromycin, was developed because of rising bacterial macrolide resistance but was withdrawn postapproval after visual disturbances, syncope, myasthenia gravis, and hepatotoxicity were noted. These diverse adverse effects could be attributed to inhibition of nicotinic acetylcholine receptors. Solithromycin, a later generation ketolide, was effective in treating bacterial pneumonia, but it was not approved by the U.S. Food and Drug Administration owing, in part, to its structural similarity to telithromycin. This Miniperspective describes that structurally similar macrolides/ketolides have clearly mechanistically distinct effects. Understanding these effects could help in developing and securing regulatory approval of a new macrolide/ketolide that is active against macrolide-resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | - David Pereira
- Ponce De Leon Health, Fernandina Beach, Florida 32034, United States
| | - Paul B Watkins
- Schools of Pharmacy, Medicine and Public Health, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Daniel Bertrand
- HiQScreen SÃrl, 6, Route de Compois, Vesenaz, 1222 Geneva, Switzerland
| |
Collapse
|
45
|
Kobuchi S, Fujita A, Kato A, Kobayashi H, Ito Y, Sakaeda T. Pharmacokinetics and lung distribution of macrolide antibiotics in sepsis model rats. Xenobiotica 2019; 50:552-558. [DOI: 10.1080/00498254.2019.1654633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akihiro Fujita
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akihito Kato
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiromu Kobayashi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
46
|
Senta I, Kostanjevecki P, Krizman-Matasic I, Terzic S, Ahel M. Occurrence and Behavior of Macrolide Antibiotics in Municipal Wastewater Treatment: Possible Importance of Metabolites, Synthesis Byproducts, and Transformation Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7463-7472. [PMID: 31244064 DOI: 10.1021/acs.est.9b01420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A one-year study on the occurrence and fate of macrolide antibiotics and their metabolites, synthesis byproducts, and transformation products (TPs) was performed in the wastewater treatment plant of the city of Zagreb (Croatia). The target compounds were found in all analyzed influent and effluent samples with the total concentrations of azithromycin-, clarithromycin-, and erythromycin-related compounds reaching up to 25, 12, and 0.25 μg/L, respectively. The most prominent individual constituents were the parent macrolides azithromycin and clarithromycin. However, a substantial contribution of their derivatives, formed by deglycolysation and microbial phosphorylation, was also detected. In addition, widespread presence of several linearized nontarget TPs was confirmed for the first time in real wastewater samples by suspect screening analysis. Complex characterization of macrolide-derived compounds enabled decoupling of industrial and therapeutic sources from the in situ transformations. Due to the high inputs and incomplete removal and/or formation of several TPs during the conventional wastewater treatment, the average mass load of azithromycin-related compounds in secondary effluents exceeded 3.0 g/day/1000 inhabitants. This is the first study to reveal the importance of metabolites, byproducts, and TPs for the overall mass balance of macrolide antibiotics in urban wastewater systems.
Collapse
Affiliation(s)
- Ivan Senta
- Division for Marine and Environmental Research , Rudjer Boskovic Institute , Bijenicka c. 54 , 10000 Zagreb , Croatia
| | - Petra Kostanjevecki
- Division for Marine and Environmental Research , Rudjer Boskovic Institute , Bijenicka c. 54 , 10000 Zagreb , Croatia
| | - Ivona Krizman-Matasic
- Division for Marine and Environmental Research , Rudjer Boskovic Institute , Bijenicka c. 54 , 10000 Zagreb , Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research , Rudjer Boskovic Institute , Bijenicka c. 54 , 10000 Zagreb , Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research , Rudjer Boskovic Institute , Bijenicka c. 54 , 10000 Zagreb , Croatia
| |
Collapse
|
47
|
Radwan A, Jayyousi R, Shraim N, Zaid AN. Evaluation of food effect on the oral absorption of clarithromycin from immediate release tablet using physiological modelling. Biopharm Drug Dispos 2019; 40:121-134. [DOI: 10.1002/bdd.2176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Asma Radwan
- College of PharmacyAn‐Najah National University Nablus Palestine
| | - Rand Jayyousi
- College of PharmacyAn‐Najah National University Nablus Palestine
| | - Nasr Shraim
- College of PharmacyAn‐Najah National University Nablus Palestine
| | - Abdel Naser Zaid
- College of PharmacyAn‐Najah National University Nablus Palestine
| |
Collapse
|
48
|
Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today 2019; 24:858-866. [PMID: 30654055 DOI: 10.1016/j.drudis.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Most microbial infectious diseases can be treated successfully with the remarkable array of antimicrobials current available; however, antimicrobial resistance, adverse effects, and the high cost of antimicrobials are crucial health challenges worldwide. One of the common efforts in addressing this issue lies in improving the existing antibacterial delivery systems. Solid nanoparticles (SNPs) have been widely used as promising strategies to overcome these challenges. In addition, oral delivery is the most common method of drug administration with high levels of patient acceptance. Formulation into NPs can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. Here, we discuss SNPs for the oral delivery of antimicrobials, including solid lipid NPs (SLNs), polymeric NPs (PNs), mesoporous silica NPs (MSNs) and hybrid NPs (HNs). We also discussed about the role of nanotechnology in IV to oral antimicrobial therapy development as well as challenges, clinical transformation, and limitations of SNPs for oral antimicrobial drug delivery.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Faheem Maqbool
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
49
|
Waghray A, Waghray N, Perzynski AT, Votruba M, Wolfe MM. Optimal Omeprazole Dosing and Symptom Control: A Randomized Controlled Trial (OSCAR Trial). Dig Dis Sci 2019; 64:158-166. [PMID: 30094626 DOI: 10.1007/s10620-018-5235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) are potent inhibitors of acid secretion and are the mainstay of therapy for gastroesophageal reflux disease (GERD). Initially designed to be taken 30 min before the first daily meal, these agents are commonly used suboptimally, which adversely affects symptom relief. No study to date has assessed whether correcting dosing regimens would improve symptom control. The objective of this study was to determine whether patients with persistent GERD symptoms on suboptimal omeprazole dosing experience symptomatic improvement when randomized to commonly recommended dosing regimen and to evaluate the economic impact of suboptimal PPI dosing in GERD patients. METHODS Patients with persistent heartburn symptoms ≥ 3 times per week treated with omeprazole 20 mg daily were enrolled and randomized to commonly recommended dosing or continued suboptimal dosing of omeprazole. The primary outcomes were changes in symptom, frequency, and severity, as determined using the Gastroesophageal Reflux Disease Symptom Assessment Scale (GSAS) 4 weeks after the intervention was administered. In secondary analysis, an alternative measure of symptom load was used to infer potential costs. RESULTS Sixty-four patients were enrolled. GSAS symptom, frequency, and severity scores were significantly better when dosing was optimized for overall and heartburn-specific symptoms (P < 0.01 for all parameters). Cost savings resulting from reduced medical care and workplace absenteeism were estimated to be $159.60 per treated patient, with cost savings potentially exceeding $4 billion annually in the USA. DISCUSSION Low-cost efforts to promote commonly recommended PPI dosing can dramatically reduce GERD symptoms and related economic costs. ClinicalTrials.gov, number: NCT02623816.
Collapse
Affiliation(s)
- Abhijeet Waghray
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Nisheet Waghray
- Division of Gastroenterology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Adam T Perzynski
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, 44109, USA.,Center for Healthcare Research and Policy, Case Western Reserve University, Cleveland, OH, USA
| | - Mark Votruba
- Department of Economics, Case Western Reserve University, Cleveland, OH, USA.,Center for Healthcare Research and Policy, Case Western Reserve University, Cleveland, OH, USA
| | - M Michael Wolfe
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, 44109, USA. .,Division of Gastroenterology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
50
|
Margaritis VK, Ismailos GS, Naxakis SS, Mastronikolis NS, Goumas PD. Sinus Fluid Penetration of Oral Clarithromycin and Azithromycin in Patients with Acute Rhinosinusitis. ACTA ACUST UNITED AC 2018; 21:574-8. [DOI: 10.2500/ajr.2007.21.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The aim of this study was to investigate the extracellular concentration and the degree of sinus fluid penetration of newer macrolides, within the first 24–48 hours of treatment in patients with acute bacterial rhinosinusitis (ABRS), choosing clarithromycin and azithromycin as model antibiotics. An open, noninterventional pharmacokinetic study was performed at a tertiary teaching hospital. Methods In 36 outpatients with ABRS, sinus fluid aspirates and serum samples were collected 2, 4, 6, 8, and 12 hours or 2, 6, 12, and 24 hours after the administration of three doses of oral clarithromycin, 500 mg, twice daily or two doses of oral azithromycin, 500 mg, once daily, respectively. Drug concentrations were determined in both matrices by high-performance liquid chromatography with fluorometric detection, and the pH was estimated for all sinus fluid samples. Results The average clarithromycin sinus fluid concentration was found to be significantly higher than the corresponding azithromycin concentration (2.47 mg/L versus 0.65 mg/L), while the extent of the average sinus fluid penetration, expressed by the ratio of drug concentration in tissue versus serum, was similar for both drugs (115 and 120%, respectively). Conclusion In patients with ABRS, clarithromycin and azithromycin present adequate penetration into sinus fluid to eradicate erythromycin-sensitive strains of Streptococcus pneumoniae. Considering their comparative in vitro activity, the sinus fluid pH effect, and their sinus fluid penetration profile, we may conclude that among the erythromycin-resistant S. pneumoniae strains, clarithromycin might be advantageous over azithromycin in eradicating some of the low-level resistant strains.
Collapse
Affiliation(s)
| | - George S. Ismailos
- Department of Otolaryngology, School of Medicine, University of Patras, Patras, Greece
| | - Stefanos S. Naxakis
- Department of Otolaryngology, School of Medicine, University of Patras, Patras, Greece
| | | | - Panos D. Goumas
- Department of Otolaryngology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|